CINXE.COM

Poisson bracket Lie n-algebra in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Poisson bracket Lie n-algebra in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Poisson bracket Lie n-algebra </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/6474/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="symplectic_geometry">Symplectic geometry</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/higher+symplectic+geometry">higher symplectic geometry</a></p> <h2 id="background">Background</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a></p> </li> </ul> <h2 id="basic_concepts">Basic concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/almost+symplectic+structure">almost symplectic structure</a>, <a class="existingWikiWord" href="/nlab/show/metaplectic+structure">metaplectic structure</a>, <a class="existingWikiWord" href="/nlab/show/metalinear+structure">metalinear structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+form">symplectic form</a>, <a class="existingWikiWord" href="/nlab/show/n-plectic+form">n-plectic form</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+Lie+n-algebroid">symplectic Lie n-algebroid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+manifold">symplectic manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+manifold">Poisson manifold</a>, <a class="existingWikiWord" href="/nlab/show/Poisson+Lie+algebroid">Poisson Lie algebroid</a></p> <p><a class="existingWikiWord" href="/nlab/show/Poisson+n-algebra">Poisson n-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Courant+Lie+2-algebroid">Courant Lie 2-algebroid</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+infinity-groupoid">symplectic infinity-groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/symplectic+groupoid">symplectic groupoid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectomorphism">symplectomorphism</a>, <a class="existingWikiWord" href="/nlab/show/symplectomorphism+group">symplectomorphism group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+vector+field">symplectic vector field</a>, <a class="existingWikiWord" href="/nlab/show/Hamiltonian+vector+field">Hamiltonian vector field</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Hamiltonian">Hamiltonian</a>, <a class="existingWikiWord" href="/nlab/show/Hamiltonian+form">Hamiltonian form</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+gradient">symplectic gradient</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hamiltonian+action">Hamiltonian action</a>, <a class="existingWikiWord" href="/nlab/show/moment+map">moment map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+reduction">symplectic reduction</a>, <a class="existingWikiWord" href="/nlab/show/BRST-BV+formalism">BRST-BV formalism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/isotropic+submanifold">isotropic submanifold</a>, <a class="existingWikiWord" href="/nlab/show/Lagrangian+submanifold">Lagrangian submanifold</a>, <a class="existingWikiWord" href="/nlab/show/polarization">polarization</a></p> </li> </ul> <h2 id="classical_mechanics_and_quantization">Classical mechanics and quantization</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hamiltonian+mechanics">Hamiltonian mechanics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantization">quantization</a></p> <p><a class="existingWikiWord" href="/nlab/show/deformation+quantization">deformation quantization</a>,</p> <p><strong><a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a></strong>, <a class="existingWikiWord" href="/nlab/show/higher+geometric+quantization">higher geometric quantization</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+quantization+of+symplectic+groupoids">geometric quantization of symplectic groupoids</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+line+bundle">prequantum line bundle</a>, <a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle n-bundle</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/contact+manifold">contact manifold</a>, <a class="existingWikiWord" href="/nlab/show/contactomorphism">contactomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/contact+form">contact form</a>, <a class="existingWikiWord" href="/nlab/show/Reeb+vector+field">Reeb vector field</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantomorphism+group">quantomorphism group</a>, <a class="existingWikiWord" href="/nlab/show/quantomorphism+n-group">quantomorphism n-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+bracket">Poisson bracket</a>, <a class="existingWikiWord" href="/nlab/show/Poisson+algebra">Poisson algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+bracket+Lie+n-algebra">Poisson bracket Lie n-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Heisenberg+Lie+algebra">Heisenberg Lie algebra</a>, <a class="existingWikiWord" href="/nlab/show/Heisenberg+Lie+n-algebra">Heisenberg Lie n-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Heisenberg+group">Heisenberg group</a></p> </li> </ul> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/symplectic+geometry+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#Definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#the_extension_theorem'>The extension theorem</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The <a class="existingWikiWord" href="/nlab/show/Lie+n-algebra">Lie n-algebra</a> that generalizes the <a class="existingWikiWord" href="/nlab/show/Poisson+bracket">Poisson bracket</a> from <a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a> to <a class="existingWikiWord" href="/nlab/show/n-plectic+geometry">n-plectic geometry</a>: the <em>Poisson bracket <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">L_\infty</annotation></semantics></math>-algebra of local observables</em> in <a class="existingWikiWord" href="/nlab/show/higher+prequantum+geometry">higher prequantum geometry</a>.</p> <p>More discussion is <a href="n-plectic+geometry#PoissonLInfinityAlgebras">here</a> at <em><a class="existingWikiWord" href="/nlab/show/n-plectic+geometry">n-plectic geometry</a></em>.</p> <p>Applied to the symplectic current (in the sense of <a class="existingWikiWord" href="/nlab/show/covariant+phase+space">covariant phase space</a> theory, <a class="existingWikiWord" href="/nlab/show/de+Donder-Weyl+field+theory">de Donder-Weyl field theory</a>) this is the higher <a class="existingWikiWord" href="/nlab/show/current+algebra">current algebra</a> (see there) of <a class="existingWikiWord" href="/nlab/show/conserved+currents">conserved currents</a> of a <a class="existingWikiWord" href="/nlab/show/prequantum+field+theory">prequantum field theory</a>.</p> <h2 id="Definition">Definition</h2> <p>Throughout, Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a>, let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n \geq 1</annotation></semantics></math> a natural number and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ω</mi><mo>∈</mo><msubsup><mi>Ω</mi> <mi>cl</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\omega \in \Omega^{n+1}_{cl}(X)</annotation></semantics></math> a closed <a class="existingWikiWord" href="/nlab/show/differential+n-form">differential (n+1)-form</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>. The pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,\omega)</annotation></semantics></math> we may regard as a <a class="existingWikiWord" href="/nlab/show/pre-n-plectic+manifold">pre-n-plectic manifold</a>.</p> <p>We define two <a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebras">L-∞ algebras</a> defined from this data and discuss their <a class="existingWikiWord" href="/nlab/show/equivalence">equivalence</a>. Either of the two or any further one equivalent to the two is the <em>Poisson bracket Lie <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-albebra</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,\omega)</annotation></semantics></math>. The first definition is due to (<a href="#Rogers10">Rogers 10</a>), the second due to (<a href="#FRS13b">FRS 13b</a>). Here in notation we follow (<a href="#FRS13b">FRS 13b</a>).</p> <div class="num_defn" id="HamiltonianFormsAndVectorFields"> <h6 id="definition_2">Definition</h6> <p>Write</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>Ham</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>Vect</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊕</mo><msup><mi>Ω</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> Ham^{n-1}(X) \subset Vect(X) \oplus \Omega^{n-1}(X) </annotation></semantics></math></div> <p>for the subspace of the <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a> of <a class="existingWikiWord" href="/nlab/show/vector+fields">vector fields</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/differential+n-form">differential (n-1)-forms</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>J</mi></mrow><annotation encoding="application/x-tex">J</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> satisfying</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>ι</mi> <mi>v</mi></msub><mi>ω</mi><mo>+</mo><mstyle mathvariant="bold"><mi>d</mi></mstyle><mi>J</mi><mo>=</mo><mn>0</mn><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \iota_v \omega + \mathbf{d} J = 0 \,. </annotation></semantics></math></div> <p>We call these the <em>pairs of <a class="existingWikiWord" href="/nlab/show/Hamiltonian+forms">Hamiltonian forms</a> with their <a class="existingWikiWord" href="/nlab/show/Hamiltonian+vector+fields">Hamiltonian vector fields</a></em>.</p> </div> <p>(<a href="#FRS13b">FRS 13b, def. 2.1.3</a>)</p> <div class="num_defn" id="PoissonBracketLienAlgebra"> <h6 id="definition_3">Definition</h6> <p>The <a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">L_\infty(X,\omega)</annotation></semantics></math> has as underlying <a class="existingWikiWord" href="/nlab/show/chain+complex">chain complex</a> the truncated and modified <a class="existingWikiWord" href="/nlab/show/de+Rham+complex">de Rham complex</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>Ω</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><mo>→</mo><mstyle mathvariant="bold"><mi>d</mi></mstyle></mover><msup><mi>Ω</mi> <mn>1</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><mo>→</mo><mstyle mathvariant="bold"><mi>d</mi></mstyle></mover><mi>⋯</mi><mover><mo>→</mo><mstyle mathvariant="bold"><mi>d</mi></mstyle></mover><msup><mi>Ω</mi> <mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mstyle mathvariant="bold"><mi>d</mi></mstyle><mo stretchy="false">)</mo></mrow></mover><msup><mi>Ham</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \Omega^0(X) \stackrel{\mathbf{d}}{\to} \Omega^1(X) \stackrel{\mathbf{d}}{\to} \cdots \stackrel{\mathbf{d}}{\to} \Omega^{n-2}(X) \stackrel{(0,\mathbf{d})}{\longrightarrow} Ham^{n-1}(X) </annotation></semantics></math></div> <p>with the Hamiltonian pairs, def. <a class="maruku-ref" href="#HamiltonianFormsAndVectorFields"></a>, in degree 0 and with the 0-forms (<a class="existingWikiWord" href="/nlab/show/smooth+functions">smooth functions</a>) in degree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n-1</annotation></semantics></math>, and its non-vanishing <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">L_\infty</annotation></semantics></math>-brackets are as follows:</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>l</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>J</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle mathvariant="bold"><mi>d</mi></mstyle><mi>J</mi></mrow><annotation encoding="application/x-tex">l_1(J) = \mathbf{d}J</annotation></semantics></math></p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>l</mi> <mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>v</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>J</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>v</mi> <mi>k</mi></msub><mo>+</mo><msub><mi>J</mi> <mi>k</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><msup><mo stretchy="false">)</mo> <mrow><mo>(</mo><mfrac linethickness="0"><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></msup><msub><mi>ι</mi> <mrow><msub><mi>v</mi> <mn>1</mn></msub><mo>∧</mo><mi>⋯</mi><mo>∧</mo><msub><mi>v</mi> <mi>k</mi></msub></mrow></msub><mi>ω</mi></mrow><annotation encoding="application/x-tex">l_{k \geq 2}(v_1 + J_1, \cdots, v_k + J_k) = - (-1)^{\left(k+1 \atop 2\right)} \iota_{v_1 \wedge \cdots \wedge v_k}\omega</annotation></semantics></math>.</p> </li> </ul> </div> <p>(<a href="#FRS13b">FRS 13b, prop. 3.1.2</a>)</p> <div class="num_defn" id="PoissondgAlgebra"> <h6 id="definition_4">Definition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>A</mi><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">\overline{A}</annotation></semantics></math> be any <a class="existingWikiWord" href="/nlab/show/Cech+cohomology">Cech</a>-<a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne</a>-<a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a> relative to an <a class="existingWikiWord" href="/nlab/show/open+cover">open cover</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒰</mi></mrow><annotation encoding="application/x-tex">\mathcal{U}</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, which gives a <a class="existingWikiWord" href="/nlab/show/prequantum+n-bundle">prequantum n-bundle</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ω</mi></mrow><annotation encoding="application/x-tex">\omega</annotation></semantics></math>. The <a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>dgLie</mi> <mi>Qu</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mover><mi>A</mi><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">dgLie_{Qu}(X,\overline{A})</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/dg-Lie+algebra">dg-Lie algebra</a> (regarded as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">L_\infty</annotation></semantics></math>-algebra) whose underlying <a class="existingWikiWord" href="/nlab/show/chain+complex">chain complex</a> is</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>dgLie</mi> <mi>Qu</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mover><mi>A</mi><mo>¯</mo></mover><msup><mo stretchy="false">)</mo> <mn>0</mn></msup><mo>=</mo><mo stretchy="false">{</mo><mi>v</mi><mo>+</mo><mover><mi>θ</mi><mo>¯</mo></mover><mo>∈</mo><mi>Vect</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊕</mo><msup><mi>Tot</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>𝒰</mi><mo>,</mo><msup><mi>Ω</mi> <mo>•</mo></msup><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">|</mo><mspace width="thickmathspace"></mspace><msub><mi>ℒ</mi> <mi>v</mi></msub><mover><mi>A</mi><mo>¯</mo></mover><mo>=</mo><msub><mstyle mathvariant="bold"><mi>d</mi></mstyle> <mi>Tot</mi></msub><mover><mi>θ</mi><mo>¯</mo></mover><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">dgLie_{Qu}(X,\overline{A})^0 = \{v+ \overline{\theta} \in Vect(X)\oplus Tot^{n-1}(\mathcal{U}, \Omega^\bullet) \;\vert\; \mathcal{L}_v \overline{A} = \mathbf{d}_{Tot}\overline{\theta}\}</annotation></semantics></math>;</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>dgLie</mi> <mi>Qu</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mover><mi>A</mi><mo>¯</mo></mover><msup><mo stretchy="false">)</mo> <mrow><mi>i</mi><mo>&gt;</mo><mn>0</mn></mrow></msup><mo>=</mo><msup><mi>Tot</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>−</mo><mi>i</mi></mrow></msup><mo stretchy="false">(</mo><mi>𝒰</mi><mo>,</mo><msup><mi>Ω</mi> <mo>•</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">dgLie_{Qu}(X,\overline{A})^{i \gt 0} = Tot^{n-1-i}(\mathcal{U},\Omega^\bullet)</annotation></semantics></math></p> <p>with <a class="existingWikiWord" href="/nlab/show/differential">differential</a> given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>d</mi></mstyle> <mi>Tot</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{d}_{Tot}</annotation></semantics></math> (where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Tot</mi></mrow><annotation encoding="application/x-tex">Tot</annotation></semantics></math> refers to <a class="existingWikiWord" href="/nlab/show/total+complex">total complex</a> of the Cech-de Rham <a class="existingWikiWord" href="/nlab/show/double+complex">double complex</a>).</p> <p>The non-vanishing dg-Lie bracket on this complex are defined to be</p> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msub><mi>v</mi> <mn>1</mn></msub><mo>+</mo><msub><mover><mi>θ</mi><mo>¯</mo></mover> <mn>1</mn></msub><mo>,</mo><msub><mi>v</mi> <mn>2</mn></msub><mo>+</mo><msub><mover><mi>θ</mi><mo>¯</mo></mover> <mn>2</mn></msub><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>v</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>v</mi> <mn>2</mn></msub><mo stretchy="false">]</mo><mo>+</mo><msub><mi>ℒ</mi> <mrow><msub><mi>v</mi> <mn>1</mn></msub></mrow></msub><msub><mover><mi>θ</mi><mo>¯</mo></mover> <mn>2</mn></msub><mo>−</mo><msub><mi>ℒ</mi> <mrow><msub><mi>v</mi> <mn>2</mn></msub></mrow></msub><msub><mover><mi>θ</mi><mo>¯</mo></mover> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">[v_1 + \overline{\theta}_1, v_2 + \overline{\theta}_2] = [v_1, v_2] + \mathcal{L}_{v_1}\overline{\theta}_2 - \mathcal{L}_{v_2}\overline{\theta}_1</annotation></semantics></math>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>v</mi><mo>+</mo><mover><mi>θ</mi><mo>¯</mo></mover><mo>,</mo><mover><mi>η</mi><mo>¯</mo></mover><mo stretchy="false">]</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">[</mo><mi>η</mi><mo>,</mo><mi>v</mi><mo>+</mo><mover><mi>θ</mi><mo>¯</mo></mover><mo stretchy="false">]</mo><mo>=</mo><msub><mi>ℒ</mi> <mi>v</mi></msub><mover><mi>η</mi><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">[v+ \overline{\theta}, \overline{\eta}] = - [\eta, v + \overline{\theta}] = \mathcal{L}_v \overline{\eta}</annotation></semantics></math>.</p> </li> </ul> </div> <p>(<a href="#FRS13b">FRS 13b, def./prop. 4.2.1</a>)</p> <div class="num_prop" id="ComparisonTheorem"> <h6 id="proposition">Proposition</h6> <p>There is an <a class="existingWikiWord" href="/nlab/show/equivalence">equivalence</a> in the <a class="existingWikiWord" href="/nlab/show/model+structure+for+L-%E2%88%9E+algebras">homotopy theory of L-∞ algebras</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><msub><mi>L</mi> <mn>∞</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo><mover><mo>⟶</mo><mo>≃</mo></mover><msub><mi>dgLie</mi> <mi>Qu</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mover><mi>A</mi><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> f \colon L_\infty(X,\omega) \stackrel{\simeq}{\longrightarrow} dgLie_{Qu}(X,\overline{A}) </annotation></semantics></math></div> <p>between the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">L_\infty</annotation></semantics></math>-algebras of def. <a class="maruku-ref" href="#PoissonBracketLienAlgebra"></a> and def. <a class="maruku-ref" href="#PoissondgAlgebra"></a> (in particular def. <a class="maruku-ref" href="#PoissondgAlgebra"></a> does not depend on the choice of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>A</mi><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">\overline{A}</annotation></semantics></math>) whose underlying <a class="existingWikiWord" href="/nlab/show/chain+map">chain map</a> satisfies</p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>v</mi><mo>+</mo><mi>J</mi><mo stretchy="false">)</mo><mo>=</mo><mi>v</mi><mo>−</mo><mi>J</mi><msub><mo stretchy="false">|</mo> <mi>𝒰</mi></msub><mo>+</mo><msubsup><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow> <mi>n</mi></msubsup><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><msup><mo stretchy="false">)</mo> <mi>i</mi></msup><msub><mi>ι</mi> <mi>v</mi></msub><msup><mi>A</mi> <mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msup></mrow><annotation encoding="application/x-tex">f(v + J) = v - J|_{\mathcal{U}} + \sum_{i = 0}^n (-1)^i \iota_v A^{n-i}</annotation></semantics></math>.</li> </ul> </div> <p>(<a href="#FRS13b">FRS 13b, theorem 4.2.2</a>)</p> <h2 id="properties">Properties</h2> <h3 id="the_extension_theorem">The extension theorem</h3> <div class="num_defn" id="ExtensionTheorem"> <h6 id="proposition_2">Proposition</h6> <p>Given a <a class="existingWikiWord" href="/nlab/show/pre+n-plectic+manifold">pre n-plectic manifold</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msub><mi>ω</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,\omega_{n+1})</annotation></semantics></math>, then the Poisson bracket Lie <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-algebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔓𝔬𝔦𝔰</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathfrak{Pois}(X,\omega)</annotation></semantics></math> from <a href="#Definition">above</a> is an <a class="existingWikiWord" href="/nlab/show/L-infinity+algebra+cohomology">extension</a> of the <a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a> of <a class="existingWikiWord" href="/nlab/show/Hamiltonian+vector+fields">Hamiltonian vector fields</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Vect</mi> <mi>Ham</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Vect_{Ham}(X)</annotation></semantics></math>, def. <a class="maruku-ref" href="#HamiltonianFormsAndVectorFields"></a> by the <a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a> <a class="existingWikiWord" href="/nlab/show/infinity-groupoid">infinity-groupoid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>♭</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>ℝ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{H}(X,\flat \mathbf{B}^{n-1} \mathbb{R})</annotation></semantics></math> for <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> with <a class="existingWikiWord" href="/nlab/show/real+number">real number</a> <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a> in that there is a <a class="existingWikiWord" href="/nlab/show/homotopy+fiber+sequence">homotopy fiber sequence</a> in the <a class="existingWikiWord" href="/nlab/show/homotopy+theory+of+L-infinity+algebras">homotopy theory of L-infinity algebras</a> of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>♭</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>ℝ</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>𝔓𝔬𝔦𝔰</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msub><mi>Vect</mi> <mi>Ham</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>⟶</mo><mrow><mi>ω</mi><mo stretchy="false">[</mo><mo>•</mo><mo stretchy="false">]</mo></mrow></mover></mtd> <mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mstyle mathvariant="bold"><mi>H</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>♭</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>ℝ</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \array{ \mathbf{H}(X,\flat \mathbf{B}^{d-1}\mathbb{R}) &amp;\longrightarrow&amp; \mathfrak{Pois}(X,\omega) \\ &amp;&amp; \downarrow \\ &amp;&amp; Vect_{Ham}(X,\omega) &amp;\stackrel{\omega[\bullet]}{\longrightarrow}&amp; \mathbf{B} \mathbf{H}(X,\flat \mathbf{B}^{d-1}\mathbb{R}) } \,, </annotation></semantics></math></div> <p>where the <a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ω</mi><mo stretchy="false">[</mo><mo>•</mo><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\omega[\bullet]</annotation></semantics></math>, when realized on the model of def. <a class="maruku-ref" href="#PoissonBracketLienAlgebra"></a>, is degreewise given by by contraction with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ω</mi></mrow><annotation encoding="application/x-tex">\omega</annotation></semantics></math>.</p> </div> <p>This is <a href="#FRS13b">FRS13b, theorem 3.3.1</a>.</p> <p>As a corollary this means that the <a class="existingWikiWord" href="/nlab/show/0-truncation">0-truncation</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>τ</mi> <mn>0</mn></msub><mi>𝔓𝔬𝔦𝔰</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\tau_0 \mathfrak{Pois}(X,\omega)</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/Lie+algebra+extension">Lie algebra extension</a> by <a class="existingWikiWord" href="/nlab/show/de+Rham+cohomology">de Rham cohomology</a>, fitting into a <a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a> of <a class="existingWikiWord" href="/nlab/show/Lie+algebras">Lie algebras</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><msubsup><mi>H</mi> <mi>dR</mi> <mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⟶</mo><msub><mi>τ</mi> <mn>0</mn></msub><mi>𝔓𝔬𝔦𝔰</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo><mo>⟶</mo><msub><mi>Vect</mi> <mi>Ham</mi></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mn>0</mn><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> 0 \to H^{d-1}_{dR}(X) \longrightarrow \tau_0 \mathfrak{Pois}(X,\omega) \longrightarrow Vect_{Ham}(X) \to 0 \,. </annotation></semantics></math></div> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>These kinds of extensions are known traditionally form <a class="existingWikiWord" href="/nlab/show/current+algebras">current algebras</a>.</p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+Poisson+structure">higher Poisson structure</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+n-algebra">Poisson n-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nambu+bracket">Nambu bracket</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/current+algebra">current algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+prequantum+geometry">geometry of physics – prequantum geometry</a></p> </li> </ul> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/slice+%28%E2%88%9E%2C1%29-topos">slice</a>-<a class="existingWikiWord" href="/nlab/show/automorphism+%E2%88%9E-groups">automorphism ∞-groups</a> in <a class="existingWikiWord" href="/nlab/show/higher+prequantum+geometry">higher prequantum geometry</a></strong></p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/cohesive">cohesive</a> <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groups">∞-groups</a>:</th><th><a class="existingWikiWord" href="/nlab/show/Heisenberg+%E2%88%9E-group">Heisenberg ∞-group</a></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></th><th><a class="existingWikiWord" href="/nlab/show/quantomorphism+%E2%88%9E-group">quantomorphism ∞-group</a></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></th><th><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-bisections">∞-bisections</a> of <a class="existingWikiWord" href="/nlab/show/higher+Courant+groupoid">higher Courant groupoid</a></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></th><th><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-bisections">∞-bisections</a> of <a class="existingWikiWord" href="/nlab/show/higher+Atiyah+groupoid">higher Atiyah groupoid</a></th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebras">L-∞ algebras</a>:</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Heisenberg+L-%E2%88%9E+algebra">Heisenberg L-∞ algebra</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Poisson+L-%E2%88%9E+algebra">Poisson L-∞ algebra</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Courant+L-%E2%88%9E+algebra">Courant L-∞ algebra</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></td><td style="text-align: left;">twisted vector fields</td></tr> </tbody></table> </div><div> <p><strong>higher and integrated <a class="existingWikiWord" href="/nlab/show/Kostant-Souriau+extensions">Kostant-Souriau extensions</a></strong>:</p> <p>(<a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a> of <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+of+bisections">∞-group of bisections</a> of <a class="existingWikiWord" href="/nlab/show/higher+Atiyah+groupoid">higher Atiyah groupoid</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝔾</mi></mrow><annotation encoding="application/x-tex">\mathbb{G}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-connection">principal ∞-connection</a>)</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>Ω</mi><mi>𝔾</mi><mo stretchy="false">)</mo><mstyle mathvariant="bold"><mi>FlatConn</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><mstyle mathvariant="bold"><mi>QuantMorph</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∇</mo><mo stretchy="false">)</mo><mo>→</mo><mstyle mathvariant="bold"><mi>HamSympl</mi></mstyle><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∇</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> (\Omega \mathbb{G})\mathbf{FlatConn}(X) \to \mathbf{QuantMorph}(X,\nabla) \to \mathbf{HamSympl}(X,\nabla) </annotation></semantics></math></div> <table><thead><tr><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></th><th>geometry</th><th>structure</th><th>unextended structure</th><th>extension by</th><th>quantum extension</th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/higher+prequantum+geometry">higher prequantum geometry</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cohesive">cohesive</a> <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+symplectomorphism+%E2%88%9E-group">Hamiltonian symplectomorphism ∞-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/moduli+%E2%88%9E-stack">moduli ∞-stack</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>Ω</mi><mi>𝔾</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\Omega \mathbb{G})</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/flat+%E2%88%9E-connections">flat ∞-connections</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quantomorphism+%E2%88%9E-group">quantomorphism ∞-group</a></td></tr> <tr><td style="text-align: left;">1</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+vector+fields">Hamiltonian vector fields</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/real+numbers">real numbers</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonians">Hamiltonians</a> under <a class="existingWikiWord" href="/nlab/show/Poisson+bracket">Poisson bracket</a></td></tr> <tr><td style="text-align: left;">1</td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+symplectomorphism+group">Hamiltonian symplectomorphism group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/circle+group">circle group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quantomorphism+group">quantomorphism group</a></td></tr> <tr><td style="text-align: left;">2</td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/2-plectic+geometry">2-plectic geometry</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lie+2-algebra">Lie 2-algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+vector+fields">Hamiltonian vector fields</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/line+Lie+n-algebra">line Lie 2-algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Poisson+Lie+2-algebra">Poisson Lie 2-algebra</a></td></tr> <tr><td style="text-align: left;">2</td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lie+2-group">Lie 2-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+n-plectomorphism">Hamiltonian 2-plectomorphisms</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle 2-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quantomorphism+n-group">quantomorphism 2-group</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/n-plectic+geometry">n-plectic geometry</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Lie+n-algebra">Lie n-algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+vector+fields">Hamiltonian vector fields</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/line+Lie+n-algebra">line Lie n-algebra</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Poisson+Lie+n-algebra">Poisson Lie n-algebra</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-group">smooth n-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+n-plectomorphisms">Hamiltonian n-plectomorphisms</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle n-group</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quantomorphism+n-group">quantomorphism n-group</a></td></tr> </tbody></table> <p>(extension are listed for sufficiently connected <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>)</p> </div> <h2 id="references">References</h2> <p>The Poisson bracket <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">L_\infty</annotation></semantics></math>-algebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">L_\infty(X,\omega)</annotation></semantics></math> was introduced in</p> <ul> <li id="Rogers10"> <p><a class="existingWikiWord" href="/nlab/show/Chris+Rogers">Chris Rogers</a>, <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>L</mi> <mn>∞</mn></msub></mrow><annotation encoding="application/x-tex">L_\infty</annotation></semantics></math> algebras from multisymplectic geometry</em>, Letters in Mathematical Physics April 2012, Volume 100, Issue 1, pp 29-50 (<a href="http://arxiv.org/abs/1005.2230">arXiv:1005.2230</a>, <a href="http://link.springer.com/article/10.1007%2Fs11005-011-0493-x">journal</a>).</p> </li> <li id="Rogers11"> <p><a class="existingWikiWord" href="/nlab/show/Chris+Rogers">Chris Rogers</a>, <em>Higher symplectic geometry</em> PhD thesis (2011) (<a href="http://arxiv.org/abs/1106.4068">arXiv:1106.4068</a>)</p> </li> </ul> <p>Discussion in the broader context of <a class="existingWikiWord" href="/nlab/show/higher+differential+geometry">higher differential geometry</a> and <a class="existingWikiWord" href="/nlab/show/higher+prequantum+geometry">higher prequantum geometry</a> is in</p> <ul> <li id="FRS13a"> <p><a class="existingWikiWord" href="/nlab/show/Domenico+Fiorenza">Domenico Fiorenza</a>, <a class="existingWikiWord" href="/nlab/show/Chris+Rogers">Chris Rogers</a>, <a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a>, <em><a class="existingWikiWord" href="/schreiber/show/Higher+geometric+prequantum+theory">Higher <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>U</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">U(1)</annotation> </semantics> </math>-gerbe connections in geometric prequantization</a></em>, Rev. Math. Phys., Vol. 28, Issue 06, 1650012 (2016) (<a href="http://arxiv.org/abs/1304.0236">arXiv:1304.0236</a>)</p> </li> <li id="FRS13b"> <p><a class="existingWikiWord" href="/nlab/show/Domenico+Fiorenza">Domenico Fiorenza</a>, <a class="existingWikiWord" href="/nlab/show/Chris+Rogers">Chris Rogers</a>, <a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a>, <em><a class="existingWikiWord" href="/schreiber/show/L-%E2%88%9E+algebras+of+local+observables+from+higher+prequantum+bundles">L-∞ algebras of local observables from higher prequantum bundles</a></em>, Homology, Homotopy and Applications, Volume 16 (2014) Number 2, p. 107 – 142 (<a href="http://arxiv.org/abs/1304.6292">arXiv:1304.6292</a>)</p> </li> <li> <p>Nestor Leon Delgado, <em>Lagrangian field theories: ind/pro-approach and L-infinity algebra of local observables</em> (<a href="https://arxiv.org/abs/1805.10317">arXiv:1805.10317</a>)</p> </li> </ul> <p>See also</p> <ul> <li id="RitterSaemann15"><a class="existingWikiWord" href="/nlab/show/Patricia+Ritter">Patricia Ritter</a>, <a class="existingWikiWord" href="/nlab/show/Christian+S%C3%A4mann">Christian Sämann</a>, <em>Automorphisms of Strong Homotopy Lie Algebras of Local Observables</em> (<a href="http://arxiv.org/abs/1507.00972">arXiv:1507.00972</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on July 27, 2018 at 09:36:49. See the <a href="/nlab/history/Poisson+bracket+Lie+n-algebra" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Poisson+bracket+Lie+n-algebra" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/6474/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/revision/Poisson+bracket+Lie+n-algebra/17" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Poisson+bracket+Lie+n-algebra" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Poisson+bracket+Lie+n-algebra" accesskey="S" class="navlink" id="history" rel="nofollow">History (17 revisions)</a> <a href="/nlab/show/Poisson+bracket+Lie+n-algebra/cite" style="color: black">Cite</a> <a href="/nlab/print/Poisson+bracket+Lie+n-algebra" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Poisson+bracket+Lie+n-algebra" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10