CINXE.COM

Search results for: test equipment

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: test equipment</title> <meta name="description" content="Search results for: test equipment"> <meta name="keywords" content="test equipment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="test equipment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="test equipment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10533</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: test equipment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10533</span> Equipment Design for Lunar Lander Landing-Impact Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohuan%20Li">Xiaohuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wangmin%20Yi"> Wangmin Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinghui%20Wu"> Xinghui Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to verify the performance of lunar lander structure, landing-impact test is urgently needed. Moreover, the test equipment is necessary for the test. The functions and the key points of the equipment is presented to satisfy the requirements of the test,and the design scheme is proposed. The composition, the major function and the critical parts’ design of the equipment are introduced. By the load test of releasing device and single-beam hoist, and the compatibility test of landing-impact testing system, the rationality and reliability of the equipment is proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing-impact%20test" title="landing-impact test">landing-impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20lander" title=" lunar lander"> lunar lander</a>, <a href="https://publications.waset.org/abstracts/search?q=releasing%20device" title=" releasing device"> releasing device</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20equipment" title=" test equipment"> test equipment</a> </p> <a href="https://publications.waset.org/abstracts/10548/equipment-design-for-lunar-lander-landing-impact-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10532</span> Hand Motion and Gesture Control of Laboratory Test Equipment Using the Leap Motion Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20A.%20Grout">Ian A. Grout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the design and development of a system to provide hand motion and gesture control of laboratory test equipment is considered and discussed. The Leap Motion controller is used to provide an input to control a laboratory power supply as part of an electronic circuit experiment. By suitable hand motions and gestures, control of the power supply is provided remotely and without the need to physically touch the equipment used. As such, it provides an alternative manner in which to control electronic equipment via a PC and is considered here within the field of human computer interaction (HCI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20gesture" title=" hand gesture"> hand gesture</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20equipment" title=" test equipment"> test equipment</a> </p> <a href="https://publications.waset.org/abstracts/72099/hand-motion-and-gesture-control-of-laboratory-test-equipment-using-the-leap-motion-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10531</span> Establishment of a Test Bed for Integrated Map of Underground Space and Verification of GPR Exploration Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisong%20Ryu">Jisong Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Woosik%20Lee"> Woosik Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonggu%20Jang"> Yonggu Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the process of establishing a reliable test bed for verifying the usability of Ground Penetrating Radar (GPR) exploration equipment based on an integrated underground spatial map in Korea. The aim of this study is to construct a test bed consisting of metal and non-metal pipelines to verify the performance of GPR equipment and improve the accuracy of the underground spatial integrated map. The study involved the design and construction of a test bed for metal and non-metal pipe detecting tests. The test bed was built in the SOC Demonstration Research Center (Yeoncheon) of the Korea Institute of Civil Engineering and Building Technology, burying metal and non-metal pipelines up to a depth of 5m. The test bed was designed in both vehicle-type and cart-type GPR-mounted equipment. The study collected data through the construction of the test bed and conducting metal and non-metal pipe detecting tests. The study analyzed the reliability of GPR detecting results by comparing them with the basic drawings, such as the underground space integrated map. The study contributes to the improvement of GPR equipment performance evaluation and the accuracy of the underground spatial integrated map, which is essential for urban planning and construction. The study addressed the question of how to verify the usability of GPR exploration equipment based on an integrated underground spatial map and improve its performance. The study found that the test bed is reliable for verifying the performance of GPR exploration equipment and accurately detecting metal and non-metal pipelines using an integrated underground spatial map. The study concludes that the establishment of a test bed for verifying the usability of GPR exploration equipment based on an integrated underground spatial map is essential. The proposed Korean-style test bed can be used for the evaluation of GPR equipment performance and support the construction of a national non-metal pipeline exploration equipment performance evaluation center in Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Korea-style%20GPR%20testbed" title="Korea-style GPR testbed">Korea-style GPR testbed</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20pipe%20detecting" title=" metal pipe detecting"> metal pipe detecting</a>, <a href="https://publications.waset.org/abstracts/search?q=non-metal%20pipe%20detecting" title=" non-metal pipe detecting"> non-metal pipe detecting</a> </p> <a href="https://publications.waset.org/abstracts/164644/establishment-of-a-test-bed-for-integrated-map-of-underground-space-and-verification-of-gpr-exploration-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10530</span> A Study on Design for Parallel Test Based on Embedded System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Sun">Zheng Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Cui"> Weiwei Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Ma"> Xiaodong Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongxin%20Jin"> Hongxin Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongpao%20Hong"> Dongpao Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsong%20Yang"> Jinsong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingyi%20Sun"> Jingyi Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20test" title="parallel test">parallel test</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20test%20system" title=" automatic test system"> automatic test system</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20test%20system%20%28ATS%29" title=" automatic test system (ATS)"> automatic test system (ATS)</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20management%20system" title=" central management system"> central management system</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20management%20system%20%28CMS%29" title=" central management system (CMS)"> central management system (CMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20test%20subsystems" title=" distributed test subsystems"> distributed test subsystems</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20test%20subsystems%20%28DTS%29" title=" distributed test subsystems (DTS)"> distributed test subsystems (DTS)</a> </p> <a href="https://publications.waset.org/abstracts/99560/a-study-on-design-for-parallel-test-based-on-embedded-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10529</span> Status of the Laboratory Tools and Equipment of the Bachelor of Science in Hotel and Restaurant Technology Program of Eastern Visayas State University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dale%20Daniel%20G.%20Bodo">Dale Daniel G. Bodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the status of the Laboratory Tools and Equipment of the BSHRT Program of Eastern Visayas State University, Tacloban City Campus. Descriptive-correlation method was used which Variables include profile age, gender, acquired NC II, competencies in HRT and the status of the laboratory facilities, tools, and equipment of the BSHRT program. The study also identified significant correlation between the profile of the respondents and the implementation of the BSHRT Program in terms of laboratory tools and equipment. A self-structured survey questionnaire was used to gather relevant data among eighty-seven (87) BSHRT-OJT students. To test the correlations of variables, Pearson Product Moment Coefficient Correlation or Pearson r was used. As a result, the study revealed very interesting results and various significant correlations among the paired variables and as to the implementation of the BSHRT Program. Hence, this study was done to update the status of laboratory tools and equipment of the program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=status" title="status">status</a>, <a href="https://publications.waset.org/abstracts/search?q=BSHRT%20Program" title=" BSHRT Program"> BSHRT Program</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20tools%20and%20equipment" title=" laboratory tools and equipment"> laboratory tools and equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive-correlation" title=" descriptive-correlation"> descriptive-correlation</a> </p> <a href="https://publications.waset.org/abstracts/90088/status-of-the-laboratory-tools-and-equipment-of-the-bachelor-of-science-in-hotel-and-restaurant-technology-program-of-eastern-visayas-state-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10528</span> Mitigation of High Voltage Equipment Design Deficiencies for Improved Operation and Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riyad%20Awad">Riyad Awad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulmohsen%20Alghadeer"> Abdulmohsen Alghadeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshari%20Otaibi"> Meshari Otaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper operation and maintenance (O&M) activities of high voltage equipment can lead to an increased asset lifecycle and maintain its integrity and reliability. Such a vital process is important to be proactively considered during equipment design and manufacturing phases by removing and eliminating any obstacles in the equipment which adversely affect the (O&M) activities. This paper presents a gap analysis pertaining to difficulties in performing operations and maintenance (O&M) high voltage electrical equipment, includes power transformers, switch gears, motor control center, disconnect switches and circuit breakers. The difficulties are gathered from field personnel, equipment design review comments, quality management system, and lessons learned database. The purpose of the gap analysis is to mitigate and prevent the (O&M) difficulties as early as possible in the design stage of the equipment lifecycle. The paper concludes with several recommendations and corrective actions for all identified gaps in order to reduce the cost (O&M) difficulties and improve the equipment lifecycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operation%20and%20maintenance" title="operation and maintenance">operation and maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20equipment" title=" high voltage equipment"> high voltage equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment%20lifecycle" title=" equipment lifecycle"> equipment lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=reduce%20the%20cost%20of%20maintenance" title=" reduce the cost of maintenance"> reduce the cost of maintenance</a> </p> <a href="https://publications.waset.org/abstracts/152881/mitigation-of-high-voltage-equipment-design-deficiencies-for-improved-operation-and-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10527</span> Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinhao%20Yang">Shinhao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Chien%20Huang"> Hsiao-Chien Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Hsiang%20Luo"> Chin-Hsiang Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorochrome" title="fluorochrome">fluorochrome</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effects" title=" shielding effects"> shielding effects</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title=" digital image processing"> digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20ratio" title=" leakage ratio"> leakage ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20protective%20equipment" title=" personal protective equipment"> personal protective equipment</a> </p> <a href="https://publications.waset.org/abstracts/43218/study-of-aerosol-deposition-and-shielding-effects-on-fluorescent-imaging-quantitative-evaluation-in-protective-equipment-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10526</span> Methodology of Construction Equipment Optimization for Earthwork </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehyun%20Choi">Jaehyun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunjung%20Kim"> Hyunjung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Namho%20Kim"> Namho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthwork is one of the critical civil construction operations that require large-quantities of resources due to its intensive dependency upon construction equipment. Therefore, efficient construction equipment management can highly contribute to productivity improvements and cost savings. Earthwork operation utilizes various combinations of construction equipment in order to meet project requirements such as time and cost. Identification of site condition and construction methods should be performed in advance in order to develop a proper execution plan. The factors to be considered include capacity of equipment assigned, the method of construction, the size of the site, and the surrounding condition. In addition, optimal combination of various construction equipment should be selected. However, in real world practice, equipment utilization plan is performed based on experience and intuition of management. The researchers evaluated the efficiency of various alternatives of construction equipment combinations by utilizing the process simulation model, validated the model from a case study project, and presented a methodology to find optimized plan among alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthwork%20operation" title="earthwork operation">earthwork operation</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20equipment" title=" construction equipment"> construction equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/23962/methodology-of-construction-equipment-optimization-for-earthwork" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10525</span> Design and Implementation of Agricultural Machinery Equipment Scheduling Platform Based On Case-Based Reasoning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Li">Wen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengyu%20Bai"> Zhengyu Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for smart scheduling platform in agriculture, particularly in the scheduling process of machinery equipment, is high. With the continuous development of agricultural machinery equipment technology, a large number of agricultural machinery equipment and agricultural machinery cooperative service organizations continue to appear in China. The large area of cultivated land and a large number of agricultural activities in the central and western regions of China have made the demand for smart and efficient agricultural machinery equipment scheduling platforms more intense. In this study, we design and implement a platform for agricultural machinery equipment scheduling to allocate agricultural machinery equipment resources reasonably. With agricultural machinery equipment scheduling platform taken as the research object, we discuss its research significance and value, use the service blueprint technology to analyze and characterize the agricultural machinery equipment schedule workflow, the network analytic method to obtain the demand platform function requirements, and divide the platform functions through the platform function division diagram. Simultaneously, based on the case-based reasoning (CBR) algorithm, the equipment scheduling module of the agricultural machinery equipment scheduling platform is realized; finally, a design scheme of the agricultural machinery equipment scheduling platform architecture is provided, and the visualization interface of the platform is established via VB programming language. It provides design ideas and theoretical support for the construction of a modern agricultural equipment information scheduling platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case-based%20reasoning" title="case-based reasoning">case-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20blueprint" title=" service blueprint"> service blueprint</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20design" title=" system design"> system design</a>, <a href="https://publications.waset.org/abstracts/search?q=ANP" title=" ANP"> ANP</a>, <a href="https://publications.waset.org/abstracts/search?q=VB%20programming%20language" title=" VB programming language"> VB programming language</a> </p> <a href="https://publications.waset.org/abstracts/136702/design-and-implementation-of-agricultural-machinery-equipment-scheduling-platform-based-on-case-based-reasoning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10524</span> Improving Equipment Life and Overall Equipment Effectiveness (O.E.E.) through Proper Maintenance Strategy Using Value Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malay%20Niraj">Malay Niraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar"> Praveen Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is a new approach for improving equipment life and Overall Equipment Efficiency (O.E.E.) through suitable maintenance practice with the help of value engineering. Value engineering is a one of the most powerful decision-making techniques which depend on many factors. The improvements are the result of recommendations made by multidisciplinary teams representing all parties involved. VE is a rigorous, systematic effort to improve the OEE and optimize the life cycle cost of a facility. The study describes problems in maintenance arising due to the absence of having clear criteria and strong decision constrain how to maintain failing equipment. Using factor comparisons, the study has been made between different maintenance practices and finally best maintenance practice based on value engineering technique has been selected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maintenance%20strategy" title="maintenance strategy">maintenance strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20equipment%20efficiency" title=" overall equipment efficiency"> overall equipment efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20engineering" title=" value engineering"> value engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making" title=" decision-making"> decision-making</a> </p> <a href="https://publications.waset.org/abstracts/2052/improving-equipment-life-and-overall-equipment-effectiveness-oee-through-proper-maintenance-strategy-using-value-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10523</span> Optimization of Reliability Test Plans: Increase Wafer Fabrication Equipments Uptime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swajeeth%20Panchangam">Swajeeth Panchangam</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Rajendran"> Arun Rajendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Swarnim%20Gupta"> Swarnim Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Zeouita"> Ahmed Zeouita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semiconductor processing chambers tend to operate in controlled but aggressive operating conditions (chemistry, plasma, high temperature etc.) Owing to this, the design of this equipment requires developing robust and reliable hardware and software. Any equipment downtime due to reliability issues can have cost implications both for customers in terms of tool downtime (reduced throughput) and for equipment manufacturers in terms of high warranty costs and customer trust deficit. A thorough reliability assessment of critical parts and a plan for preventive maintenance/replacement schedules need to be done before tool shipment. This helps to save significant warranty costs and tool downtimes in the field. However, designing a proper reliability test plan to accurately demonstrate reliability targets with proper sample size and test duration is quite challenging. This is mainly because components can fail in different failure modes that fit into different Weibull beta value distributions. Without apriori Weibull beta of a failure mode under consideration, it always leads to over/under utilization of resources, which eventually end up in false positives or false negatives estimates. This paper proposes a methodology to design a reliability test plan with optimal model size/duration/both (independent of apriori Weibull beta). This methodology can be used in demonstration tests and can be extended to accelerated life tests to further decrease sample size/test duration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastics" title=" stochastics"> stochastics</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a> </p> <a href="https://publications.waset.org/abstracts/192542/optimization-of-reliability-test-plans-increase-wafer-fabrication-equipments-uptime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10522</span> Management of Medical Equipment Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Madad">Gholamreza Madad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The role of medical equipment in modern advanced hospitals is irrefutable. Despite limited financial resources, developing countries have taken an uncontrollable manner to the purchase of complex and expensive equipment, although they have not taken good maintenance to keep these huge capitals. In our country, limited studies have indicated that the irregularities exist in the management of medical equipment maintenance. Research method: The research was done as a cross-sectional one, and in this study, a questionnaire was used to collect data in 10 hospitals. After distributing and collecting questionnaires in person, the collected data were analyzed using descriptive statistics and SPSS software. Research findings: According to the obtained results from the four dimensions of the management of medical equipment maintenance, only (maintenance planning) was in a moderate position and other components with a score of less than 50% were at a low level. There was a direct relationship between the total score of maintenance management and guidance points and coordination of medical equipment maintenance, and as well as the age of hospital managers. Discussion and conclusion: In sum, we can say that problems such as lack of skilled staff in medical engineering departments of hospitals, lack of funds and unaware of the authorities of medical engineering units to their duties have caused that the maintenance situation of medical equipment maintenance is in poor condition (near average). The low inexperience of the authorities of the unit has also contributed to this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equipment" title="equipment">equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20equipment" title=" medical equipment"> medical equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitals" title=" hospitals"> hospitals</a> </p> <a href="https://publications.waset.org/abstracts/83982/management-of-medical-equipment-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10521</span> Model for Remanufacture of Medical Equipment in Cross Border Collaboration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Oturu">Kingsley Oturu</a>, <a href="https://publications.waset.org/abstracts/search?q=Winifred%20Ijomah"> Winifred Ijomah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wale%20Coker"> Wale Coker</a>, <a href="https://publications.waset.org/abstracts/search?q=Chibueze%20Achi"> Chibueze Achi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the impact of BREXIT and the need for cross-border collaboration, this international research investigated the use of a conceptual model for remanufacturing medical equipment (with a focus on anesthetic machines and baby incubators). Early findings of the research suggest that contextual factors need to be taken into consideration, as well as an emphasis on cleaning (e.g., sterilization) during the process of remanufacturing medical equipment. For example, copper tubings may be more important in the remanufacturing of anesthetic equipment in tropical climates than in cold climates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20equipment%20remanufacture" title="medical equipment remanufacture">medical equipment remanufacture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20business%20models" title=" circular business models"> circular business models</a>, <a href="https://publications.waset.org/abstracts/search?q=remanufacture%20process%20model" title=" remanufacture process model"> remanufacture process model</a> </p> <a href="https://publications.waset.org/abstracts/142843/model-for-remanufacture-of-medical-equipment-in-cross-border-collaboration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10520</span> Diagnostic of Breakdown in High Voltage Bushing Power Transformer 500 kV Cirata Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andika%20Bagaskara">Andika Bagaskara</a>, <a href="https://publications.waset.org/abstracts/search?q=Andhika%20Rizki%20Pratama"> Andhika Rizki Pratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalu%20Arya%20Repatmaja"> Lalu Arya Repatmaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Septhian%20Ditaputra%20Raharja"> Septhian Ditaputra Raharja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power transformer is one of the critical things in system transmission. Regular testing of the power transformer is very important to maintain the reliability of the power. One of the causes of the failure of the transformer is the breakdown of insulation caused by the presence of voids in the equipment that is electrified. As a result of the voids that occur in this power transformer equipment, it can cause partial discharge. Several methods were used to determine the occurrence of damage to the power transformer equipment, such as Sweep Frequency Response Analysis (SFRA) and Tan Delta. In Inter Bus Transformer (IBT) 500/150 kV Cirata Extra High Voltage (EHV) Substation, a breakdown occurred in the T-phase tertiary bushing. From the lessons learned in this case, a complete electrical test was carried out. From the results of the complete electrical test, there was a suspicion of deterioration in the post-breakdown SFRA results. After overhaul and inspection, traces of voids were found on the tertiary bushing, which indicated a breakdown in the tertiary bushing of the IBT 500/150kV Cirata Substation transformer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=void" title="void">void</a>, <a href="https://publications.waset.org/abstracts/search?q=bushing" title=" bushing"> bushing</a>, <a href="https://publications.waset.org/abstracts/search?q=SFRA" title=" SFRA"> SFRA</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Delta" title=" Tan Delta"> Tan Delta</a> </p> <a href="https://publications.waset.org/abstracts/158237/diagnostic-of-breakdown-in-high-voltage-bushing-power-transformer-500-kv-cirata-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10519</span> Modern Technologies and Equipment for Modular-Aggregate Installation of Shipborne Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Mikhailov">A. O. Mikhailov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Gerasimov"> N. I. Gerasimov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Morozov"> K. N. Morozov</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Grachev"> I. V. Grachev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most advanced method of onboard equipment installation on the world shipbuilding practice is modular method, or modularization. The main idea of this is assembly of equipment, pipelines and hull structures in so called assembly units yet at the shopfloor. Those assembly units are thereafter loaded and installed inside the ship's hull. This allows to reduce labour intensiveness and significantly improve assembly quality, due to the fact that a good part of installation work is performed in the shops, instead of restricted onboard premises. Also, this method allows performing equipment installation at very early stages of hull erection. This practice is widely spread in naval submarines building. However, in merchant shipbuilding, equipment is installed mostly individually. To implement modular principles of equipment installation in designing and construction of civil ships and marine rigs, some new technologies are being developed in the following areas. The paper contains main principles and already achieved results in the above mentioned areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly%20and%20installation%20technology" title="assembly and installation technology">assembly and installation technology</a>, <a href="https://publications.waset.org/abstracts/search?q=onboard%20equipment%20installation" title=" onboard equipment installation"> onboard equipment installation</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20assembly%20units" title=" large-scale assembly units"> large-scale assembly units</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20method" title=" modular method"> modular method</a> </p> <a href="https://publications.waset.org/abstracts/8774/modern-technologies-and-equipment-for-modular-aggregate-installation-of-shipborne-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">660</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10518</span> Calculational-Experimental Approach of Radiation Damage Parameters on VVER Equipment Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Borodkin">Pavel Borodkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Khrennikov"> Nikolay Khrennikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Azamat%20Gazetdinov"> Azamat Gazetdinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of ensuring of VVER type reactor equipment integrity is now most actual in connection with justification of safety of the NPP Units and extension of their service life to 60 years and more. First of all, it concerns old units with VVER-440 and VVER-1000. The justification of the VVER equipment integrity depends on the reliability of estimation of the degree of the equipment damage. One of the mandatory requirements, providing the reliability of such estimation, and also evaluation of VVER equipment lifetime, is the monitoring of equipment radiation loading parameters. In this connection, there is a problem of justification of such normative parameters, used for an estimation of the pressure vessel metal embrittlement, as the fluence and fluence rate (FR) of fast neutrons above 0.5 MeV. From the point of view of regulatory practice, a comparison of displacement per atom (DPA) and fast neutron fluence (FNF) above 0.5 MeV has a practical concern. In accordance with the Russian regulatory rules, neutron fluence F(E > 0.5 MeV) is a radiation exposure parameter used in steel embrittlement prediction under neutron irradiation. However, the DPA parameter is a more physically legitimate quantity of neutron damage of Fe based materials. If DPA distribution in reactor structures is more conservative as neutron fluence, this case should attract the attention of the regulatory authority. The purpose of this work was to show what radiation load parameters (fluence, DPA) on all VVER equipment should be under control, and give the reasonable estimations of such parameters in the volume of all equipment. The second task is to give the conservative estimation of each parameter including its uncertainty. Results of recently received investigations allow to test the conservatism of calculational predictions, and, as it has been shown in the paper, combination of ex-vessel measured data with calculated ones allows to assess unpredicted uncertainties which are results of specific unique features of individual equipment for VVER reactor. Some results of calculational-experimental investigations are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equipment%20integrity" title="equipment integrity">equipment integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=fluence" title=" fluence"> fluence</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20per%20atom" title=" displacement per atom"> displacement per atom</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20power%20plant" title=" nuclear power plant"> nuclear power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20activation%20measurements" title=" neutron activation measurements"> neutron activation measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20transport%20calculations" title=" neutron transport calculations"> neutron transport calculations</a> </p> <a href="https://publications.waset.org/abstracts/89094/calculational-experimental-approach-of-radiation-damage-parameters-on-vver-equipment-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10517</span> Educational Plan and Program of the Subject: Maintenance of Electric Power Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rade%20M.%20Ciric">Rade M. Ciric</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasa%20Mandic"> Sasa Mandic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Students of Higher Education Technical School of Professional Studies, in Novi Sad follow the subject Maintenance of electric power equipment at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of electric power equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20plan%20and%20program" title="educational plan and program">educational plan and program</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20equipment" title=" electric power equipment"> electric power equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20documentation" title=" technical documentation"> technical documentation</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20work" title=" safe work"> safe work</a> </p> <a href="https://publications.waset.org/abstracts/7290/educational-plan-and-program-of-the-subject-maintenance-of-electric-power-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10516</span> New Types of Fitness Equipment for Seniors-Based on Beginning Movement Load Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Chi%20Chen">Chia-Chi Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-Sheng%20Huang"> Tai-Sheng Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ageing society has been spread around the world. The global population is not only ageing but also declining. The structure of population has changed, which has a significant impact on both the economies and industries. Thus, how to be a healthy senior citizen to relieve the burden to the family and society will be a popular issue. Although fitness equipment manufacturing industry has been mature, the ageing population is still increasing. Therefore, this study aims to design an innovative style of fitness equipment for senior citizens, based on BMLT presented by Dr. Koyama Hirofumi. The analysis of current fitness equipment on the market and the future trend will be applied in the study. With the coming of information age, senior citizens in the future are the users of information product for sure, and the new style of fitness equipment will be combined with information technology as well. Through this study, it is believed to design an innovative style of fitness equipment for seniors and help them live heartier and happier lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging%20society" title="aging society">aging society</a>, <a href="https://publications.waset.org/abstracts/search?q=BMLT%20%28Beginning%20Movement%20Load%20Training%29" title=" BMLT (Beginning Movement Load Training)"> BMLT (Beginning Movement Load Training)</a>, <a href="https://publications.waset.org/abstracts/search?q=seniors" title=" seniors"> seniors</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20style%20of%20fitness%20equipment" title=" new style of fitness equipment"> new style of fitness equipment</a> </p> <a href="https://publications.waset.org/abstracts/74518/new-types-of-fitness-equipment-for-seniors-based-on-beginning-movement-load-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10515</span> Operator Efficiency Study for Assembly Line Optimization at Semiconductor Assembly and Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohana%20Abdullah">Rohana Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Md%20Nizam%20Abd%20Rahman"> Md Nizam Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Seri%20Rahayu%20Kamat"> Seri Rahayu Kamat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operator efficiency aspect is gaining importance in ensuring optimized usage of resources especially in the semi-automated manufacturing environment. This paper addresses a case study done to solve operator efficiency and line balancing issue at a semiconductor assembly and test manufacturing. A Man-to-Machine (M2M) work study technique is used to study operator current utilization and determine the optimum allocation of the operators to the machines. Critical factors such as operator activity, activity frequency and operator competency level are considered to gain insight on the parameters that affects the operator utilization. Equipment standard time and overall equipment efficiency (OEE) information are also gathered and analyzed to achieve a balanced and optimized production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operator%20efficiency" title="operator efficiency">operator efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20production" title=" optimized production"> optimized production</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title=" line balancing"> line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20and%20manufacturing%20engineering" title=" industrial and manufacturing engineering"> industrial and manufacturing engineering</a> </p> <a href="https://publications.waset.org/abstracts/20930/operator-efficiency-study-for-assembly-line-optimization-at-semiconductor-assembly-and-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">729</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10514</span> Thermomechanical Behaviour of Various Pressurized Installations Subjected to Thermal Load Due to the Combustion of Metal Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayfi">Khaled Ayfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20Dal"> Morgan Dal</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Coste"> Frederic Coste</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Gallienne"> Nicolas Gallienne</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Ridlova"> Martina Ridlova</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Lorong"> Philippe Lorong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the gas industry, contamination of equipment by metal particles is one of the feared phenomena. Indeed, particles inside equipment can be driven by the gas flow and accumulate in places where the velocity is low. As they constitute a potential ignition hazard, particular attention is paid to the presence of particles in the oxygen industry. Indeed, the heat release from ignited particles may damage the equipment and even result in a loss of integrity. The objective of this work is to support the development of new design criteria. Studying the thermomechanical behavior of this equipment, thanks to numerical simulations, allows us to test the influence of various operating parameters (oxygen pressure, wall thickness, initial operating temperature, nature of the metal, etc.). Therefore, in this study, we propose a numerical model that describes the thermomechanical behavior of various pressurized installations heated locally by the combustion of small particles. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements obtained by a new device developed in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ignition" title="ignition">ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20behaviour" title=" thermomechanical behaviour"> thermomechanical behaviour</a> </p> <a href="https://publications.waset.org/abstracts/135549/thermomechanical-behaviour-of-various-pressurized-installations-subjected-to-thermal-load-due-to-the-combustion-of-metal-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10513</span> Automating Test Activities: Test Cases Creation, Test Execution, and Test Reporting with Multiple Test Automation Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loke%20Mun%20Sei">Loke Mun Sei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software testing has become a mandatory process in assuring the software product quality. Hence, test management is needed in order to manage the test activities conducted in the software test life cycle. This paper discusses on the challenges faced in the software test life cycle, and how the test processes and test activities, mainly on test cases creation, test execution, and test reporting is being managed and automated using several test automation tools, i.e. Jira, Robot Framework, and Jenkins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20automation%20tools" title="test automation tools">test automation tools</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20case" title=" test case"> test case</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20execution" title=" test execution"> test execution</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20reporting" title=" test reporting"> test reporting</a> </p> <a href="https://publications.waset.org/abstracts/31605/automating-test-activities-test-cases-creation-test-execution-and-test-reporting-with-multiple-test-automation-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10512</span> Influence of Facilities, Equipment and Nutrition on Athletes Performance at the West African Universities Games Competitions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulai%20Afolabi%20Ahmed">Abdulai Afolabi Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was undertaken to examine the influence of sports facilities, equipment, and nutrition on athletes' performance in West-Africa Universities Games (WAUG) with the objectives of finding the areas of success and failure. Relevant literatures were reviewed. The survey research design was adopted for the study. Availability of facilities, equipment and nutrition questionnaire (AFENQ) was administered on hundred (n-100) participants - athletes from five Nigerian Universities from South-West, Nigeria which included Federal University of Technology, Akure, Adekunle Ajasin University, Akungba-Akoko, Lagos State University, Oyo, Olabisi Onabanjo University Ago-Awoye and Ekiti State University, Ado Ekiti. Nigeria. The tests re-test reliability value obtained from the instrument using Pearson Product Moment Correlation co-efficient of 0.86 was used to analyze the result. While the questionnaire collected was subjected to influential descriptive statistics of multiple regression to analyse the data. The results of the data showed that facilities, equipment, and nutrition variables when taken together effectively predict the performance of the athletes during WAUG competitions. The implication is that sports organizers should provide sports resources for the improved performance of the athletes, and that, university managers should employ nutritionist to plan and prepare food for the university athletes before and after major competitions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=athletes" title="athletes">athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment" title=" equipment"> equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=extramural" title=" extramural"> extramural</a>, <a href="https://publications.waset.org/abstracts/search?q=influence" title=" influence"> influence</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/76962/influence-of-facilities-equipment-and-nutrition-on-athletes-performance-at-the-west-african-universities-games-competitions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10511</span> Using Equipment Telemetry Data for Condition-Based maintenance decisions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Q.%20Todd">John Q. Todd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20based%20maintenance" title="condition based maintenance">condition based maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment%20data" title=" equipment data"> equipment data</a>, <a href="https://publications.waset.org/abstracts/search?q=metrics" title=" metrics"> metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=alerts" title=" alerts"> alerts</a> </p> <a href="https://publications.waset.org/abstracts/143915/using-equipment-telemetry-data-for-condition-based-maintenance-decisions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10510</span> A Quantitative Model for Replacement of Medical Equipment Based on Technical and Environmental Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghadeer%20Mohammad%20Said%20El-Sheikh">Ghadeer Mohammad Said El-Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samer%20Mohamad%20Shalhoob"> Samer Mohamad Shalhoob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical equipment operation state is a valid reflection of health care organizations' performance, where such equipment highly contributes to the quality of healthcare services on several levels in which quality improvement has become an intrinsic part of the discourse and activities of health care services. In healthcare organizations, clinical and biomedical engineering departments play an essential role in maintaining the safety and efficiency of such equipment. One of the most challenging topics when it comes to such sophisticated equipment is the lifespan of medical equipment, where many factors will impact such characteristics of medical equipment through its life cycle. So far, many attempts have been made in order to address this issue where most of the approaches are kind of arbitrary approaches and one of the criticisms of existing approaches trying to estimate and understand the lifetime of a medical equipment lies under the inquiry of what are the environmental factors that can play into such a critical characteristic of a medical equipment. In an attempt to address this shortcoming, the purpose of our study rises where in addition to the standard technical factors taken into consideration through the decision-making process by a clinical engineer in case of medical equipment failure, the dimension of environmental factors shall be added. The investigations, researches and studies applied for the purpose of supporting the decision making process by a clinical engineers and assessing the lifespan of healthcare equipment’s in the Lebanese society was highly dependent on the identification of technical criteria’s that impacts the lifespan of a medical equipment where the affecting environmental factors didn’t receive the proper attention. The objective of our study is based on the need for introducing a new well-designed plan for evaluating medical equipment depending on two dimensions. According to this approach, the equipment that should be replaced or repaired will be classified based on a systematic method taking into account two essential criteria; the standard identified technical criteria and the added environmental criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technical" title="technical">technical</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20of%20medical%20equipment" title=" characteristic of medical equipment "> characteristic of medical equipment </a> </p> <a href="https://publications.waset.org/abstracts/118276/a-quantitative-model-for-replacement-of-medical-equipment-based-on-technical-and-environmental-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10509</span> Performance Complexity Measurement of Tightening Equipment Based on Kolmogorov Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoliang%20Fan">Guoliang Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiping%20Li"> Aiping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuemei%20Liu"> Xuemei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liyun%20Xu"> Liyun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of the tightening equipment will decline with the working process in manufacturing system. The main manifestations are the randomness and discretization degree increasing of the tightening performance. To evaluate the degradation tendency of the tightening performance accurately, a complexity measurement approach based on Kolmogorov entropy is presented. At first, the states of performance index are divided for calibrating the discrete degree. Then the complexity measurement model based on Kolmogorov entropy is built. The model describes the performance degradation tendency of tightening equipment quantitatively. At last, a study case is applied for verifying the efficiency and validity of the approach. The research achievement shows that the presented complexity measurement can effectively evaluate the degradation tendency of the tightening equipment. It can provide theoretical basis for preventive maintenance and life prediction of equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexity%20measurement" title="complexity measurement">complexity measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov%20entropy" title=" Kolmogorov entropy"> Kolmogorov entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20system" title=" manufacturing system"> manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=tightening%20equipment" title=" tightening equipment"> tightening equipment</a> </p> <a href="https://publications.waset.org/abstracts/58876/performance-complexity-measurement-of-tightening-equipment-based-on-kolmogorov-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10508</span> Design, Construction, Validation And Use Of A Novel Portable Fire Effluent Sampling Analyser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabrielle%20Peck">Gabrielle Peck</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Hayes"> Ryan Hayes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current large scale fire tests focus on flammability and heat release measurements. Smoke toxicity isn’t considered despite it being a leading cause of death and injury in unwanted fires. A key reason could be that the practical difficulties associated with quantifying individual toxic components present in a fire effluent often require specialist equipment and expertise. Fire effluent contains a mixture of unreactive and reactive gases, water, organic vapours and particulate matter, which interact with each other. This interferes with the operation of the analytical instrumentation and must be removed without changing the concentration of the target analyte. To mitigate the need for expensive equipment and time-consuming analysis, a portable gas analysis system was designed, constructed and tested for use in large-scale fire tests as a simpler and more robust alternative to online FTIR measurements. The novel equipment aimed to be easily portable and able to run on battery or mains electricity; be able to be calibrated at the test site; be capable of quantifying CO, CO2, O2, HCN, HBr, HCl, NOx and SO2 accurately and reliably; be capable of independent data logging; be capable of automated switchover of 7 bubblers; be able to withstand fire effluents; be simple to operate; allow individual bubbler times to be pre-set; be capable of being controlled remotely. To test the analysers functionality, it was used alongside the ISO/TS 19700 Steady State Tube Furnace (SSTF). A series of tests were conducted to assess the validity of the box analyser measurements and the data logging abilities of the apparatus. PMMA and PA 6.6 were used to assess the validity of the box analyser measurements. The data obtained from the bench-scale assessments showed excellent agreement. Following this, the portable analyser was used to monitor gas concentrations during large-scale testing using the ISO 9705 room corner test. The analyser was set up, calibrated and set to record smoke toxicity measurements in the doorway of the test room. The analyser was successful in operating without manual interference and successfully recorded data for 12 of the 12 tests conducted in the ISO room tests. At the end of each test, the analyser created a data file (formatted as .csv) containing the measured gas concentrations throughout the test, which do not require specialist knowledge to interpret. This validated the portable analyser’s ability to monitor fire effluent without operator intervention on both a bench and large-scale. The portable analyser is a validated and significantly more practical alternative to FTIR, proven to work for large-scale fire testing for quantification of smoke toxicity. The analyser is a cheaper, more accessible option to assess smoke toxicity, mitigating the need for expensive equipment and specialist operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoke%20toxicity" title="smoke toxicity">smoke toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20tests" title=" large-scale tests"> large-scale tests</a>, <a href="https://publications.waset.org/abstracts/search?q=iso%209705" title=" iso 9705"> iso 9705</a>, <a href="https://publications.waset.org/abstracts/search?q=analyser" title=" analyser"> analyser</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20equipment" title=" novel equipment"> novel equipment</a> </p> <a href="https://publications.waset.org/abstracts/174362/design-construction-validation-and-use-of-a-novel-portable-fire-effluent-sampling-analyser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10507</span> The Cleaning Equipment to Prevents Dust Diffusion of Bus Air Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiraphorn%20Satechan">Jiraphorn Satechan</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaphon%20Khamthieng"> Thanaphon Khamthieng</a>, <a href="https://publications.waset.org/abstracts/search?q=Warunee%20Phanwong"> Warunee Phanwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This action research aimed at designing and developing the cleaning equipment to preventing dust diffusion of bus air filter. Quantitative and qualitative data collection methods were used to conduct data from October 1st, 2018 to September 30th, 2019. All of participants were male (100.0%) with aged 40- 49 years and 57.15%, of them finish bachelor degree. 71.43% of them was a driver and 57.15% of them had the working experience between 10 and 15 years. Research revealed that the participants assessed the quality of the bus air filter cleaning equipment for preventing dust diffusion at a moderate level (σ= 0.29), and 71.43 of them also suggested the development methods in order to improve the quality of bus air filters cleaning equipment as follows: 1) to install the circuit breaker for cutting the electricity and controlling the on-off of the equipment and to change the motor to the DC system, 2) should install the display monitor for wind pressure and electricity system as well as to install the air pressure gauge, 3) should install the tank lid lock for preventing air leakage and dust diffusion by increasing the blowing force and sucking power, 4) to stabilize the holding points for preventing the filter shaking while rotating and blowing for cleaning and to reduce the rotation speed in order to allow the filters to move slowly for the air system to blow for cleaning more thoroughly, 5) the amount of dust should be measured before and after cleaning and should be designed the cleaning equipment to be able to clean with a variety of filters, and sizes. Moreover, the light-weight materials should be used to build the cleaning equipment and the wheels should be installed at the base of the equipment in order to make it easier to move. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cleaning%20Equipment" title="Cleaning Equipment">Cleaning Equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=Bus%20Air%20Filters" title=" Bus Air Filters"> Bus Air Filters</a>, <a href="https://publications.waset.org/abstracts/search?q=Preventing%20Dust%20Diffusion" title=" Preventing Dust Diffusion"> Preventing Dust Diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Innovation" title=" Innovation"> Innovation</a> </p> <a href="https://publications.waset.org/abstracts/121879/the-cleaning-equipment-to-prevents-dust-diffusion-of-bus-air-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10506</span> Design, Shielding and Infrastructure of an X-Ray Diagnostic Imaging Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Diaz">D. Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Guevara"> C. Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rey"> P. Rey </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contains information about designing, shielding and protocols building in order to avoid ionizing radiation in X-Rays imaging areas as generated by X-Ray, mammography equipment, computed tomography equipment and digital subtraction angiography equipment, according to global standards. Furthermore, tools and elements about infrastructure to improve protection over patients, physicians and staff involved in a diagnostic imaging area are presented. In addition, technical parameters about each machine and the architecture designs and maps are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging%20area" title="imaging area">imaging area</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding" title=" shielding"> shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=dose" title=" dose"> dose</a> </p> <a href="https://publications.waset.org/abstracts/4161/design-shielding-and-infrastructure-of-an-x-ray-diagnostic-imaging-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10505</span> Failure Cases Analysis in Petrochemical Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Liu">S. W. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Lv"> J. H. Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Wang"> W. Z. Wang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cases%20analysis" title="cases analysis">cases analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20industry" title=" petrochemical industry"> petrochemical industry</a> </p> <a href="https://publications.waset.org/abstracts/77797/failure-cases-analysis-in-petrochemical-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10504</span> The Study about the New Monitoring System of Signal Equipment of Railways Using Radio Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiko%20Suzuki">Masahiko Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Kato"> Takashi Kato </a>, <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Kobayashi"> Masahiro Kobayashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our company, the monitoring system for signal equipment has already implemented. So, we can know the state of signal equipment, sitting in the control room or the maintenance center. But this system was installed over 20 years ago, so it cannot stand the needs such as 'more stable operation', 'broadband data transfer', 'easy construction and easy maintenance'. To satisfy these needs, we studied the monitoring system using radio communication as a new method which can realize the operation in the terrible environment along railroads. In these studies, we have developed the terminals and repeaters based on the ZigBee protocol and have implemented the application using two different radio bands simultaneously. At last, we got the good results from the fundamental examinations using the developed equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monitoring" title="monitoring">monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20communication" title=" radio communication"> radio communication</a>, <a href="https://publications.waset.org/abstracts/search?q=2%20bands" title=" 2 bands"> 2 bands</a>, <a href="https://publications.waset.org/abstracts/search?q=ZigBee" title=" ZigBee"> ZigBee</a> </p> <a href="https://publications.waset.org/abstracts/10066/the-study-about-the-new-monitoring-system-of-signal-equipment-of-railways-using-radio-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=351">351</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=352">352</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=test%20equipment&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10