CINXE.COM

Search results for: Yijun Lai

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Yijun Lai</title> <meta name="description" content="Search results for: Yijun Lai"> <meta name="keywords" content="Yijun Lai"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Yijun Lai" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Yijun Lai"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Yijun Lai</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Phylogenetic Analysis of the Thunnus Tuna Fish Using Cytochrome C Oxidase Subunit I Gene Sequence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Lai">Yijun Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saber%20Khederzadeh"> Saber Khederzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingshaung%20Han"> Lingshaung Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Species in Thunnus are organized due to the similarity between them. The closeness between T. maccoyii, T. thynnus, T. Tonggol, T. atlanticus, T. albacares, T. obsesus, T. alalunga, and T. orientails are in different degrees. However, the genetic pattern of differentiation has not been presented based on individuals yet, to the author’s best knowledge. Hence, we aimed to analyze the difference in individuals level of tuna species to identify the factors that contribute to the maternal lineage variety using Cytochrome c oxidase subunit I (COXI) gene sequences. Our analyses provided evidence of sharing lineages in the Thunnus. A phylogenetic analysis revealed that these lineages are basal to the other sequences. We also showed a close connection between the T. tonggol, T. thynnus, and T. albacares populations. Also, the majority of the T. orientalis samples were clustered with the T. alalunga and, then, T. atlanticus populations. Phylogenetic trees and migration modeling revealed high proximity of T. thynnus sequences to a few T. orientalis and suggested possible gene flow with T. tonggol and T. albacares lineages, while all T. obsesus samples indicated unique clustering with each other. Our results support the presence of old maternal lineages in Thunnus, as a legacy of an ancient wave of colonization or migration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thunnus%20Tuna" title="Thunnus Tuna">Thunnus Tuna</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20lineage" title=" maternal lineage"> maternal lineage</a>, <a href="https://publications.waset.org/abstracts/search?q=COXI%20gene" title=" COXI gene"> COXI gene</a> </p> <a href="https://publications.waset.org/abstracts/161742/phylogenetic-analysis-of-the-thunnus-tuna-fish-using-cytochrome-c-oxidase-subunit-i-gene-sequence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Experiments on Weakly-Supervised Learning on Imperfect Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Cheng">Yan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Shao"> Yijun Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Rudolph"> James Rudolph</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlene%20R.%20Weir"> Charlene R. Weir</a>, <a href="https://publications.waset.org/abstracts/search?q=Beth%20Sahlmann"> Beth Sahlmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Zeng-Treitler"> Qing Zeng-Treitler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weakly-supervised%20learning" title="weakly-supervised learning">weakly-supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=delirium" title=" delirium"> delirium</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/99362/experiments-on-weakly-supervised-learning-on-imperfect-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> An Exploratory Study on the Difference between Online and Offline Conformity Behavior among Chinese College Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinyue%20Ma">Xinyue Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dishen%20Zhang"> Dishen Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Liu"> Yijun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yutian%20Jiang"> Yutian Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiyan%20Yu"> Huiyan Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chufeng%20Gu"> Chufeng Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conformity is defined as one in a social group changing his or her behavior to match the others&rsquo; behavior in the group. It is used to find that people show a higher level of online conformity behavior than offline. However, as anonymity can decrease the level of online conformity behavior, the difference between online and offline conformity behavior among Chinese college students still needs to be tested. In this study, college students (N = 60) have been randomly assigned into three groups: control group, offline experimental group, and online experimental group. Through comparing the results of offline experimental group and online experimental group with the Mann-Whitney U test, this study verified the results of Asch&rsquo;s experiment, and found out that people show a lower level of online conformity behavior than offline, which contradicted the previous finding found in China. These results can be used to explain why some people make a lot of vicious remarks and radical ideas on the Internet but perform normally in their real life: the anonymity of the network makes the online group pressure less than offline, so people are less likely to conform to social norms and public opinions on the Internet. What is more, these results support the importance and relevance of online voting, because fewer online group pressures make it easier for people to expose their true ideas, thus gathering more comprehensive and truthful views and opinions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anonymity" title="anonymity">anonymity</a>, <a href="https://publications.waset.org/abstracts/search?q=Asch%E2%80%99s%20group%20conformity" title=" Asch’s group conformity"> Asch’s group conformity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20college%20students" title=" Chinese college students"> Chinese college students</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20conformity" title=" online conformity"> online conformity</a> </p> <a href="https://publications.waset.org/abstracts/134894/an-exploratory-study-on-the-difference-between-online-and-offline-conformity-behavior-among-chinese-college-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wendu%20Pang">Wendu Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaxin%20Luo"> Yaxin Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhong%20Li"> Junhong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhao"> Yu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Danni%20Cheng"> Danni Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yufang%20Rao"> Yufang Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Minzi%20Mao"> Minzi Mao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Qiu"> Ke Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Dong"> Yijun Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Chen"> Fei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Liu"> Jun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zou"> Jian Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiyang%20Wang"> Haiyang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xu"> Wei Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianjun%20Ren"> Jianjun Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypopharyngeal%20squamous%20cell%20carcinoma" title="hypopharyngeal squamous cell carcinoma">hypopharyngeal squamous cell carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20lymph%20nodes%20number" title=" positive lymph nodes number"> positive lymph nodes number</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20models" title=" prediction models"> prediction models</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20predictive%20values" title=" survival predictive values"> survival predictive values</a> </p> <a href="https://publications.waset.org/abstracts/145178/the-prognostic-prediction-value-of-positive-lymph-nodes-numbers-for-the-hypopharyngeal-squamous-cell-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Relationship between Sleep Traits and Tinnitus in UK Biobank: A Population-Based Cohort Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Peng">Jiajia Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Dong"> Yijun Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianjun%20Ren"> Jianjun Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhao"> Yu Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Understanding the association between sleep traits and tinnitus could help prevent and provide appropriate interventions against tinnitus. Therefore, this study aimed to assess the relationship between different sleep patterns and tinnitus. Design: A cross-sectional analysis using baseline data (2006–2010, n=168,064) by logistic regressions was conducted to evaluate the association between sleep traits (including the overall health sleep score and five sleep behaviors), and the occurrence (yes/no), frequency (constant/transient), and severity (upsetting/not upsetting) of tinnitus. Further, a prospective analysis of participants without tinnitus at baseline (n=9,581) was performed, who had been followed up for seven years (2012–2019) to assess the association between new-onset tinnitus and sleep characteristics. Moreover, a subgroup analysis was also carried out to estimate the differences in sex by dividing the participants into male and female groups. A sensitivity analysis was also conducted by excluding ear-related diseases to avoid their confounding effects on tinnitus (n=102,159). Results: In the cross-sectional analysis, participants with “current tinnitus” (OR: 1.13, 95% CI: 1.04–1.22, p=0.004) had a higher risk of having a poor overall healthy sleep score and unhealthy sleep behaviors such as short sleep durations (OR: 1.09, 95% CI: 1.04–1.14, p<0.001), late chronotypes (OR: 1.09, 95% CI: 1.05–1.13, p<0.001), and sleeplessness (OR: 1.16, 95% CI: 1.11–1.22, p<0.001) than those participants who “did not have current tinnitus.” However, this trend was not obvious between “constant tinnitus” and “transient tinnitus.” When considering the severity of tinnitus, the risk of “upsetting tinnitus” was obviously higher if participants had lower overall healthy sleep scores (OR: 1.31, 95% CI: 1.13–1.53, p<0.001). Additionally, short sleep duration (OR: 1.22, 95% CI: 1.12–1.33, p<0.001), late chronotypes (OR: 1.13, 95% CI: 1.04–1.22, p=0.003), and sleeplessness (OR: 1.43, 95% CI: 1.29–1.59, p<0.001) showed positive correlations with “upsetting tinnitus.” In the prospective analysis, sleeplessness presented a consistently significant association with “upsetting tinnitus” (RR: 2.28, P=0.001). Consistent results were observed in the sex subgroup analysis, where a much more pronounced trend was identified in females compared with males. The results of the sensitivity analysis were consistent with those of the cross-sectional and prospective analyses. Conclusions: Different types of sleep disturbance may be associated with the occurrence and severity of tinnitus; therefore, precise interventions for different types of sleep disturbance, particularly sleeplessness, may help in the prevention and treatment of tinnitus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tinnitus" title="tinnitus">tinnitus</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep" title=" sleep"> sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20behaviors" title=" sleep behaviors"> sleep behaviors</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20disturbance" title=" sleep disturbance"> sleep disturbance</a> </p> <a href="https://publications.waset.org/abstracts/156913/the-relationship-between-sleep-traits-and-tinnitus-in-uk-biobank-a-population-based-cohort-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Shao">Yijun Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Cheng"> Yan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashmee%20U.%20Shah"> Rashmee U. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlene%20R.%20Weir"> Charlene R. Weir</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20E.%20Bray"> Bruce E. Bray</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Zeng-Treitler"> Qing Zeng-Treitler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title="deep neural network">deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20data" title=" temporal data"> temporal data</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=frailty" title=" frailty"> frailty</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression%20model" title=" logistic regression model"> logistic regression model</a> </p> <a href="https://publications.waset.org/abstracts/99910/shedding-light-on-the-black-box-explaining-deep-neural-network-prediction-of-clinical-outcome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10