CINXE.COM

Search results for: finite volume methods

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: finite volume methods</title> <meta name="description" content="Search results for: finite volume methods"> <meta name="keywords" content="finite volume methods"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="finite volume methods" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="finite volume methods"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19182</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: finite volume methods</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19182</span> Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prawal%20Sinha">Prawal Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20Singh"> Peeyush Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravir%20Dutt"> Pravir Dutt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastohydrodynamic" title="elastohydrodynamic">elastohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=lubrication" title=" lubrication"> lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20finite%20volume%20method" title=" discontinuous finite volume method"> discontinuous finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=GMRES%20technique" title=" GMRES technique"> GMRES technique</a> </p> <a href="https://publications.waset.org/abstracts/70195/elastohydrodynamic-lubrication-study-using-discontinuous-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19181</span> Finite Volume Method in Loop Network in Hydraulic Transient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossain%20Samani">Hossain Samani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ehteram"> Mohammad Ehteram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20transient" title="hydraulic transient">hydraulic transient</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hammer" title=" water hammer"> water hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-liner%20interpolation" title=" non-liner interpolation "> non-liner interpolation </a> </p> <a href="https://publications.waset.org/abstracts/12178/finite-volume-method-in-loop-network-in-hydraulic-transient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19180</span> Localized Meshfree Methods for Solving 3D-Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Mollapourasl">Reza Mollapourasl</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Haghi"> Majid Haghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title="radial basis functions">radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermite%20finite%20difference" title=" Hermite finite difference"> Hermite finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/168736/localized-meshfree-methods-for-solving-3d-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19179</span> A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alia%20Alghosoun">Alia Alghosoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Osman"> Ashraf Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Seaid"> Mohammed Seaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam-break%20flows" title="dam-break flows">dam-break flows</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20beds" title=" deformable beds"> deformable beds</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20techniques" title=" hybrid techniques"> hybrid techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20elasticity" title=" linear elasticity"> linear elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water%20equations" title=" shallow water equations"> shallow water equations</a> </p> <a href="https://publications.waset.org/abstracts/95218/a-finite-elementfinite-volume-method-for-dam-break-flows-over-deformable-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19178</span> Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20de%20Oliveira%20Garcia">Raphael de Oliveira Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Rocha%20de%20Oliveira"> Samuel Rocha de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods" title="finite volume methods">finite volume methods</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20schemes" title=" central schemes"> central schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=fortran%2090" title=" fortran 90"> fortran 90</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20astrophysics" title=" relativistic astrophysics"> relativistic astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=jet" title=" jet"> jet</a> </p> <a href="https://publications.waset.org/abstracts/19952/central-finite-volume-methods-applied-in-relativistic-magnetohydrodynamics-applications-in-disks-and-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19177</span> Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Bolkhir">A. B. Bolkhir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elshafie"> A. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Yousif"> T. K. Yousif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%20%28FEA%29" title="finite element analysis (FEA)">finite element analysis (FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=discretization%20error" title=" discretization error"> discretization error</a>, <a href="https://publications.waset.org/abstracts/search?q=round-off%20error" title=" round-off error"> round-off error</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20refinement" title=" mesh refinement"> mesh refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=richardson%20extrapolation" title=" richardson extrapolation"> richardson extrapolation</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic%20convergence" title=" monotonic convergence"> monotonic convergence</a> </p> <a href="https://publications.waset.org/abstracts/37639/relevancy-measures-of-errors-in-displacements-of-finite-elements-analysis-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19176</span> Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Horstmann">Tobias Horstmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Le%20Garrec"> Thomas Le Garrec</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel-Ciprian%20Mincu"> Daniel-Ciprian Mincu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20L%C3%A9v%C3%AAque"> Emmanuel Lévêque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20coupling" title="algorithm coupling">algorithm coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20formulation" title=" finite volume formulation"> finite volume formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20refinement" title=" grid refinement"> grid refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=Lattice%20Boltzmann%20method" title=" Lattice Boltzmann method"> Lattice Boltzmann method</a> </p> <a href="https://publications.waset.org/abstracts/61400/coupling-of-two-discretization-schemes-for-the-lattice-boltzmann-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19175</span> Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashok">A. Ashok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.Satapathy"> K.Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Prerana%20Nashine"> B. Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20radiative%20heat%20transfer" title=" transient radiative heat transfer "> transient radiative heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/9579/conduction-accompanied-with-transient-radiative-heat-transfer-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19174</span> A New Computational Package for Using in CFD and Other Problems (Third Edition)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Akhavan%20Khaleghi">Mohammad Reza Akhavan Khaleghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduced%20finite%20element%20method" title="reduced finite element method">reduced finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20computational%20package" title=" new computational package"> new computational package</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20finite%20element%20formulation" title=" new finite element formulation"> new finite element formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20higher-order%20form" title=" new higher-order form"> new higher-order form</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20isogeometric%20analysis" title=" new isogeometric analysis"> new isogeometric analysis</a> </p> <a href="https://publications.waset.org/abstracts/169466/a-new-computational-package-for-using-in-cfd-and-other-problems-third-edition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19173</span> A Comparative Study between FEM and Meshless Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20N.%20Vyas">Jay N. Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Daxini"> Sachin Daxini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Grid-based%20methods" title=" Grid-based methods"> Grid-based methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method" title=" Finite Element Method"> Finite Element Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshless%20Methods" title=" Meshless Methods"> Meshless Methods</a> </p> <a href="https://publications.waset.org/abstracts/43544/a-comparative-study-between-fem-and-meshless-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19172</span> Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Caro">Carlos Caro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernest%20Blad%C3%A9"> Ernest Bladé</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Acosta"> Pedro Acosta</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Lesmes"> Camilo Lesmes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrology" title="hydrology">hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20processes" title=" transport processes"> transport processes</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20schemes" title=" finite volume schemes"> finite volume schemes</a> </p> <a href="https://publications.waset.org/abstracts/53077/drying-and-transport-processes-in-distributed-hydrological-modelling-based-on-finite-volume-schemes-iber-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19171</span> A Proof of the Fact that a Finite Morphism is Proper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Yi%20Wu">Ying Yi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a proof of the fact that a finite morphism is proper. We show that a finite morphism is universally closed and of finite type, which are the conditions for properness. Our proof is based on the theory of schemes and involves the use of the projection formula and the base change theorem. We first show that a finite morphism is of finite type and then proceed to show that it is universally closed. We use the fact that a finite morphism is also an affine morphism, which allows us to use the theory of coherent sheaves and their modules. We then show that the map induced by a finite morphism is flat and that the module it induces is of finite type. We use these facts to show that a finite morphism is universally closed. Our proof is constructive, and we provide details for each step of the argument. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite" title="finite">finite</a>, <a href="https://publications.waset.org/abstracts/search?q=morphism" title=" morphism"> morphism</a>, <a href="https://publications.waset.org/abstracts/search?q=schemes" title=" schemes"> schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=projection." title=" projection."> projection.</a> </p> <a href="https://publications.waset.org/abstracts/163708/a-proof-of-the-fact-that-a-finite-morphism-is-proper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19170</span> Noncommutative Differential Structure on Finite Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtisam%20Masmali">Ibtisam Masmali</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Beggs"> Edwin Beggs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we take example of differential calculi, on the finite group A4. Then, we apply methods of non-commutative of non-commutative differential geometry to this example, and see how similar the results are to those of classical differential geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=di%EF%AC%80erential%20calculi" title="differential calculi">differential calculi</a>, <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81nite%20group%20A4" title=" finite group A4"> finite group A4</a>, <a href="https://publications.waset.org/abstracts/search?q=Christo%EF%AC%80el%20symbols" title=" Christoffel symbols"> Christoffel symbols</a>, <a href="https://publications.waset.org/abstracts/search?q=covariant%20derivative" title=" covariant derivative"> covariant derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion%20compatible" title=" torsion compatible"> torsion compatible</a> </p> <a href="https://publications.waset.org/abstracts/3359/noncommutative-differential-structure-on-finite-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19169</span> On the Blocked-off Finite-Volume Radiation Solutions in a Two-Dimensional Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blocked-off formulations for the analysis of radiative heat transfer are formulated and examined in order to find the solutions in a two-dimensional complex enclosure. The final discretization equations using the step scheme for spatial differencing practice are proposed with the additional source term to incorporate the blocked-off procedure. After introducing the implementation for inactive region into the general discretization equation, three different problems are examined to find the performance of the solution methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title="radiative heat transfer">radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Volume%20Method%20%28FVM%29" title=" Finite Volume Method (FVM)"> Finite Volume Method (FVM)</a>, <a href="https://publications.waset.org/abstracts/search?q=blocked-off%20solution%20procedure" title=" blocked-off solution procedure"> blocked-off solution procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=body-fitted%20coordinate" title=" body-fitted coordinate"> body-fitted coordinate</a> </p> <a href="https://publications.waset.org/abstracts/19872/on-the-blocked-off-finite-volume-radiation-solutions-in-a-two-dimensional-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19168</span> Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhamita%20Chakraborty">Subhamita Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhabrata%20Datta"> Shubhabrata Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujay%20Kumar%20Mukherjea"> Sujay Kumar Mukherjea</a>, <a href="https://publications.waset.org/abstracts/search?q=Partha%20Protim%20Chattopadhyay"> Partha Protim Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=coil%20cooling" title=" coil cooling"> coil cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20pressure" title=" contact pressure"> contact pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a> </p> <a href="https://publications.waset.org/abstracts/24732/cooling-profile-analysis-of-hot-strip-coil-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19167</span> Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Baazzim">M. S. Baazzim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Al-Saud"> M. S. Al-Saud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Kady"> M. A. El-Kady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable%20ampacity" title="cable ampacity">cable ampacity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20cable" title=" underground cable"> underground cable</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20rating" title=" thermal rating"> thermal rating</a> </p> <a href="https://publications.waset.org/abstracts/6273/comparison-of-finite-element-and-iec-methods-for-cable-thermal-analysis-under-various-operating-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19166</span> Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Mredula">K. P. Mredula</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Vakaskar"> D. C. Vakaskar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-resolution" title="multi-resolution">multi-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Haar%20Wavelet" title=" Haar Wavelet"> Haar Wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a> </p> <a href="https://publications.waset.org/abstracts/59280/algorithms-utilizing-wavelet-to-solve-various-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19165</span> New High Order Group Iterative Schemes in the Solution of Poisson Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sam%20Teek%20Ling">Sam Teek Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhashidah%20Hj.%20Mohd.%20Ali"> Norhashidah Hj. Mohd. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit%20group%20iterative%20method" title="explicit group iterative method">explicit group iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference" title=" finite difference"> finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=fourth%20order%20compact" title=" fourth order compact"> fourth order compact</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20equation" title=" Poisson equation"> Poisson equation</a> </p> <a href="https://publications.waset.org/abstracts/1329/new-high-order-group-iterative-schemes-in-the-solution-of-poisson-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19164</span> Finite Sample Inferences for Weak Instrument Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gubhinder%20Kundhi">Gubhinder Kundhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Rilstone"> Paul Rilstone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. Finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bootstrap" title="bootstrap">bootstrap</a>, <a href="https://publications.waset.org/abstracts/search?q=Instrumental%20Variable" title=" Instrumental Variable"> Instrumental Variable</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgeworth%20expansions" title=" Edgeworth expansions"> Edgeworth expansions</a>, <a href="https://publications.waset.org/abstracts/search?q=Saddlepoint%20expansions" title=" Saddlepoint expansions"> Saddlepoint expansions</a> </p> <a href="https://publications.waset.org/abstracts/46824/finite-sample-inferences-for-weak-instrument-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19163</span> Thermophysical Properties and Kinetic Study of Dioscorea bulbifera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Chinagorom%20Nwadike">Emmanuel Chinagorom Nwadike</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Tagbo%20Nwabanne"> Joseph Tagbo Nwabanne</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Ndubuisi%20Abonyi"> Matthew Ndubuisi Abonyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Onyemazu%20Andrew%20Azaka"> Onyemazu Andrew Azaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focused on the modeling of the convective drying of aerial yam using finite element methods. The thermo-gravimetric analyzer was used to determine the thermal stability of the sample. An aerial yam sample of size 30 x 20 x 4 mm was cut with a mold designed for the purpose and dried in a convective dryer set at 4m/s fan speed and temperatures of 68.58 and 60.56°C. The volume shrinkage of the resultant dried sample was determined by immersing the sample in a toluene solution. The finite element analysis was done with PDE tools in Matlab 2015. Seven kinetic models were employed to model the drying process. The result obtained revealed three regions in the thermogravimetric analysis (TGA) profile of aerial yam. The maximum thermal degradation rates of the sample occurred at 432.7°C. The effective thermal diffusivity of the sample increased as the temperature increased from 60.56°C to 68.58°C. The finite element prediction of moisture content of aerial yam at an air temperature of 68.58°C and 60.56°C shows R² of 0.9663 and 0.9155, respectively. There was a good agreement between the finite element predicted moisture content and the measured moisture content, which is indicative of a highly reliable finite element model developed. The result also shows that the best kinetic model for the aerial yam under the given drying conditions was the Logarithmic model with a correlation coefficient of 0.9991. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20yam" title="aerial yam">aerial yam</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=convective" title=" convective"> convective</a>, <a href="https://publications.waset.org/abstracts/search?q=effective" title=" effective"> effective</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a> </p> <a href="https://publications.waset.org/abstracts/148796/thermophysical-properties-and-kinetic-study-of-dioscorea-bulbifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19162</span> Finite Volume Method for Flow Prediction Using Unstructured Meshes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juhee%20Lee">Juhee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongjun%20Lee"> Yongjun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title="finite volume method">finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=unstructured%20grid" title=" unstructured grid"> unstructured grid</a> </p> <a href="https://publications.waset.org/abstracts/48343/finite-volume-method-for-flow-prediction-using-unstructured-meshes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19161</span> Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Ma">F. J. Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20H.%20Kwan"> A. K. H. Kwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20queuing%20algorithm" title="crack queuing algorithm">crack queuing algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width%20analysis" title=" crack width analysis"> crack width analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20effect" title=" shrinkage effect"> shrinkage effect</a> </p> <a href="https://publications.waset.org/abstracts/50507/crack-width-analysis-of-reinforced-concrete-members-under-shrinkage-effect-by-pseudo-discrete-crack-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19160</span> Characterization of Number of Subgroups of Finite Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khyati%20Sharma">Khyati Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Satyanarayana%20Reddy"> A. Satyanarayana Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topic of how many subgroups exist within a certain finite group naturally arises in the study of finite groups. Over the years, different researchers have investigated this issue from a variety of angles. The significant contributions of the key mathematicians over the time have been summarized in this article. To this end, we classify finite groups into three categories viz. (a) Groups for which the number of subgroups is less than |G|, (b) equals to |G|, and finally, (c) greater than |G|. Because every element of a finite group generates a cyclic subgroup, counting cyclic subgroups is the most important task in this endeavor. A brief survey on the number of cyclic subgroups of finite groups is also conducted by us. Furthermore, we also covered certain arithmetic relations between the order of a finite group |G| and the number of its distinct cyclic subgroups |C(G)|. In order to provide pertinent context and possibly reveal new novel areas of potential research within the field of research on finite groups, we finally pose and solicit a few open questions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abstract%20algebra" title="abstract algebra">abstract algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20subgroup" title=" cyclic subgroup"> cyclic subgroup</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20group" title=" finite group"> finite group</a>, <a href="https://publications.waset.org/abstracts/search?q=subgroup" title=" subgroup"> subgroup</a> </p> <a href="https://publications.waset.org/abstracts/153000/characterization-of-number-of-subgroups-of-finite-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19159</span> Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Fusun%20Oyman%20Serteller">N. Fusun Oyman Serteller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples.&nbsp; Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title="finite difference method">finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=linear-nonlinear%20PDEs" title=" linear-nonlinear PDEs"> linear-nonlinear PDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=symbolic%20computation" title=" symbolic computation"> symbolic computation</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation%20equations" title=" wave propagation equations"> wave propagation equations</a> </p> <a href="https://publications.waset.org/abstracts/107982/electromagnetic-wave-propagation-equations-in-2d-by-finite-difference-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19158</span> Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Noah">K. Noah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.-S.%20Lien"> F.-S. Lien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20lattice%20Boltzmann%20method" title="compressible lattice Boltzmann method">compressible lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20relaxation%20times" title=" multiple relaxation times"> multiple relaxation times</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title=" large eddy simulation"> large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20jet%20flows" title=" turbulent jet flows"> turbulent jet flows</a> </p> <a href="https://publications.waset.org/abstracts/89310/compressible-lattice-boltzmann-method-for-turbulent-jet-flow-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19157</span> On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Luj%C3%A1n%20Villarreal">Diego Luján Villarreal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20prosthetic%20devices" title="visual prosthetic devices">visual prosthetic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20for%20stimulation" title=" volume for stimulation"> volume for stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20discretization" title=" FEM discretization"> FEM discretization</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20simulation" title=" 3D simulation"> 3D simulation</a> </p> <a href="https://publications.waset.org/abstracts/162034/on-the-volume-of-ganglion-cell-stimulation-in-visual-prostheses-by-finite-element-discretization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19156</span> Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Keshtiban">P. M. Keshtiban</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zdshakoyan"> M. Zdshakoyan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Faragi"> G. Faragi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AL1050" title="AL1050">AL1050</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a> </p> <a href="https://publications.waset.org/abstracts/37584/equal-channel-angular-pressing-of-al1050-sheets-experimental-and-finite-element-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19155</span> 3D Finite Element Analysis of Yoke Hybrid Electromagnet </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Fatih%20Ertu%C4%9Frul">Hasan Fatih Ertuğrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Beytullah%20Okur"> Beytullah Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20%C3%9Cvet"> Huseyin Üvet</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Erkan"> Kadir Erkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to analyze a 4-pole hybrid magnetic levitation system by using 3D finite element and analytical methods. The magnetostatic analysis of the system is carried out by using ANSYS MAXWELL-3D package. An analytical model is derived by magnetic equivalent circuit (MEC) method. The purpose of magnetostatic analysis is to determine the characteristics of attractive force and rotational torques by the change of air gap clearances, inclination angles and current excitations. The comparison between 3D finite element analysis and analytical results are presented at the rest of the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yoke%20hybrid%20electromagnet" title="yoke hybrid electromagnet">yoke hybrid electromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20finite%20element%20analysis" title=" 3D finite element analysis"> 3D finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation%20system" title=" magnetic levitation system"> magnetic levitation system</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetostatic%20analysis" title=" magnetostatic analysis"> magnetostatic analysis</a> </p> <a href="https://publications.waset.org/abstracts/11364/3d-finite-element-analysis-of-yoke-hybrid-electromagnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">727</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19154</span> Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Yang">Yuchen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenming%20Wang"> Zhenming Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zhu"> Jun Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Zhao"> Ning Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20mesh%20refinement%20method" title="adaptive mesh refinement method">adaptive mesh refinement method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20multi-resolution%20WENO%20scheme" title=" finite volume multi-resolution WENO scheme"> finite volume multi-resolution WENO scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=immersed%20boundary%20method" title=" immersed boundary method"> immersed boundary method</a>, <a href="https://publications.waset.org/abstracts/search?q=wall-function%20technique." title=" wall-function technique."> wall-function technique.</a> </p> <a href="https://publications.waset.org/abstracts/111225/efficient-implementation-of-finite-volume-multi-resolution-weno-scheme-on-adaptive-cartesian-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19153</span> Application of the MOOD Technique to the Steady-State Euler Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaspar%20J.%20Machado">Gaspar J. Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Clain"> Stéphane Clain</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Loub%C3%A8re"> Raphael Loubère</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the present work is to numerically study steady-state nonlinear hyperbolic equations in the context of the finite volume framework. We will consider the unidimensional Burgers' equation as the reference case for the scalar situation and the unidimensional Euler equations for the vectorial situation. We consider two approaches to solve the nonlinear equations: a time marching algorithm and a direct steady-state approach. We first develop the necessary and sufficient conditions to obtain the existence and unicity of the solution. We treat regular examples and solutions with a steady shock and to provide very-high-order finite volume approximations we implement a method based on the MOOD technology (Multi-dimensional Optimal Order Detection). The main ingredient consists in using an 'a posteriori' limiting strategy to eliminate non physical oscillations deriving from the Gibbs phenomenon while keeping a high accuracy for the smooth part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euler%20equations" title="Euler equations">Euler equations</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/abstracts/search?q=MOOD" title=" MOOD"> MOOD</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state" title=" steady-state"> steady-state</a> </p> <a href="https://publications.waset.org/abstracts/52830/application-of-the-mood-technique-to-the-steady-state-euler-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=639">639</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=640">640</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finite%20volume%20methods&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10