CINXE.COM

Search results for: pack cell volume

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pack cell volume</title> <meta name="description" content="Search results for: pack cell volume"> <meta name="keywords" content="pack cell volume"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pack cell volume" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pack cell volume"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6147</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pack cell volume</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6147</span> Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mashayekh">Ali Mashayekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdiye%20Khorasani"> Mahdiye Khorasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Weyh"> Thomas Weyh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20characterization" title="battery characterization">battery characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=SoH%20estimation" title=" SoH estimation"> SoH estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=RLS" title=" RLS"> RLS</a>, <a href="https://publications.waset.org/abstracts/search?q=BEV" title=" BEV"> BEV</a> </p> <a href="https://publications.waset.org/abstracts/144193/investigation-and-estimation-of-state-of-health-of-battery-pack-in-battery-electric-vehicles-online-battery-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6146</span> An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchitra%20Sivakumar">Suchitra Sivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajime%20Shingyouchi"> Hajime Shingyouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshinori%20Okajima"> Toshinori Okajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyohei%20Yamaguchi"> Kyohei Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Kusaka"> Jin Kusaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20model" title="battery model">battery model</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20electric%20vehicle" title=" hybrid electric vehicle"> hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20model" title=" thermal model"> thermal model</a> </p> <a href="https://publications.waset.org/abstracts/113330/an-equivalent-circuit-model-approach-for-battery-pack-simulation-in-a-hybrid-electric-vehicle-system-powertrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6145</span> Reinforcement of an Electric Vehicle Battery Pack Using Honeycomb Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandon%20To">Brandon To</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20S.%20Park"> Yong S. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As more battery electric vehicles are being introduced into the automobile industry, continuous advancements are constantly made in the electric vehicle space. Improvements in lithium-ion battery technology allow electric vehicles to be capable of traveling long distances. The batteries are capable of being charged faster, allowing for a sufficient range in shorter amounts of time. With increased reliance on battery technology and the changes in vehicle power trains, new challenges arise from this. Resulting electric vehicle fires caused by collisions are potentially more dangerous than those of the typical internal combustion engine. To further reduce the battery failures involved with side collisions, this project intends to reinforce an existing battery pack of an electric vehicle with honeycomb structures such that intrusion into the batteries can be minimized with weight restrictions in place. Honeycomb structures of hexagonal geometry are implemented into the side extrusions of the battery pack. With the use of explicit dynamics simulations performed in ANSYS, quantitative results such as deformation, strain, and stress are used to compare the performance of the battery pack with and without the implemented honeycomb structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20pack" title="battery pack">battery pack</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title=" honeycomb"> honeycomb</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20impact" title=" side impact"> side impact</a> </p> <a href="https://publications.waset.org/abstracts/162975/reinforcement-of-an-electric-vehicle-battery-pack-using-honeycomb-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6144</span> High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minoo%20Tavakoli">Minoo Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Kiani%20Rashid"> Alireza Kiani Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Afrasiabi"> Abbas Afrasiabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20arc%20spray" title="electric arc spray">electric arc spray</a>, <a href="https://publications.waset.org/abstracts/search?q=pack%20cementation" title=" pack cementation"> pack cementation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminized%20steel" title=" aluminized steel "> aluminized steel </a> </p> <a href="https://publications.waset.org/abstracts/15965/high-temperature-oxidation-behavior-of-aluminized-steel-by-arc-spray-and-cementation-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6143</span> Battery Grading Algorithm in 2nd-Life Repurposing LI-Ion Battery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ya%20L.%20V.">Ya L. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Ong%20Wei%20Lin"> Benjamin Ong Wei Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanli%20Niu"> Wanli Niu</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Seah%20Chin%20Tat"> Benjamin Seah Chin Tat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as an energy storage system (ESS). Most of the 2nd-life retired battery systems in the market have module/pack-level state-of-health (SOH) indicator, which is utilized for guiding appropriate depth-of-discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end-of-life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20grading%20algorithm" title="battery grading algorithm">battery grading algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=2nd-life%20repurposing%20battery%20system" title=" 2nd-life repurposing battery system"> 2nd-life repurposing battery system</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-analytic%20methodology" title=" semi-analytic methodology"> semi-analytic methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20and%20cyclability" title=" reliability and cyclability"> reliability and cyclability</a> </p> <a href="https://publications.waset.org/abstracts/136464/battery-grading-algorithm-in-2nd-life-repurposing-li-ion-battery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6142</span> Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Kamalisiahroudi">Sara Kamalisiahroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Jianbo"> Zhang Jianbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wu"> Bin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Huang"> Jun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Laisuo%20Su"> Laisuo Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20generation" title="heat generation">heat generation</a>, <a href="https://publications.waset.org/abstracts/search?q=Solid%20Electrolyte%20Interface%20%28SEI%29" title=" Solid Electrolyte Interface (SEI)"> Solid Electrolyte Interface (SEI)</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiometric%20method" title=" potentiometric method"> potentiometric method</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20coefficient" title=" entropy coefficient "> entropy coefficient </a> </p> <a href="https://publications.waset.org/abstracts/14454/comparison-of-entropy-coefficient-and-internal-resistance-of-two-used-and-fresh-cylindrical-commercial-lithium-ion-battery-ncr18650-with-different-capacities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6141</span> Single-Cell Visualization with Minimum Volume Embedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhenqiu%20Liu">Zhenqiu Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-cell%20RNA-seq" title="single-cell RNA-seq">single-cell RNA-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20volume%20embedding" title=" minimum volume embedding"> minimum volume embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20proximal%20gradient%20method" title=" accelerated proximal gradient method"> accelerated proximal gradient method</a> </p> <a href="https://publications.waset.org/abstracts/75071/single-cell-visualization-with-minimum-volume-embedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6140</span> An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idit%20Avrahami">Idit Avrahami</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Schechter"> Alex Schechter</a>, <a href="https://publications.waset.org/abstracts/search?q=Lev%20Zakhvatkin"> Lev Zakhvatkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20energy" title="hydrogen energy">hydrogen energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20borohydride" title=" sodium borohydride"> sodium borohydride</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-wing%20UAV" title=" fixed-wing UAV"> fixed-wing UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20pack" title=" energy pack"> energy pack</a> </p> <a href="https://publications.waset.org/abstracts/158504/an-innovative-high-energy-density-power-pack-for-portable-and-off-grid-power-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6139</span> Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Pizarro-Carmona">V. Pizarro-Carmona</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Castano-Solis"> S. Castano-Solis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cort%C3%A9s-Carmona"> M. Cortés-Carmona</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Fraile-Ardanuy"> J. Fraile-Ardanuy</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jimenez-Bermejo"> D. Jimenez-Bermejo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20battery%20packs%20modeling%20optimized" title="Li-ion battery packs modeling optimized">Li-ion battery packs modeling optimized</a>, <a href="https://publications.waset.org/abstracts/search?q=EECM" title=" EECM"> EECM</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20applications" title=" electric vehicle applications"> electric vehicle applications</a> </p> <a href="https://publications.waset.org/abstracts/124223/optimization-by-means-of-genetic-algorithm-of-the-equivalent-electrical-circuit-model-of-different-order-for-li-ion-battery-pack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6138</span> Mathematical Modeling of Cell Volume Alterations under Different Osmotic Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20A.%20Knocikova">Juliana A. Knocikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Bouret"> Yann Bouret</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A9d%C3%A9ric%20Argentina"> Médéric Argentina</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Counillon"> Laurent Counillon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell volume, together with membrane potential and intracellular hydrogen ion concentration, is an essential biophysical parameter for normal cellular activity. Cell volumes can be altered by osmotically active compounds and extracellular tonicity. In this study, a simple mathematical model of osmotically induced cell swelling and shrinking is presented. Emphasis is given to water diffusion across the membrane. The mathematical description of the cellular behavior consists in a system of coupled ordinary differential equations. We compare experimental data of cell volume alterations driven by differences in osmotic pressure with mathematical simulations under hypotonic and hypertonic conditions. Implications for a future model are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eukaryotic%20cell" title="eukaryotic cell">eukaryotic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=osmosis" title=" osmosis"> osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20alterations" title=" volume alterations"> volume alterations</a> </p> <a href="https://publications.waset.org/abstracts/13267/mathematical-modeling-of-cell-volume-alterations-under-different-osmotic-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6137</span> Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishaq%20Ahmad">Ishaq Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomin%20Li"> Zhaomin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Chengwen"> Liu Chengwen</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20yan%20Li"> Song yan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Lei"> Wang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhoujie%20Wang"> Zhoujie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Lei"> Zheng Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20rice%20husk%20ash%20nanoparticle" title="black rice husk ash nanoparticle">black rice husk ash nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%82%82%20foam" title=" N₂ foam"> N₂ foam</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20pack" title=" sand pack"> sand pack</a> </p> <a href="https://publications.waset.org/abstracts/156241/improvisation-of-n2-foam-with-black-rice-husk-ash-in-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6136</span> Photoactivated Chromophore for Keratitis-Cross Linking Window Absorption Alone versus Combined Pack-CXL Window Absorption and Standard Anti-microbial Therapy for Treatment of Infectious Keratitis: A Prospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20M.%20Mahdy%20Tawfeek">Mohammed M. Mahdy Tawfeek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this work is to compare the outcome of photoactivated chromophore for keratitis-cross linking (PACK-CXL) window absorption (WA) alone with combined PACK-CXL WA and standard anti-microbial therapy (SAT) for the treatment of infectious keratitis. Patients and Methods: This is a randomized prospective comparative clinical trial. Thirty eyes with clinically suspected infectious keratitis were randomly assigned into two equal groups of 15 eyes each: Group (A) was treated by PACK-CXL WA alone and group (B) was treated by PACK-CXL WA combined with SAT. Identification of organisms was made by lab study before treatment. Corneal healing was evaluated by corneal examination and anterior segment OCT (AS-OCT). Written informed consent was obtained from all participants and the study was approved by the research ethics committee of the Faculty of Medicine, Zagazig University. The work has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for studies involving humans. Results: Complete healing and resolution (Successful treatment) were observed in 10 eyes (66.7%) of a group (A) and 14 eyes (93.3%) of group (B) and failure was observed in 5 eyes (33.3%) of a group (A) and one eye (6.67%) of group (B). They were statistically significant (P =0.042 and 0.003) in a comparison between both groups regarding success and failure of treatment, respectively. Complete corneal healing was reported in the third month postoperatively in 10 eyes (66.7%) of group (A) and 14 eyes (93.3%) of group (B). Complications were absent in 12 patients (80%) in group (A) and 14 patients (93.3%) of group (B); however, perforation and impending perforation were found in 3 patients of group (A) and only one patient of group (B). Conclusion: PACK-CXL is a promising, non-invasive treatment option for infectious keratitis, especially when performed with the window absorption (WA) technique, either alone or combined with SAT. It has a synergistic effect with a standard antimicrobial treatment that gives good outcome results in the treatment of infectious keratitis. Also, it avoids the antibiotics resistance that has become rapidly spreading worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corneal%20cross%20linking" title="corneal cross linking">corneal cross linking</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20keratitis" title=" infectious keratitis"> infectious keratitis</a>, <a href="https://publications.waset.org/abstracts/search?q=PACK-CXL" title=" PACK-CXL"> PACK-CXL</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20absorption" title=" window absorption"> window absorption</a> </p> <a href="https://publications.waset.org/abstracts/133351/photoactivated-chromophore-for-keratitis-cross-linking-window-absorption-alone-versus-combined-pack-cxl-window-absorption-and-standard-anti-microbial-therapy-for-treatment-of-infectious-keratitis-a-prospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6135</span> Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangwoo%20Han">Sangwoo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Khaleghi%20Rahimian"> Saeed Khaleghi Rahimian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Liu"> Ying Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20management%20system" title="battery management system">battery management system</a>, <a href="https://publications.waset.org/abstracts/search?q=physics-based%20li-ion%20cell%20model" title=" physics-based li-ion cell model"> physics-based li-ion cell model</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced-order%20model" title=" reduced-order model"> reduced-order model</a>, <a href="https://publications.waset.org/abstracts/search?q=single-particle%20and%20multi-particle%20model" title=" single-particle and multi-particle model"> single-particle and multi-particle model</a> </p> <a href="https://publications.waset.org/abstracts/103226/computationally-efficient-electrochemical-thermal-li-ion-cell-model-for-battery-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6134</span> Physiological Indicators and Stress Index of Scavenging Chickens at Lafarge and Dangote Cement Factory Areas of Ogun State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwadele%20Joshua%20Femi">Oluwadele Joshua Femi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinlabi%20Ebenezer%20Yemi"> Akinlabi Ebenezer Yemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Onaopemipo%20Adeitan"> Onaopemipo Adeitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazeem%20Bello"> Kazeem Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Ekeocha"> Anthony Ekeocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Miraim%20Tawose"> Miraim Tawose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to determine the physiological and stress index of scavenging chickens in LAFARGE (Ewekoro) and Dangote (Ibese) Cement Factories Area of Ogun State. One hundred adult scavenging chickens comprising of 25 chickens from LAFARGE, Dangote and respective adjourning communities (Imasayi and Wasimi) were used. Experimental birds were caught at night on their perch and kept in cages till the next morning. Data were collected on rectal temperature, pulse rate, and respiratory rate of the birds. Also, 5ml blood was collected through the wing vein of the chickens in each location using a sterilized needle and syringe and transported to laboratory for analysis. Significant (P<0.05) highest pulse rate (215.64 beat/minute) and respiratory rate (19.90 breaths/minute) were recorded among scavenging chickens at LAFARGE (Ewekoro) Area and the least (198.61 beat/minute and 16.93 breaths/minute, respectively) at Imasayi. There was no significant (P>0.05) difference in the rectal temperature of the birds in the study area. Significant (P<0.05) differences were also recorded in the Packed Cell Volume (PCV), Hemoglobin (Hb), White Blood Cell (WBC), Monocyte, and Glucose level of the chickens in study area with the highest (P<0.05) Packed Cell Volume (28.06%) and Haemoglobin (4.01g/dl) recorded in Ibese and the least Packed Cell Volume (22.00%) and Haemoglobin (288g/dl) in Imasayi. Highest (P<0.05) Monocyte (4.28%) and glucose (256.53g/dl) were recorded among scavenging chickens at Dangote (Ibese) while the least Monocyte (0.00%) and Glucose (194.53g/dl) was recorded among chickens at Wasimi. Highest (P<0.05) White Blood Cell (6488.89×103µl) was recorded among chickens at Ewekoro and the lowest value in Ibese (4388.44×103µl). There was no significant (P>0.05) difference in the Heterophyl, Lymphocyte, Basophyl and Heterophyl/Lymphocyte ratio of the chickens in the study Area. The study concluded that chickens reared at LAFARGE (Ewekoro) were stressed and had comprised welfare and health status compared to Dangote (Ibese) cement area and other agrarian communities. Effective environmental mitigation programme should be put in place to enhance the welfare of the scavenging chickens in LAFARGE Cement Factory Area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood" title="blood">blood</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken" title=" chicken"> chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=poisonous%20substances" title=" poisonous substances"> poisonous substances</a>, <a href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume" title=" pack cell volume"> pack cell volume</a>, <a href="https://publications.waset.org/abstracts/search?q=communities" title=" communities"> communities</a> </p> <a href="https://publications.waset.org/abstracts/160254/physiological-indicators-and-stress-index-of-scavenging-chickens-at-lafarge-and-dangote-cement-factory-areas-of-ogun-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6133</span> Evaluating the Validity of the Combined Bedside Test in Diagnosing Juvenile Myasthenia Gravis (2012-2024)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pechpailin%20Kortnoi">Pechpailin Kortnoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanitnun%20Paprad"> Tanitnun Paprad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Myasthenia gravis (MG) is an autoimmune disorder characterized by impaired neuromuscular transmission due to antibodies against nicotinic receptors, leading to muscle weakness, ptosis, and respiratory issues. The incidence of MG has risen globally, emphasizing the need for effective diagnostics. Objective: This study evaluates the validity of a combined bedside test (the ice pack test and fatigability test) for diagnosing juvenile myasthenia gravis (JMG) in pediatric patients with ptosis. Methods: This cross-sectional study, conducted from January 2012 to May 2024 at King Chulalongkorn Memorial Hospital, Thailand, included pediatric patients (1 month to 18 years) with ptosis undergoing ice pack and fatigability tests. Data included demographics, clinical findings, and test results. Diagnostic efficacy was assessed using sensitivity, specificity, accuracy, PPV, NPV, Fagan Nomogram, Kappa Statistics, and McNemar’s Chi-Square. Results: Of 43 identified patients, 32 were included, with 47% male and a mean age of 7 years. The combined bedside test had high sensitivity (92.8%) and accuracy (87.5%) but moderate specificity (50%). It significantly outperformed the ice pack test (P = 0.0005), which showed low sensitivity (42.8%) and accuracy (43.8%). The fatigability test had 82% sensitivity and 92% PPV. Confirmatory tests (AChR-Ab, MuSK-Ab, neostigmine, repetitive nerve stimulation) supported most diagnoses. Conclusions: The combined bedside test, with high sensitivity (92.8%) and accuracy (87.5%), is an effective screening tool for juvenile myasthenia gravis, outperforming the ice pack test. Integrating it into clinical practice may improve diagnosis and enable timely treatment. The fatigability test (82% sensitivity) is also useful as an adjunct screening tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=myasthenia%20gravis%20%28MG%29" title="myasthenia gravis (MG)">myasthenia gravis (MG)</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20ice%20pack%20test" title=" the ice pack test"> the ice pack test</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20fatigability%20test" title=" the fatigability test"> the fatigability test</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20combined%20bedside%20test" title=" the combined bedside test"> the combined bedside test</a> </p> <a href="https://publications.waset.org/abstracts/194871/evaluating-the-validity-of-the-combined-bedside-test-in-diagnosing-juvenile-myasthenia-gravis-2012-2024" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6132</span> A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20J.%20Gano">António J. Gano</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Rangel"> Carmen Rangel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20battery" title="Li-ion battery">Li-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20BMS" title=" smart BMS"> smart BMS</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20electric%20storage" title=" stationary electric storage"> stationary electric storage</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20BMS" title=" distributed BMS"> distributed BMS</a> </p> <a href="https://publications.waset.org/abstracts/164084/a-distributed-smart-battery-management-system-sbms-for-stationary-energy-storage-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6131</span> Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marlon%20Gallo">Marlon Gallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Miguel"> Eduardo Miguel</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Oca"> Laura Oca</a>, <a href="https://publications.waset.org/abstracts/search?q=Eneko%20Gonzalez"> Eneko Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Unai%20Iraola"> Unai Iraola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title="lithium-ion battery">lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flux%20sensor" title=" heat flux sensor"> heat flux sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20generation" title=" heat generation"> heat generation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20characterization" title=" thermal characterization"> thermal characterization</a> </p> <a href="https://publications.waset.org/abstracts/142462/comparison-between-bernardis-equation-and-heat-flux-sensor-measurement-as-battery-heat-generation-estimation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6130</span> An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Essam%20Al%20Daoud">Essam Al Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate&nbsp;than other implemented methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=least%20square" title="least square">least square</a>, <a href="https://publications.waset.org/abstracts/search?q=neighbor%20joining" title=" neighbor joining"> neighbor joining</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20tree" title=" phylogenetic tree"> phylogenetic tree</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20dog%20pack" title=" wild dog pack"> wild dog pack</a> </p> <a href="https://publications.waset.org/abstracts/42453/an-accurate-method-for-phylogeny-tree-reconstruction-based-on-a-modified-wild-dog-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6129</span> Thermoplastic-Intensive Battery Trays for Optimum Electric Vehicle Battery Pack Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Munjurulimana">Dinesh Munjurulimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Tiwari"> Anil Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingwen%20Li"> Tingwen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Pereira"> Carlos Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreekanth%20Pannala"> Sreekanth Pannala</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Waters"> John Waters</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid transition to electric vehicles (EVs) across the globe, car manufacturers are in need of integrated and lightweight solutions for the battery packs of these vehicles. An integral part of a battery pack is the battery tray, which constitutes a significant portion of the pack’s overall weight. Based on the functional requirements, cost targets, and packaging space available, a range of materials –from metals, composites, and plastics– are often used to develop these battery trays. This paper considers the design and development of integrated thermoplastic-intensive battery trays, using the available packaging space from a representative EV battery pack. Presented as a proposed alternative are multiple concepts to integrate several connected systems such as cooling plates and underbody impact protection parts of a multi-piece incumbent battery pack. The resulting digital prototype was evaluated for several mechanical performance measures such as mechanical shock, drop, crush resistance, modal analysis, and torsional stiffness. The performance of this alternative design is then compared with the incumbent solution. In addition, insights are gleaned into how these novel approaches can be optimized to meet or exceed the performance of incumbent designs. Preliminary manufacturing feasibility of the optimal solution using injection molding and other commonly used manufacturing methods for thermoplastics is briefly explained. Then numerical and analytical evaluations are performed to show a representative Pareto front of cost vs. volume of the production parts. The proposed solution is observed to offer weight savings of up to 40% on a component level and part elimination of up to two systems in the battery pack of a typical battery EV while offering the potential to meet the required performance measures highlighted above. These conceptual solutions are also observed to potentially offer secondary benefits such as improved thermal and electrical isolations and be able to achieve complex geometrical features, thus demonstrating the ability to use the complete packaging space available in the vehicle platform considered. The detailed study presented in this paper serves as a valuable reference for researches across the globe working on the development of EV battery packs – especially those with an interest in the potential of employing alternate solutions as part of a mixed-material system to help capture untapped opportunities to optimize performance and meet critical application requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastics" title="thermoplastics">thermoplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweighting" title=" lightweighting"> lightweighting</a>, <a href="https://publications.waset.org/abstracts/search?q=part%20integration" title=" part integration"> part integration</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20battery%20packs" title=" electric vehicle battery packs"> electric vehicle battery packs</a> </p> <a href="https://publications.waset.org/abstracts/137239/thermoplastic-intensive-battery-trays-for-optimum-electric-vehicle-battery-pack-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6128</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhane%20Hamed%20Kamran">Reyhane Hamed Kamran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science, and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/154753/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6127</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narin%20Salehiyan">Narin Salehiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/170992/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6126</span> Structural Evaluation of Cell-Filled Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subrat%20Roy">Subrat Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the findings of a study carried out for evaluating the performance of cell-filled pavement for low volume roads. Details of laboratory investigations and the methodology adopted for construction of cell-filled pavement are presented. The aim of this study is to evaluate the structural behaviour of cement concrete filled cell pavement laid over three different types of subbases (water bound macadam, soil-cement and moorum). A formwork of cells of a thin plastic sheet was used to construct the cell-filled pavements to form flexible, interlocked block pavements. Surface deflections were measured using falling weight deflectometer and benkelman beam methods. Resilient moduli of pavement layers were estimated from the measured deflections. A comparison of deflections obtained from both the methodology is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-filled%20pavement" title="cell-filled pavement">cell-filled pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=WBM" title=" WBM"> WBM</a>, <a href="https://publications.waset.org/abstracts/search?q=FWD" title=" FWD"> FWD</a>, <a href="https://publications.waset.org/abstracts/search?q=Moorum" title=" Moorum"> Moorum</a> </p> <a href="https://publications.waset.org/abstracts/19215/structural-evaluation-of-cell-filled-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6125</span> MEMS based Vibration Energy Harvesting: An overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Prabhudesai">Gaurav Prabhudesai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaurya%20Kaushal"> Shaurya Kaushal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulkit%20Dubey"> Pulkit Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20D.%20Pant"> B. D. Pant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current race of miniaturization of circuits, systems, modules and networks has resulted in portable and mobile wireless systems having tremendous capabilities with small volume and weight. The power drivers or the power pack, electrically driving these modules have also reduced in proportion. Normally, the power packs in these mobile or fixed systems are batteries, rechargeable or non-rechargeable, which need regular replacement or recharging. Another approach to power these modules is to utilize the ambient energy available for electrical driving to make the system self-sustained. The current paper presents an overview of the different MEMS (Micro-Electro-Mechanical Systems) based techniques used for the harvesting of vibration energy to electrically drive a WSN (wireless sensor network) or a mobile module. This kind of system would have enormous applications, the most significant one, may be in cell phones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=WSN" title=" WSN"> WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectrics" title=" piezoelectrics"> piezoelectrics</a> </p> <a href="https://publications.waset.org/abstracts/22297/mems-based-vibration-energy-harvesting-an-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6124</span> Optimum Design for Cathode Microstructure of Solid Oxide Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Riazat">M. Riazat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Abdolvand"> H. Abdolvand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Baniassadi"> M. Baniassadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this present work, 3D reconstruction of cathode of SOFC is developed with various volume fractions and porosity. Three Phase Boundary (TPB) of construction of such derived micro structures is calculated. The neural network is used to optimize the porosity and volume fraction of each phase to reach a structure with maximum TPB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide" title=" solid oxide"> solid oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=TPB" title=" TPB"> TPB</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/20479/optimum-design-for-cathode-microstructure-of-solid-oxide-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6123</span> Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Caro">Carlos Caro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernest%20Blad%C3%A9"> Ernest Bladé</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Acosta"> Pedro Acosta</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Lesmes"> Camilo Lesmes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrology" title="hydrology">hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20processes" title=" transport processes"> transport processes</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20schemes" title=" finite volume schemes"> finite volume schemes</a> </p> <a href="https://publications.waset.org/abstracts/53077/drying-and-transport-processes-in-distributed-hydrological-modelling-based-on-finite-volume-schemes-iber-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6122</span> Investigating Pack Boriding as a Surface Treatment for WC-Co Cold Forming Die Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Zohdi">Afshin Zohdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sel%C3%A7uk%20%C3%96zdemir"> Selçuk Özdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Aksoy"> Mustafa Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tungsten carbide-cobalt (WC-Co) is a widely utilized material for cold forming dies, including those employed in fastener production. In this study, we investigated the effectiveness of the pack boriding method in improving the surface properties of WC-Co cold forging dies. The boriding process involved embedding WC-Co samples, along with a steel control sample, within a chamber made of H13 tool steel. A boriding powder mixture was introduced into the chamber, which was then sealed using a paste. Subsequently, the samples were subjected to a temperature of 700°C for 5 hours in a furnace. Microstructural analysis, including cross-sectional examination and scanning electron microscopy (SEM), confirmed successful boron diffusion and its presence on the surface of the borided samples. The microhardness of the borided layer was significantly increased (3980 HV1) compared to the unborided sample (1320 HV3), indicating enhanced hardness. The borided layer exhibited an acceptable thickness of 45 microns, with a diffusion coefficient of 1.125 × 10-7 mm²/s, signifying a moderate diffusion rate. Energy-dispersive X-ray spectroscopy (EDS) mapping revealed an increase in boron content, desirable for the intended purpose, while an undesired increase in oxygen content was observed. Furthermore, the pin-on-disk wear test demonstrated a reduction in friction coefficient, indicating improved mechanical and tribological properties of the surface. The successful implementation of the pack boriding process highlights its potential for enhancing the performance of WC-Co cold forging dies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WC-Co" title="WC-Co">WC-Co</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20forging%20dies" title=" cold forging dies"> cold forging dies</a>, <a href="https://publications.waset.org/abstracts/search?q=pack%20boriding" title=" pack boriding"> pack boriding</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hardness" title=" surface hardness"> surface hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20coefficient" title=" diffusion coefficient"> diffusion coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-dispersive%20X-ray%20spectroscopy" title=" energy-dispersive X-ray spectroscopy"> energy-dispersive X-ray spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/167428/investigating-pack-boriding-as-a-surface-treatment-for-wc-co-cold-forming-die-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6121</span> Global Analysis of HIV Virus Models with Cell-to-Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Pourbashash">Hossein Pourbashash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV%20virus%20model" title="HIV virus model">HIV virus model</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-to-cell%20transmission" title=" cell-to-cell transmission"> cell-to-cell transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title=" global stability"> global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20compound%20matrices" title=" second compound matrices"> second compound matrices</a> </p> <a href="https://publications.waset.org/abstracts/23412/global-analysis-of-hiv-virus-models-with-cell-to-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6120</span> On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Luj%C3%A1n%20Villarreal">Diego Luján Villarreal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20prosthetic%20devices" title="visual prosthetic devices">visual prosthetic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20for%20stimulation" title=" volume for stimulation"> volume for stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20discretization" title=" FEM discretization"> FEM discretization</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20simulation" title=" 3D simulation"> 3D simulation</a> </p> <a href="https://publications.waset.org/abstracts/162034/on-the-volume-of-ganglion-cell-stimulation-in-visual-prostheses-by-finite-element-discretization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6119</span> Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirowati%20Ali">Hirowati Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Ellyanti"> Aisyah Ellyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rusnita"> Dewi Rusnita</a>, <a href="https://publications.waset.org/abstracts/search?q=Septelia%20Inawati%20Wanandi"> Septelia Inawati Wanandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cells" title="breast cancer cells">breast cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20cancer%20cells" title=" inhibition of cancer cells"> inhibition of cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCUBE2" title=" SCUBE2"> SCUBE2</a> </p> <a href="https://publications.waset.org/abstracts/84557/up-regulation-of-scube2-expression-in-co-cultures-of-human-mesenchymal-stem-cell-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6118</span> Nafion Nanofiber Mat in a Single Fuel Cell Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chijioke%20Okafor">Chijioke Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Maaza"> Malik Maaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Touhami%20Mokrani"> Touhami Mokrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nafion" title=" nafion"> nafion</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/26100/nafion-nanofiber-mat-in-a-single-fuel-cell-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=204">204</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=205">205</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pack%20cell%20volume&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10