CINXE.COM

Search results for: Aliaa M. El-Borai

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Aliaa M. El-Borai</title> <meta name="description" content="Search results for: Aliaa M. El-Borai"> <meta name="keywords" content="Aliaa M. El-Borai"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Aliaa M. El-Borai" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Aliaa M. El-Borai"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Aliaa M. El-Borai</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> A Model for Optimizing Inventory Replenishment and Shelf Space Management in Retail Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nermine%20A.%20Harraz">Nermine A. Harraz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20Abouali"> Aliaa Abouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The retail stores put up for sale multiple items while the spaces in the backroom and display areas constitute a scarce resource. Availability, volume, and location of the product displayed in the showroom influence the customer’s demand. Managing these operations individually will result in sub-optimal overall retail store’s profit; therefore, a non-linear integer programming model (NLIP) is developed to determine the inventory replenishment and shelf space allocation decisions that together maximize the retailer’s profit under shelf space and backroom storage constraints taking into consideration that the demand rate is positively dependent on the amount and location of items displayed in the showroom. The developed model is solved using LINGO® software. The NLIP model is implemented in a real world case study in a large retail outlet providing a large variety of products. The proposed model is validated and shows logical results when using the experimental data collected from the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retailing%20management" title="retailing management">retailing management</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment" title=" inventory replenishment"> inventory replenishment</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20space%20allocation" title=" shelf space allocation"> shelf space allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=showroom" title=" showroom"> showroom</a>, <a href="https://publications.waset.org/abstracts/search?q=backroom" title=" backroom "> backroom </a> </p> <a href="https://publications.waset.org/abstracts/10385/a-model-for-optimizing-inventory-replenishment-and-shelf-space-management-in-retail-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Chemical Constituents of Matthiola Longipetala Extracts: In Vivo Antioxidant and Antidiabetic Effects in Alloxan Induced Diabetes Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Marzouk">Mona Marzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20Hegazi"> Nesrine Hegazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20Ragheb"> Aliaa Ragheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20El%20Shabrawy"> Mona El Shabrawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Kawashty"> Salwa Kawashty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The whole plant of Matthiola longipetala (Brassicaceae) was extracted by 70% methanol to give the total aqueous methanol extract (AME), which was defatted by hexane yielded hexane extract (HE) and defatted AME (DAME). HE was analyzed through GC/MS assay and revealed the detection of 28 non-polar compounds. In addition, the chemical investigation of DAME led to the isolation and purification of twelve flavonoids and three chlorogenic acids. Their structures were interpreted through chemical (complete and partial acid hydrolysis) and spectroscopic analysis (MS, UV, 1D and 2D NMR). Among them, nine compounds have been isolated for the first time from M. longipetala. Moreover, LC-ESI-MS analysis of DAME was achieved to detect additional 46 metabolites, including phospholipids, organic acids, phenolic acids and flavonoids. The biological activity of AME, HE and DAME against alloxan inducing oxidative stress and diabetes in male rats was investigated. Diabetes was induced using a single dose of Alloxan (150 mg/kg b.wt.). HE and DAME significantly increased serum GSH content in rats (37.3±0.7 and 35.9±0.6 mmol/l) compared to diabetic rats (21.8±0.3) and vitamin E (36.2±1.1) at P<0.01. Also, HE, DAME and AME revealed a significant acute anti-hyperglycemic effect potentiated after four weeks of treatment with blood glucose levels of 96.2±5.4, 98.7±6.1 and 98.9±8.6 mg/dl, respectively, compared to diabetic rats (263.4±7.8) and metaformin group (81.9±2.4) at P<0.01. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brassicaceae" title="Brassicaceae">Brassicaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavonoid" title=" Flavonoid"> Flavonoid</a>, <a href="https://publications.waset.org/abstracts/search?q=LCMS%2FMS" title=" LCMS/MS"> LCMS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthiola" title=" Matthiola"> Matthiola</a> </p> <a href="https://publications.waset.org/abstracts/131597/chemical-constituents-of-matthiola-longipetala-extracts-in-vivo-antioxidant-and-antidiabetic-effects-in-alloxan-induced-diabetes-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20M.%20El-Borai">Aliaa M. El-Borai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehab%20A.%20Beltagy"> Ehab A. Beltagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20E.%20Gadallah"> Eman E. Gadallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Samy%20A.%20ElAssar"> Samy A. ElAssar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as <em>Halomonas</em> sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized <em>Halomonas</em> sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of <em>Halomonas</em> sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=Box%E2%80%93Behnken" title=" Box–Behnken"> Box–Behnken</a>, <a href="https://publications.waset.org/abstracts/search?q=Halomonas%20sp.%20ES015" title=" Halomonas sp. ES015"> Halomonas sp. ES015</a>, <a href="https://publications.waset.org/abstracts/search?q=loop%20bioremediation" title=" loop bioremediation"> loop bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Plackett-Burman" title=" Plackett-Burman"> Plackett-Burman</a> </p> <a href="https://publications.waset.org/abstracts/73249/optimization-of-lead-bioremediation-by-marine-halomonas-sp-es015-using-statistical-experimental-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Electrospun Conducting Polymer/Graphene Composite Nanofibers for Gas Sensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20M.%20S.%20Salem">Aliaa M. S. Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Soliman%20I.%20El-Hout"> Soliman I. El-Hout</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Gaber"> Amira Gaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Nageh"> Hassan Nageh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the development of poisonous gas detectors is considered to be an urgent matter to secure human health and the environment from poisonous gases, in view of the fact that even a minimal amount of poisonous gas can be fatal. Of these concerns, various inorganic or organic sensing materials have been used. Among these are conducting polymers, have been used as the active material in the gassensorsdue to their low-cost,easy-controllable molding, good electrochemical properties including facile fabrication process, inherent physical properties, biocompatibility, and optical properties. Moreover, conducting polymer-based chemical sensors have an amazing advantage compared to the conventional one as structural diversity, facile functionalization, room temperature operation, and easy fabrication. However, the low selectivity and conductivity of conducting polymers motivated the doping of it with varied materials, especially graphene, to enhance the gas-sensing performance under ambient conditions. There were a number of approaches proposed for producing polymer/ graphene nanocomposites, including template-free self-assembly, hard physical template-guided synthesis, chemical, electrochemical, and electrospinning...etc. In this work, we aim to prepare a novel gas sensordepending on Electrospun nanofibers of conducting polymer/RGO composite that is the effective and efficient expectation of poisonous gases like ammonia, in different application areas such as environmental gas analysis, chemical-,automotive- and medical industries. Moreover, our ultimate objective is to maximize the sensing performance of the prepared sensor and to check its recovery properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro%20spinning%20process" title="electro spinning process">electro spinning process</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=polythiophene" title=" polythiophene"> polythiophene</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalized%20reduced%20graphene%20oxide" title=" functionalized reduced graphene oxide"> functionalized reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coating%20technique" title=" spin coating technique"> spin coating technique</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensors" title=" gas sensors"> gas sensors</a> </p> <a href="https://publications.waset.org/abstracts/142667/electrospun-conducting-polymergraphene-composite-nanofibers-for-gas-sensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Clinical Prediction Rules for Using Open Kinetic Chain Exercise in Treatment of Knee Osteoarthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Aly">Mohamed Aly</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20Rehan%20Youssef"> Aliaa Rehan Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Sawerees"> Emad Sawerees</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Guirgis"> Mounir Guirgis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relevance: Osteoarthritis (OA) is the most common degenerative disease seen in all populations. It causes disability and substantial socioeconomic burden. Evidence supports that exercise are the most effective conservative treatment for patients with OA. Therapists experience and clinical judgment play major role in exercise prescription and scientific evidence for this regard is lacking. The development of clinical prediction rules to identify patients who are most likely benefit from exercise may help solving this dilemma. Purpose: This study investigated whether body mass index and functional ability at baseline can predict patients’ response to a selected exercise program. Approach: Fifty-six patients, aged 35 to 65 years, completed an exercise program consisting of open kinetic chain strengthening and passive stretching exercises. The program was given for 3 sessions per week, 45 minutes per session, for 6 weeks Evaluation: At baseline and post treatment, pain severity was assessed using the numerical pain rating scale, whereas functional ability was being assessed by step test (ST), time up and go test (TUG) and 50 feet time walk test (50 FTW). After completing the program, global rate of change (GROC) score of greater than 4 was used to categorize patients as successful and non-successful. Thirty-eight patients (68%) had successful response to the intervention. Logistic regression showed that BMI and 50 FTW test were the only significant predictors. Based on the results, patients with BMI less than 34.71 kg/m2 and 50 FTW test less than 25.64 sec are 68% to 89% more likely to benefit from the exercise program. Conclusions: Clinicians should consider the described strengthening and flexibility exercise program for patents with BMI less than 34.7 Kg/m2 and 50 FTW faster than 25.6 seconds. The validity of these predictors should be investigated for other exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20prediction%20rule" title="clinical prediction rule">clinical prediction rule</a>, <a href="https://publications.waset.org/abstracts/search?q=knee%20osteoarthritis" title=" knee osteoarthritis"> knee osteoarthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20therapy%20exercises" title=" physical therapy exercises"> physical therapy exercises</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a> </p> <a href="https://publications.waset.org/abstracts/29994/clinical-prediction-rules-for-using-open-kinetic-chain-exercise-in-treatment-of-knee-osteoarthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Sider Bee Honey: Antitumor Effect in Some Experimental Tumor Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20M.%20Issa">Aliaa M. Issa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20N.%20ElRouby"> Mahmoud N. ElRouby</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20A.%20S.%20Ahmad"> Sahar A. S. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20El-Merzabani"> Mahmoud M. El-Merzabani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sider honey is a type of honey produced by bees feeding on the nectar of Sider tree, Ziziphus spina-christi (L) Desf . Honey is an effective agent for preventing, inhibiting and treating the growth of human and animal cancer cell lines in vitro and in vivo. The aim of the present study was to evaluate the impact of different dilutions from crude Sider honey and different duration times of exposure on the growth of six tumor cell lines (human cervical cancer cell line, HeLa; human hepatocellular carcinoma cell line, HepG-2; human larynx carcinoma cell line, Hep-2; brain tumor cell line, U251) as well as one animal cancerous cell line (Ehrlich ascites carcinoma cells line, EAC) and one normal cell line, Homo sapiens, human, (WISH) CCL-25. Different concentrations and treatment durations with Sider honey were tested on the growth of several cancer cell lines types. Histopathological changes in the tumor masses, animal survival, apoptosis and necrosis of the used cancer cell lines (using flow cytometry) were evaluated. Sider honey was administers either to the tumor mass itself by intratumoral injection or via drinking water. One-way ANOVA test was used for the analysis of (the means + standard error) of the optical density obtained from the Elisa reader and flow cytometry. The study revealed that different concentrations of Sider honey affected the growth patterns of all the studied cancer cell lines as well as their histopathological changes, and it depended on the cell line nature and the concentration of honey used. It is obvious that the relative animal survival percentage (bearing Ehrlich ascites carcinoma, EAC cells) was proportionally increased with the increase in the used honey concentrations. The study of apoptosis and necrosis using the flow cytometry technique emphasized the viability results. In conclusion, Sider honey was effective as antitumor agent, in the used concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antitumor" title="antitumor">antitumor</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=sider" title=" sider"> sider</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20cell%20lines" title=" tumor cell lines"> tumor cell lines</a> </p> <a href="https://publications.waset.org/abstracts/41053/sider-bee-honey-antitumor-effect-in-some-experimental-tumor-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Phi Thickening Induction as a Response to Abiotic Stress in the Orchid Miltoniopsis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Aliaa%20Idris">Nurul Aliaa Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Collings"> David A. Collings</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phi thickenings are specialized secondary cell wall thickenings that are found in the cortex of the roots in a wide range of plant species, including orchids. The role of phi thickenings in the root is still under debate through research have linked environmental conditions, particularly abiotic stresses such as water stress, heavy metal stress and salinity to their induction in the roots. It has also been suggested that phi thickenings may act as a barrier to regulate solute uptake, act as a physical barrier against fungal hyphal penetration due to its resemblance to the Casparian strip and play a mechanical role to support cortical cells. We have investigated phi thickening function in epiphytic orchids of the genus Miltoniopsis through induction experiment against factors such as soil compaction and water stress. The permeability of the phi thickenings in Miltoniopsis was tested through uptake experiments using the fluorescent tracer dyes Calcofluor white, Lucifer yellow and Propidium iodide then viewed with wide-field or confocal microscopy. To test whether phi thickening may prevent fungal colonization in the root cell, fungal re-infection experiment was conducted by inoculating isolated symbiotic fungus to sterile in vitro Miltoniopsis explants. As the movement of fluorescent tracers through the apoplast was not blocked by phi thickenings, and as phi thickenings developed in the roots of sterile cultures in the absence of fungus and did not prevent fungal colonization of cortical cells, the phi thickenings in Miltoniopsis do not function as a barrier. Phi thickenings were found to be absent in roots grown on agar and remained absent when plants were transplanted to moist soil. However, phi thickenings were induced when plants were transplanted to well-drained media, and by the application of water stress in all soils tested. It is likely that phi thickenings stabilize the root cortex during dehydration. Nevertheless, the varied induction responses present in different plant species suggest that the phi thickenings may play several adaptive roles, instead of just one, depending on species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stress" title="abiotic stress">abiotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Miltoniopsis" title=" Miltoniopsis"> Miltoniopsis</a>, <a href="https://publications.waset.org/abstracts/search?q=orchid" title=" orchid"> orchid</a>, <a href="https://publications.waset.org/abstracts/search?q=phi%20thickening" title=" phi thickening"> phi thickening</a> </p> <a href="https://publications.waset.org/abstracts/96698/phi-thickening-induction-as-a-response-to-abiotic-stress-in-the-orchid-miltoniopsis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Prevalence and Clinical Significance of Antiphospholipid Antibodies in COVID-19 Patients Admitted to Intensive Care Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Najim">Mostafa Najim</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Rahhal"> Alaa Rahhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadi%20Khir"> Fadi Khir</a>, <a href="https://publications.waset.org/abstracts/search?q=Safae%20Abu%20Yousef"> Safae Abu Yousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Aljundi"> Amer Aljundi</a>, <a href="https://publications.waset.org/abstracts/search?q=Feryal%20Ibrahim"> Feryal Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20Amer"> Aliaa Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Soliman%20Mohamed"> Ahmed Soliman Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Saleh"> Samira Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dekra%20Alfaridi"> Dekra Alfaridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mahfouz"> Ahmed Mahfouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaya%20Al-Yafei"> Sumaya Al-Yafei</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraj%20Howady"> Faraj Howady</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Yahya%20%20Khatib"> Mohamad Yahya Khatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Samar%20Alemadi"> Samar Alemadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Coronavirus disease 2019 (COVID-19) increases the risk of coagulopathy among critically ill patients. Although the presence of antiphospholipid antibodies (aPLs) has been proposed as a possible mechanism of COVID-19 induced coagulopathy, their clinical significance among critically ill patients with COVID-19 remains uncertain. Methods: This prospective observational study included patients with COVID-19 admitted to intensive care units (ICU) to evaluate the prevalence and clinical significance of aPLs, including anticardiolipin IgG/IgM, anti-β2-glycoprotein IgG/IgM, and lupus anticoagulant. The study outcomes included the prevalence of aPLs, a primary composite outcome of all-cause mortality, and arterial or venous thrombosis among aPLs positive patients versus aPLs negative patients during their ICU stay. Multiple logistic regression was used to assess the influence of aPLs on the primary composite outcome of mortality and thrombosis. Results: A total of 60 critically ill patients were enrolled. Of whom, 57 (95%) were male, with a mean age of 52.8 ± 12.2 years, and the majority were from Asia (68%). Twenty-two patients (37%) were found to have positive aPLs; of whom 21 patients were positive for lupus anticoagulant, whereas one patient was positive for anti-β2-glycoprotein IgG/IgM. The composite outcome of mortality and thrombosis during ICU did not differ among patients with positive aPLs compared to those with negative aPLs (4 (18%) vs. 6 (16%), aOR= 0.98, 95% CI 0.1-6.7; p-value= 0.986). Likewise, the secondary outcomes, including all-cause mortality, venous thrombosis, arterial thrombosis, discharge from ICU, time to mortality, and time to discharge from ICU, did not differ between those with positive aPLs upon ICU admission in comparison to patients with negative aPLs. Conclusion: The presence of aPLs does not seem to affect the outcomes of critically ill patients with COVID-19 in terms of all-cause mortality and thrombosis. Therefore, clinicians may not screen critically ill patients with COVID-19 for aPLs unless deemed clinically appropriate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiphospholipid%20antibodies" title="antiphospholipid antibodies">antiphospholipid antibodies</a>, <a href="https://publications.waset.org/abstracts/search?q=critically%20ill%20patients" title=" critically ill patients"> critically ill patients</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulopathy" title=" coagulopathy"> coagulopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=coronavirus" title=" coronavirus"> coronavirus</a> </p> <a href="https://publications.waset.org/abstracts/131723/prevalence-and-clinical-significance-of-antiphospholipid-antibodies-in-covid-19-patients-admitted-to-intensive-care-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Chronological Skin System Aging: Improvements in Reversing Markers with Different Routes of Green Tea Extract Administration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20Mahmoud%20Issa">Aliaa Mahmoud Issa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green tea may provide an alternative treatment for many skin system disorders. Intrinsic or chronological aging represents the structural, functional, and metabolic changes in the skin, which depend on the passage of time per se. The aim of the present study is to compare the effect of green tea extract administration, in drinking water or topically, on the chronological changes of the old Swiss albino mice skin. A total number of forty Swiss albino female mice (Mus musculus) were used; thirty were old females, 50-52 weeks old and the remaining ten young females were about 10 weeks old. The skin of the back of all the studied mice was dehaired with a topical depilatory cream. Treatment with green tea extract was applied in two different ways: in the drinking water (0.5mg/ml/day) or topically, applied to the skin of the dorsal side (6mg/ml water). They were divided into four main groups each of 10 animals: Group I: young untreated, Group II: old untreated groups, Group III: tea-drinking (TD) group, and Group IV: topical tea (TT) group. The animals were euthanized after 3 and 6 weeks from the beginning of green tea extract treatment. The skin was subject to morphometric (epidermal, dermal, and stratum corneum thicknesses; collagen and elastin content) studies. The skin ultrastructure of the groups treated for 6 weeks with the green tea extract was also examined. The old mouse skin was compared to the young one to investigate the chronological changes of the tissue. The results revealed that the skin of mice treated with green tea extract, either topically or to less extent in drinking water, showed a reduction in the aging features manifested by a numerical but statistically insignificant improvement in the morphometric measurements. A remarkable amelioration in the ultrastructure of the old skin was also observed. Generally, green tea extract in the drinking water revealed inconsistent results. The topical application of green tea extract to the skin revealed that the epidermal, dermal and stratum corneum thicknesses and the elastin content, that were statistically significant, approach those of the young group. The ultrastructural study revealed the same observations. The disjunction of the lower epidermal keratinocytes was reduced. It could be concluded that the topical application of green tea extract to the skin of old mice showed improvement in reversing markers of skin system aging more than using the extract in the drinking water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging" title="aging">aging</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20tea%20extract" title=" green tea extract"> green tea extract</a>, <a href="https://publications.waset.org/abstracts/search?q=morphometry" title=" morphometry"> morphometry</a>, <a href="https://publications.waset.org/abstracts/search?q=skin" title=" skin"> skin</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrastructure" title=" ultrastructure"> ultrastructure</a> </p> <a href="https://publications.waset.org/abstracts/113054/chronological-skin-system-aging-improvements-in-reversing-markers-with-different-routes-of-green-tea-extract-administration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10