CINXE.COM
Search results for: lightning arrester
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lightning arrester</title> <meta name="description" content="Search results for: lightning arrester"> <meta name="keywords" content="lightning arrester"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lightning arrester" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lightning arrester"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 65</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lightning arrester</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Computer-Based Model for Design Selection of Lightning Arrester for 132/33kV Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uma%20U.%20Uma">Uma U. Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzoechi%20Laz"> Uzoechi Laz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protection of equipment insulation against lightning over voltages and selection of lightning arrester that will discharge at lower voltage level than the voltage required to breakdown the electrical equipment insulation is examined. The objectives of this paper are to design a computer based model using standard equations for the selection of appropriate lightning arrester with the lowest rated surge arrester that will provide adequate protection of equipment insulation and equally have a satisfactory service life when connected to a specified line voltage in power system network. The effectiveness and non-effectiveness of the earthing system of substation determine arrester properties. MATLAB program with GUI (graphic user interphase) its subprogram is used in the development of the model for the determination of required parameters like voltage rating, impulse spark over voltage, power frequency spark over voltage, discharge current, current rating and protection level of lightning arrester of a specified voltage level of a particular line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning%20arrester" title="lightning arrester">lightning arrester</a>, <a href="https://publications.waset.org/abstracts/search?q=GUIs" title=" GUIs"> GUIs</a>, <a href="https://publications.waset.org/abstracts/search?q=MatLab%20program" title=" MatLab program"> MatLab program</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20based%20model" title=" computer based model"> computer based model</a> </p> <a href="https://publications.waset.org/abstracts/5446/computer-based-model-for-design-selection-of-lightning-arrester-for-13233kv-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Analysis of Standard Tramway Surge Protection Methods Based on Real Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alain%20Rousseau">Alain Rousseau</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Aragones"> Alfred Aragones</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Rougier"> Gilles Rougier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is based on lightning and surge standards mainly the EN series 62305 for facility protection, EN series 61643 for Low Voltage Surge Protective Devices, High Voltage surge arrester standard en 60099-4 and the traction arrester standards namely EN 50526-1 and 50526-1 dealing respectively with railway applications fixed installations D.C. surge arresters and voltage limiting devices. The more severe stress for tramways installations is caused by direct lightning on the catenary line. In such case, the surge current propagates towards the various poles and sparkover the insulators leading to a lower stress. If the impact point is near enough, a significant surge current will flow towards the traction surge arrester that is installed on the catenary at the location the substation is connected. Another surge arrester can be installed at the entrance of the substation or even inside the rectifier to avoid insulation damages. In addition, surge arresters can be installed between + and – to avoid damaging sensitive circuits. Based on disturbances encountered in a substation following a lighting event, the engineering department of RATP has decided to investigate the cause of such damage and more generally to question the efficiency of the various possible protection means. Based on the example of a recent tramway line the paper present the result of a lightning study based on direct lightning strikes. As a matter of fact, the induced surges on the catenary are much more frequent but much less damaging. First, a lightning risk assessment is performed for the substations that takes into account direct lightning and induced lightning both on the substation and its connected lines such as the catenary. Then the paper deals with efficiency of the various surge arresters is discussed based on field experience and calculations. The efficiency of the earthing system used at the bottom of the pole is also addressed based on high frequency earthing measurement. As a conclusion, the paper is making recommendations for an enhanced efficiency of existing protection means. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge%20arrester" title="surge arrester">surge arrester</a>, <a href="https://publications.waset.org/abstracts/search?q=traction" title=" traction"> traction</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20protective%20device" title=" surge protective device"> surge protective device</a> </p> <a href="https://publications.waset.org/abstracts/75875/analysis-of-standard-tramway-surge-protection-methods-based-on-real-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Protection of Transformers Against Surge Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20S.%20Khopkar">Anil S. Khopkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20N.%20Soni"> Umesh N. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surge voltage arises in the system either by switching operations of heavy load or by natural lightning. Surge voltages cause significant failure of power system equipment if adequate protection is not provided. A Surge Arrester is a device connected to a power system to protect the equipment against surge voltages. To protect the transformers against surge voltages, metal oxide surge arresters (MOSA) are connected across each terminal. Basic Insulation Level (BIL) has been defined in national and international standards of transformers based on their voltage rating. While designing transformer insulation, the BIL of the transformer, Surge arrester ratings and its operating voltage have to be considered. However, the performance of transformer insulation largely depends on the ratings of the surge arrester connected, the location of the surge arrester, the margin considered in the insulation design, the quantity of surge voltage strike, etc. This paper demonstrates the role of Surge arresters in the protection of transformers against over-voltage, transformer insulation design, optimum location of surge arresters and their connection lead length, Insulation coordination for transformer, protection margin in BIL and methods of protection of transformers against surge voltages, in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge%20voltage" title="surge voltage">surge voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20arresters" title=" surge arresters"> surge arresters</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20coordination" title=" insulation coordination"> insulation coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20margin" title=" protection margin"> protection margin</a> </p> <a href="https://publications.waset.org/abstracts/183790/protection-of-transformers-against-surge-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Improving Tower Grounding and Insulation Level vs. Line Surge Arresters for Protection of Subtransmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Eghtedarpour">Navid Eghtedarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Hasani"> Mohammad Reza Hasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since renewable wind power plants are usually installed in mountain regions and high-level lands, they are often prone to lightning strikes and their hazardous effects. Although the transmission line is protected using guard wires in order to prevent the lightning surges to strike the phase conductors, the back-flashover may also occur due to tower footing resistance. A combination of back-flashover corrective methods, tower-footing resistance reduction, insulation level improvement, and line arrester installation, are analyzed in this paper for back-flashover rate reduction of a double-circuit 63 kV line in the south region of Fars province. The line crosses a mountain region in some sections with a moderate keraunic level, whereas tower-footing resistance is substantially high at some towers. Consequently, an exceptionally high back-flashover rate is recorded. A new method for insulation improvement is studied and employed in the current study. The method consists of using a composite-type creepage extender in the string. The effectiveness of this method for insulation improvement of the string is evaluated through the experimental test. Simulation results besides monitoring the one-year operation of the 63-kV line show that due to technical, practical, and economic restrictions in operated sub-transmission lines, a combination of corrective methods can lead to an effective solution for the protection of transmission lines against lightning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection" title="lightning protection">lightning protection</a>, <a href="https://publications.waset.org/abstracts/search?q=BF%20rate" title=" BF rate"> BF rate</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20system" title=" grounding system"> grounding system</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20level" title=" insulation level"> insulation level</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20surge%20arrester" title=" line surge arrester"> line surge arrester</a> </p> <a href="https://publications.waset.org/abstracts/149874/improving-tower-grounding-and-insulation-level-vs-line-surge-arresters-for-protection-of-subtransmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khalil">Muhammad Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Abuelfoutouh"> Nader Abuelfoutouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gasser%20Abdelal"> Gasser Abdelal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Murphy"> Adrian Murphy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20structures" title="composite structures">composite structures</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20multiphysics" title=" lightning multiphysics"> lightning multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20%28MHD%29" title=" magnetohydrodynamic (MHD)"> magnetohydrodynamic (MHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20thermal-electrical%20analysis" title=" coupled thermal-electrical analysis"> coupled thermal-electrical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20plasmas." title=" thermal plasmas."> thermal plasmas.</a> </p> <a href="https://publications.waset.org/abstracts/81848/numerical-simulation-of-lightning-strike-direct-effects-on-aircraft-skin-composite-laminate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Lightning Protection Design Applied to Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Fauveaux">Sylvain Fauveaux</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nowicki"> T. Nowicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning protection is nowadays applied worldwide since the advent of international standards. Lightning protection is widely justified by the casualties and damages involved. As a matter of fact, the lightning business is constantly growing as more and more sensible areas need to be protected. However, the worldwide demand of copper materiel is increasing as well, its price too. Furthermore, the most frequently used method of protection is consuming a lot of copper. The copper production is also consuming a large amount of natural and power resources, not to mention the ecologic balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESEAT" title="ESEAT">ESEAT</a>, <a href="https://publications.waset.org/abstracts/search?q=Lightning%20protection" title=" Lightning protection "> Lightning protection </a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resources%20management" title=" natural resources management"> natural resources management</a>, <a href="https://publications.waset.org/abstracts/search?q=NF%20C%2017-102" title=" NF C 17-102"> NF C 17-102</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/123819/lightning-protection-design-applied-to-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Harvesting Energy from Lightning Strikes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaishakh%20Medikeri">Vaishakh Medikeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning, the marvelous, spectacular and the awesome truth of nature is one of the greatest energy sources left unharnessed since ages. A single lightning bolt of lightning contains energy of about 15 billion joules. This huge amount of energy cannot be harnessed completely but partially. This paper proposes to harness the energy from lightning strikes. Throughout the globe the frequency of lightning is 40-50 flashes per second, totally 1.4 billion flashes per year; all of these flashes carrying an average energy of about 15 billion joules each. When a lightning bolt strikes the ground, tremendous amounts of energy is transferred to earth which propagates in the form of concentric circular energy waves. These waves have a frequency of about 7.83Hz. Harvesting the lightning bolt directly seems impossible, but harvesting the energy waves produced by the lightning is pretty easier. This can be done using a tricoil energy harnesser which is a new device which I have invented. We know that lightning bolt seeks the path which has minimum resistance down to the earth. For this we can make a lightning rod about 100 meters high. Now the lightning rod is attached to the tricoil energy harnesser. The tricoil energy harnesser contains three coils whose centers are collinear and all the coils are parallel to the ground. The first coil has one of its ends connected to the lightning rod and the other end grounded. There is a secondary coil wound on the first coil with one of its end grounded and the other end pointing to the ground and left unconnected and placed a little bit above the ground so that this end of the coil produces more intense currents, hence producing intense energy waves. The first coil produces very high magnetic fields and induces them in the second and third coils. Along with the magnetic fields induced by the first coil, the energy waves which are currents also flow through the second and the third coils. The second and the third coils are connected to a generator which in turn is connected to a capacitor which stores the electrical energy. The first coil is placed in the middle of the second and the third coil. The stored energy can be used for transmission of electricity. This new technique of harnessing the lightning strikes would be most efficient in places with more probability of the lightning strikes. Since we are using a lightning rod sufficiently long, the probability of cloud to ground strikes is increased. If the proposed apparatus is implemented, it would be a great source of pure and clean energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generator" title="generator">generator</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20rod" title=" lightning rod"> lightning rod</a>, <a href="https://publications.waset.org/abstracts/search?q=tricoil%20energy%20harnesser" title=" tricoil energy harnesser"> tricoil energy harnesser</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20energy" title=" harvesting energy "> harvesting energy </a> </p> <a href="https://publications.waset.org/abstracts/25347/harvesting-energy-from-lightning-strikes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Mohamed">F. M. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Abdelaziz"> A. Y. Abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof%20tank" title=" floating roof tank"> floating roof tank</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20system" title=" lightning protection system"> lightning protection system</a> </p> <a href="https://publications.waset.org/abstracts/67175/protection-of-floating-roof-petroleum-storage-tanks-against-lightning-strokes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahcene%20Boukelkoul">Lahcene Boukelkoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20engineering" title="power engineering">power engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=radiated%20electromagnetic%20fields" title=" radiated electromagnetic fields"> radiated electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning-induced%20voltages" title=" lightning-induced voltages"> lightning-induced voltages</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20electric%20field" title=" lightning electric field"> lightning electric field</a> </p> <a href="https://publications.waset.org/abstracts/7041/a-comprehensive-approach-in-calculating-the-impact-of-the-ground-on-radiated-electromagnetic-fields-due-to-lightning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Modeling of Power Network by ATP-Draw for Lightning Stroke Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Morales">John Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20Guzman"> Armando Guzman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protection relay algorithms play a crucial role in Electric Power System stability, where, it is clear that lightning strokes produce the mayor percentage of faults and outages of Transmission Lines (TLs) and Distribution Feeders (DFs). In this context, it is imperative to develop novel protection relay algorithms. However, in order to get this aim, Electric Power Systems (EPS) network have to be simulated as real as possible, especially the lightning phenomena, and EPS elements that affect their behavior like direct and indirect lightning, insulator string, overhead line, soil ionization and other. However, researchers have proposed new protection relay algorithms considering common faults, which are not produced by lightning strokes, omitting these imperative phenomena for the transmission line protection relays behavior. Based on the above said, this paper presents the possibilities of using the Alternative Transient Program ATP-Draw for the modeling and simulation of some models to make lightning stroke studies, especially for protection relays, which are developed through Transient Analysis of Control Systems (TACS) and MODELS language corresponding to the ATP-Draw. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back-flashover" title="back-flashover">back-flashover</a>, <a href="https://publications.waset.org/abstracts/search?q=faults" title=" faults"> faults</a>, <a href="https://publications.waset.org/abstracts/search?q=flashover" title=" flashover"> flashover</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20stroke" title=" lightning stroke"> lightning stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20of%20lightning" title=" modeling of lightning"> modeling of lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=outages" title=" outages"> outages</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20relays" title=" protection relays"> protection relays</a> </p> <a href="https://publications.waset.org/abstracts/46948/modeling-of-power-network-by-atp-draw-for-lightning-stroke-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Hypothesis about the Origin of the Lighting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Kuzminov">Igor Kuzminov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Till now, the nature of lightning is not established. A hypothesis of the origin of lightning is proposed. The lightning charge is formed by electromagnetic induction. The role of the conductor is performed by the air mass of the cloud. This conductor moves in the Earth's magnetic field. The upper and lower edges of the cloud are the plates of the capacitor. Lightning is a special case of electromagnetic processes in an atmosphere. The category of lightning occurs in the process of accumulation of a charge. The process of accumulation goes constantly, but the charge is not fixed. Naturally, the hypothesis demands the carrying out of additional experiments and official acknowledgement. As the proof of a hypothesis can serve that the maximal lighting activity in an equatorial zone where cosφ it is close to 1. An experiment conducted privately showed that there is a potential difference in the atmosphere at different levels. The probability of applied value development of power installation is great. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20induction" title="electromagnetic induction">electromagnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=Earth%27s%20magnetic%20field" title=" Earth's magnetic field"> Earth's magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=plates%20of%20the%20capacitors" title=" plates of the capacitors"> plates of the capacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20accumulation" title=" charge accumulation"> charge accumulation</a> </p> <a href="https://publications.waset.org/abstracts/168478/hypothesis-about-the-origin-of-the-lighting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Design and Construction of an Impulse Current Generator for Lightning Strike Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Yousefpour">Kamran Yousefpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Rostaghi-Chalaki"> Mojtaba Rostaghi-Chalaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Warden"> Jason Warden</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanyeop%20Park"> Chanyeop Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present a new impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present a new impulse current generator developed at the High Voltage Lab of Mississippi State University. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impulse%20current%20generator" title="impulse current generator">impulse current generator</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=society%20of%20automotive%20engineers" title=" society of automotive engineers"> society of automotive engineers</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor" title=" capacitor"> capacitor</a> </p> <a href="https://publications.waset.org/abstracts/133530/design-and-construction-of-an-impulse-current-generator-for-lightning-strike-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Rahmani%20Nejad">Akbar Rahmani Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Rahmani%20Nejad"> Pejman Rahmani Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rahmani%20Nejad"> Ahmad Rahmani Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20gas" title="hydrogen gas">hydrogen gas</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20energy" title=" lightning energy"> lightning energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20element" title=" resistive element "> resistive element </a> </p> <a href="https://publications.waset.org/abstracts/129213/a-method-for-harvesting-atmospheric-lightning-energy-and-utilization-of-extra-generated-power-of-nuclear-power-plants-during-the-low-energy-demand-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mace%20Bentley">Mace Bentley</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuojun%20Duan"> Zhuojun Duan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Gerken"> Tobias Gerken</a>, <a href="https://publications.waset.org/abstracts/search?q=Dudley%20Bonsal"> Dudley Bonsal</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Way"> Henry Way</a>, <a href="https://publications.waset.org/abstracts/search?q=Endre%20Szakal"> Endre Szakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mia%20Pham"> Mia Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunter%20Donaldson"> Hunter Donaldson</a>, <a href="https://publications.waset.org/abstracts/search?q=Chelsea%20Lang"> Chelsea Lang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayden%20Abbott"> Hayden Abbott</a>, <a href="https://publications.waset.org/abstracts/search?q=Leah%20Wilcynzski"> Leah Wilcynzski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning" title="lightning">lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=thunderstorms" title=" thunderstorms"> thunderstorms</a>, <a href="https://publications.waset.org/abstracts/search?q=climatology" title=" climatology"> climatology</a> </p> <a href="https://publications.waset.org/abstracts/163798/using-geospatial-analysis-to-reconstruct-the-thunderstorm-climatology-for-the-washington-dc-metropolitan-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Statistical Description of Counterpoise Effective Length Based on Regressive Formulas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petar%20Sarajcev">Petar Sarajcev</a>, <a href="https://publications.waset.org/abstracts/search?q=Josip%20Vasilj"> Josip Vasilj</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Jakus"> Damir Jakus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counterpoise" title="counterpoise">counterpoise</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20conductor" title=" grounding conductor"> grounding conductor</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20length" title=" effective length"> effective length</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20distribution" title=" statistical distribution"> statistical distribution</a> </p> <a href="https://publications.waset.org/abstracts/16716/statistical-description-of-counterpoise-effective-length-based-on-regressive-formulas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Prediction of Positive Cloud-to-Ground Lightning Striking Zones for Charged Thundercloud Based on Line Charge Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Das%20Barman">Surajit Das Barman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakibuzzaman%20Shah"> Rakibuzzaman Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurv%20Kumar"> Apurv Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bushfire is known as one of the ascendant factors to create pyrocumulus thundercloud that causes the ignition of new fires by pyrocumulonimbus (pyroCb) lightning strikes and creates major losses of lives and property worldwide. A conceptual model-based risk planning would be beneficial to predict the lightning striking zones on the surface of the earth underneath the pyroCb thundercloud. PyroCb thundercloud can generate both positive cloud-to-ground (+CG) and negative cloud-to-ground (-CG) lightning in which +CG tends to ignite more bushfires and cause massive damage to nature and infrastructure. In this paper, a simple line charge structured thundercloud model is constructed in 2-D coordinates using the method of image charge to predict the probable +CG lightning striking zones on the earth’s surface for two conceptual thundercloud charge configurations: titled dipole and conventional tripole structure with excessive lower positive charge regions that lead to producing +CG lightning. The electric potential and surface charge density along the earth’s surface for both structures via continuously adjusting the position and the charge density of their charge regions is investigated. Simulation results for tilted dipole structure confirm the down-shear extension of the upper positive charge region in the direction of the cloud’s forward flank by 4 to 8 km, resulting in negative surface density, and would expect +CG lightning to strike within 7.8 km to 20 km around the earth periphery in the direction of the cloud’s forward flank. On the other hand, the conceptual tripole charge structure with enhanced lower positive charge region develops negative surface charge density on the earth’s surface in the range |x| < 6.5 km beneath the thundercloud and highly favors producing +CG lightning strikes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrocumulonimbus" title="pyrocumulonimbus">pyrocumulonimbus</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud-to-ground%20lightning" title=" cloud-to-ground lightning"> cloud-to-ground lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20structure" title=" charge structure"> charge structure</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge%20density" title=" surface charge density"> surface charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20flank" title=" forward flank"> forward flank</a> </p> <a href="https://publications.waset.org/abstracts/148259/prediction-of-positive-cloud-to-ground-lightning-striking-zones-for-charged-thundercloud-based-on-line-charge-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Yu">Hong Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Heider"> Dirk Heider</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Advani"> Suresh Advani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20composite" title="carbon composite">carbon composite</a>, <a href="https://publications.waset.org/abstracts/search?q=joule%20heating" title=" joule heating"> joule heating</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20strike" title=" lightning strike"> lightning strike</a>, <a href="https://publications.waset.org/abstracts/search?q=resistor%20network" title=" resistor network"> resistor network</a> </p> <a href="https://publications.waset.org/abstracts/76002/impact-of-joule-heating-on-the-electrical-conduction-behavior-of-carbon-composite-laminates-under-simulated-lightning-strike" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> A Proper Design of Wind Turbine Grounding Systems under Lightning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abd-Allah">M. A. Abd-Allah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20N.%20Ali"> Mahmoud N. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Said"> A. Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning Protection Systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must be taken into account. This paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WTs" title="WTs">WTs</a>, <a href="https://publications.waset.org/abstracts/search?q=Lightning%20Protection%20Systems%20%28LPS%29" title=" Lightning Protection Systems (LPS)"> Lightning Protection Systems (LPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20system" title=" grounding system"> grounding system</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigating%20techniques" title=" mitigating techniques"> mitigating techniques</a> </p> <a href="https://publications.waset.org/abstracts/16300/a-proper-design-of-wind-turbine-grounding-systems-under-lightning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Flashover Detection Algorithm Based on Mother Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20A.%20Morales">John A. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Guidi"> Guillermo Guidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Keune"> B. M. Keune</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mother%20function" title="mother function">mother function</a>, <a href="https://publications.waset.org/abstracts/search?q=outages" title=" outages"> outages</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/26070/flashover-detection-algorithm-based-on-mother-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Analysis of Ancient and Present Lightning Protection Systems of Large Heritage Stupas in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.R.S.S.%20Kumara">J.R.S.S. Kumara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.A.R.M.%20Fernando"> M.A.R.M. Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=S.Venkatesh"> S.Venkatesh</a>, <a href="https://publications.waset.org/abstracts/search?q=D.K.%20Jayaratne"> D.K. Jayaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protection of heritage monuments against lightning has become extremely important as far as their historical values are concerned. When such structures are large and tall, the risk of lightning initiated from both cloud and ground can be high. This paper presents a lightning risk analysis of three giant stupas in Anuradhapura era (fourth century BC onwards) in Sri Lanka. The three stupas are Jethawaaramaya (269-296 AD), Abayagiriya (88-76 BC) and Ruwanweliseya (161-137 BC), the third, fifth and seventh largest ancient structures in the world. These stupas are solid brick structures consisting of a base, a near hemispherical dome and a conical spire on the top. The ancient stupas constructed with a dielectric crystal on the top and connected to the ground through a conducting material, was considered as the hypothesis for their original lightning protection technique. However, at present, all three stupas are protected with Franklin rod type air termination systems located on top of the spire. First, a risk analysis was carried out according to IEC 62305 by considering the isokeraunic level of the area and the height of the stupas. Then the standard protective angle method and rolling sphere method were used to locate the possible touching points on the surface of the stupas. The study was extended to estimate the critical current which could strike on the unprotected areas of the stupas. The equations proposed by (Uman 2001) and (Cooray2007) were used to find the striking distances. A modified version of rolling sphere method was also applied to see the effects of upward leaders. All these studies were carried out for two scenarios: with original (i.e. ancient) lightning protection system and with present (i.e. new) air termination system. The field distribution on the surface of the stupa in the presence of a downward leader was obtained using finite element based commercial software COMSOL Multiphysics for further investigations of lightning risks. The obtained results were analyzed and compared each other to evaluate the performance of ancient and new lightning protection methods and identify suitable methods to design lightning protection systems for stupas. According to IEC standards, all three stupas with new and ancient lightning protection system has Level IV protection as per protection angle method. However according to rolling sphere method applied with Uman’s equation protection level is III. The same method applied with Cooray’s equation always shows a high risk with respect to Uman’s equation. It was found that there is a risk of lightning strikes on the dome and square chamber of the stupa, and the corresponding critical current values were different with respect to the equations used in the rolling sphere method and modified rolling sphere method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stupa" title="Stupa">Stupa</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage" title=" heritage"> heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection" title=" lightning protection"> lightning protection</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20sphere%20method" title=" rolling sphere method"> rolling sphere method</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20level" title=" protection level"> protection level</a> </p> <a href="https://publications.waset.org/abstracts/93136/analysis-of-ancient-and-present-lightning-protection-systems-of-large-heritage-stupas-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Yu">Hong Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ion%20Matei"> Ion Matei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20composite" title="carbon composite">carbon composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title=" fault detection"> fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20identification" title=" fault identification"> fault identification</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a> </p> <a href="https://publications.waset.org/abstracts/75997/model-based-fault-diagnosis-in-carbon-fiber-reinforced-composites-using-particle-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Technique for Online Condition Monitoring of Surge Arresters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20S.%20Khopkar">Anil S. Khopkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kartik%20S.%20Pandya"> Kartik S. Pandya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20surge%20arrester%20%28MOSA%29" title="metal oxide surge arrester (MOSA)">metal oxide surge arrester (MOSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20voltage" title=" over voltage"> over voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20leakage%20current" title=" total leakage current"> total leakage current</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20leakage%20current" title=" resistive leakage current"> resistive leakage current</a> </p> <a href="https://publications.waset.org/abstracts/182737/technique-for-online-condition-monitoring-of-surge-arresters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> 2D Numerical Modeling for Induced Current Distribution in Soil under Lightning Impulse Discharge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawwaz%20Eniola%20Fajingbesi">Fawwaz Eniola Fajingbesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Shahida%20Midia"> Nur Shahida Midia</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsheikh%20M.%20A.%20Elsheikh"> Elsheikh M. A. Elsheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Hajar%20Yusoff"> Siti Hajar Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Empirical analysis of lightning related phenomena in real time is extremely dangerous due to the relatively high electric discharge involved. Hence, design and optimization of efficient grounding systems depending on real time empirical methods are impeded. Using numerical methods, the dynamics of complex systems could be modeled hence solved as sets of linear and non-linear systems . In this work, the induced current distribution as lightning strike traverses the soil have been numerically modeled in a 2D axial-symmetry and solved using finite element method (FEM) in COMSOL Multiphysics 5.2 AC/DC module. Stratified and non- stratified electrode system were considered in the solved model and soil conductivity (σ) varied between 10 – 58 mS/m. The result discussed therein were the electric field distribution, current distribution and soil ionization phenomena. It can be concluded that the electric field and current distribution is influenced by the injected electric potential and the non-linearity in soil conductivity. The result from numerical calculation also agrees with previously laboratory scale empirical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=current%20distribution" title="current distribution">current distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20systems" title=" grounding systems"> grounding systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20discharge" title=" lightning discharge"> lightning discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conductivity" title=" soil conductivity"> soil conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20ionization" title=" soil ionization"> soil ionization</a> </p> <a href="https://publications.waset.org/abstracts/89250/2d-numerical-modeling-for-induced-current-distribution-in-soil-under-lightning-impulse-discharge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20A.%20M.%20Laudani">Antonio A. M. Laudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20O.%20Golosnoy"> Igor O. Golosnoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ole%20T.%20Thomsen"> Ole T. Thomsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fibre%20reinforced%20polymer" title="carbon fibre reinforced polymer">carbon fibre reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=equipotential%20bonding" title=" equipotential bonding"> equipotential bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20system" title=" lightning protection system"> lightning protection system</a>, <a href="https://publications.waset.org/abstracts/search?q=LPS" title=" LPS"> LPS</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20blades" title=" wind turbine blades"> wind turbine blades</a> </p> <a href="https://publications.waset.org/abstracts/93354/computational-analysis-of-thermal-degradation-in-wind-turbine-spars-equipotential-bonding-subjected-to-lightning-strikes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Revised Tower Earthing Design in High-Voltage Transmission Network for High-Frequency Lightning Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azwadi%20Mohamad">Azwadi Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauzi%20Yahaya"> Pauzi Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadiah%20Hudi"> Nadiah Hudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthing system for high-voltage transmission tower is designed to protect the working personnel and equipments, and to maintain the quality of supply during fault. The existing earthing system for transmission towers in TNB’s system is purposely designed for normal power frequency (low-frequency) fault conditions that take into account the step and touch voltages. This earthing design is found to be inapt for lightning (transient) condition to a certain extent, which involves a high-frequency domain. The current earthing practice of laying the electrodes radially in straight 60 m horizontal lines under the ground, in order to achieve the specified impedance value of less than 10 Ω, was deemed ineffective in reducing the high-frequency impedance. This paper introduces a new earthing design that produces low impedance value at the high-frequency domain, without compromising the performance of low-frequency impedance. The performances of this new earthing design, as well as the existing design, are simulated for various soil resistivity values at varying frequency. The proposed concentrated earthing design is found to possess low TFR value at both low and high-frequency. A good earthing design should have a fine balance between compact and radial electrodes under the ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthing%20design" title="earthing design">earthing design</a>, <a href="https://publications.waset.org/abstracts/search?q=high-frequency" title=" high-frequency"> high-frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=tower%20footing%20impedance" title=" tower footing impedance"> tower footing impedance</a> </p> <a href="https://publications.waset.org/abstracts/129491/revised-tower-earthing-design-in-high-voltage-transmission-network-for-high-frequency-lightning-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clara%20Oliver">Clara Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=Oibar%20Martinez"> Oibar Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Miguel%20Miranda"> Jose Miguel Miranda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grounding" title="grounding">grounding</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20scientific%20instrument" title=" large scale scientific instrument"> large scale scientific instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20risk%20assessment" title=" lightning risk assessment"> lightning risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20standards%20and%20safety" title=" lightning standards and safety"> lightning standards and safety</a> </p> <a href="https://publications.waset.org/abstracts/107897/verification-protocols-for-the-lightning-protection-of-a-large-scale-scientific-instrument-in-harsh-environments-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20A.%20Gruber">Yuri A. Gruber</a>, <a href="https://publications.waset.org/abstracts/search?q=Matheus%20Rosendo"> Matheus Rosendo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulisses%20G.%20A.%20Casemiro"> Ulisses G. A. Casemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20de%20Geus"> Klaus de Geus</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20T.%20Bee"> Rafael T. Bee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal® Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20engine" title="game engine">game engine</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20spheres%20method" title=" rolling spheres method"> rolling spheres method</a>, <a href="https://publications.waset.org/abstracts/search?q=substation%20protection" title=" substation protection"> substation protection</a>, <a href="https://publications.waset.org/abstracts/search?q=UE4" title=" UE4"> UE4</a>, <a href="https://publications.waset.org/abstracts/search?q=Unreal%20Engine%204" title=" Unreal Engine 4"> Unreal Engine 4</a> </p> <a href="https://publications.waset.org/abstracts/80764/using-game-engines-in-lightning-shielding-the-application-of-the-rolling-spheres-method-on-virtual-as-built-power-substations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Overhead Lines Induced Transient Overvoltage Analysis Using Finite Difference Time Domain Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Ammar">Abdi Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouazir%20Youcef"> Ouazir Youcef</a>, <a href="https://publications.waset.org/abstracts/search?q=Laissaoui%20Abdelmalek"> Laissaoui Abdelmalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, an approach based on transmission lines theory is presented. It is exploited for the calculation of overvoltage created by direct impacts of lightning waves on a guard cable of an overhead high-voltage line. First, we show the theoretical developments leading to the propagation equation, its discretization by finite difference time domain method (FDTD), and the resulting linear algebraic equations, followed by the calculation of the linear parameters of the line. The second step consists of solving the transmission lines system of equations by the FDTD method. This enabled us to determine the spatio-temporal evolution of the induced overvoltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning%20surge" title="lightning surge">lightning surge</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20overvoltage" title=" transient overvoltage"> transient overvoltage</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title=" eddy current"> eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=FDTD" title=" FDTD"> FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20compatibility" title=" electromagnetic compatibility"> electromagnetic compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20wire" title=" ground wire"> ground wire</a> </p> <a href="https://publications.waset.org/abstracts/175409/overhead-lines-induced-transient-overvoltage-analysis-using-finite-difference-time-domain-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Temnikov">A. G. Temnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Belova"> O. S. Belova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20L.%20Chernensky"> L. L. Chernensky</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Gerastenok"> T. K. Gerastenok</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Y.%20Lysov"> N. Y. Lysov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Orlov"> A. V. Orlov</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Zhuravkova"> D. S. Zhuravkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20and%20channel%20discharges" title="cloud and channel discharges">cloud and channel discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometeor%20form" title=" hydrometeor form"> hydrometeor form</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20initiation" title=" lightning initiation"> lightning initiation</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20and%20positive%20artificial%20charged%20aerosol%20cloud" title=" negative and positive artificial charged aerosol cloud"> negative and positive artificial charged aerosol cloud</a> </p> <a href="https://publications.waset.org/abstracts/67721/influence-of-model-hydrometeor-form-on-probability-of-discharge-initiation-from-artificial-charged-water-aerosol-cloud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung-Hoon%20Jang">Kyung-Hoon Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hyo%20Park"> Jae-Hyo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang-Yeop%20Jang"> Kwang-Yeop Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongjin%20Kim"> Dongjin Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corona%20discharge" title="corona discharge">corona discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesla%20coil" title=" Tesla coil"> Tesla coil</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20application" title=" high voltage application"> high voltage application</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20education" title=" high voltage education"> high voltage education</a> </p> <a href="https://publications.waset.org/abstracts/77120/high-quality-flavor-of-black-belly-pork-under-lightning-corona-discharge-using-tesla-coil-for-high-voltage-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lightning%20arrester&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lightning%20arrester&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lightning%20arrester&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>