CINXE.COM
Elliptic Integral -- from Wolfram MathWorld
<!doctype html> <html lang="en" class="calculusandanalysis"> <head> <title>Elliptic Integral -- from Wolfram MathWorld</title> <meta name="DC.Title" content="Elliptic Integral" /> <meta name="DC.Creator" content="Weisstein, Eric W." /> <meta name="DC.Description" content="An elliptic integral is an integral of the form int(A(x)+B(x)sqrt(S(x)))/(C(x)+D(x)sqrt(S(x)))dx, (1) or int(A(x)dx)/(B(x)sqrt(S(x))), (2) where A(x), B(x), C(x), and D(x) are polynomials in x, and S(x) is a polynomial of degree 3 or 4. Stated more simply, an elliptic integral is an integral of the form intR(w,x)dx, (3) where R(w,x) is a rational function of x and w, w^2 is a function of x that is cubic or quartic in x, R(w,x) contains at least one odd power of w, and w^2 has no..." /> <meta name="description" content="An elliptic integral is an integral of the form int(A(x)+B(x)sqrt(S(x)))/(C(x)+D(x)sqrt(S(x)))dx, (1) or int(A(x)dx)/(B(x)sqrt(S(x))), (2) where A(x), B(x), C(x), and D(x) are polynomials in x, and S(x) is a polynomial of degree 3 or 4. Stated more simply, an elliptic integral is an integral of the form intR(w,x)dx, (3) where R(w,x) is a rational function of x and w, w^2 is a function of x that is cubic or quartic in x, R(w,x) contains at least one odd power of w, and w^2 has no..." /> <meta name="DC.Subject" scheme="MathWorld" content="Mathematics:Calculus and Analysis:Special Functions:Elliptic Integrals" /> <meta name="DC.Subject" scheme="MSC_2000" content="33C" /> <meta name="DC.Subject" scheme="MSC_2000" content="33E" /> <meta name="DC.Rights" content="Copyright 1999-2025 Wolfram Research, Inc. See https://mathworld.wolfram.com/about/terms.html for a full terms of use statement." /> <meta name="DC.Format" scheme="IMT" content="text/html" /> <meta name="DC.Identifier" scheme="URI" content="https://mathworld.wolfram.com/EllipticIntegral.html" /> <meta name="DC.Language" scheme="RFC3066" content="en" /> <meta name="DC.Publisher" content="Wolfram Research, Inc." /> <meta name="DC.Relation.IsPartOf" scheme="URI" content="https://mathworld.wolfram.com/" /> <meta name="DC.Type" scheme="DCMIType" content="Text" /> <meta property="og:image" content="https://mathworld.wolfram.com/images/socialmedia/share/ogimage_EllipticIntegral.png"> <meta property="og:url" content="https://mathworld.wolfram.com/EllipticIntegral.html"> <meta property="og:type" content="website"> <meta property="og:title" content="Elliptic Integral -- from Wolfram MathWorld"> <meta property="og:description" content="An elliptic integral is an integral of the form int(A(x)+B(x)sqrt(S(x)))/(C(x)+D(x)sqrt(S(x)))dx, (1) or int(A(x)dx)/(B(x)sqrt(S(x))), (2) where A(x), B(x), C(x), and D(x) are polynomials in x, and S(x) is a polynomial of degree 3 or 4. Stated more simply, an elliptic integral is an integral of the form intR(w,x)dx, (3) where R(w,x) is a rational function of x and w, w^2 is a function of x that is cubic or quartic in x, R(w,x) contains at least one odd power of w, and w^2 has no..."> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@WolframResearch"> <meta name="twitter:title" content="Elliptic Integral -- from Wolfram MathWorld"> <meta name="twitter:description" content="An elliptic integral is an integral of the form int(A(x)+B(x)sqrt(S(x)))/(C(x)+D(x)sqrt(S(x)))dx, (1) or int(A(x)dx)/(B(x)sqrt(S(x))), (2) where A(x), B(x), C(x), and D(x) are polynomials in x, and S(x) is a polynomial of degree 3 or 4. Stated more simply, an elliptic integral is an integral of the form intR(w,x)dx, (3) where R(w,x) is a rational function of x and w, w^2 is a function of x that is cubic or quartic in x, R(w,x) contains at least one odd power of w, and w^2 has no..."> <meta name="twitter:image:src" content="https://mathworld.wolfram.com/images/socialmedia/share/ogimage_EllipticIntegral.png"> <link rel="canonical" href="https://mathworld.wolfram.com/EllipticIntegral.html" /> <meta http-equiv="x-ua-compatible" content="ie=edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta charset="utf-8"> <script async src="/common/javascript/analytics.js"></script> <script async src="//www.wolframcdn.com/consent/cookie-consent.js"></script> <script async src="/common/javascript/wal/latest/walLoad.js"></script> <link rel="stylesheet" href="/css/styles.css"> <link rel="preload" href="//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css" as="style" onload="this.onload=null;this.rel='stylesheet'"> <noscript><link rel="stylesheet" href="//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css"></noscript> </head> <body id="topics"> <main id="entry"> <div class="wrapper"> <section id="container"> <header class="text-align-c"> <div id="header-dropdown-menu"> <img src="/images/header/menu-icon.png" width="18" height="12" id="menu-icon"> <span class="display-n__600">TOPICS</span> </div> <svg version="1.1" id="logo" width="490" height="30" class="hide__600" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 480.7 30" style="enable-background:new 0 0 480.7 30;" xml:space="preserve"> <g> <g> <g> <polygon fill="#0095AA" points="144.2,17.1 137.8,4 133.2,4 133.2,28.5 136.5,28.5 136.5,8.6 143,21.8 143,21.9 145.2,21.9 151.7,8.6 151.7,28.5 155,28.5 155,4 150.6,4"/> <path fill="#0095AA" d="M170.8,10.8c-1.2-1-3.1-1.5-5.8-1.5c-1.7,0-3.2,0.3-4.3,0.8c-1.2,0.6-2.1,1.4-2.6,2.4l0,0.1l2.6,1.6l0-0.1 c0.3-0.5,0.8-1,1.4-1.4c0.7-0.4,1.6-0.6,2.8-0.6c1.4,0,2.5,0.3,3.2,0.8c0.8,0.5,1.1,1.4,1.1,2.8v0.8l-4.5,0.4 c-1.8,0.2-3.2,0.6-4.1,1.1c-1,0.5-1.7,1.2-2.2,2c-0.5,0.8-0.8,1.9-0.8,3.2c0,1.7,0.5,3.1,1.5,4.2c1,1.1,2.4,1.6,4.1,1.6 c1.2,0,2.3-0.3,3.3-0.8c0.9-0.5,1.8-1.2,2.7-1.9v2.2h3.2V15.9C172.6,13.5,172,11.8,170.8,10.8z M169.4,19.2v4.4 c-0.4,0.3-0.8,0.6-1.2,0.9c-0.4,0.3-0.8,0.6-1.2,0.9c-0.4,0.2-0.9,0.5-1.3,0.6c-0.4,0.2-0.9,0.2-1.3,0.2c-1.1,0-1.9-0.2-2.4-0.7 c-0.5-0.5-0.8-1.2-0.8-2.3c0-1.1,0.4-2,1.2-2.6c0.8-0.6,2.2-1,4.2-1.2L169.4,19.2z"/> <path fill="#0095AA" d="M184.9,25.9c-0.7,0.3-1.6,0.5-2.4,0.5c-1,0-1.6-0.3-1.9-0.9c-0.3-0.6-0.4-1.7-0.4-3.2v-9.7h4.7V9.9h-4.7V4.7 h-3.2v5.1h-2.6v2.7h2.6v10.3c0,2.1,0.4,3.7,1.2,4.7c0.8,1,2.2,1.5,4.1,1.5c1.2,0,2.3-0.2,3.5-0.6l0.1,0L184.9,25.9L184.9,25.9z" /> <path fill="#0095AA" d="M198.1,9.3c-1.2,0-2.3,0.3-3.5,1c-1.1,0.6-2,1.3-2.9,2.1V2.1h-3.2v26.4h3.2V15.4c0.9-0.8,1.9-1.5,2.9-2.1 c1-0.6,1.9-0.9,2.7-0.9c0.8,0,1.3,0.1,1.7,0.4c0.4,0.3,0.7,0.7,0.8,1.2c0.2,0.6,0.3,1.7,0.3,3.5v11h3.2V16.1 c0-2.4-0.4-4.2-1.3-5.2C201.2,9.9,199.9,9.3,198.1,9.3z"/> <polygon fill="#0095AA" points="225.2,23.5 220.6,4 220.6,4 216.8,4 212.2,23.3 207.8,4 207.8,4 204.3,4 210.1,28.4 210.1,28.5 214.1,28.5 218.6,9.3 223.1,28.4 223.2,28.5 227.2,28.5 233.1,4 229.7,4"/> <path fill="#0095AA" d="M264.2,9.6c-1.2,0-2.2,0.3-3.2,1c-0.9,0.6-1.7,1.3-2.5,2.1V9.9h-3.2v18.7h3.2V15.7c1.1-1.1,2.1-1.8,2.9-2.3 c0.8-0.4,1.7-0.6,2.6-0.6c0.6,0,1.1,0.1,1.4,0.2l0.1,0l0.7-3.1l-0.1,0C265.6,9.7,264.9,9.6,264.2,9.6z"/> <rect x="269" y="2.1" fill="#0095AA" width="3.2" height="26.4"/> <path fill="#0095AA" d="M287.6,2.1v9.2c-1.5-1.3-3.2-1.9-5-1.9c-2.3,0-4.2,0.9-5.5,2.7c-1.3,1.8-2,4.3-2,7.3c0,3.1,0.6,5.5,1.8,7.2 c1.2,1.7,3,2.5,5.2,2.5c1.1,0,2.2-0.2,3.2-0.7c0.9-0.4,1.7-0.9,2.4-1.6v1.7h3.2V2.1H287.6z M287.6,14.2v9.7 c-0.6,0.6-1.4,1.1-2.2,1.6c-0.9,0.5-1.8,0.7-2.7,0.7c-2.9,0-4.3-2.3-4.3-6.9c0-2.4,0.4-4.2,1.3-5.4c0.9-1.1,2-1.7,3.3-1.7 C284.5,12.2,286,12.9,287.6,14.2z"/> </g> <g> <polygon fill="#666666" points="29,3.3 25.4,3.3 21,22.5 16.5,3.4 16.5,3.3 12.5,3.3 8,22.4 3.7,3.3 0,3.3 5.8,28.1 5.8,28.2 10,28.2 14.4,9.3 18.8,28.1 18.8,28.2 23.1,28.2 29,3.5"/> <path fill="#666666" d="M37,8.7c-2.7,0-4.8,0.8-6.2,2.5c-1.4,1.7-2.1,4.2-2.1,7.6c0,3.3,0.7,5.8,2.1,7.5c1.4,1.7,3.5,2.5,6.2,2.5 c2.7,0,4.8-0.9,6.2-2.6c1.4-1.7,2.1-4.2,2.1-7.5c0-3.3-0.7-5.8-2.1-7.5C41.8,9.5,39.7,8.7,37,8.7z M40.5,24 c-0.8,1.1-1.9,1.7-3.6,1.7c-1.7,0-2.9-0.5-3.7-1.7c-0.8-1.1-1.2-2.9-1.2-5.3c0-2.5,0.4-4.3,1.2-5.4c0.8-1.1,2-1.6,3.6-1.6 c1.6,0,2.8,0.5,3.5,1.6c0.8,1.1,1.2,2.9,1.2,5.4C41.7,21.2,41.3,22.9,40.5,24z"/> <rect x="48.7" y="1.4" fill="#666666" width="3.4" height="26.8"/> <path fill="#666666" d="M67,1.6c-1.1-0.5-2.3-0.7-3.6-0.7c-2.2,0-3.7,0.6-4.6,1.7c-0.9,1.1-1.3,2.8-1.3,5.1v1.6h-2.7v3h2.7v16.1h3.4 V12.2h4.1v-3h-4.1V7.6c0-1.5,0.2-2.5,0.6-3c0.4-0.5,1-0.7,2-0.7c0.4,0,0.8,0.1,1.3,0.2c0.5,0.1,0.9,0.3,1.2,0.4l0.2,0.1l1-3 L67,1.6z"/> <path fill="#666666" d="M76.3,8.9c-1.2,0-2.3,0.4-3.2,1c-0.8,0.6-1.6,1.2-2.3,2V9.2h-3.4v19h3.4v-13c1.1-1.1,2-1.8,2.8-2.2 c0.8-0.4,1.7-0.6,2.5-0.6c0.6,0,1,0.1,1.3,0.2l0.2,0.1l0.7-3.3l-0.1-0.1C77.7,9.1,77.1,8.9,76.3,8.9z"/> <path fill="#666666" d="M92.3,10.2c-1.2-1-3.1-1.5-5.8-1.5c-1.7,0-3.2,0.3-4.4,0.8c-1.2,0.6-2.1,1.4-2.7,2.5l-0.1,0.2l2.8,1.7 l0.1-0.2c0.3-0.5,0.7-0.9,1.4-1.3c0.6-0.4,1.6-0.6,2.8-0.6c1.3,0,2.4,0.3,3.2,0.7c0.7,0.5,1.1,1.4,1.1,2.8v0.7l-4.4,0.4 c-1.8,0.2-3.2,0.6-4.2,1.1c-1,0.5-1.7,1.2-2.2,2.1c-0.5,0.9-0.8,2-0.8,3.3c0,1.7,0.5,3.2,1.5,4.3c1,1.1,2.4,1.7,4.2,1.7 c1.2,0,2.3-0.3,3.3-0.8c0.8-0.5,1.7-1.1,2.5-1.8v2.1h3.4V15.4C94.1,12.9,93.5,11.2,92.3,10.2z M85.8,25.6c-1,0-1.8-0.2-2.3-0.7 c-0.5-0.4-0.8-1.2-0.8-2.2c0-1.1,0.4-1.9,1.1-2.5c0.8-0.6,2.2-1,4.1-1.1l2.7-0.3V23c-0.4,0.3-0.7,0.6-1.1,0.9 c-0.4,0.3-0.8,0.6-1.2,0.9c-0.4,0.2-0.9,0.5-1.3,0.6C86.7,25.5,86.2,25.6,85.8,25.6z"/> <path fill="#666666" d="M122,11.6c-0.3-0.9-0.9-1.7-1.6-2.2c-0.7-0.5-1.7-0.8-2.8-0.8c-1.3,0-2.4,0.4-3.4,1.1 c-0.9,0.6-1.8,1.4-2.7,2.3c-0.3-1.1-0.8-2-1.5-2.5c-0.8-0.6-1.8-0.9-3.1-0.9c-1.2,0-2.3,0.3-3.3,1c-0.8,0.6-1.6,1.2-2.4,2V9.2 h-3.4v19h3.4V15c0.9-0.9,1.8-1.7,2.7-2.2c0.8-0.5,1.6-0.8,2.2-0.8c0.7,0,1.2,0.1,1.5,0.3c0.3,0.2,0.5,0.6,0.6,1.2 c0.1,0.6,0.2,1.8,0.2,3.5v11.2h3.4V15c1.2-1.1,2.2-1.9,2.9-2.3c0.7-0.4,1.4-0.6,2-0.6c0.7,0,1.2,0.1,1.5,0.3 c0.3,0.2,0.5,0.6,0.7,1.1c0.1,0.6,0.2,1.8,0.2,3.6v11.2h3.4V15.6C122.5,13.9,122.3,12.5,122,11.6z"/> </g> <path fill="#0095AA" d="M242.6,8.3c-5.8,0-10.5,4.7-10.5,10.5s4.7,10.5,10.5,10.5c5.8,0,10.5-4.7,10.5-10.5S248.4,8.3,242.6,8.3z M235.7,23.9c0-0.5,0.1-1,0.2-1.6c1.1,0.9,2.3,1.7,3.7,2.4l-0.6,1.4C237.8,25.5,236.6,24.7,235.7,23.9z M238.8,26.5l-0.2,0.5 c-0.9-0.4-1.8-1-2.5-1.6c-0.2-0.2-0.3-0.5-0.3-0.8C236.6,25.4,237.7,26,238.8,26.5z M235.1,23.4c-0.8-0.8-1.4-1.6-1.6-2.4 c-0.1-0.5-0.1-1.1-0.1-1.6c0.4,0.8,1.1,1.7,2,2.5C235.3,22.4,235.2,23,235.1,23.4z M235.2,24.6L235.2,24.6 c-0.3-0.4-0.6-0.8-0.8-1.2c0.2,0.2,0.5,0.5,0.7,0.7C235.2,24.3,235.2,24.4,235.2,24.6z M233.4,17.5c0-0.1,0-0.1,0-0.2 c0.1-0.7,0.4-1.5,0.7-2.2c0-0.1,0-0.1,0.1-0.2c0,0.3,0.1,0.6,0.2,0.9c-0.3,0.4-0.5,0.8-0.7,1.2C233.5,17.1,233.5,17.3,233.4,17.5z M233.6,18.5c0.1-0.4,0.2-0.8,0.4-1.2c0.1-0.3,0.3-0.6,0.5-0.9c0.4,0.9,1.1,1.9,2.1,2.8c-0.2,0.4-0.4,0.8-0.6,1.2 c-0.1,0.3-0.3,0.6-0.4,0.9C234.6,20.4,234,19.4,233.6,18.5z M250.7,15.2c-0.1,0.4-0.3,0.8-0.8,1c-0.3-0.8-0.8-1.6-1.3-2.4 c0.2-0.1,0.3-0.3,0.4-0.5C249.7,14,250.3,14.6,250.7,15.2z M249.2,12.4c0.4,0.2,0.7,0.5,1,0.8c0.3,0.4,0.4,0.7,0.5,1 c0,0,0,0.1,0,0.1c-0.4-0.5-0.9-1-1.4-1.5C249.2,12.7,249.2,12.6,249.2,12.4C249.2,12.4,249.2,12.4,249.2,12.4z M251.8,17.8 c-0.1,0.6-0.5,1.1-1.1,1.5c-0.1-0.8-0.3-1.7-0.6-2.5c0.4-0.2,0.7-0.6,0.9-0.9C251.4,16.5,251.7,17.1,251.8,17.8z M251.3,15.2 C251.3,15.2,251.3,15.2,251.3,15.2C251.3,15.2,251.3,15.2,251.3,15.2C251.3,15.2,251.3,15.2,251.3,15.2z M239.2,16.5 c0.6-0.7,1.2-1.3,1.8-1.9c0.7,0.6,1.5,1.1,2.5,1.6l-1.1,2.4C241.2,18,240.1,17.3,239.2,16.5z M242.2,19.1l-1.1,2.4 c-1.4-0.7-2.7-1.5-3.7-2.4c0.4-0.7,0.9-1.4,1.5-2.1C239.8,17.8,241,18.5,242.2,19.1z M244,16.4c0.8,0.3,1.5,0.6,2.3,0.7 c0.2,0,0.4,0.1,0.6,0.1c0,0.9-0.1,1.8-0.2,2.6c-0.3,0-0.6-0.1-0.9-0.1c-1-0.2-2-0.5-3-0.9C243.3,18,243.7,17.2,244,16.4z M246.7,14.2c0.1,0.8,0.2,1.6,0.3,2.4c-0.2,0-0.4-0.1-0.5-0.1c-0.7-0.1-1.4-0.4-2.1-0.7c0.3-0.7,0.6-1.5,0.9-2.1 c0.4,0.2,0.8,0.3,1.2,0.4C246.5,14.2,246.6,14.2,246.7,14.2z M246.6,12.2c0.5,0.4,0.9,0.9,1.3,1.4c-0.2,0.1-0.5,0.1-0.8,0.1 C247,13.1,246.8,12.6,246.6,12.2z M245,13.1c-0.3-0.2-0.7-0.4-1-0.6c0.5-0.3,1.1-0.6,1.6-0.7L245,13.1z M244.7,13.6l-1,2.1 c-0.8-0.4-1.6-0.9-2.3-1.4c0.7-0.6,1.3-1,2-1.5C243.9,13.1,244.3,13.4,244.7,13.6z M241.1,13.9c-0.6-0.6-1-1.1-1.2-1.7 c0.8-0.3,1.7-0.5,2.6-0.7c0.1,0.3,0.3,0.6,0.6,0.9C242.5,12.8,241.8,13.3,241.1,13.9z M242.3,11c-0.9,0.1-1.8,0.3-2.6,0.6 c-0.1-0.5,0-0.9,0.2-1.3c0.8-0.1,1.6-0.1,2.4,0C242.3,10.6,242.3,10.8,242.3,11z M240.7,14.3c-0.7,0.6-1.3,1.2-1.9,1.9 c-0.8-0.8-1.4-1.6-1.7-2.4c0.7-0.5,1.5-0.9,2.3-1.3C239.6,13,240.1,13.7,240.7,14.3z M239.2,11.9c-0.8,0.3-1.6,0.8-2.3,1.2 c-0.2-0.7,0-1.4,0.4-1.9c0.6-0.3,1.3-0.6,2-0.8C239.1,10.9,239.1,11.4,239.2,11.9z M238.4,16.6c-0.6,0.7-1.1,1.4-1.5,2.1 c-1-0.9-1.7-1.9-2-2.9c0.5-0.6,1-1.2,1.7-1.8C236.9,14.9,237.6,15.8,238.4,16.6z M237,19.6c1.1,0.9,2.4,1.8,3.8,2.4l-1,2.1 c-1.4-0.7-2.7-1.5-3.8-2.4c0.1-0.3,0.3-0.7,0.4-1.1C236.7,20.3,236.8,20,237,19.6z M240.2,24.9c1.2,0.5,2.4,0.9,3.5,1.1 c0.3,0.1,0.6,0.1,0.9,0.1c-0.3,0.5-0.7,0.9-1.1,1.2c-0.3,0-0.7-0.1-1-0.1c-1-0.2-2-0.5-3-0.9C239.7,25.9,239.9,25.5,240.2,24.9z M243.7,27.9c0.3,0,0.6,0,0.9,0c-0.4,0.1-0.9,0.2-1.3,0.2C243.5,28.1,243.6,28,243.7,27.9z M244.3,27.4c0.3-0.3,0.7-0.7,1-1.2 c1.1,0.1,2.2,0,3-0.2c-0.4,0.4-0.8,0.7-1.2,1C246.3,27.3,245.4,27.5,244.3,27.4z M244.9,25.7c-0.4,0-0.7-0.1-1.1-0.2 c-1.1-0.2-2.3-0.6-3.4-1.1c0.1-0.3,0.3-0.6,0.5-1l0.5-1.1c1.2,0.5,2.4,0.9,3.5,1.1c0.3,0.1,0.7,0.1,1,0.2 c-0.1,0.4-0.3,0.7-0.4,1.1C245.3,25,245.1,25.3,244.9,25.7z M245.1,22.8c-1.1-0.2-2.3-0.6-3.4-1.1c0.4-0.8,0.7-1.6,1.1-2.4 c1,0.4,2.1,0.8,3.1,1c0.3,0.1,0.6,0.1,0.9,0.1c-0.1,0.9-0.3,1.7-0.6,2.5C245.8,22.9,245.4,22.9,245.1,22.8z M247.3,20.5 c1.1,0.1,2.2,0,3-0.4c0,0.8,0,1.7-0.2,2.4c-0.9,0.4-2,0.5-3.4,0.5C247,22.2,247.1,21.4,247.3,20.5z M247.4,19.9 c0.1-0.9,0.2-1.8,0.1-2.6c0.8,0,1.6,0,2.2-0.3c0.3,0.8,0.5,1.7,0.5,2.5C249.5,19.9,248.5,20,247.4,19.9z M249.5,16.5 c-0.5,0.2-1.2,0.3-2,0.2c0-0.9-0.1-1.7-0.3-2.5c0.4,0,0.7,0,1-0.1C248.8,14.8,249.2,15.6,249.5,16.5z M248.4,13.4 c-0.3-0.4-0.7-0.8-1.1-1.2c0.5,0.3,0.9,0.5,1.3,0.9C248.6,13.2,248.5,13.3,248.4,13.4z M247.4,11.7c0.4,0.1,0.7,0.2,1,0.3 c0.1,0.2,0.2,0.3,0.2,0.5C248.2,12.2,247.8,11.9,247.4,11.7z M246.7,11.1c0.2-0.1,0.4-0.2,0.5-0.2c0.2,0.1,0.3,0.2,0.5,0.4 C247.4,11.2,247.1,11.2,246.7,11.1z M246.2,10.9c0-0.2-0.1-0.5-0.1-0.7c0.2,0.1,0.5,0.2,0.7,0.3C246.6,10.7,246.4,10.8,246.2,10.9 z M246.6,13.6c0,0-0.1,0-0.1,0c-0.3-0.1-0.7-0.2-1-0.3c0.2-0.5,0.4-1,0.6-1.4C246.2,12.4,246.4,13,246.6,13.6z M244.8,10 c0.1,0,0.2,0,0.3,0.1c0.1,0,0.2,0,0.3,0.1c0.1,0.1,0.2,0.3,0.2,0.6C245.4,10.4,245.1,10.2,244.8,10z M245,11.4 c-0.5,0.2-0.9,0.4-1.4,0.7c-0.2-0.2-0.4-0.5-0.5-0.7C243.8,11.4,244.4,11.4,245,11.4z M244.6,11c-0.6,0-1.1,0-1.7,0 c0-0.2,0-0.3,0.1-0.5C243.5,10.6,244.1,10.8,244.6,11z M243.4,10.1c0.1-0.1,0.3-0.1,0.4-0.1c0.3,0.1,0.6,0.3,0.9,0.5 C244.3,10.4,243.9,10.2,243.4,10.1z M242.7,10c-0.5-0.1-1-0.1-1.5-0.1c-0.2,0-0.4,0-0.5,0c0.3-0.2,0.7-0.3,1.1-0.4 c0.5,0,0.9,0,1.4,0.2C243,9.8,242.8,9.9,242.7,10z M236.4,13.5c-0.6,0.5-1.2,1.1-1.7,1.7c-0.1-0.6-0.1-1.1,0.1-1.5 c0.4-0.7,1-1.3,1.6-1.8C236.2,12.4,236.2,12.9,236.4,13.5z M239.3,26.8c1,0.4,2,0.8,3.1,0.9c0.2,0,0.3,0.1,0.5,0.1 c-0.3,0.1-0.5,0.2-0.8,0.2c-0.3,0-0.5-0.1-0.8-0.1c-0.7-0.1-1.5-0.4-2.2-0.7C239.2,27.1,239.2,27,239.3,26.8z M245.6,25.7 c0.2-0.3,0.3-0.6,0.5-0.9c0.2-0.4,0.3-0.8,0.5-1.2c1.3,0.1,2.4,0,3.4-0.4c-0.1,0.3-0.2,0.6-0.3,0.9c-0.2,0.4-0.4,0.8-0.6,1.1 C248,25.6,246.9,25.8,245.6,25.7z M250,24.3c0.2-0.4,0.3-0.8,0.5-1.3c0.2-0.1,0.5-0.3,0.7-0.4c-0.3,0.7-0.7,1.3-1.1,1.9 c-0.1,0.1-0.1,0.1-0.2,0.2C249.9,24.5,250,24.4,250,24.3z M250.7,22.3c0.1-0.8,0.2-1.5,0.1-2.3c0.5-0.3,0.9-0.6,1.2-1 c0,0.1,0,0.2,0,0.3c0,0.6-0.1,1.3-0.3,1.8C251.5,21.5,251.2,21.9,250.7,22.3z"/> </g> <g> <path fill="#0095AA" d="M297.9,7.6h4.5v0.8h-3.5V11h2.9v0.8h-2.9v3.5h-1V7.6z"/> <path fill="#0095AA" d="M303.7,7.6h2.4c1.6,0,2.7,0.6,2.7,2.2c0,1.2-0.7,1.9-1.7,2.2l2,3.4H308l-1.9-3.3h-1.4v3.3h-1V7.6z M306,11.2 c1.2,0,1.9-0.5,1.9-1.5c0-1-0.7-1.4-1.9-1.4h-1.3v2.9H306z"/> <path fill="#0095AA" d="M309.9,11.4c0-2.5,1.4-4,3.3-4c1.9,0,3.3,1.5,3.3,4c0,2.5-1.4,4-3.3,4C311.2,15.5,309.9,13.9,309.9,11.4z M315.5,11.4c0-1.9-0.9-3.1-2.3-3.1c-1.4,0-2.3,1.2-2.3,3.1c0,1.9,0.9,3.2,2.3,3.2C314.6,14.6,315.5,13.3,315.5,11.4z"/> <path fill="#0095AA" d="M318.1,7.6h1.2l1.5,4.1c0.2,0.5,0.4,1,0.5,1.6h0c0.2-0.6,0.3-1.1,0.5-1.6l1.5-4.1h1.2v7.7h-0.9V11 c0-0.7,0.1-1.6,0.1-2.3h0l-0.6,1.8l-1.5,4H321l-1.4-4L319,8.7h0c0.1,0.7,0.1,1.6,0.1,2.3v4.3h-0.9V7.6z"/> <path fill="#0095AA" d="M330.7,8.4h-2.3V7.6h5.7v0.8h-2.3v6.9h-1V8.4z"/> <path fill="#0095AA" d="M335.4,7.6h1v3.2h3.6V7.6h1v7.7h-1v-3.6h-3.6v3.6h-1V7.6z"/> <path fill="#0095AA" d="M343.1,7.6h4.5v0.8h-3.5v2.4h2.9v0.8h-2.9v2.8h3.6v0.8h-4.6V7.6z"/> <path fill="#0095AA" d="M351.7,7.6h1.2l1.5,4.1c0.2,0.5,0.4,1,0.5,1.6h0c0.2-0.6,0.3-1.1,0.5-1.6l1.5-4.1h1.2v7.7h-0.9V11 c0-0.7,0.1-1.6,0.1-2.3h0l-0.6,1.8l-1.5,4h-0.7l-1.4-4l-0.6-1.8h0c0.1,0.7,0.1,1.6,0.1,2.3v4.3h-0.9V7.6z"/> <path fill="#0095AA" d="M361.8,7.6h1.1l2.6,7.7h-1.1l-0.7-2.3H361l-0.7,2.3h-1L361.8,7.6z M361.2,12.2h2.3l-0.4-1.2 c-0.3-0.9-0.5-1.7-0.8-2.6h0c-0.2,0.9-0.5,1.7-0.8,2.6L361.2,12.2z"/> <path fill="#0095AA" d="M366.7,7.6h1v3.9h0l3.2-3.9h1.1l-2.4,2.9l2.8,4.8h-1.1l-2.3-4l-1.3,1.6v2.4h-1V7.6z"/> <path fill="#0095AA" d="M373,7.6h4.5v0.8H374v2.4h2.9v0.8H374v2.8h3.6v0.8H373V7.6z"/> <path fill="#0095AA" d="M379.2,7.6h2.4c1.6,0,2.7,0.6,2.7,2.2c0,1.2-0.7,1.9-1.7,2.2l2,3.4h-1.1l-1.9-3.3h-1.4v3.3h-1V7.6z M381.5,11.2c1.2,0,1.9-0.5,1.9-1.5c0-1-0.7-1.4-1.9-1.4h-1.3v2.9H381.5z"/> <path fill="#0095AA" d="M385.4,14.3l0.6-0.6c0.6,0.6,1.4,0.9,2.2,0.9c1,0,1.6-0.5,1.6-1.3c0-0.8-0.6-1-1.3-1.4l-1.1-0.5 c-0.7-0.3-1.6-0.8-1.6-2c0-1.2,1-2.1,2.4-2.1c0.9,0,1.7,0.4,2.3,0.9L390,9c-0.5-0.4-1.1-0.7-1.7-0.7c-0.9,0-1.4,0.4-1.4,1.1 c0,0.7,0.7,1,1.3,1.3l1.1,0.5c0.9,0.4,1.6,0.9,1.6,2.1c0,1.2-1,2.2-2.6,2.2C387,15.5,386.1,15,385.4,14.3z"/> <path fill="#0095AA" d="M393.7,11.4c0-2.5,1.4-4,3.3-4c1.9,0,3.3,1.5,3.3,4c0,2.5-1.4,4-3.3,4C395.1,15.5,393.7,13.9,393.7,11.4z M399.3,11.4c0-1.9-0.9-3.1-2.3-3.1c-1.4,0-2.3,1.2-2.3,3.1c0,1.9,0.9,3.2,2.3,3.2C398.4,14.6,399.3,13.3,399.3,11.4z"/> <path fill="#0095AA" d="M402,7.6h4.5v0.8H403V11h2.9v0.8H403v3.5h-1V7.6z"/> <path fill="#0095AA" d="M410.1,7.6h1.7l1.3,3.8c0.2,0.5,0.3,0.9,0.4,1.5h0c0.1-0.6,0.3-1,0.4-1.5l1.3-3.8h1.7v7.7h-1.3v-3.5 c0-0.7,0.1-1.8,0.2-2.5h0l-0.6,1.9l-1.3,3.4H413l-1.2-3.4l-0.6-1.9h0c0.1,0.7,0.2,1.8,0.2,2.5v3.5h-1.3V7.6z"/> <path fill="#0095AA" d="M420.2,7.6h1.7l2.5,7.7h-1.5l-0.6-2.1h-2.6l-0.6,2.1h-1.4L420.2,7.6z M420,12.2h1.9l-0.3-0.9 c-0.2-0.8-0.5-1.7-0.7-2.5h0c-0.2,0.8-0.4,1.7-0.7,2.5L420,12.2z"/> <path fill="#0095AA" d="M425.6,8.8h-2.2V7.6h5.8v1.2H427v6.5h-1.4V8.8z"/> <path fill="#0095AA" d="M430,7.6h1.4v3.1h3.1V7.6h1.4v7.7h-1.4v-3.4h-3.1v3.4H430V7.6z"/> <path fill="#0095AA" d="M437.4,7.6h4.7v1.2h-3.3v1.9h2.8v1.2h-2.8v2.2h3.4v1.2h-4.8V7.6z"/> <path fill="#0095AA" d="M443.3,7.6h1.7l1.3,3.8c0.2,0.5,0.3,0.9,0.4,1.5h0c0.1-0.6,0.3-1,0.4-1.5l1.3-3.8h1.7v7.7h-1.3v-3.5 c0-0.7,0.1-1.8,0.2-2.5h0l-0.6,1.9l-1.3,3.4h-0.9l-1.2-3.4l-0.6-1.9h0c0.1,0.7,0.2,1.8,0.2,2.5v3.5h-1.3V7.6z"/> <path fill="#0095AA" d="M453.3,7.6h1.7l2.5,7.7H456l-0.6-2.1h-2.6l-0.6,2.1h-1.4L453.3,7.6z M453.2,12.2h1.9l-0.3-0.9 c-0.2-0.8-0.5-1.7-0.7-2.5h0c-0.2,0.8-0.4,1.7-0.7,2.5L453.2,12.2z"/> <path fill="#0095AA" d="M459,8.8h-2.2V7.6h5.8v1.2h-2.2v6.5H459V8.8z"/> <path fill="#0095AA" d="M463.7,7.6h1.4v7.7h-1.4V7.6z"/> <path fill="#0095AA" d="M466.4,11.5c0-2.5,1.6-4,3.5-4c1,0,1.7,0.4,2.2,1l-0.7,0.9c-0.4-0.4-0.9-0.6-1.5-0.6c-1.2,0-2.1,1-2.1,2.8 c0,1.7,0.8,2.8,2.1,2.8c0.7,0,1.2-0.3,1.6-0.7l0.8,0.8c-0.6,0.7-1.5,1.1-2.4,1.1C467.9,15.5,466.4,14,466.4,11.5z"/> <path fill="#0095AA" d="M474.8,7.6h1.7l2.5,7.7h-1.5l-0.6-2.1h-2.6l-0.6,2.1h-1.4L474.8,7.6z M474.7,12.2h1.9l-0.3-0.9 c-0.2-0.8-0.5-1.7-0.7-2.5h0c-0.2,0.8-0.4,1.7-0.7,2.5L474.7,12.2z"/> <path fill="#0095AA" d="M299.5,20.7h1.1l2.6,7.7h-1.1l-0.7-2.3h-2.8l-0.7,2.3h-1L299.5,20.7z M298.9,25.3h2.3l-0.4-1.2 c-0.3-0.9-0.5-1.7-0.8-2.6h0c-0.2,0.9-0.5,1.7-0.8,2.6L298.9,25.3z"/> <path fill="#0095AA" d="M304.1,20.7h1.1l2.8,4.8c0.3,0.5,0.6,1.1,0.8,1.7h0c-0.1-0.8-0.1-1.7-0.1-2.5v-4h0.9v7.7h-1.1l-2.8-4.8 c-0.3-0.5-0.6-1.1-0.8-1.7h0c0.1,0.8,0.1,1.6,0.1,2.4v4.1h-0.9V20.7z"/> <path fill="#0095AA" d="M311.4,20.7h1.9c2.4,0,3.7,1.4,3.7,3.8c0,2.5-1.3,3.9-3.6,3.9h-2V20.7z M313.3,27.6c1.8,0,2.7-1.1,2.7-3.1 c0-1.9-0.9-3-2.7-3h-0.9v6.1H313.3z"/> <path fill="#0095AA" d="M320.4,20.6l1.4,0l0.6,3.9c0.1,0.8,0.2,1.6,0.3,2.5l0,0c0.2-0.9,0.3-1.7,0.5-2.5l1-3.9l1.3,0l0.9,3.9 c0.2,0.8,0.3,1.6,0.5,2.5l0,0c0.1-0.9,0.2-1.7,0.4-2.5l0.7-3.9l1.3,0l-1.6,7.7l-1.8,0l-0.8-4.1c-0.1-0.6-0.2-1.2-0.3-1.9l0,0 c-0.1,0.7-0.2,1.2-0.3,1.9l-0.9,4l-1.8,0L320.4,20.6z"/> <path fill="#0095AA" d="M329.8,24.5c0-2.5,1.5-3.9,3.5-3.9c2,0,3.4,1.5,3.3,4c0,2.5-1.5,4-3.5,4C331.2,28.5,329.8,27,329.8,24.5z M335.2,24.6c0-1.7-0.7-2.7-1.9-2.8c-1.2,0-2,1-2,2.7c0,1.7,0.7,2.8,1.9,2.9C334.4,27.4,335.2,26.3,335.2,24.6z"/> <path fill="#0095AA" d="M337.8,20.7l1.4,0l-0.1,6.5l3.2,0.1l0,1.2l-4.6-0.1L337.8,20.7z"/> <path fill="#0095AA" d="M343.4,20.7l4.7,0.1l0,1.2l-3.3-0.1l0,2.2l2.8,0l0,1.2l-2.8,0l-0.1,3.2l-1.4,0L343.4,20.7z"/> <path fill="#0095AA" d="M349,20.7l2.6,0c1.6,0,2.8,0.6,2.8,2.3c0,1.2-0.6,1.9-1.6,2.2l1.8,3.2l-1.6,0l-1.6-3l-1.1,0l-0.1,3l-1.4,0 L349,20.7z M351.4,24.3c1,0,1.6-0.4,1.6-1.3c0-0.9-0.5-1.2-1.6-1.2l-1.1,0l0,2.5L351.4,24.3z"/> <path fill="#0095AA" d="M357.4,20.7l1.7,0l2.4,7.8l-1.5,0l-0.6-2.1l-2.6,0l-0.6,2.1l-1.4,0L357.4,20.7z M357.2,25.2l1.9,0l-0.2-0.9 c-0.2-0.8-0.4-1.7-0.7-2.5l0,0c-0.2,0.8-0.5,1.7-0.7,2.5L357.2,25.2z"/> <path fill="#0095AA" d="M362.5,20.6l1.7,0l1.3,3.8c0.2,0.5,0.3,0.9,0.4,1.5l0,0c0.2-0.6,0.3-1,0.5-1.5l1.4-3.8l1.7,0l-0.1,7.7l-1.3,0 l0.1-3.5c0-0.7,0.1-1.8,0.3-2.5l0,0l-0.6,1.9l-1.3,3.4l-0.9,0l-1.2-3.5l-0.6-1.9l0,0c0.1,0.7,0.2,1.8,0.2,2.5l-0.1,3.5l-1.3,0 L362.5,20.6z"/> <path fill="#0095AA" d="M370.8,19.1l0.9,0L371.5,30l-0.9,0L370.8,19.1z"/> <path fill="#0095AA" d="M375.1,20.7l1.7,0l2.4,7.8l-1.5,0l-0.6-2.1l-2.6,0l-0.6,2.1l-1.4,0L375.1,20.7z M374.8,25.2l1.9,0l-0.2-0.9 c-0.2-0.8-0.4-1.7-0.7-2.5l0,0c-0.2,0.8-0.5,1.7-0.7,2.5L374.8,25.2z"/> <path fill="#0095AA" d="M379.9,20.7l1.4,0l-0.1,6.5l3.2,0.1l0,1.2l-4.6-0.1L379.9,20.7z"/> <path fill="#0095AA" d="M385.6,20.7l2.4,0c1.7,0,3,0.7,3,2.4c0,1.7-1.3,2.5-3,2.4l-1.1,0l0,2.8l-1.4,0L385.6,20.7z M387.9,24.5 c1.1,0,1.7-0.4,1.7-1.4c0-0.9-0.6-1.3-1.7-1.3l-0.9,0l0,2.7L387.9,24.5z"/> <path fill="#0095AA" d="M392,20.6l1.4,0l-0.1,3.1l3.1,0.1l0.1-3.1l1.4,0l-0.1,7.7l-1.4,0l0.1-3.4l-3.1-0.1l-0.1,3.4l-1.4,0L392,20.6z "/> <path fill="#0095AA" d="M401,20.7l1.7,0l2.4,7.8l-1.5,0l-0.6-2.1l-2.6,0l-0.6,2.1l-1.4,0L401,20.7z M400.8,25.2l1.9,0l-0.2-0.9 c-0.2-0.8-0.4-1.7-0.7-2.5l0,0c-0.2,0.8-0.5,1.7-0.7,2.5L400.8,25.2z"/> </g> </g> <a href="https://www.wolfram.com/mathematica/"><rect x="409" y="5.9" style="fill:#ffffff00;" width="70" height="11.6"/></a> <a href="https://wolframalpha.com/"><rect x="319.6" y="18.2" style="fill:#ffffff00;" width="86.9" height="11.6"/></a> <a href="/"><rect y="0.1" style="fill:#ffffff00;" width="292.4" height="29.9"/></a> </svg> <svg version="1.1" id="logo-600" class="hide show__600" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 480.7 30" style="enable-background:new 0 0 480.7 30;" xml:space="preserve"> <g> <g> <g> <polygon fill="#0095AA" points="145.2,17.1 138.8,3.9 134.2,3.9 134.2,28.5 137.5,28.5 137.5,8.6 144,21.8 144,21.9 146.2,21.9 152.7,8.6 152.7,28.5 156,28.5 156,3.9 151.6,3.9"/> <path fill="#0095AA" d="M171.8,10.8c-1.2-1-3.1-1.5-5.8-1.5c-1.7,0-3.2,0.3-4.3,0.8c-1.2,0.6-2.1,1.4-2.6,2.4l0,0.1l2.6,1.6l0-0.1 c0.3-0.5,0.8-1,1.4-1.4c0.7-0.4,1.6-0.6,2.8-0.6c1.4,0,2.5,0.3,3.2,0.8c0.8,0.5,1.1,1.4,1.1,2.8v0.8l-4.5,0.4 c-1.8,0.2-3.2,0.6-4.1,1.1c-1,0.5-1.7,1.2-2.2,2c-0.5,0.8-0.8,1.9-0.8,3.2c0,1.7,0.5,3.1,1.5,4.2c1,1.1,2.4,1.6,4.1,1.6 c1.2,0,2.3-0.3,3.3-0.8c0.9-0.5,1.8-1.2,2.7-1.9v2.2h3.2V15.9C173.6,13.5,173,11.8,171.8,10.8z M170.4,19.1v4.4 c-0.4,0.3-0.8,0.6-1.2,0.9c-0.4,0.3-0.8,0.6-1.2,0.9c-0.4,0.2-0.9,0.5-1.3,0.6c-0.4,0.2-0.9,0.2-1.3,0.2c-1.1,0-1.9-0.2-2.4-0.7 c-0.5-0.5-0.8-1.2-0.8-2.3c0-1.1,0.4-2,1.2-2.6c0.8-0.6,2.2-1,4.2-1.2L170.4,19.1z"/> <path fill="#0095AA" d="M185.9,25.8c-0.7,0.3-1.6,0.5-2.4,0.5c-1,0-1.6-0.3-1.9-0.9c-0.3-0.6-0.4-1.7-0.4-3.2v-9.7h4.7V9.8h-4.7V4.7 h-3.2v5.1h-2.6v2.7h2.6v10.3c0,2.1,0.4,3.7,1.2,4.7c0.8,1,2.2,1.5,4.1,1.5c1.2,0,2.3-0.2,3.5-0.6l0.1,0L185.9,25.8L185.9,25.8z" /> <path fill="#0095AA" d="M199.1,9.3c-1.2,0-2.3,0.3-3.5,1c-1.1,0.6-2,1.3-2.9,2.1V2.1h-3.2v26.4h3.2V15.4c0.9-0.8,1.9-1.5,2.9-2.1 c1-0.6,1.9-0.9,2.7-0.9c0.8,0,1.3,0.1,1.7,0.4c0.4,0.3,0.7,0.7,0.8,1.2c0.2,0.6,0.3,1.7,0.3,3.5v11h3.2V16.1 c0-2.4-0.4-4.2-1.3-5.2C202.2,9.8,200.9,9.3,199.1,9.3z"/> <polygon fill="#0095AA" points="226.2,23.5 221.6,4 221.6,3.9 217.8,3.9 213.2,23.3 208.8,4 208.8,3.9 205.3,3.9 211.1,28.4 211.1,28.5 215.1,28.5 219.6,9.3 224.1,28.4 224.1,28.5 228.2,28.5 234.1,3.9 230.7,3.9 "/> <path fill="#0095AA" d="M265.2,9.6c-1.2,0-2.2,0.3-3.2,1c-0.9,0.6-1.7,1.3-2.5,2.1V9.8h-3.2v18.7h3.2V15.7c1.1-1.1,2.1-1.8,2.9-2.3 c0.8-0.4,1.7-0.6,2.6-0.6c0.6,0,1.1,0.1,1.4,0.2l0.1,0l0.7-3.1l-0.1,0C266.6,9.7,265.9,9.6,265.2,9.6z"/> <rect x="270" y="2.1" fill="#0095AA" width="3.2" height="26.4"/> <path fill="#0095AA" d="M288.6,2.1v9.2c-1.5-1.3-3.2-1.9-5-1.9c-2.3,0-4.2,0.9-5.5,2.7c-1.3,1.8-2,4.3-2,7.3c0,3.1,0.6,5.5,1.8,7.2 c1.2,1.7,3,2.5,5.2,2.5c1.1,0,2.2-0.2,3.2-0.7c0.9-0.4,1.7-0.9,2.4-1.6v1.7h3.2V2.1H288.6z M288.6,14.1v9.7 c-0.6,0.6-1.4,1.1-2.2,1.6c-0.9,0.5-1.8,0.7-2.7,0.7c-2.9,0-4.3-2.3-4.3-6.9c0-2.4,0.4-4.2,1.3-5.4c0.9-1.1,2-1.7,3.3-1.7 C285.5,12.2,287,12.8,288.6,14.1z"/> </g> <g> <polygon fill="#666666" points="30,3.2 26.4,3.2 22,22.5 17.5,3.4 17.5,3.2 13.5,3.2 9,22.4 4.7,3.2 1,3.2 6.8,28 6.8,28.2 11,28.2 15.4,9.2 19.8,28 19.8,28.2 24,28.2 30,3.5"/> <path fill="#666666" d="M38,8.7c-2.7,0-4.8,0.8-6.2,2.5c-1.4,1.7-2.1,4.2-2.1,7.6c0,3.3,0.7,5.8,2.1,7.5c1.4,1.7,3.5,2.5,6.2,2.5 c2.7,0,4.8-0.9,6.2-2.6c1.4-1.7,2.1-4.2,2.1-7.5c0-3.3-0.7-5.8-2.1-7.5C42.8,9.5,40.7,8.7,38,8.7z M41.5,24 c-0.8,1.1-1.9,1.7-3.6,1.7c-1.7,0-2.9-0.5-3.7-1.7c-0.8-1.1-1.2-2.9-1.2-5.3c0-2.5,0.4-4.3,1.2-5.4c0.8-1.1,2-1.6,3.6-1.6 c1.6,0,2.8,0.5,3.5,1.6c0.8,1.1,1.2,2.9,1.2,5.4C42.7,21.1,42.3,22.9,41.5,24z"/> <rect x="49.7" y="1.4" fill="#666666" width="3.4" height="26.8"/> <path fill="#666666" d="M67.9,1.5c-1.1-0.5-2.3-0.7-3.6-0.7c-2.2,0-3.7,0.6-4.6,1.7c-0.9,1.1-1.3,2.8-1.3,5.1v1.6h-2.7v3h2.7v16.1 h3.4V12.2h4.1v-3h-4.1V7.6c0-1.5,0.2-2.5,0.6-3c0.4-0.5,1-0.7,2-0.7c0.4,0,0.8,0.1,1.3,0.2c0.5,0.1,0.9,0.3,1.2,0.4l0.2,0.1l1-3 L67.9,1.5z"/> <path fill="#666666" d="M77.3,8.9c-1.2,0-2.3,0.4-3.2,1c-0.8,0.6-1.6,1.2-2.3,2V9.2h-3.4v19h3.4v-13c1.1-1.1,2-1.8,2.8-2.2 c0.8-0.4,1.7-0.6,2.5-0.6c0.6,0,1,0.1,1.3,0.2l0.2,0.1l0.7-3.3l-0.1-0.1C78.7,9,78.1,8.9,77.3,8.9z"/> <path fill="#666666" d="M93.3,10.2c-1.2-1-3.1-1.5-5.8-1.5c-1.7,0-3.2,0.3-4.4,0.8c-1.2,0.6-2.1,1.4-2.7,2.5l-0.1,0.2l2.8,1.7 l0.1-0.2c0.3-0.5,0.7-0.9,1.4-1.3c0.6-0.4,1.6-0.6,2.8-0.6c1.3,0,2.4,0.3,3.2,0.7c0.7,0.5,1.1,1.4,1.1,2.8v0.7l-4.4,0.4 c-1.8,0.2-3.2,0.6-4.2,1.1c-1,0.5-1.7,1.2-2.2,2.1c-0.5,0.9-0.8,2-0.8,3.3c0,1.7,0.5,3.2,1.5,4.3c1,1.1,2.4,1.7,4.2,1.7 c1.2,0,2.3-0.3,3.3-0.8c0.8-0.5,1.7-1.1,2.5-1.8v2.1h3.4V15.4C95.1,12.9,94.5,11.2,93.3,10.2z M86.8,25.6c-1,0-1.8-0.2-2.3-0.7 c-0.5-0.4-0.8-1.2-0.8-2.2c0-1.1,0.4-1.9,1.1-2.5c0.8-0.6,2.2-1,4.1-1.1l2.7-0.3V23c-0.4,0.3-0.7,0.6-1.1,0.9 c-0.4,0.3-0.8,0.6-1.2,0.9c-0.4,0.2-0.9,0.5-1.3,0.6C87.7,25.5,87.2,25.6,86.8,25.6z"/> <path fill="#666666" d="M123,11.6c-0.3-0.9-0.9-1.7-1.6-2.2c-0.7-0.5-1.7-0.8-2.8-0.8c-1.3,0-2.4,0.4-3.4,1.1 c-0.9,0.6-1.8,1.4-2.7,2.3c-0.3-1.1-0.8-2-1.5-2.5c-0.8-0.6-1.8-0.9-3.1-0.9c-1.2,0-2.3,0.3-3.3,1c-0.8,0.6-1.6,1.2-2.4,2V9.2 h-3.4v19h3.4V14.9c0.9-0.9,1.8-1.7,2.7-2.2c0.8-0.5,1.6-0.8,2.2-0.8c0.7,0,1.2,0.1,1.5,0.3c0.3,0.2,0.5,0.6,0.6,1.2 c0.1,0.6,0.2,1.8,0.2,3.5v11.2h3.4V14.9c1.2-1.1,2.2-1.9,2.9-2.3c0.7-0.4,1.4-0.6,2-0.6c0.7,0,1.2,0.1,1.5,0.3 c0.3,0.2,0.5,0.6,0.7,1.1c0.1,0.6,0.2,1.8,0.2,3.6v11.2h3.4V15.6C123.5,13.9,123.3,12.5,123,11.6z"/> </g> <path fill="#0095AA" d="M243.6,8.3c-5.8,0-10.5,4.7-10.5,10.5s4.7,10.5,10.5,10.5c5.8,0,10.5-4.7,10.5-10.5S249.4,8.3,243.6,8.3z M236.7,23.9c0-0.5,0.1-1,0.2-1.6c1.1,0.9,2.3,1.7,3.7,2.4L240,26C238.8,25.5,237.6,24.7,236.7,23.9z M239.8,26.5l-0.2,0.5 c-0.9-0.4-1.8-1-2.5-1.6c-0.2-0.2-0.3-0.5-0.3-0.8C237.6,25.4,238.7,26,239.8,26.5z M236.1,23.4c-0.8-0.8-1.4-1.6-1.6-2.4 c-0.1-0.5-0.1-1.1-0.1-1.6c0.4,0.8,1.1,1.7,2,2.5C236.3,22.4,236.2,22.9,236.1,23.4z M236.2,24.5L236.2,24.5 c-0.3-0.4-0.6-0.8-0.8-1.2c0.2,0.2,0.5,0.5,0.7,0.7C236.2,24.3,236.2,24.4,236.2,24.5z M234.4,17.4c0-0.1,0-0.1,0-0.2 c0.1-0.7,0.4-1.5,0.7-2.2c0-0.1,0-0.1,0.1-0.2c0,0.3,0.1,0.6,0.2,0.9c-0.3,0.4-0.5,0.8-0.7,1.2C234.5,17.1,234.5,17.3,234.4,17.4z M234.6,18.4c0.1-0.4,0.2-0.8,0.4-1.2c0.1-0.3,0.3-0.6,0.5-0.9c0.4,0.9,1.1,1.9,2.1,2.8c-0.2,0.4-0.4,0.8-0.6,1.2 c-0.1,0.3-0.3,0.6-0.4,0.9C235.6,20.4,235,19.4,234.6,18.4z M251.7,15.2c-0.1,0.4-0.3,0.8-0.8,1c-0.3-0.8-0.8-1.6-1.3-2.4 c0.2-0.1,0.3-0.3,0.4-0.5C250.7,13.9,251.3,14.5,251.7,15.2z M250.2,12.3c0.4,0.2,0.7,0.5,1,0.8c0.3,0.4,0.4,0.7,0.5,1 c0,0,0,0.1,0,0.1c-0.4-0.5-0.9-1-1.4-1.5C250.2,12.7,250.2,12.5,250.2,12.3C250.2,12.4,250.2,12.3,250.2,12.3z M252.8,17.8 c-0.1,0.6-0.5,1.1-1.1,1.5c-0.1-0.8-0.3-1.7-0.6-2.5c0.4-0.2,0.7-0.6,0.9-0.9C252.4,16.5,252.7,17.1,252.8,17.8z M252.3,15.2 C252.3,15.2,252.3,15.2,252.3,15.2C252.3,15.2,252.3,15.2,252.3,15.2C252.3,15.2,252.3,15.2,252.3,15.2z M240.2,16.5 c0.6-0.7,1.2-1.3,1.8-1.9c0.7,0.6,1.5,1.1,2.5,1.6l-1.1,2.4C242.2,18,241.1,17.3,240.2,16.5z M243.2,19.1l-1.1,2.4 c-1.4-0.7-2.7-1.5-3.7-2.4c0.4-0.7,0.9-1.4,1.5-2.1C240.8,17.8,242,18.5,243.2,19.1z M245,16.4c0.8,0.3,1.5,0.6,2.3,0.7 c0.2,0,0.4,0.1,0.6,0.1c0,0.9-0.1,1.8-0.2,2.6c-0.3,0-0.6-0.1-0.9-0.1c-1-0.2-2-0.5-3-0.9C244.3,18,244.7,17.2,245,16.4z M247.7,14.2c0.1,0.8,0.2,1.6,0.3,2.4c-0.2,0-0.4-0.1-0.5-0.1c-0.7-0.1-1.4-0.4-2.1-0.7c0.3-0.7,0.6-1.5,0.9-2.1 c0.4,0.2,0.8,0.3,1.2,0.4C247.5,14.1,247.6,14.2,247.7,14.2z M247.6,12.2c0.5,0.4,0.9,0.9,1.3,1.4c-0.2,0.1-0.5,0.1-0.8,0.1 C248,13.1,247.8,12.6,247.6,12.2z M246,13.1c-0.3-0.2-0.7-0.4-1-0.6c0.5-0.3,1.1-0.6,1.6-0.7L246,13.1z M245.7,13.6l-1,2.1 c-0.8-0.4-1.6-0.9-2.3-1.4c0.7-0.6,1.3-1,2-1.5C244.9,13.1,245.3,13.3,245.7,13.6z M242.1,13.9c-0.6-0.6-1-1.1-1.2-1.7 c0.8-0.3,1.7-0.5,2.6-0.7c0.1,0.3,0.3,0.6,0.6,0.9C243.5,12.8,242.8,13.3,242.1,13.9z M243.3,11c-0.9,0.1-1.8,0.3-2.6,0.6 c-0.1-0.5,0-0.9,0.2-1.3c0.8-0.1,1.6-0.1,2.4,0C243.3,10.6,243.3,10.8,243.3,11z M241.7,14.2c-0.7,0.6-1.3,1.2-1.9,1.9 c-0.8-0.8-1.4-1.6-1.7-2.4c0.7-0.5,1.5-0.9,2.3-1.3C240.6,13,241.1,13.6,241.7,14.2z M240.2,11.9c-0.8,0.3-1.6,0.8-2.3,1.2 c-0.2-0.7,0-1.4,0.4-1.9c0.6-0.3,1.3-0.6,2-0.8C240.1,10.9,240.1,11.4,240.2,11.9z M239.4,16.6c-0.6,0.7-1.1,1.4-1.5,2.1 c-1-0.9-1.7-1.9-2-2.9c0.5-0.6,1-1.2,1.7-1.8C237.9,14.9,238.6,15.8,239.4,16.6z M238,19.6c1.1,0.9,2.4,1.8,3.8,2.4l-1,2.1 c-1.4-0.7-2.7-1.5-3.8-2.4c0.1-0.3,0.3-0.7,0.4-1.1C237.7,20.3,237.8,20,238,19.6z M241.2,24.9c1.2,0.5,2.4,0.9,3.5,1.1 c0.3,0.1,0.6,0.1,0.9,0.1c-0.3,0.5-0.7,0.9-1.1,1.2c-0.3,0-0.7-0.1-1-0.1c-1-0.2-2-0.5-3-0.9C240.7,25.9,240.9,25.5,241.2,24.9z M244.7,27.9c0.3,0,0.6,0,0.9,0c-0.4,0.1-0.9,0.2-1.3,0.2C244.5,28,244.6,28,244.7,27.9z M245.3,27.4c0.3-0.3,0.7-0.7,1-1.2 c1.1,0.1,2.2,0,3-0.2c-0.4,0.4-0.8,0.7-1.2,1C247.3,27.3,246.4,27.4,245.3,27.4z M245.9,25.6c-0.4,0-0.7-0.1-1.1-0.2 c-1.1-0.2-2.3-0.6-3.4-1.1c0.1-0.3,0.3-0.6,0.5-1l0.5-1.1c1.2,0.5,2.4,0.9,3.5,1.1c0.3,0.1,0.7,0.1,1,0.2 c-0.1,0.4-0.3,0.7-0.4,1.1C246.3,25,246.1,25.3,245.9,25.6z M246.1,22.8c-1.1-0.2-2.3-0.6-3.4-1.1c0.4-0.8,0.7-1.6,1.1-2.4 c1,0.4,2.1,0.8,3.1,1c0.3,0.1,0.6,0.1,0.9,0.1c-0.1,0.9-0.3,1.7-0.6,2.5C246.8,22.9,246.4,22.9,246.1,22.8z M248.3,20.5 c1.1,0.1,2.2,0,3-0.4c0,0.8,0,1.7-0.2,2.4c-0.9,0.4-2,0.5-3.4,0.5C248,22.2,248.1,21.4,248.3,20.5z M248.4,19.9 c0.1-0.9,0.2-1.8,0.1-2.6c0.8,0,1.6,0,2.2-0.3c0.3,0.8,0.5,1.7,0.5,2.5C250.5,19.8,249.5,20,248.4,19.9z M250.5,16.4 c-0.5,0.2-1.2,0.3-2,0.2c0-0.9-0.1-1.7-0.3-2.5c0.4,0,0.7,0,1-0.1C249.8,14.8,250.2,15.6,250.5,16.4z M249.4,13.4 c-0.3-0.4-0.7-0.8-1.1-1.2c0.5,0.3,0.9,0.5,1.3,0.9C249.6,13.2,249.5,13.3,249.4,13.4z M248.4,11.7c0.4,0.1,0.7,0.2,1,0.3 c0.1,0.2,0.2,0.3,0.2,0.5C249.2,12.1,248.8,11.9,248.4,11.7z M247.7,11.1c0.2-0.1,0.4-0.2,0.5-0.2c0.2,0.1,0.3,0.2,0.5,0.4 C248.4,11.2,248.1,11.2,247.7,11.1z M247.2,10.9c0-0.2-0.1-0.5-0.1-0.7c0.2,0.1,0.5,0.2,0.7,0.3C247.6,10.7,247.4,10.8,247.2,10.9 z M247.6,13.6c0,0-0.1,0-0.1,0c-0.3-0.1-0.7-0.2-1-0.3c0.2-0.5,0.4-1,0.6-1.4C247.2,12.4,247.4,13,247.6,13.6z M245.8,10 c0.1,0,0.2,0,0.3,0.1c0.1,0,0.2,0,0.3,0.1c0.1,0.1,0.2,0.3,0.2,0.6C246.4,10.4,246.1,10.2,245.8,10z M246,11.4 c-0.5,0.2-0.9,0.4-1.4,0.7c-0.2-0.2-0.4-0.5-0.5-0.7C244.7,11.4,245.4,11.4,246,11.4z M245.6,10.9c-0.6,0-1.1,0-1.7,0 c0-0.2,0-0.3,0.1-0.5C244.5,10.6,245.1,10.7,245.6,10.9z M244.4,10.1c0.1-0.1,0.3-0.1,0.4-0.1c0.3,0.1,0.6,0.3,0.9,0.5 C245.3,10.3,244.9,10.2,244.4,10.1z M243.7,9.9c-0.5-0.1-1-0.1-1.5-0.1c-0.2,0-0.4,0-0.5,0c0.3-0.2,0.7-0.3,1.1-0.4 c0.5,0,0.9,0,1.4,0.2C243.9,9.7,243.8,9.8,243.7,9.9z M237.4,13.5c-0.6,0.5-1.2,1.1-1.7,1.7c-0.1-0.6-0.1-1.1,0.1-1.5 c0.4-0.7,1-1.3,1.6-1.8C237.2,12.4,237.2,12.9,237.4,13.5z M240.3,26.8c1,0.4,2,0.8,3.1,0.9c0.2,0,0.3,0.1,0.5,0.1 c-0.3,0.1-0.5,0.2-0.8,0.2c-0.3,0-0.5-0.1-0.8-0.1c-0.7-0.1-1.5-0.4-2.2-0.7C240.1,27.1,240.2,27,240.3,26.8z M246.6,25.7 c0.2-0.3,0.3-0.6,0.5-0.9c0.2-0.4,0.3-0.8,0.5-1.2c1.3,0.1,2.4,0,3.4-0.4c-0.1,0.3-0.2,0.6-0.3,0.9c-0.2,0.4-0.4,0.8-0.6,1.1 C249,25.6,247.9,25.8,246.6,25.7z M251,24.3c0.2-0.4,0.3-0.8,0.5-1.3c0.2-0.1,0.5-0.3,0.7-0.4c-0.3,0.7-0.7,1.3-1.1,1.9 c-0.1,0.1-0.1,0.1-0.2,0.2C250.9,24.5,251,24.4,251,24.3z M251.7,22.2c0.1-0.8,0.2-1.5,0.1-2.3c0.5-0.3,0.9-0.6,1.2-1 c0,0.1,0,0.2,0,0.3c0,0.6-0.1,1.3-0.3,1.8C252.5,21.5,252.2,21.9,251.7,22.2z"/> </g> <g> <path fill="#0095AA" d="M298.9,7.6h4.5v0.8h-3.5V11h2.9v0.8h-2.9v3.5h-1V7.6z"/> <path fill="#0095AA" d="M304.7,7.6h2.4c1.6,0,2.7,0.6,2.7,2.2c0,1.2-0.7,1.9-1.7,2.2l2,3.4H309l-1.9-3.3h-1.4v3.3h-1V7.6z M307,11.2 c1.2,0,1.9-0.5,1.9-1.5c0-1-0.7-1.4-1.9-1.4h-1.3v2.9H307z"/> <path fill="#0095AA" d="M310.9,11.4c0-2.5,1.4-4,3.3-4c1.9,0,3.3,1.5,3.3,4c0,2.5-1.4,4-3.3,4C312.2,15.4,310.9,13.9,310.9,11.4z M316.5,11.4c0-1.9-0.9-3.1-2.3-3.1c-1.4,0-2.3,1.2-2.3,3.1c0,1.9,0.9,3.2,2.3,3.2C315.6,14.6,316.5,13.3,316.5,11.4z"/> <path fill="#0095AA" d="M319.1,7.6h1.2l1.5,4.1c0.2,0.5,0.4,1,0.5,1.6h0c0.2-0.6,0.3-1.1,0.5-1.6l1.5-4.1h1.2v7.7h-0.9V11 c0-0.7,0.1-1.6,0.1-2.3h0l-0.6,1.8l-1.5,4H322l-1.4-4L320,8.7h0c0.1,0.7,0.1,1.6,0.1,2.3v4.3h-0.9V7.6z"/> <path fill="#0095AA" d="M331.7,8.4h-2.3V7.6h5.7v0.8h-2.3v6.9h-1V8.4z"/> <path fill="#0095AA" d="M336.4,7.6h1v3.2h3.6V7.6h1v7.7h-1v-3.6h-3.6v3.6h-1V7.6z"/> <path fill="#0095AA" d="M344.1,7.6h4.5v0.8h-3.5v2.4h2.9v0.8h-2.9v2.8h3.6v0.8h-4.6V7.6z"/> <path fill="#0095AA" d="M352.7,7.6h1.2l1.5,4.1c0.2,0.5,0.4,1,0.5,1.6h0c0.2-0.6,0.3-1.1,0.5-1.6l1.5-4.1h1.2v7.7h-0.9V11 c0-0.7,0.1-1.6,0.1-2.3h0l-0.6,1.8l-1.5,4h-0.7l-1.4-4l-0.6-1.8h0c0.1,0.7,0.1,1.6,0.1,2.3v4.3h-0.9V7.6z"/> <path fill="#0095AA" d="M362.8,7.6h1.1l2.6,7.7h-1.1l-0.7-2.3H362l-0.7,2.3h-1L362.8,7.6z M362.2,12.1h2.3l-0.4-1.2 c-0.3-0.9-0.5-1.7-0.8-2.6h0c-0.2,0.9-0.5,1.7-0.8,2.6L362.2,12.1z"/> <path fill="#0095AA" d="M367.7,7.6h1v3.9h0l3.2-3.9h1.1l-2.4,2.9l2.8,4.8h-1.1l-2.3-4l-1.3,1.6v2.4h-1V7.6z"/> <path fill="#0095AA" d="M374,7.6h4.5v0.8H375v2.4h2.9v0.8H375v2.8h3.6v0.8H374V7.6z"/> <path fill="#0095AA" d="M380.2,7.6h2.4c1.6,0,2.7,0.6,2.7,2.2c0,1.2-0.7,1.9-1.7,2.2l2,3.4h-1.1l-1.9-3.3h-1.4v3.3h-1V7.6z M382.5,11.2c1.2,0,1.9-0.5,1.9-1.5c0-1-0.7-1.4-1.9-1.4h-1.3v2.9H382.5z"/> <path fill="#0095AA" d="M386.4,14.3l0.6-0.6c0.6,0.6,1.4,0.9,2.2,0.9c1,0,1.6-0.5,1.6-1.3c0-0.8-0.6-1-1.3-1.4l-1.1-0.5 c-0.7-0.3-1.6-0.8-1.6-2c0-1.2,1-2.1,2.4-2.1c0.9,0,1.7,0.4,2.3,0.9L391,9c-0.5-0.4-1.1-0.7-1.7-0.7c-0.9,0-1.4,0.4-1.4,1.1 c0,0.7,0.7,1,1.3,1.3l1.1,0.5c0.9,0.4,1.6,0.9,1.6,2.1c0,1.2-1,2.2-2.6,2.2C388,15.4,387.1,15,386.4,14.3z"/> <path fill="#0095AA" d="M394.7,11.4c0-2.5,1.4-4,3.3-4c1.9,0,3.3,1.5,3.3,4c0,2.5-1.4,4-3.3,4C396.1,15.4,394.7,13.9,394.7,11.4z M400.3,11.4c0-1.9-0.9-3.1-2.3-3.1c-1.4,0-2.3,1.2-2.3,3.1c0,1.9,0.9,3.2,2.3,3.2C399.4,14.6,400.3,13.3,400.3,11.4z"/> <path fill="#0095AA" d="M403,7.6h4.5v0.8H404V11h2.9v0.8H404v3.5h-1V7.6z"/> <path fill="#0095AA" d="M411.1,7.6h1.7l1.3,3.8c0.2,0.5,0.3,0.9,0.4,1.5h0c0.1-0.6,0.3-1,0.4-1.5l1.3-3.8h1.7v7.7h-1.3v-3.5 c0-0.7,0.1-1.8,0.2-2.5h0l-0.6,1.9l-1.3,3.4H414l-1.2-3.4l-0.6-1.9h0c0.1,0.7,0.2,1.8,0.2,2.5v3.5h-1.3V7.6z"/> <path fill="#0095AA" d="M421.2,7.6h1.7l2.5,7.7h-1.5l-0.6-2.1h-2.6l-0.6,2.1h-1.4L421.2,7.6z M421,12.1h1.9l-0.3-0.9 c-0.2-0.8-0.5-1.7-0.7-2.5h0c-0.2,0.8-0.4,1.7-0.7,2.5L421,12.1z"/> <path fill="#0095AA" d="M426.6,8.8h-2.2V7.6h5.8v1.2H428v6.5h-1.4V8.8z"/> <path fill="#0095AA" d="M431,7.6h1.4v3.1h3.1V7.6h1.4v7.7h-1.4v-3.4h-3.1v3.4H431V7.6z"/> <path fill="#0095AA" d="M438.4,7.6h4.7v1.2h-3.3v1.9h2.8v1.2h-2.8v2.2h3.4v1.2h-4.8V7.6z"/> <path fill="#0095AA" d="M444.3,7.6h1.7l1.3,3.8c0.2,0.5,0.3,0.9,0.4,1.5h0c0.1-0.6,0.3-1,0.4-1.5l1.3-3.8h1.7v7.7h-1.3v-3.5 c0-0.7,0.1-1.8,0.2-2.5h0l-0.6,1.9l-1.3,3.4h-0.9l-1.2-3.4l-0.6-1.9h0c0.1,0.7,0.2,1.8,0.2,2.5v3.5h-1.3V7.6z"/> <path fill="#0095AA" d="M454.3,7.6h1.7l2.5,7.7H457l-0.6-2.1h-2.6l-0.6,2.1h-1.4L454.3,7.6z M454.2,12.1h1.9l-0.3-0.9 c-0.2-0.8-0.5-1.7-0.7-2.5h0c-0.2,0.8-0.4,1.7-0.7,2.5L454.2,12.1z"/> <path fill="#0095AA" d="M460,8.8h-2.2V7.6h5.8v1.2h-2.2v6.5H460V8.8z"/> <path fill="#0095AA" d="M464.7,7.6h1.4v7.7h-1.4V7.6z"/> <path fill="#0095AA" d="M467.4,11.5c0-2.5,1.6-4,3.5-4c1,0,1.7,0.4,2.2,1l-0.7,0.9c-0.4-0.4-0.9-0.6-1.5-0.6c-1.2,0-2.1,1-2.1,2.8 c0,1.7,0.8,2.8,2.1,2.8c0.7,0,1.2-0.3,1.6-0.7l0.8,0.8c-0.6,0.7-1.5,1.1-2.4,1.1C468.9,15.4,467.4,14,467.4,11.5z"/> <path fill="#0095AA" d="M475.8,7.6h1.7l2.5,7.7h-1.5l-0.6-2.1h-2.6l-0.6,2.1h-1.4L475.8,7.6z M475.7,12.1h1.9l-0.3-0.9 c-0.2-0.8-0.5-1.7-0.7-2.5h0c-0.2,0.8-0.4,1.7-0.7,2.5L475.7,12.1z"/> <path fill="#0095AA" d="M300.5,20.7h1.1l2.6,7.7h-1.1l-0.7-2.3h-2.8l-0.7,2.3h-1L300.5,20.7z M299.8,25.2h2.3l-0.4-1.2 c-0.3-0.9-0.5-1.7-0.8-2.6h0c-0.2,0.9-0.5,1.7-0.8,2.6L299.8,25.2z"/> <path fill="#0095AA" d="M305.1,20.7h1.1l2.8,4.8c0.3,0.5,0.6,1.1,0.8,1.7h0c-0.1-0.8-0.1-1.7-0.1-2.5v-4h0.9v7.7h-1.1l-2.8-4.8 c-0.3-0.5-0.6-1.1-0.8-1.7h0c0.1,0.8,0.1,1.6,0.1,2.4v4.1h-0.9V20.7z"/> <path fill="#0095AA" d="M312.4,20.7h1.9c2.4,0,3.7,1.4,3.7,3.8c0,2.5-1.3,3.9-3.6,3.9h-2V20.7z M314.3,27.6c1.8,0,2.7-1.1,2.7-3.1 c0-1.9-0.9-3-2.7-3h-0.9v6.1H314.3z"/> <path fill="#0095AA" d="M321.4,20.6l1.4,0l0.6,3.9c0.1,0.8,0.2,1.6,0.3,2.5l0,0c0.2-0.9,0.3-1.7,0.5-2.5l1-3.9l1.3,0l0.9,3.9 c0.2,0.8,0.3,1.6,0.5,2.5l0,0c0.1-0.9,0.2-1.7,0.4-2.5l0.7-3.9l1.3,0l-1.6,7.7l-1.8,0l-0.8-4.1c-0.1-0.6-0.2-1.2-0.3-1.9l0,0 c-0.1,0.7-0.2,1.2-0.3,1.9l-0.9,4l-1.8,0L321.4,20.6z"/> <path fill="#0095AA" d="M330.8,24.4c0-2.5,1.5-3.9,3.5-3.9c2,0,3.4,1.5,3.3,4c0,2.5-1.5,4-3.5,4C332.2,28.5,330.8,26.9,330.8,24.4z M336.2,24.5c0-1.7-0.7-2.7-1.9-2.8c-1.2,0-2,1-2,2.7c0,1.7,0.7,2.8,1.9,2.9C335.4,27.3,336.2,26.3,336.2,24.5z"/> <path fill="#0095AA" d="M338.8,20.6l1.4,0l-0.1,6.5l3.2,0.1l0,1.2l-4.6-0.1L338.8,20.6z"/> <path fill="#0095AA" d="M344.4,20.6l4.7,0.1l0,1.2l-3.3-0.1l0,2.2l2.8,0l0,1.2l-2.8,0l-0.1,3.2l-1.4,0L344.4,20.6z"/> <path fill="#0095AA" d="M350,20.6l2.6,0c1.6,0,2.8,0.6,2.8,2.3c0,1.2-0.6,1.9-1.6,2.2l1.8,3.2l-1.6,0l-1.6-3l-1.1,0l-0.1,3l-1.4,0 L350,20.6z M352.4,24.3c1,0,1.6-0.4,1.6-1.3c0-0.9-0.5-1.2-1.6-1.2l-1.1,0l0,2.5L352.4,24.3z"/> <path fill="#0095AA" d="M358.4,20.7l1.7,0l2.4,7.8l-1.5,0l-0.6-2.1l-2.6,0l-0.6,2.1l-1.4,0L358.4,20.7z M358.2,25.2l1.9,0l-0.2-0.9 c-0.2-0.8-0.4-1.7-0.7-2.5l0,0c-0.2,0.8-0.5,1.7-0.7,2.5L358.2,25.2z"/> <path fill="#0095AA" d="M363.5,20.6l1.7,0l1.3,3.8c0.2,0.5,0.3,0.9,0.4,1.5l0,0c0.2-0.6,0.3-1,0.5-1.5l1.4-3.8l1.7,0l-0.1,7.7l-1.3,0 l0.1-3.5c0-0.7,0.1-1.8,0.3-2.5l0,0l-0.6,1.9l-1.3,3.4l-0.9,0l-1.2-3.5l-0.6-1.9l0,0c0.1,0.7,0.2,1.8,0.2,2.5l-0.1,3.5l-1.3,0 L363.5,20.6z"/> <path fill="#0095AA" d="M371.8,19l0.9,0L372.5,30l-0.9,0L371.8,19z"/> <path fill="#0095AA" d="M376.1,20.7l1.7,0l2.4,7.8l-1.5,0l-0.6-2.1l-2.6,0l-0.6,2.1l-1.4,0L376.1,20.7z M375.8,25.2l1.9,0l-0.2-0.9 c-0.2-0.8-0.4-1.7-0.7-2.5l0,0c-0.2,0.8-0.5,1.7-0.7,2.5L375.8,25.2z"/> <path fill="#0095AA" d="M380.9,20.6l1.4,0l-0.1,6.5l3.2,0.1l0,1.2l-4.6-0.1L380.9,20.6z"/> <path fill="#0095AA" d="M386.6,20.6l2.4,0c1.7,0,3,0.7,3,2.4c0,1.7-1.3,2.5-3,2.4l-1.1,0l0,2.8l-1.4,0L386.6,20.6z M388.9,24.5 c1.1,0,1.7-0.4,1.7-1.4c0-0.9-0.6-1.3-1.7-1.3l-0.9,0l0,2.7L388.9,24.5z"/> <path fill="#0095AA" d="M393,20.6l1.4,0l-0.1,3.1l3.1,0.1l0.1-3.1l1.4,0l-0.1,7.7l-1.4,0l0.1-3.4l-3.1-0.1l-0.1,3.4l-1.4,0L393,20.6z "/> <path fill="#0095AA" d="M402,20.7l1.7,0l2.4,7.8l-1.5,0l-0.6-2.1l-2.6,0l-0.6,2.1l-1.4,0L402,20.7z M401.8,25.2l1.9,0l-0.2-0.9 c-0.2-0.8-0.4-1.7-0.7-2.5l0,0c-0.2,0.8-0.5,1.7-0.7,2.5L401.8,25.2z"/> </g> </g> <a href="https://www.wolfram.com/mathematica/"><rect x="296.2" y="0.1" style="fill:#ffffff00;" width="183.8" height="16"/></a> <a href="https://wolframalpha.com/"><rect x="296.2" y="16.4" style="fill:#ffffff00;" width="123.4" height="13.6"/></a> <a href="/"><rect x="1" y="0.1" style="fill:#ffffff00;" width="292.4" height="29.9"/></a> </svg> <form method="get" action="/search/" name="search" id="search" accept-charset="UTF-8"> <input type="text" name="query" placeholder="Search" id="searchField"> <img src="/images/header/search-icon.png" width="18" height="18" class="search-btn" title="Search" alt="Search"> <img src="/images/header/menu-close.png" width="16" height="16" id="search-close" class="close-btn" title="Close" alt="Close"> </form> </header> <section class="left-side"> <img src="/images/sidebar/menu-close.png" width="16" height="16" id="dropdown-topics-menu-close" class="close-btn"> <form method="get" action="/search/" name="search" id="search-mobile" accept-charset="UTF-8"> <input type="text" name="query" placeholder="Search" id="searchFieldMobile"> <img src="/images/header/search-icon.png" width="18" height="18" id="mobile-search" class="search-btn" title="Search" alt="Search" onclick="submitForm()"> </form> <nav class="topics-nav"> <a href="/topics/Algebra.html" id="sidebar-algebra"> Algebra </a> <a href="/topics/AppliedMathematics.html" id="sidebar-appliedmathematics"> Applied Mathematics </a> <a href="/topics/CalculusandAnalysis.html" id="sidebar-calculusandanalysis"> Calculus and Analysis </a> <a href="/topics/DiscreteMathematics.html" id="sidebar-discretemathematics"> Discrete Mathematics </a> <a href="/topics/FoundationsofMathematics.html" id="sidebar-foundationsofmathematics"> Foundations of Mathematics </a> <a href="/topics/Geometry.html" id="sidebar-geometry"> Geometry </a> <a href="/topics/HistoryandTerminology.html" id="sidebar-historyandterminology"> History and Terminology </a> <a href="/topics/NumberTheory.html" id="sidebar-numbertheory"> Number Theory </a> <a href="/topics/ProbabilityandStatistics.html" id="sidebar-probabilityandstatistics"> Probability and Statistics </a> <a href="/topics/RecreationalMathematics.html" id="sidebar-recreationalmathematics"> Recreational Mathematics </a> <a href="/topics/Topology.html" id="sidebar-topology"> Topology </a> </nav> <nav class="secondary-nav"> <a href="/letters/"> Alphabetical Index </a> <a href="/whatsnew/"> New in MathWorld </a> </nav> </section> <section id="content"> <!-- Begin Subject --> <nav class="breadcrumbs"><ul class="breadcrumb"> <li> <a href="/topics/CalculusandAnalysis.html">Calculus and Analysis</a> </li> <li> <a href="/topics/SpecialFunctions.html">Special Functions</a> </li> <li> <a href="/topics/EllipticIntegrals.html">Elliptic Integrals</a> </li> </ul></nav> <!-- End Subject --> <!-- Begin Title --> <h1>Elliptic Integral</h1> <!-- End Title --> <hr class="margin-t-1-8 margin-b-3-4"> <!-- Begin Total Content --> <!-- Begin Content --> <div class="entry-content"> <p> An elliptic integral is an <a href="/Integral.html">integral</a> <a href="/OftheForm.html">of the form</a> </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation1.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="183" height="52" alt=" int(A(x)+B(x)sqrt(S(x)))/(C(x)+D(x)sqrt(S(x)))dx, " /></td><td align="right" width="3"> <div id="eqn1" class="eqnum"> (1) </div> </td></tr> </table> </div> <p> or </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation2.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="109" height="47" alt=" int(A(x)dx)/(B(x)sqrt(S(x))), " /></td><td align="right" width="3"> <div id="eqn2" class="eqnum"> (2) </div> </td></tr> </table> </div> <p> where <img src="/images/equations/EllipticIntegral/Inline1.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="35" height="21" alt="A(x)" />, <img src="/images/equations/EllipticIntegral/Inline2.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="34" height="21" alt="B(x)" />, <img src="/images/equations/EllipticIntegral/Inline3.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="36" height="21" alt="C(x)" />, and <img src="/images/equations/EllipticIntegral/Inline4.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="37" height="21" alt="D(x)" /> are <a href="/Polynomial.html">polynomials</a> in <img src="/images/equations/EllipticIntegral/Inline5.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="9" height="21" alt="x" />, and <img src="/images/equations/EllipticIntegral/Inline6.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="33" height="21" alt="S(x)" /> is a <a href="/Polynomial.html">polynomial</a> of degree 3 or 4. Stated more simply, an elliptic integral is an integral <a href="/OftheForm.html">of the form</a> </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation3.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="95" height="38" alt=" intR(w,x)dx, " /></td><td align="right" width="3"> <div id="eqn3" class="eqnum"> (3) </div> </td></tr> </table> </div> <p> where <img src="/images/equations/EllipticIntegral/Inline7.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="56" height="21" alt="R(w,x)" /> is a <a href="/RationalFunction.html">rational function</a> of <img src="/images/equations/EllipticIntegral/Inline8.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="9" height="21" alt="x" /> and <img src="/images/equations/EllipticIntegral/Inline9.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="12" height="21" alt="w" />, <img src="/images/equations/EllipticIntegral/Inline10.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="19" height="21" alt="w^2" /> is a function of <img src="/images/equations/EllipticIntegral/Inline11.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="9" height="21" alt="x" /> that is <a href="/CubicEquation.html">cubic</a> or <a href="/QuarticEquation.html">quartic</a> in <img src="/images/equations/EllipticIntegral/Inline12.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="9" height="21" alt="x" />, <img src="/images/equations/EllipticIntegral/Inline13.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="56" height="21" alt="R(w,x)" /> contains at least one <a href="/OddNumber.html">odd</a> <a href="/Power.html">power</a> of <img src="/images/equations/EllipticIntegral/Inline14.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="12" height="21" alt="w" />, and <img src="/images/equations/EllipticIntegral/Inline15.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="19" height="21" alt="w^2" /> has no repeated factors (Abramowitz and Stegun 1972, p. 589). </p> <p> Elliptic integrals can be viewed as generalizations of the inverse <a href="/Trigonometry.html">trigonometric functions</a> and provide solutions to a wider class of problems. For instance, while the <a href="/ArcLength.html">arc length</a> of a <a href="/Circle.html">circle</a> is given as a simple function of the parameter, computing the <a href="/ArcLength.html">arc length</a> of an <a href="/Ellipse.html">ellipse</a> requires an elliptic integral. Similarly, the position of a pendulum is given by a <a href="/Trigonometry.html">trigonometric function</a> as a function of time for small angle oscillations, but the full solution for arbitrarily large displacements requires the use of elliptic integrals. Many other problems in electromagnetism and gravitation are solved by elliptic integrals. </p> <p> A very useful class of functions known as <a href="/EllipticFunction.html">elliptic functions</a> is obtained by inverting elliptic integrals to obtain generalizations of the trigonometric functions. <a href="/EllipticFunction.html">Elliptic functions</a> (among which the <a href="/JacobiEllipticFunctions.html">Jacobi elliptic functions</a> and <a href="/WeierstrassEllipticFunction.html">Weierstrass elliptic function</a> are the two most common forms) provide a powerful tool for analyzing many deep problems in <a href="/NumberTheory.html">number theory</a>, as well as other areas of mathematics. </p> <p> All elliptic integrals can be written in terms of three "standard" types. To see this, write </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline16.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="52" height="20" alt="R(w,x)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline17.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline18.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="59" height="42" alt="(P(w,x))/(Q(w,x))" /></td><td align="right" width="10"> <div id="eqn4" class="eqnum"> (4) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline19.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline20.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline21.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="144" height="43" alt="(wP(w,x)Q(-w,x))/(wQ(w,x)Q(-w,x))." /></td><td align="right" width="10"> <div id="eqn5" class="eqnum"> (5) </div> </td></tr> </table> </div> <p> But since <img src="/images/equations/EllipticIntegral/Inline22.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="75" height="21" alt="w^2=f(x)" />, </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline23.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="120" height="20" alt="Q(w,x)Q(-w,x)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline24.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline25.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="60" height="21" alt="Q_1(w,x)" /></td><td align="right" width="10"> <div id="eqn6" class="eqnum"> (6) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline26.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline27.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline28.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="75" height="21" alt="Q_1(-w,x)," /></td><td align="right" width="10"> <div id="eqn7" class="eqnum"> (7) </div> </td></tr> </table> </div> <p> then </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline29.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="133" height="20" alt="wP(w,x)Q(-w,x)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline30.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline31.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="361" height="20" alt="A+Bx+Cw+Dx^2+Ewx+Fw^2+Gw^2x+Hw^3x" /></td><td align="right" width="10"> <div id="eqn8" class="eqnum"> (8) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline32.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline33.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline34.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="395" height="23" alt="(A+Bx+Dx^2+Fw^2+Gw^2x)+w(c+Ex+Hw^2x+...)" /></td><td align="right" width="10"> <div id="eqn9" class="eqnum"> (9) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline35.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline36.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline37.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="112" height="20" alt="P_1(x)+wP_2(x)," /></td><td align="right" width="10"> <div id="eqn10" class="eqnum"> (10) </div> </td></tr> </table> </div> <p> so </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline38.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="52" height="20" alt="R(w,x)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline39.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline40.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="114" height="43" alt="(P_1(x)+wP_2(x))/(wQ_1(w))" /></td><td align="right" width="10"> <div id="eqn11" class="eqnum"> (11) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline41.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline42.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline43.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="104" height="39" alt="(R_1(x))/w+R_2(x)." /></td><td align="right" width="10"> <div id="eqn12" class="eqnum"> (12) </div> </td></tr> </table> </div> <p> But any function <img src="/images/equations/EllipticIntegral/Inline44.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="78" height="25" alt="intR_2(x)dx" /> can be evaluated in terms of <a href="/ElementaryFunction.html">elementary functions</a>, so the only portion that need be considered is </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation4.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="88" height="40" alt=" int(R_1(x))/wdx. " /></td><td align="right" width="3"> <div id="eqn13" class="eqnum"> (13) </div> </td></tr> </table> </div> <p> Now, any quartic can be expressed as <img src="/images/equations/EllipticIntegral/Inline45.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="36" height="21" alt="S_1S_2" /> where </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline46.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="15" height="20" alt="S_1" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline47.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline48.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="120" height="20" alt="a_1x^2+2b_1x+c_1" /></td><td align="right" width="10"> <div id="eqn14" class="eqnum"> (14) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline49.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="15" height="20" alt="S_2" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline50.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline51.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="124" height="20" alt="a_2x^2+2b_2x+c_2." /></td><td align="right" width="10"> <div id="eqn15" class="eqnum"> (15) </div> </td></tr> </table> </div> <p> The <a href="/Coefficient.html">coefficients</a> here are real, since pairs of <a href="/ComplexNumber.html">complex</a> <a href="/Root.html">roots</a> are <a href="/ComplexConjugate.html">complex conjugates</a> </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline52.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="177" height="20" alt="[x-(R+Ii)][x-(R-Ii)]" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline53.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline54.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="248" height="23" alt="x^2+x(-R+Ii-R-Ii)+(R^2-I^2i)" /></td><td align="right" width="10"> <div id="eqn16" class="eqnum"> (16) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline55.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline56.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline57.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="144" height="23" alt="x^2-2Rx+(R^2+I^2)." /></td><td align="right" width="10"> <div id="eqn17" class="eqnum"> (17) </div> </td></tr> </table> </div> <p> If all four <a href="/Root.html">roots</a> are real, they must be arranged so as not to interleave (Whittaker and Watson 1990, p. 514). Now define a quantity <img src="/images/equations/EllipticIntegral/Inline58.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="9" height="21" alt="lambda" /> such that <img src="/images/equations/EllipticIntegral/Inline59.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="64" height="21" alt="S_1-lambdaS_2" /> </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation5.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="290" height="20" alt=" (a_1-lambdaa_2)x^2-(2b_1-2b_2lambda)x+(c_1-lambdac_2) " /></td><td align="right" width="3"> <div id="eqn18" class="eqnum"> (18) </div> </td></tr> </table> </div> <p> is a <a href="/SquareNumber.html">square number</a> and </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation6.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="272" height="24" alt=" 2sqrt((a_1-lambdaa_2)(c_1-lambdac_2))=2(b_1-b_2lambda) " /></td><td align="right" width="3"> <div id="eqn19" class="eqnum"> (19) </div> </td></tr> </table> </div> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation7.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="265" height="20" alt=" (a_1-lambdaa_2)(c_1-lambdac_2)-(b_1-lambdab_2)^2=0. " /></td><td align="right" width="3"> <div id="eqn20" class="eqnum"> (20) </div> </td></tr> </table> </div> <p> Call the <a href="/Root.html">roots</a> of this equation <img src="/images/equations/EllipticIntegral/Inline60.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="16" height="21" alt="lambda_1" /> and <img src="/images/equations/EllipticIntegral/Inline61.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="16" height="21" alt="lambda_2" />, then </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline62.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="64" height="20" alt="S_1-lambda_2S_2" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline63.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline64.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="230" height="33" alt="[sqrt((a_1-lambda_2a_2)x^2)+sqrt(c_1-lambda_2c_2)]^2" /></td><td align="right" width="10"> <div id="eqn21" class="eqnum"> (21) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline65.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline66.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline67.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="209" height="52" alt="(a_1-lambda_2a_2)(x+sqrt((c_1-lambda_2c_2)/(a_1-lambda_2a_2)))" /></td><td align="right" width="10"> <div id="eqn22" class="eqnum"> (22) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline68.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline69.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline70.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="130" height="21" alt="(a_1-lambda_2a_2)(x-beta)^2" /></td><td align="right" width="10"> <div id="eqn23" class="eqnum"> (23) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline71.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="64" height="20" alt="S_1-lambda_1S_2" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline72.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline73.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="230" height="33" alt="[sqrt((a_1-lambda_1a_2)x^2)+sqrt(c_1-lambda_1c_2)]^2" /></td><td align="right" width="10"> <div id="eqn24" class="eqnum"> (24) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline74.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline75.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline76.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="209" height="52" alt="(a_1-lambda_1a_2)(x+sqrt((c_1-lambda_1c_2)/(a_1-lambda_1a_2)))" /></td><td align="right" width="10"> <div id="eqn25" class="eqnum"> (25) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline77.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline78.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline79.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="133" height="20" alt="(a_1-lambda_1a_2)(x-alpha)^2." /></td><td align="right" width="10"> <div id="eqn26" class="eqnum"> (26) </div> </td></tr> </table> </div> <p> Taking (<a href="#eqn25">25</a>)<img src="/images/equations/EllipticIntegral/Inline80.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="11" height="21" alt="-" />(<a href="#eqn26">26</a>) and <img src="/images/equations/EllipticIntegral/Inline81.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="97" height="21" alt="lambda_2(1)-lambda_1(2)" /> gives </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline82.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="74" height="20" alt="S_2(lambda_2-lambda_1)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline83.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline84.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="275" height="21" alt="(a_1-lambda_1a_2)(x-alpha)^2-(a_1-lambda_2a_2)(x-beta)^2" /></td><td align="right" width="10"> <div id="eqn27" class="eqnum"> (27) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline85.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="74" height="20" alt="S_1(lambda_2-lambda_1)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline86.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline87.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="315" height="21" alt="lambda_2(a_1-lambda_1a_2)(x-alpha)^2-lambda_1(a_1-lambda_2a_2)(x-beta)^2." /></td><td align="right" width="10"> <div id="eqn28" class="eqnum"> (28) </div> </td></tr> </table> </div> <p> Solving gives </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline88.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="15" height="20" alt="S_1" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline89.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline90.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="267" height="41" alt="(a_1-lambda_1a_2)/(lambda_2-lambda_1)(x-alpha)^2-(a_1-lambda_2a_2)/(lambda_2-lambda_1)(x-beta)^2" /></td><td align="right" width="10"> <div id="eqn29" class="eqnum"> (29) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline91.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline92.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline93.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="159" height="21" alt="A_1(x-alpha)^2+B_1(x-beta)^2" /></td><td align="right" width="10"> <div id="eqn30" class="eqnum"> (30) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline94.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="15" height="20" alt="S_2" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline95.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline96.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="323" height="41" alt="(lambda_2(a_1-lambda_1a_2))/(lambda_2-lambda_1)(x-alpha)^2-(lambda_1(a_1-lambda_2a_2))/(lambda_2-lambda_1)(x-beta)^2" /></td><td align="right" width="10"> <div id="eqn31" class="eqnum"> (31) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline97.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline98.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline99.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="163" height="21" alt="A_2(x-alpha)^2+B_2(x-beta)^2," /></td><td align="right" width="10"> <div id="eqn32" class="eqnum"> (32) </div> </td></tr> </table> </div> <p> so we have </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation8.svg" data-src-small="/images/equations/EllipticIntegral/NumberedEquation8_400.svg" data-src-default="/images/equations/EllipticIntegral/NumberedEquation8.svg" class="numberedequation swappable" style="max-height:100%;max-width:100%" width="438" data-big="438 23" data-small="270 50" border="0" alt=" w^2=S_1S_2=[A_1(x-alpha)^2+B_1(x-beta)^2][A^2(x-alpha)^2+B^2(x-beta)^2]. " /></td><td align="right" width="3"> <div id="eqn33" class="eqnum"> (33) </div> </td></tr> </table> </div> <p> Now let </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline100.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="5" height="20" alt="t" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline101.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline102.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="40" height="38" alt="(x-alpha)/(x-beta)" /></td><td align="right" width="10"> <div id="eqn34" class="eqnum"> (34) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline103.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="17" height="20" alt="dt" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline104.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline105.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="211" height="23" alt="[(x-beta)^(-1)-(x-alpha)(x-beta)^(-2)]dx" /></td><td align="right" width="10"> <div id="eqn35" class="eqnum"> (35) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline106.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline107.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline108.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="132" height="44" alt="((x-beta)-(x-alpha))/((x-beta)^2)dx" /></td><td align="right" width="10"> <div id="eqn36" class="eqnum"> (36) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline109.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline110.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline111.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="84" height="44" alt="(alpha-beta)/((x-beta)^2)dx," /></td><td align="right" width="10"> <div id="eqn37" class="eqnum"> (37) </div> </td></tr> </table> </div> <p> so </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline112.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="18" height="20" alt="w^2" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline113.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline114.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="302" height="43" alt="(x-beta)^4[A_1((x-alpha)/(x-beta))^2+B_1][A_2((x-alpha)/(x-beta))+B_2]" /></td><td align="right" width="10"> <div id="eqn38" class="eqnum"> (38) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline115.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline116.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline117.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="215" height="23" alt="(x-beta)^4(A_1t^2+B_1)(A_2t^2+B_2)," /></td><td align="right" width="10"> <div id="eqn39" class="eqnum"> (39) </div> </td></tr> </table> </div> <p> and </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline118.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="11" height="20" alt="w" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline119.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline120.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="230" height="30" alt="(x-beta)^2sqrt((A_1t^2+B_1)(A_2t^2+B_2))" /></td><td align="right" width="10"> <div id="eqn40" class="eqnum"> (40) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline121.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="26" height="39" alt="(dx)/w" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline122.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline123.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="327" height="56" alt="[((x-beta)^2)/(alpha-beta)dt]1/((x-beta)^2sqrt((A_1t^2+B_1)(A_2t^2+B_2)))" /></td><td align="right" width="10"> <div id="eqn41" class="eqnum"> (41) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline124.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline125.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline126.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="233" height="53" alt="(dt)/((alpha-beta)sqrt((A_1t^2+B_1)(A_2t^2+B_2)))." /></td><td align="right" width="10"> <div id="eqn42" class="eqnum"> (42) </div> </td></tr> </table> </div> <p> Now let </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation9.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="103" height="42" alt=" R_3(t)=(R_1(x))/(alpha-beta), " /></td><td align="right" width="3"> <div id="eqn43" class="eqnum"> (43) </div> </td></tr> </table> </div> <p> so </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation10.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="322" height="60" alt=" int(R_1(x)dx)/w=int(R_3(t)dt)/(sqrt((A_1t^2+B_1)(A_2t^2+B_2))). " /></td><td align="right" width="3"> <div id="eqn44" class="eqnum"> (44) </div> </td></tr> </table> </div> <p> Rewriting the <a href="/EvenNumber.html">even</a> and <a href="/OddNumber.html">odd</a> parts </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline127.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="99" height="20" alt="R_3(t)+R_3(-t)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline128.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline129.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="55" height="23" alt="2R_4(t^2)" /></td><td align="right" width="10"> <div id="eqn45" class="eqnum"> (45) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline130.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="99" height="20" alt="R_3(t)-R_3(-t)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline131.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline132.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="67" height="23" alt="2tR_5(t^2)," /></td><td align="right" width="10"> <div id="eqn46" class="eqnum"> (46) </div> </td></tr> </table> </div> <p> gives </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline133.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="36" height="20" alt="R_3(t)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline134.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline135.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="106" height="26" alt="1/2(R_(even)-R_(odd))" /></td><td align="right" width="10"> <div id="eqn47" class="eqnum"> (47) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline136.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline137.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline138.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="114" height="23" alt="R_4(t^2)+tR_5(t^2)," /></td><td align="right" width="10"> <div id="eqn48" class="eqnum"> (48) </div> </td></tr> </table> </div> <p> so we have </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation11.svg" data-src-small="/images/equations/EllipticIntegral/NumberedEquation11_400.svg" data-src-default="/images/equations/EllipticIntegral/NumberedEquation11.svg" class="numberedequation swappable" style="max-height:100%;max-width:100%" width="543" data-big="543 60" data-small="331 132" border="0" alt=" int(R_1(x)dx)/w=int(R_4(t^2)dt)/(sqrt((A_1t^2+B_1)(A_2t^2+B_2)))+int(R_5(t^2)tdt)/(sqrt((A_1t^2+B_1)(A_2t^2+B_2))). " /></td><td align="right" width="3"> <div id="eqn49" class="eqnum"> (49) </div> </td></tr> </table> </div> <p> Letting </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline139.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="9" height="20" alt="u" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline140.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline141.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="t^2" /></td><td align="right" width="10"> <div id="eqn50" class="eqnum"> (50) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline142.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="21" height="20" alt="du" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline143.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline144.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="37" height="20" alt="2tdt" /></td><td align="right" width="10"> <div id="eqn51" class="eqnum"> (51) </div> </td></tr> </table> </div> <p> reduces the second integral to </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation12.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="213" height="47" alt=" 1/2int(R_5(u)du)/(sqrt((A_1u+B_1)(A_2u+B_2))), " /></td><td align="right" width="3"> <div id="eqn52" class="eqnum"> (52) </div> </td></tr> </table> </div> <p> which can be evaluated using <a href="/ElementaryFunction.html">elementary functions</a>. The first integral can then be reduced by <a href="/IntegrationbyParts.html">integration by parts</a> to one of the three Legendre elliptic integrals (also called Legendre-Jacobi elliptic integrals), known as incomplete <a href="/EllipticIntegraloftheFirstKind.html">elliptic integrals of the first</a>, <a href="/EllipticIntegraloftheSecondKind.html">second</a>, and <a href="/EllipticIntegraloftheThirdKind.html">third kinds</a>, denoted <img src="/images/equations/EllipticIntegral/Inline145.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="54" height="21" alt="F(phi,k)" />, <img src="/images/equations/EllipticIntegral/Inline146.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="54" height="21" alt="E(phi,k)" />, and <img src="/images/equations/EllipticIntegral/Inline147.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="72" height="21" alt="Pi(n;phi,k)" />, respectively (von Kármán and Biot 1940, Whittaker and Watson 1990, p. 515). If <img src="/images/equations/EllipticIntegral/Inline148.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="59" height="21" alt="phi=pi/2" />, then the integrals are called complete elliptic integrals and are denoted <img src="/images/equations/EllipticIntegral/Inline149.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="37" height="21" alt="K(k)" />, <img src="/images/equations/EllipticIntegral/Inline150.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="35" height="21" alt="E(k)" />, <img src="/images/equations/EllipticIntegral/Inline151.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="53" height="21" alt="Pi(n;k)" />. </p> <p> Incomplete elliptic integrals are denoted using a <a href="/EllipticModulus.html">elliptic modulus</a> <img src="/images/equations/EllipticIntegral/Inline152.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="9" height="21" alt="k" />, <a href="/Parameter.html">parameter</a> <img src="/images/equations/EllipticIntegral/Inline153.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="48" height="21" alt="m=k^2" />, or <a href="/ModularAngle.html">modular angle</a> <img src="/images/equations/EllipticIntegral/Inline154.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="78" height="21" alt="alpha=sin^(-1)k" />. An elliptic integral is written <img src="/images/equations/EllipticIntegral/Inline155.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="56" height="24" alt="I(phi|m)" /> when the <a href="/Parameter.html">parameter</a> is used, <img src="/images/equations/EllipticIntegral/Inline156.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="50" height="21" alt="I(phi,k)" /> when the <a href="/EllipticModulus.html">elliptic modulus</a> is used, and <img src="/images/equations/EllipticIntegral/Inline157.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="46" height="21" alt="I(phi\alpha)" /> when the <a href="/ModularAngle.html">modular angle</a> is used. Complete elliptic integrals are defined when <img src="/images/equations/EllipticIntegral/Inline158.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="59" height="21" alt="phi=pi/2" /> and can be expressed using the expansion </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation13.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="311" height="49" alt=" (1-k^2sin^2theta)^(-1/2)=sum_(n=0)^infty((2n-1)!!)/((2n)!!)k^(2n)sin^(2n)theta. " /></td><td align="right" width="3"> <div id="eqn53" class="eqnum"> (53) </div> </td></tr> </table> </div> <p> An elliptic integral in standard form </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation14.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="83" height="48" alt=" int_a^x(dx)/(sqrt(f(x))), " /></td><td align="right" width="3"> <div id="eqn54" class="eqnum"> (54) </div> </td></tr> </table> </div> <p> where </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation15.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="266" height="20" alt=" f(x)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0, " /></td><td align="right" width="3"> <div id="eqn55" class="eqnum"> (55) </div> </td></tr> </table> </div> <p> can be computed analytically (Whittaker and Watson 1990, p. 453) in terms of the <a href="/WeierstrassEllipticFunction.html">Weierstrass elliptic function</a> with invariants </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline159.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="16" height="21" alt="g_2" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline160.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline161.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="142" height="22" alt="a_0a_4-4a_1a_3+3a_2^2" /></td><td align="right" width="10"> <div id="eqn56" class="eqnum"> (56) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline162.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="16" height="21" alt="g_3" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline163.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline164.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="242" height="22" alt="a_0a_2a_4-2a_1a_2a_3-a_4a_1^2-a_3^2a_0." /></td><td align="right" width="10"> <div id="eqn57" class="eqnum"> (57) </div> </td></tr> </table> </div> <p> If <img src="/images/equations/EllipticIntegral/Inline165.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="44" height="22" alt="a=x_0" /> is a root of <img src="/images/equations/EllipticIntegral/Inline166.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="65" height="21" alt="f(x)=0" />, then the solution is </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation16.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="315" height="28" alt=" x=x_0+1/4f^'(x_0)[P(z;g_2,g_3)-1/(24)f^('')(x_0)]^(-1). " /></td><td align="right" width="3"> <div id="eqn58" class="eqnum"> (58) </div> </td></tr> </table> </div> <p> For an arbitrary lower bound, </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation17.svg" data-src-small="/images/equations/EllipticIntegral/NumberedEquation17_400.svg" data-src-default="/images/equations/EllipticIntegral/NumberedEquation17.svg" class="numberedequation swappable" style="max-height:100%;max-width:100%" width="462" data-big="462 61" data-small="305 97" border="0" alt=" x=a+(sqrt(f(a))P^'(z)+1/2f^'(a)[P(z)-1/(24)f^('')(a)]+1/(24)f(a)f^(''')(a))/(2[P(z)-1/(24)f^('')(a)]^2-1/(48)f(a)f^((iv))(a)), " /></td><td align="right" width="3"> <div id="eqn59" class="eqnum"> (59) </div> </td></tr> </table> </div> <p> where <img src="/images/equations/EllipticIntegral/Inline167.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="138" height="22" alt="P(z)=P(z;g_2,g_3)" /> is a <a href="/WeierstrassEllipticFunction.html">Weierstrass elliptic function</a> (Whittaker and Watson 1990, p. 454). </p> <p> A generalized elliptic integral can be defined by the function </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline168.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="51" height="20" alt="T(a,b)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline169.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline170.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="205" height="49" alt="2/piint_0^(pi/2)(dtheta)/(sqrt(a^2cos^2theta+b^2sin^2theta))" /></td><td align="right" width="10"> <div id="eqn60" class="eqnum"> (60) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline171.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline172.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline173.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="199" height="49" alt="2/piint_0^(pi/2)(dtheta)/(costhetasqrt(a^2+b^2tan^2theta))" /></td><td align="right" width="10"> <div id="eqn61" class="eqnum"> (61) </div> </td></tr> </table> </div> <p> (Borwein and Borwein 1987). Now let </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline174.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="5" height="20" alt="t" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline175.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline176.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="43" height="20" alt="btantheta" /></td><td align="right" width="10"> <div id="eqn62" class="eqnum"> (62) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline177.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="17" height="20" alt="dt" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline178.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline179.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="77" height="20" alt="bsec^2thetadtheta." /></td><td align="right" width="10"> <div id="eqn63" class="eqnum"> (63) </div> </td></tr> </table> </div> <p> But </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation18.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="139" height="24" alt=" sectheta=sqrt(1+tan^2theta), " /></td><td align="right" width="3"> <div id="eqn64" class="eqnum"> (64) </div> </td></tr> </table> </div> <p> so </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline180.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="17" height="20" alt="dt" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline181.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline182.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="96" height="39" alt="b/(costheta)secthetadtheta" /></td><td align="right" width="10"> <div id="eqn65" class="eqnum"> (65) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline183.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline184.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline185.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="146" height="39" alt="b/(costheta)sqrt(1+tan^2theta)dtheta" /></td><td align="right" width="10"> <div id="eqn66" class="eqnum"> (66) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline186.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline187.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline188.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="144" height="47" alt="b/(costheta)sqrt(1+(t/b)^2)dtheta" /></td><td align="right" width="10"> <div id="eqn67" class="eqnum"> (67) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline189.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline190.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline191.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="109" height="39" alt="(dtheta)/(costheta)sqrt(b^2+t^2)," /></td><td align="right" width="10"> <div id="eqn68" class="eqnum"> (68) </div> </td></tr> </table> </div> <p> and </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation19.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="132" height="48" alt=" (dtheta)/(costheta)=(dt)/(sqrt(b^2+t^2)), " /></td><td align="right" width="3"> <div id="eqn69" class="eqnum"> (69) </div> </td></tr> </table> </div> <p> and the equation becomes </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline192.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="51" height="20" alt="T(a,b)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline193.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline194.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="179" height="53" alt="2/piint_0^infty(dt)/(sqrt((a^2+t^2)(b^2+t^2)))" /></td><td align="right" width="10"> <div id="eqn70" class="eqnum"> (70) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline195.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline196.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline197.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="183" height="53" alt="1/piint_(-infty)^infty(dt)/(sqrt((a^2+t^2)(b^2+t^2)))." /></td><td align="right" width="10"> <div id="eqn71" class="eqnum"> (71) </div> </td></tr> </table> </div> <p> Now we make the further substitution <img src="/images/equations/EllipticIntegral/Inline198.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="116" height="27" alt="u=1/2(t-ab/t)" />. The differential becomes </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation20.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="162" height="26" alt=" du=1/2(1+ab/t^2)dt, " /></td><td align="right" width="3"> <div id="eqn72" class="eqnum"> (72) </div> </td></tr> </table> </div> <p> but <img src="/images/equations/EllipticIntegral/Inline199.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="105" height="21" alt="2u=t-ab/t" />, so </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation21.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="131" height="23" alt=" 2u/t=1-ab/t^2 " /></td><td align="right" width="3"> <div id="eqn73" class="eqnum"> (73) </div> </td></tr> </table> </div> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation22.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="131" height="23" alt=" ab/t^2=1-2u/t " /></td><td align="right" width="3"> <div id="eqn74" class="eqnum"> (74) </div> </td></tr> </table> </div> <p> and </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation23.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="253" height="23" alt=" 1+ab/t^2=2-2u/t=2(1-u/t). " /></td><td align="right" width="3"> <div id="eqn75" class="eqnum"> (75) </div> </td></tr> </table> </div> <p> However, the left side is always positive, so </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation24.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="247" height="23" alt=" 1+ab/t^2=2-2u/t=2|1-u/t| " /></td><td align="right" width="3"> <div id="eqn76" class="eqnum"> (76) </div> </td></tr> </table> </div> <p> and the differential is </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation25.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="93" height="48" alt=" dt=(du)/(|1-u/t|). " /></td><td align="right" width="3"> <div id="eqn77" class="eqnum"> (77) </div> </td></tr> </table> </div> <p> We need to take some care with the limits of integration. Write (◇) as </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation26.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="269" height="44" alt=" int_(-infty)^inftyf(t)dt=int_(-infty)^(0^-)f(t)dt+int_(0^+)^inftyf(t)dt. " /></td><td align="right" width="3"> <div id="eqn78" class="eqnum"> (78) </div> </td></tr> </table> </div> <p> Now change the limits to those appropriate for the <img src="/images/equations/EllipticIntegral/Inline200.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="9" height="21" alt="u" /> integration </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation27.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="296" height="39" alt=" int_(-infty)^inftyg(u)du+int_(-infty)^inftyg(u)du=2int_(-infty)^inftyg(u)du, " /></td><td align="right" width="3"> <div id="eqn79" class="eqnum"> (79) </div> </td></tr> </table> </div> <p> so we have picked up a factor of 2 which must be included. Using this fact and plugging (◇) in (◇) therefore gives </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation28.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="344" height="53" alt=" T(a,b)=2/piint_(-infty)^infty(du)/(|1-u/t|sqrt(a^2b^2+(a^2+b^2)t^2+t^4)). " /></td><td align="right" width="3"> <div id="eqn80" class="eqnum"> (80) </div> </td></tr> </table> </div> <p> Now note that </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline201.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="16" height="20" alt="u^2" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline202.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline203.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="133" height="45" alt="(t^4-2abt^2+a^2b^2)/(4t^2)" /></td><td align="right" width="10"> <div id="eqn81" class="eqnum"> (81) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline204.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="43" height="20" alt="4u^2t^2" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline205.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline206.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="127" height="20" alt="t^4-2abt^2+a^2b^2" /></td><td align="right" width="10"> <div id="eqn82" class="eqnum"> (82) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline207.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="63" height="20" alt="a^2b^2+t^4" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline208.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline209.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="111" height="20" alt="4u^2t^2+2abt^2." /></td><td align="right" width="10"> <div id="eqn83" class="eqnum"> (83) </div> </td></tr> </table> </div> <p> Plug (◇) into (◇) to obtain </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline210.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="51" height="20" alt="T(a,b)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline211.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline212.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="312" height="53" alt="2/piint_(-infty)^infty(du)/(|1-u/t|sqrt(4u^2t^2+2abt^2+(a^2+b^2)t^2))" /></td><td align="right" width="10"> <div id="eqn84" class="eqnum"> (84) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline213.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline214.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline215.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="208" height="50" alt="2/piint_(-infty)^infty(du)/(|t-u|sqrt(4u^2+(a+b)^2))." /></td><td align="right" width="10"> <div id="eqn85" class="eqnum"> (85) </div> </td></tr> </table> </div> <p> But </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline216.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="102" height="20" alt="2ut=t^2-ab " /></td><td align="right" width="10"> <div id="eqn86" class="eqnum"> (86) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline217.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="127" height="20" alt="t^2-2ut-ab=0 " /></td><td align="right" width="10"> <div id="eqn87" class="eqnum"> (87) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline218.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="187" height="31" alt="t=1/2(2u+/-sqrt(4u^2+4ab)) " /></td><td align="right" width="10"> <div id="eqn88" class="eqnum"> (88) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline219.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="127" height="24" alt="=u+/-sqrt(u^2+ab), " /></td><td align="right" width="10"> <div id="eqn89" class="eqnum"> (89) </div> </td></tr> </table> </div> <p> so </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation29.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="139" height="24" alt=" t-u=+/-sqrt(u^2+ab), " /></td><td align="right" width="3"> <div id="eqn90" class="eqnum"> (90) </div> </td></tr> </table> </div> <p> and (◇) becomes </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline220.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="51" height="20" alt="T(a,b)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline221.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline222.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="239" height="53" alt="2/piint_(-infty)^infty(du)/(sqrt([4u^2+(a+b)^2](u^2+ab)))" /></td><td align="right" width="10"> <div id="eqn91" class="eqnum"> (91) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline223.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline224.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline225.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="225" height="60" alt="1/piint_(-infty)^infty(du)/(sqrt([u^2+((a+b)/2)^2](u^2+ab)))." /></td><td align="right" width="10"> <div id="eqn92" class="eqnum"> (92) </div> </td></tr> </table> </div> <p> We have therefore demonstrated that </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation30.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="208" height="27" alt=" T(a,b)=T(1/2(a+b),sqrt(ab)). " /></td><td align="right" width="3"> <div id="eqn93" class="eqnum"> (93) </div> </td></tr> </table> </div> <p> We can thus iterate </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline226.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="26" height="20" alt="a_(i+1)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline227.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline228.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="67" height="26" alt="1/2(a_i+b_i)" /></td><td align="right" width="10"> <div id="eqn94" class="eqnum"> (94) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline229.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="26" height="20" alt="b_(i+1)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline230.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline231.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="52" height="24" alt="sqrt(a_ib_i)," /></td><td align="right" width="10"> <div id="eqn95" class="eqnum"> (95) </div> </td></tr> </table> </div> <p> as many times as we wish, without changing the value of the integral. But this iteration is the same as and therefore converges to the <a href="/Arithmetic-GeometricMean.html">arithmetic-geometric mean</a>, so the iteration terminates at <img src="/images/equations/EllipticIntegral/Inline232.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="143" height="22" alt="a_i=b_i=M(a_0,b_0)" />, and we have </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline233.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="65" height="20" alt="T(a_0,b_0)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline234.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline235.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="173" height="20" alt="T(M(a_0,b_0),M(a_0,b_0))" /></td><td align="right" width="10"> <div id="eqn96" class="eqnum"> (96) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline236.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline237.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline238.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="155" height="44" alt="1/piint_(-infty)^infty(dt)/(M^2(a_0,b_0)+t^2)" /></td><td align="right" width="10"> <div id="eqn97" class="eqnum"> (97) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline239.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline240.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline241.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="245" height="42" alt="1/(piM(a_0,b_0))[tan^(-1)(t/(M(a_0,b_0)))]_(-infty)^infty" /></td><td align="right" width="10"> <div id="eqn98" class="eqnum"> (98) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline242.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline243.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline244.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="171" height="42" alt="1/(piM(a_0,b_0))[pi/2-(-pi/2)]" /></td><td align="right" width="10"> <div id="eqn99" class="eqnum"> (99) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline245.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline246.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline247.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="80" height="42" alt="1/(M(a_0,b_0))." /></td><td align="right" width="10"> <div id="eqn100" class="eqnum"> (100) </div> </td></tr> </table> </div> <p> Complete elliptic integrals arise in finding the arc length of an <a href="/Ellipse.html">ellipse</a> and the period of a pendulum. They also arise in a natural way from the theory of theta functions. Complete elliptic integrals can be computed using a procedure involving the <a href="/Arithmetic-GeometricMean.html">arithmetic-geometric mean</a>. Note that </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline248.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="51" height="20" alt="T(a,b)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline249.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline250.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="205" height="49" alt="2/piint_0^(pi/2)(dtheta)/(sqrt(a^2cos^2theta+b^2sin^2theta))" /></td><td align="right" width="10"> <div id="eqn101" class="eqnum"> (101) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline251.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline252.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline253.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="212" height="59" alt="2/piint_0^(pi/2)(dtheta)/(asqrt(cos^2theta+(b/a)^2sin^2theta))" /></td><td align="right" width="10"> <div id="eqn102" class="eqnum"> (102) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline254.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline255.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline256.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="208" height="62" alt="2/(api)int_0^(pi/2)(dtheta)/(sqrt(1-(1-(b^2)/(a^2))sin^2theta))." /></td><td align="right" width="10"> <div id="eqn103" class="eqnum"> (103) </div> </td></tr> </table> </div> <p> So we have </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline257.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="51" height="20" alt="T(a,b)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline258.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline259.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="126" height="54" alt="2/(api)K(sqrt(1-(b^2)/(a^2)))" /></td><td align="right" width="10"> <div id="eqn104" class="eqnum"> (104) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline260.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline261.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline262.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="66" height="42" alt="1/(M(a,b))," /></td><td align="right" width="10"> <div id="eqn105" class="eqnum"> (105) </div> </td></tr> </table> </div> <p> where <img src="/images/equations/EllipticIntegral/Inline263.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="37" height="21" alt="K(k)" /> is the <a href="/CompleteEllipticIntegraloftheFirstKind.html">complete elliptic integral of the first kind</a>. We are free to let <img src="/images/equations/EllipticIntegral/Inline264.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="72" height="22" alt="a=a_0=1" /> and <img src="/images/equations/EllipticIntegral/Inline265.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="77" height="22" alt="b=b_0=k^'" />, so </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation31.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="273" height="42" alt=" 2/piK(sqrt(1-k^('2)))=2/piK(k)=1/(M(1,k^')), " /></td><td align="right" width="3"> <div id="eqn106" class="eqnum"> (106) </div> </td></tr> </table> </div> <p> since <img src="/images/equations/EllipticIntegral/Inline266.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="99" height="25" alt="k=sqrt(1-k^('2))" />, so </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation32.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="137" height="37" alt=" K(k)=pi/(2M(1,k^')). " /></td><td align="right" width="3"> <div id="eqn107" class="eqnum"> (107) </div> </td></tr> </table> </div> <p> But the <a href="/Arithmetic-GeometricMean.html">arithmetic-geometric mean</a> is defined by </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline267.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="13" height="20" alt="a_i" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline268.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline269.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="93" height="26" alt="1/2(a_(i-1)+b_(i-1))" /></td><td align="right" width="10"> <div id="eqn108" class="eqnum"> (108) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline270.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="13" height="20" alt="b_i" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline271.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline272.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="74" height="24" alt="sqrt(a_(i-1)b_(i-1))" /></td><td align="right" width="10"> <div id="eqn109" class="eqnum"> (109) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline273.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="c_i" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline274.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline275.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="150" height="65" alt="{1/2(a_(i-1)-b_(i-1)) i>0; sqrt(a_0^2-b_0^2) i=0," /></td><td align="right" width="10"> <div id="eqn110" class="eqnum"> (110) </div> </td></tr> </table> </div> <p> where </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation33.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="290" height="46" alt=" c_(n-1)=1/2a_n-b_n=(c_n^2)/(4a_(n+1))<=(c_n^2)/(4M(a_0,b_0)), " /></td><td align="right" width="3"> <div id="eqn111" class="eqnum"> (111) </div> </td></tr> </table> </div> <p> so we have </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation34.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="97" height="37" alt=" K(k)=pi/(2a_N), " /></td><td align="right" width="3"> <div id="eqn112" class="eqnum"> (112) </div> </td></tr> </table> </div> <p> where <img src="/images/equations/EllipticIntegral/Inline276.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="20" height="22" alt="a_N" /> is the value to which <img src="/images/equations/EllipticIntegral/Inline277.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="16" height="21" alt="a_n" /> converges. Similarly, taking instead <img src="/images/equations/EllipticIntegral/Inline278.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="46" height="23" alt="a_0^'=1" /> and <img src="/images/equations/EllipticIntegral/Inline279.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="46" height="23" alt="b_0^'=k" /> gives </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation35.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="102" height="39" alt=" K^'(k)=pi/(2a_N^'). " /></td><td align="right" width="3"> <div id="eqn113" class="eqnum"> (113) </div> </td></tr> </table> </div> <p> Borwein and Borwein (1987) also show that defining </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline280.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="54" height="20" alt="U(a,b)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline281.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline282.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="222" height="42" alt="pi/2int_0^(pi/2)sqrt(a^2cos^2theta+b^2sin^2theta)dtheta" /></td><td align="right" width="10"> <div id="eqn114" class="eqnum"> (114) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline283.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline284.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline285.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="58" height="40" alt="aE^'(b/a)" /></td><td align="right" width="10"> <div id="eqn115" class="eqnum"> (115) </div> </td></tr> </table> </div> <p> leads to </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation36.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="318" height="20" alt=" 2U(a_(n+1),b_(n+1))-U(a_n,b_n)=a_nb_nT(a_n,b_n), " /></td><td align="right" width="3"> <div id="eqn116" class="eqnum"> (116) </div> </td></tr> </table> </div> <p> so </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation37.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="324" height="42" alt=" (K(k)-E(k))/(K(k))=1/2(c_0^2+2c_1^2+2^2c_2^2+...+2^nc_n^2) " /></td><td align="right" width="3"> <div id="eqn117" class="eqnum"> (117) </div> </td></tr> </table> </div> <p> for <img src="/images/equations/EllipticIntegral/Inline286.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="44" height="22" alt="a_0=1" /> and <img src="/images/equations/EllipticIntegral/Inline287.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="49" height="22" alt="b_0=k^'" />, and </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation38.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="366" height="42" alt=" (K^'(k)-E^'(k))/(K^'(k))=1/2(c_0^'^2+2c_1^'^2+2^2c_2^'^2+...+2^nc_n^'^2). " /></td><td align="right" width="3"> <div id="eqn118" class="eqnum"> (118) </div> </td></tr> </table> </div> <p> The elliptic integrals satisfy a large number of identities. The complementary functions and moduli are defined by </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation39.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="206" height="31" alt=" K^'(k)=K(sqrt(1-k^2))=K(k^'). " /></td><td align="right" width="3"> <div id="eqn119" class="eqnum"> (119) </div> </td></tr> </table> </div> <p> Use the identity of generalized elliptic integrals </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation40.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="204" height="27" alt=" T(a,b)=T(1/2(a+b),sqrt(ab)) " /></td><td align="right" width="3"> <div id="eqn120" class="eqnum"> (120) </div> </td></tr> </table> </div> <p> to write </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline288.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="115" height="54" alt="1/aK(sqrt(1-(b^2)/(a^2)))" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline289.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline290.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="175" height="52" alt="2/(a+b)K(sqrt(1-(4ab)/((a+b)^2)))" /></td><td align="right" width="10"> <div id="eqn121" class="eqnum"> (121) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline291.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline292.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline293.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="196" height="60" alt="2/(a+b)K(sqrt((a^2+b^2-2ab)/((a+b)^2)))" /></td><td align="right" width="10"> <div id="eqn122" class="eqnum"> (122) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline294.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline295.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline296.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="111" height="40" alt="2/(a+b)K((a-b)/(a+b))" /></td><td align="right" width="10"> <div id="eqn123" class="eqnum"> (123) </div> </td></tr> </table> </div> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation41.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="239" height="58" alt=" K(sqrt(1-(b^2)/(a^2)))=2/(1+b/a)K((1-b/a)/(1+b/a)). " /></td><td align="right" width="3"> <div id="eqn124" class="eqnum"> (124) </div> </td></tr> </table> </div> <p> Define </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation42.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="50" height="39" alt=" k^'=b/a, " /></td><td align="right" width="3"> <div id="eqn125" class="eqnum"> (125) </div> </td></tr> </table> </div> <p> and use </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation43.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="95" height="24" alt=" k=sqrt(1-k^('2)), " /></td><td align="right" width="3"> <div id="eqn126" class="eqnum"> (126) </div> </td></tr> </table> </div> <p> so </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation44.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="178" height="40" alt=" K(k)=2/(1+k^')K((1-k^')/(1+k^')). " /></td><td align="right" width="3"> <div id="eqn127" class="eqnum"> (127) </div> </td></tr> </table> </div> <p> Now letting <img src="/images/equations/EllipticIntegral/Inline297.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="139" height="21" alt="l=(1-k^')/(1+k^')" /> gives </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation45.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="243" height="20" alt=" l(1+k^')=1-k^'=>k^'(l+1)=1-l " /></td><td align="right" width="3"> <div id="eqn128" class="eqnum"> (128) </div> </td></tr> </table> </div> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation46.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="70" height="39" alt=" k^'=(1-l)/(1+l) " /></td><td align="right" width="3"> <div id="eqn129" class="eqnum"> (129) </div> </td></tr> </table> </div> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline298.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="8" height="20" alt="k" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline299.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline300.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="65" height="24" alt="sqrt(1-k^('2))" /></td><td align="right" width="10"> <div id="eqn130" class="eqnum"> (130) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline301.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline302.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline303.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="102" height="50" alt="sqrt(1-((1-l)/(1+l))^2)" /></td><td align="right" width="10"> <div id="eqn131" class="eqnum"> (131) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline304.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline305.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline306.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="138" height="58" alt="sqrt(((1+l)^2-(1-l)^2)/((1+l)^2))" /></td><td align="right" width="10"> <div id="eqn132" class="eqnum"> (132) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline307.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline308.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline309.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="45" height="44" alt="(2sqrt(l))/(1+l)," /></td><td align="right" width="10"> <div id="eqn133" class="eqnum"> (133) </div> </td></tr> </table> </div> <p> and </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline310.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="63" height="26" alt="1/2(1+k^')" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline311.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline312.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="91" height="40" alt="1/2(1+(1-l)/(1+l))" /></td><td align="right" width="10"> <div id="eqn134" class="eqnum"> (134) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline313.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline314.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline315.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="132" height="40" alt="1/2[((1+l)+(1-l))/(1+l)]" /></td><td align="right" width="10"> <div id="eqn135" class="eqnum"> (135) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline316.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline317.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline318.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="40" height="39" alt="1/(1+l)." /></td><td align="right" width="10"> <div id="eqn136" class="eqnum"> (136) </div> </td></tr> </table> </div> <p> Writing <img src="/images/equations/EllipticIntegral/Inline319.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="9" height="21" alt="k" /> instead of <img src="/images/equations/EllipticIntegral/Inline320.svg" class="inlineformula" style="max-height:100%;max-width:100%" border="0" width="5" height="21" alt="l" />, </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation47.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="173" height="50" alt=" K(k)=1/(k+1)K((2sqrt(k))/(1+k)). " /></td><td align="right" width="3"> <div id="eqn137" class="eqnum"> (137) </div> </td></tr> </table> </div> <p> Similarly, from Borwein and Borwein (1987), </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation48.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="245" height="50" alt=" E(k)=(1+k)/2E((2sqrt(k))/(1+k))+(k^('2))/2K(k) " /></td><td align="right" width="3"> <div id="eqn138" class="eqnum"> (138) </div> </td></tr> </table> </div> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation49.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="244" height="40" alt=" E(k)=(1+k^')E((1-k^')/(1+k^'))-k^'K(k). " /></td><td align="right" width="3"> <div id="eqn139" class="eqnum"> (139) </div> </td></tr> </table> </div> <p> Expressions in terms of the complementary function can be derived from interchanging the moduli and their complements in (◇), (◇), (◇), and (◇). </p> <div class="table-responsive-noborders"> <table align="center" width="100%" cellpadding="0" cellspacing="0" style="padding-left: 50px" border="0"> <tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline321.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="39" height="20" alt="K^'(k)" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline322.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline323.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="39" height="20" alt="K(k^')" /></td><td align="right" width="10"> <div id="eqn140" class="eqnum"> (140) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline324.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline325.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline326.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="109" height="40" alt="2/(1+k)K((1-k)/(1+k))" /></td><td align="right" width="10"> <div id="eqn141" class="eqnum"> (141) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline327.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline328.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline329.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="180" height="52" alt="2/(1+k)K^'(sqrt(1-((1-k)/(1+k))^2))" /></td><td align="right" width="10"> <div id="eqn142" class="eqnum"> (142) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline330.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline331.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline332.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="119" height="50" alt="2/(1+k)K^'((2sqrt(k))/(1+k))" /></td><td align="right" width="10"> <div id="eqn143" class="eqnum"> (143) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline333.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline334.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline335.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="124" height="50" alt="1/(1+k^')K((2sqrt(k^'))/(1+k^'))" /></td><td align="right" width="10"> <div id="eqn144" class="eqnum"> (144) </div> </td></tr><tr style=""><td align="right" width=""><img src="/images/equations/EllipticIntegral/Inline336.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="12" height="20" alt="" /></td><td align="center" width="14"><img src="/images/equations/EllipticIntegral/Inline337.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="10" height="20" alt="=" /></td><td align="left"><img src="/images/equations/EllipticIntegral/Inline338.svg" class="displayformula" style="max-height:100%;max-width:100%" border="0" width="128" height="40" alt="1/(1+k^')K^'((1-k^')/(1+k^'))," /></td><td align="right" width="10"> <div id="eqn145" class="eqnum"> (145) </div> </td></tr> </table> </div> <p> and </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation50.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="245" height="50" alt=" E^'(k)=(1+k)E^'((2sqrt(k))/(1+k))-kK^'(k) " /></td><td align="right" width="3"> <div id="eqn146" class="eqnum"> (146) </div> </td></tr> </table> </div> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation51.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="275" height="43" alt=" E^'(k)=((1+k^')/2)E^'((1-k^')/(1+k^'))+(k^2)/2K^'(k). " /></td><td align="right" width="3"> <div id="eqn147" class="eqnum"> (147) </div> </td></tr> </table> </div> <p> Taking the ratios </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation52.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="253" height="66" alt=" (K^'(k))/(K(k))=2(K^'((2sqrt(k))/(1+k)))/(K((2sqrt(k))/(1+k)))=1/2(K^'((1-k^')/(1+k^')))/(K((1-k^')/(1+k^'))) " /></td><td align="right" width="3"> <div id="eqn148" class="eqnum"> (148) </div> </td></tr> </table> </div> <p> gives the <a href="/ModularEquation.html">modular equation</a> of degree 2. It is also true that </p> <div> <table summary="" width="100%" align="center" cellspacing="0" cellpadding="0" style="padding-left: 50px"> <tr><td align="left"><img src="/images/equations/EllipticIntegral/NumberedEquation53.svg" class="numberedequation" style="max-height:100%;max-width:100%" border="0" width="277" height="61" alt=" K(x)=4/((1+sqrt(x^'))^2)K([(1-RadicalBox[{1, -, {x, ^, 4}}, 4])/(1+RadicalBox[{1, -, {x, ^, 4}}, 4])]^2). " /></td><td align="right" width="3"> <div id="eqn149" class="eqnum"> (149) </div> </td></tr> </table> </div> </div> <!-- End Content --> <hr class="margin-b-1-1-4"> <div class="c-777 entry-secondary-content"> <!-- Begin See Also --> <h2>See also</h2><a href="/AbelianIntegral.html">Abelian Integral</a>, <a href="/CarlsonEllipticIntegrals.html">Carlson Elliptic Integrals</a>, <a href="/CompleteEllipticIntegraloftheFirstKind.html">Complete Elliptic Integral of the First Kind</a>, <a href="/CompleteEllipticIntegraloftheSecondKind.html">Complete Elliptic Integral of the Second Kind</a>, <a href="/CompleteEllipticIntegraloftheThirdKind.html">Complete Elliptic Integral of the Third Kind</a>, <a href="/DeltaAmplitude.html">Delta Amplitude</a>, <a href="/EllipticArgument.html">Elliptic Argument</a>, <a href="/EllipticCharacteristic.html">Elliptic Characteristic</a>, <a href="/EllipticFunction.html">Elliptic Function</a>, <a href="/EllipticIntegraloftheFirstKind.html">Elliptic Integral of the First Kind</a>, <a href="/EllipticIntegraloftheSecondKind.html">Elliptic Integral of the Second Kind</a>, <a href="/EllipticIntegraloftheThirdKind.html">Elliptic Integral of the Third Kind</a>, <a href="/EllipticIntegralSingularValue.html">Elliptic Integral Singular Value</a>, <a href="/EllipticModulus.html">Elliptic Modulus</a>, <a href="/HeumanLambdaFunction.html">Heuman Lambda Function</a>, <a href="/JacobiAmplitude.html">Jacobi Amplitude</a>, <a href="/JacobiEllipticFunctions.html">Jacobi Elliptic Functions</a>, <a href="/JacobiZetaFunction.html">Jacobi Zeta Function</a>, <a href="/ModularAngle.html">Modular Angle</a>, <a href="/Nome.html">Nome</a>, <a href="/Parameter.html">Parameter</a>, <a href="/WeierstrassEllipticFunction.html">Weierstrass Elliptic Function</a> <!-- End See Also --> <!-- Begin CrossURL --> <!-- End CrossURL --> <!-- Begin Contributor --> <!-- End Contributor --> <!-- Begin Wolfram Alpha Pod --> <h2>Explore with Wolfram|Alpha</h2> <div id="WAwidget"> <div class="WAwidget-wrapper"> <img alt="WolframAlpha" title="WolframAlpha" src="/images/wolframalpha/WA-logo.png" width="136" height="20"> <form name="wolframalpha" action="https://www.wolframalpha.com/input/" target="_blank"> <input type="text" name="i" class="search" placeholder="Solve your math problems and get step-by-step solutions" value=""> <button type="submit" title="Evaluate on WolframAlpha"></button> </form> </div> <div class="WAwidget-wrapper try"> <p class="text-align-r"> More things to try: </p> <ul> <li> <a target="_blank" href="http://www.wolframalpha.com/input/?i=elliptic+integral"> elliptic integral </a> </li> <li><a target="_blank" href="https://www.wolframalpha.com/input/?i=area+between+the+curves+y%3D1-x%5E2+and+y%3Dx">area between the curves y=1-x^2 and y=x</a></li> <li><a target="_blank" href="https://www.wolframalpha.com/input/?i=colorize+image+of+Poe">colorize image of Poe</a></li> </ul> </div> </div> <!-- End Wolfram Alpha Pod --> <!-- Begin References --> <h2>References</h2><cite>Abramowitz, M. and Stegun, I. A. (Eds.). "Elliptic Integrals." Ch. 17 in <i><a href="http://www.amazon.com/exec/obidos/ASIN/0486612724/ref=nosim/ericstreasuretro">Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.</a></i> New York: Dover, pp. 587-607, 1972.</cite><cite>Arfken, G. "Elliptic Integrals." §5.8 in <i><a href="http://www.amazon.com/exec/obidos/ASIN/0120598760/ref=nosim/ericstreasuretro">Mathematical Methods for Physicists, 3rd ed.</a></i> Orlando, FL: Academic Press, pp. 321-327, 1985.</cite><cite>Borwein, J. M. and Borwein, P. B. <i><a href="http://www.amazon.com/exec/obidos/ASIN/047131515X/ref=nosim/ericstreasuretro">Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity.</a></i> New York: Wiley, 1987.</cite><cite>Hancock, H. <i><a href="http://www.amazon.com/exec/obidos/ASIN/B00085HTBU/ref=nosim/ericstreasuretro">Elliptic Integrals.</a></i> New York: Wiley, 1917.</cite><cite>Kármán, T. von and Biot, M. A. <i><a href="http://www.amazon.com/exec/obidos/ASIN/B0006AOTLK/ref=nosim/ericstreasuretro">Mathematical Methods in Engineering: An Introduction to the Mathematical Treatment of Engineering Problems.</a></i> New York: McGraw-Hill, p. 121, 1940.</cite><cite>King, L. V. <i>The Direct Numerical Calculation of Elliptic Functions and Integrals.</i> London: Cambridge University Press, 1924.</cite><cite>Prasolov, V. and Solovyev, Y. <i><a href="http://www.amazon.com/exec/obidos/ASIN/0821805878/ref=nosim/ericstreasuretro">Elliptic Functions and Elliptic Integrals.</a></i> Providence, RI: Amer. Math. Soc., 1997.</cite><cite>Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Elliptic Integrals and Jacobi Elliptic Functions." §6.11 in <i><a href="http://www.amazon.com/exec/obidos/ASIN/052143064X/ref=nosim/ericstreasuretro">Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.</a></i> Cambridge, England: Cambridge University Press, pp. 254-263, 1992.</cite><cite>Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I. <i><a href="http://www.amazon.com/exec/obidos/ASIN/2881247369/ref=nosim/ericstreasuretro">Integrals and Series, Vol. 1: Elementary Functions.</a></i> New York: Gordon & Breach, 1986.</cite><cite>Timofeev, A. F. <i>Integration of Functions.</i> Moscow and Leningrad: GTTI, 1948.</cite><cite>Weisstein, E. W. "Books about Elliptic Integrals." <a href="http://www.ericweisstein.com/encyclopedias/books/EllipticIntegrals.html">http://www.ericweisstein.com/encyclopedias/books/EllipticIntegrals.html</a>.</cite><cite>Whittaker, E. T. and Watson, G. N. <i><a href="http://www.amazon.com/exec/obidos/ASIN/0521091896/ref=nosim/ericstreasuretro">A Course in Modern Analysis, 4th ed.</a></i> Cambridge, England: Cambridge University Press, 1990.</cite><cite>Woods, F. S. "Elliptic Integrals." Ch. 16 in <i><a href="http://www.amazon.com/exec/obidos/ASIN/B00085L67S/ref=nosim/ericstreasuretro">Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics.</a></i> Boston, MA: Ginn, pp. 365-386, 1926.</cite><h2>Referenced on Wolfram|Alpha</h2><a href="http://www.wolframalpha.com/entities/mathworld/elliptic_integral/o7/4a/5k/" title="Elliptic Integral" target="_blank">Elliptic Integral</a> <!-- End References --> <!-- Begin CiteAs --> <h2>Cite this as:</h2> <p> <a href="/about/author.html">Weisstein, Eric W.</a> "Elliptic Integral." From <a href="/"><i>MathWorld</i></a>--A Wolfram Web Resource. <a href="https://mathworld.wolfram.com/EllipticIntegral.html">https://mathworld.wolfram.com/EllipticIntegral.html</a> </p> <!-- End CiteAs --> <h2>Subject classifications</h2><nav class="breadcrumbs"><ul class="breadcrumb"> <li> <a href="/topics/CalculusandAnalysis.html">Calculus and Analysis</a> </li> <li> <a href="/topics/SpecialFunctions.html">Special Functions</a> </li> <li> <a href="/topics/EllipticIntegrals.html">Elliptic Integrals</a> </li> </ul></nav> <!-- End Total Content --> </div> </section> </section> <!-- /container --> </div> </main> <aside id="bottom"> <style> #bottom { padding-bottom: 65px; } #acknowledgment { display:none; } .attribution { font-size: .75rem; font-style: italic; } footer ul li:not(:last-of-type)::after { background: #a3a3a3; margin-left: .3rem; margin-right: .1rem; } @media all and (max-width: 900px) { .attribution { font-size: 12px; } } @media (max-width: 600px) { footer { max-width: 360px; } footer ul { max-width: 360px; } footer ul:nth-child(1) li:nth-child(2):after { content: ""; height: 11px; } footer ul:nth-child(1) li:nth-child(3):after { content: ""; height: 0px; } } </style> <footer> <ul> <li><a href="/about/">About MathWorld</a></li> <li><a href="/classroom/">MathWorld Classroom</a></li> <li><a href="/contact/">Contribute</a></li> <li><a href="https://www.amazon.com/exec/obidos/ASIN/1420072218/ref=nosim/weisstein-20" target="_blank">MathWorld Book</a></li> <li class="display-n display-ib__600"><a href="https://www.wolfram.com" target="_blank">wolfram.com</a></li> </ul> <ul> <li class="display-n__600"><a href="/whatsnew/">13,247 Entries</a></li> <li class="display-n__600"><a href="/whatsnew/">Last Updated: Mon Feb 24 2025</a></li> <!-- <li><a href="https://www.wolfram.com" target="_blank">©1999–<span id="copyright-year-end"> Wolfram Research, Inc.</a></li> --> <li><a href="https://www.wolfram.com" target="_blank">©1999–2025 Wolfram Research, Inc.</a></li> <li><a href="https://www.wolfram.com/legal/terms/mathworld.html" target="_blank">Terms of Use</a></li> </ul> <ul class="wolfram"> <li class="display-n__600 display-n__900"><a href="https://www.wolfram.com" target="_blank" aria-label="Wolfram"><img src="/images/footer/wolfram-logo.png" alt="Wolfram" title="Wolfram" width="121" height="28"></a></li> <li class="display-n__600"><a href="https://www.wolfram.com" target="_blank">wolfram.com</a></li> <li class="display-n__600"><a href="https://www.wolfram.com/education/" target="_blank">Wolfram for Education</a></li> <li class="attribution">Created, developed and nurtured by Eric Weisstein at Wolfram Research</li> </ul> </footer> <section id="acknowledgment"> <i>Created, developed and nurtured by Eric Weisstein at Wolfram Research</i> </section> </aside> <script type="text/javascript" src="/scripts/scripts.js"></script> <script src="/common/js/c2c/1.0/WolframC2C.js"></script> <script src="/common/js/c2c/1.0/WolframC2CGui.js"></script> <script src="/common/js/c2c/1.0/WolframC2CDefault.js"></script> <link rel="stylesheet" href="/common/js/c2c/1.0/WolframC2CGui.css.en"> <style> .wolfram-c2c-wrapper { padding: 0px !important; border: 0px; } .wolfram-c2c-wrapper:active { border: 0px; } .wolfram-c2c-wrapper:hover { border: 0px; } </style> <script> let c2cWrittings = new WolframC2CDefault({'triggerClass':'mathworld-c2c_above', 'uniqueIdPrefix': 'mathworld-c2c_above-'}); </script> <style> #IPstripe-outer { background: #47a2af; } #IPstripe-outer:hover { background: #0095aa; } </style> <div id="IPstripe-wrap"></div> <script src="/common/stripe/stripe.en.js"></script> </body> </html>