CINXE.COM
The Keras ecosystem
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/getting_started/ecosystem/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: The Keras ecosystem"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: The Keras ecosystem"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>The Keras ecosystem</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link active" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-sublink" href="/getting_started/intro_to_keras_for_engineers/">Introduction to Keras for engineers</a> <a class="nav-sublink" href="/getting_started/benchmarks/">Keras 3 benchmarks</a> <a class="nav-sublink active" href="/getting_started/ecosystem/">The Keras ecosystem</a> <a class="nav-sublink" href="/getting_started/faq/">Frequently Asked Questions</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparameter Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> <a class="nav-link" href="/keras_cv/" role="tab" aria-selected="">KerasCV: Computer Vision Workflows</a> <a class="nav-link" href="/keras_nlp/" role="tab" aria-selected="">KerasNLP: Natural Language Workflows</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/getting_started/'>Getting started</a> / The Keras ecosystem </div> <div class='k-content'> <h1 id="the-keras-ecosystem">The Keras ecosystem</h1> <p>The Keras project isn't limited to the core Keras API for building and training neural networks. It spans a wide range of related initiatives that cover every step of the machine learning workflow.</p> <hr /> <h2 id="kerastuner">KerasTuner</h2> <p><a href="/keras_tuner/">KerasTuner Documentation</a> - <a href="https://github.com/keras-team/keras-tuner">KerasTuner GitHub repository</a></p> <p>KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search algorithms.</p> <hr /> <h2 id="kerashub">KerasHub</h2> <p><a href="/keras_hub/">KerasHub Documentation</a> - <a href="https://github.com/keras-team/keras-hub">KerasHub GitHub repository</a></p> <p>KerasHub is a natural language processing library that supports users through their entire development cycle. Our workflows are built from modular components that have state-of-the-art preset weights and architectures when used out-of-the-box and are easily customizable when more control is needed.</p> <hr /> <h2 id="kerascv">KerasCV</h2> <p><a href="/keras_cv/">KerasCV Documentation</a> - <a href="https://github.com/keras-team/keras-cv">KerasCV GitHub repository</a></p> <p>KerasCV is a repository of modular building blocks (layers, metrics, losses, data-augmentation) that applied computer vision engineers can leverage to quickly assemble production-grade, state-of-the-art training and inference pipelines for common use cases such as image classification, object detection, image segmentation, image data augmentation, etc.</p> <p>KerasCV can be understood as a horizontal extension of the Keras API: the components are new first-party Keras objects (layers, metrics, etc) that are too specialized to be added to core Keras, but that receive the same level of polish and backwards compatibility guarantees as the rest of the Keras API.</p> <hr /> <h2 id="autokeras">AutoKeras</h2> <p><a href="https://autokeras.com/">AutoKeras Documentation</a> - <a href="https://github.com/keras-team/autokeras">AutoKeras GitHub repository</a></p> <p>AutoKeras is an AutoML system based on Keras. It is developed by <a href="http://faculty.cs.tamu.edu/xiahu/index.html">DATA Lab</a> at Texas A&M University. The goal of AutoKeras is to make machine learning accessible for everyone. It provides high-level end-to-end APIs such as <a href="https://autokeras.com/tutorial/image_classification/"><code>ImageClassifier</code></a> or <a href="https://autokeras.com/tutorial/text_classification/"><code>TextClassifier</code></a> to solve machine learning problems in a few lines, as well as <a href="https://autokeras.com/tutorial/customized/">flexible building blocks</a> to perform architecture search.</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">autokeras</span> <span class="k">as</span> <span class="nn">ak</span> <span class="n">clf</span> <span class="o">=</span> <span class="n">ak</span><span class="o">.</span><span class="n">ImageClassifier</span><span class="p">()</span> <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span> <span class="n">results</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">x_test</span><span class="p">)</span> </code></pre></div> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#the-keras-ecosystem'>The Keras ecosystem</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#kerastuner'>KerasTuner</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#kerashub'>KerasHub</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#kerascv'>KerasCV</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#autokeras'>AutoKeras</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>