CINXE.COM

Search results for: Mar O. Tapia

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Mar O. Tapia</title> <meta name="description" content="Search results for: Mar O. Tapia"> <meta name="keywords" content="Mar O. Tapia"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Mar O. Tapia" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Mar O. Tapia"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Mar O. Tapia</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earleen%20Jane%20Fuentes">Earleen Jane Fuentes</a>, <a href="https://publications.waset.org/abstracts/search?q=Regeene%20Melarese%20Lim"> Regeene Melarese Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Franklin%20Benjamin%20Tapia"> Franklin Benjamin Tapia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Pantola"> Alexis Pantola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other&rsquo;s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acknowledgment-based%20techniques" title="acknowledgment-based techniques">acknowledgment-based techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20ad-hoc%20network" title=" mobile ad-hoc network"> mobile ad-hoc network</a>, <a href="https://publications.waset.org/abstracts/search?q=selfish%20nodes" title=" selfish nodes"> selfish nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=reputation-based%20techniques" title=" reputation-based techniques"> reputation-based techniques</a> </p> <a href="https://publications.waset.org/abstracts/49862/misleading-node-detection-and-response-mechanism-in-mobile-ad-hoc-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> In Silico Analysis of Small Heat Shock Protein Gene Family by RNA-Seq during Tomato Fruit Ripening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debora%20P.%20Arce">Debora P. Arce</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavia%20J.%20Krsticevic"> Flavia J. Krsticevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20R.%20Bertolaccini"> Marco R. Bertolaccini</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaqu%C3%ADn%20Ezpeleta"> Joaquín Ezpeleta</a>, <a href="https://publications.waset.org/abstracts/search?q=Estela%20M.%20Valle"> Estela M. Valle</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20D.%20Ponce"> Sergio D. Ponce</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Tapia"> Elizabeth Tapia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small Heat Shock Proteins (sHSPs) are low molecular weight chaperones that play an important role during stress response and development in all living organisms. Fruit maturation and oxidative stress can induce sHSP synthesis both in Arabidopsis and tomato plants. RNA-Seq technology is becoming widely used in various transcriptomics studies; however, analyzing and interpreting the RNA-Seq data face serious challenges. In the present work, we de novo assembled the Solanum lycopersicum transcriptome for three different maturation stages (mature green, breaker and red ripe). Differential gene expression analysis was carried out during tomato fruit development. We identified 12 sHSPs differentially expressed that might be involved in breaker and red ripe fruit maturation. Interestingly, these sHSPs have different subcellular localization and suggest a complex regulation of the fruit maturation network process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sHSPs" title="sHSPs">sHSPs</a>, <a href="https://publications.waset.org/abstracts/search?q=maturation" title=" maturation"> maturation</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-Seq" title=" RNA-Seq"> RNA-Seq</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly" title=" assembly"> assembly</a> </p> <a href="https://publications.waset.org/abstracts/14132/in-silico-analysis-of-small-heat-shock-protein-gene-family-by-rna-seq-during-tomato-fruit-ripening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Surgical Planning for the Removal of Cranial Spheno-orbital Meningioma by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Freddy%20Patricio%20Moncayo-Matute">Freddy Patricio Moncayo-Matute</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Gerardo%20Pe%C3%B1a-Tapia"> Pablo Gerardo Peña-Tapia</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%A1zquez-Silva%20Efr%C3%A9n"> Vázquez-Silva Efrén</a>, <a href="https://publications.waset.org/abstracts/search?q=Pa%C3%BAl%20Bol%C3%ADvar%20Torres-Jara"> Paúl Bolívar Torres-Jara</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Patricia%20Moya-Loaiza"> Diana Patricia Moya-Loaiza</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Abad-Farf%C3%A1n"> Gabriela Abad-Farfán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes a clinical case and the results on the application of additive manufacturing for the surgical planning in the removal of a cranial spheno-orbital meningioma. It is verified that the use of personalized anatomical models and cutting guides helps to manage the cranial anomalies approach. The application of additive manufacturing technology: Fused Deposition Modeling (FDM), as a low-cost alternative, enables the printing of the test anatomical model, which in turn favors the reduction of surgery time, as well the morbidity rate reduction too. And the printing of the personalized cutting guide, which constitutes a valuable aid to the surgeon in terms of improving the intervention precision and reducing the invasive effect during the craniotomy. As part of the results, post-surgical follow-up is included as an instrument to verify the patient's recovery and the validity of the procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surgical%20planning" title="surgical planning">surgical planning</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=custom%20anatomical%20model" title=" custom anatomical model"> custom anatomical model</a> </p> <a href="https://publications.waset.org/abstracts/163905/surgical-planning-for-the-removal-of-cranial-spheno-orbital-meningioma-by-using-personalized-polymeric-prototypes-obtained-with-additive-manufacturing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Synthesis of Modified Cellulose for the Capture of Uranyl Ions from Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Vergara">Claudia Vergara</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Valdes"> Oscar Valdes</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Tapia"> Jaime Tapia</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Santos"> Leonardo Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The poly(amidoamine) dendrimers (PAMAM) are a class of material introduced by D. Tomalia. Modifications of the PAMAM dendrimer with several functional groups have attracted the attention for new interesting properties and new applications in many fields such as chemistry, physics, biology, and medicine. However, in the last few years, the use of dendrimers in environmental applications has increased due to pollution concerns. In this contribution, we report the synthesis of three new PAMAM derivates modified with asparagine aminoacid supported in cellulose: PG0-Asn (PAMAM-asparagine), PG0-Asn-Trt (with trityl group) and PG0-Asn-Boc-Trt (with tert-butyl oxycarbonyl group). The functionalization of generation 0 PAMAM dendrimer was carried out by amidation reaction by using an EDC/HOBt protocol. In a second step, functionalized dendrimer was covalently supported to the cellulose surface and used to study the capture of uranyl ions from aqueous solution by fluorescence spectroscopy. The structure and purity of the desired products were confirmed by conventional techniques such as FT-IR, MALDI, elemental analysis, and ESI-MS. Batch experiments were carried out to determine the affinity of uranyl ions with the dendrimer in aqueous solution. Firstly, the optimal conditions for uranyl capture were obtained, where the optimum pH for the removal was 6, the contact time was 4 hours, the initial concentration of uranyl was 100 ppm, and the amount of the adsorbent to be used was 2.5 mg. PAMAM significantly increased the capture of uranyl ions with respect to cellulose as the starting substrate, reaching 94.8% of capture (PG0), followed by 91.2% corresponding to PG0-Asn-Trt, then 70.3% PG0-Asn and 24.2% PG0-Asn-Boc-Trt. These results show that the PAMAM dendrimer is a good option to remove uranyl ions from aqueous solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asparagine" title="asparagine">asparagine</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=PAMAM%20dendrimer" title=" PAMAM dendrimer"> PAMAM dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=uranyl%20ions" title=" uranyl ions"> uranyl ions</a> </p> <a href="https://publications.waset.org/abstracts/109951/synthesis-of-modified-cellulose-for-the-capture-of-uranyl-ions-from-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Benthic Cover in Coral Reef Environments under Influence of Submarine Groundwater Discharges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arlett%20A.%20Rosado-Torres">Arlett A. Rosado-Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismael%20Marino-Tapia"> Ismael Marino-Tapia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in benthic cover of coral dominated systems to macroalgae dominance are widely studied worldwide. Watershed pollutants are potentially as important as overfishing causing phase shift. In certain regions of the world most of the continental inputs are through submarine groundwater discharges (SGD), which can play a significant ecological role because the concentration of its nutrients is usually greater that the one found in surface seawater. These stressors have adversely affected coral reefs, particularly in the Caribbean. Measurements of benthic cover (with video tracing, through a Go Pro camera), reef roughness (acoustic estimates with an Acoustic Doppler Current Velocity profiler and a differential GPS), thermohaline conditions (conductivity-temperature-depth (CTD) instrument) and nutrient measurements were taken in different sites in the reef lagoon of Puerto Morelos, Q. Roo, Mexico including those with influence of SGD and without it. The results suggest a link between SGD, macroalgae cover and structural complexity. Punctual water samples and data series from a CTD Diver confirm the presence of the SGD. On the site where the SGD is, the macroalgae cover is larger than in the other sites. To establish a causal link between this phase shift and SGD, the DELFT 3D hydrodynamic model (FLOW and WAVE modules) was performed under different environmental conditions and discharge magnitudes. The model was validated using measurements of oceanographic instruments anchored in the lagoon and forereef. The SGD is consistently favoring macroalgae populations and affecting structural complexity of the reef. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title="hydrodynamic model">hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=macroalgae" title=" macroalgae"> macroalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20shift" title=" phase shift"> phase shift</a> </p> <a href="https://publications.waset.org/abstracts/97189/benthic-cover-in-coral-reef-environments-under-influence-of-submarine-groundwater-discharges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Reyes%20Roman">Arturo Reyes Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniza%20Castillo%20Godoy"> Daniza Castillo Godoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisca%20Balarezo%20Olivares"> Francisca Balarezo Olivares</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Arriagada%20Castro"> Francisco Arriagada Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Maulen%20Tapia"> Miguel Maulen Tapia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mining%20waste" title="mining waste">mining waste</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title=" construction material"> construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activation" title=" alkaline activation"> alkaline activation</a> </p> <a href="https://publications.waset.org/abstracts/166555/potential-use-of-leaching-gravel-as-a-raw-material-in-the-preparation-of-geo-polymeric-material-as-an-alternative-to-conventional-cement-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Solar PV System for Automatic Guideway Transit (AGT) System in BPSU Main Campus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20S.%20Andres">Nelson S. Andres</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20O.%20Aguilar"> Robert O. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%20O.%20Tapia"> Mar O. Tapia</a>, <a href="https://publications.waset.org/abstracts/search?q=Meeko%20C.%20Masangcap"> Meeko C. Masangcap</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Denver%20Catapang"> John Denver Catapang</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20C.%20Mallari"> Greg C. Mallari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on exploring the possibility of using solar PV as an alternative for generating electricity to electrify the AGT System installed in BPSU Main Campus instead of using the power grid. The output of this study gives BPSU the option to invest on solar PV system to pro-actively respond to one of UN’s Sustainable Development Goals of having reliable, sustainable and modern energy sources to reduce energy pollution and climate change impact in the long run. Thus, this study covers the technical as well as the financial studies, which BPSU can also be used to outsource funding from different government agencies. For this study, the electrical design and requirements of the on-going DOST AGT system project are carefully considered. In the proposed design, the AGT station has installed with a rechargeable battery system where the energy harnessed by the solar PV panels installed on the rooftop of the station/NCEA building shall be directed to. The solar energy is then directly supplied to the electric double-layer capacitors (EDLC's) batteries and thus transmitted to other types of equipment in need. When the AGT is not in use, the harnessed energy may be used by NCEA building, thus, lessening the energy consumption of the building from the grid. The use of solar PV system with EDLC is compared with the use of an electric grid for the purpose of electrifying the AGT or the NCEA building (when AGT is not in use). This is to figure how much solar energy are accumulated by the solar PV to accommodate the need for coaches’ motors, lighting, air-conditioning units, door sensor, panel display, etc. The proposed PV Solar design, as well as the data regarding the charging and discharging of batteries and the power consumption of all AGT components, are simulated for optimization, analysis and validation through the use of PVSyst software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AGT" title="AGT">AGT</a>, <a href="https://publications.waset.org/abstracts/search?q=Solar%20PV" title=" Solar PV"> Solar PV</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a>, <a href="https://publications.waset.org/abstracts/search?q=EDLC" title=" EDLC"> EDLC</a> </p> <a href="https://publications.waset.org/abstracts/168250/solar-pv-system-for-automatic-guideway-transit-agt-system-in-bpsu-main-campus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Effect of Inorganic Fertilization on Soil N Dynamics in Agricultural Plots in Central Mexico</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karla%20Sanchez-Ortiz">Karla Sanchez-Ortiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunuen%20Tapia-Torres"> Yunuen Tapia-Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Larsen"> John Larsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Garcia-Oliva"> Felipe Garcia-Oliva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to food demand production, the use of synthetic nitrogenous fertilizer has increased in agricultural soils to replace the N losses. Nevertheless, the intensive use of synthetic nitrogenous fertilizer in conventional agriculture negatively affects the soil and therefore the environment, so alternatives such as organic agriculture have been proposed for being more environmentally friendly. However, further research in soil is needed to see how agricultural management affects the dynamics of C and N. The objective of this research was to evaluate the C and N dynamics in the soil with three different agricultural management: an agricultural plot with intensive inorganic fertilization, a plot with semi-organic management and an agricultural plot with recent abandonment (2 years). For each plot, the soil C and N dynamics and the enzymatic activity of NAG and β-Glucosidase were characterized. Total C and N concentration of the plant biomass of each site was measured as well. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) was higher in abandoned plot, as well as this plot had higher total carbon (TC) and total nitrogen (TN), besides microbial N and microbial C. While the enzymatic activity of NAG and β-Glucosidase was greater in the agricultural plot with inorganic fertilization, as well as nitrate (NO₃) was higher in fertilized plot, in comparison with the other two plots. The aboveground biomass (AB) of maize in the plot with inorganic fertilization presented higher TC and TN concentrations than the maize AB growing in the semiorganic plot, but the C:N ratio was highest in the grass AB in the abandoned plot. The C:N ration in the maize grain was greater in the semi-organic agricultural plot. These results show that the plot under intensive agricultural management favors the loss of soil organic matter and N, degrading the dynamics of soil organic compounds, promoting its fertility depletion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineralization" title="mineralization">mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20cycle" title=" nitrogen cycle"> nitrogen cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20degradation" title=" soil degradation"> soil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nutrients" title=" soil nutrients"> soil nutrients</a> </p> <a href="https://publications.waset.org/abstracts/84789/effect-of-inorganic-fertilization-on-soil-n-dynamics-in-agricultural-plots-in-central-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Obtaining Triploid Plants of Sprekelia formosissima by Artificial Hybridization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Manuel%20Rodriguez-Dominguez">Jose Manuel Rodriguez-Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Barba-Gonzalez"> Rodrigo Barba-Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Tapia-Campos"> Ernesto Tapia-Campos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprekelia formosissima (L.) Herbert is a bulbous ornamental species of the monocotyledonous Amaryllidaceae family, and it is a perennial, herbaceous monotypic plant commonly known as ‘Aztec Lily’ or ‘Jacobean Lily’; it is distributed through Mexico and Guatemala. Its scarlet flowers with curved petals have made it an exceptional ornamental pot plant. Cytogenetic studies in this species have shown differences in chromosome number (2n=60, 120, 150, 180) with a basic number x=30. Different reports have shown a variable ploidy level (diploid, tetraploid, pentaploid and hexaploid); however, triploid plants have not been reported. In this work, triploid plants of S. formosissima were obtained by crossing tetraploid (2n=4x=120) with diploid (2n=2x=60) genotypes of this species; the seeds obtained from the crosses were placed in pots with a moist substrate made of Peat Moss: Vermiculite (7:3) for germination. Root tips were collected, and metaphasic chromosome preparations were performed. For chromosome counting, the best five metaphases obtained were photographed with a Leica DMRA2 microscope (Leica Microsystems, Germany) microscopy coupled to an Evolution QEI camera under phase contrast (Media-Cybernetics). Chromosomes counting in root-tip cells showed that 100% of the plants were triploid (2n=3x=90). Although tetraploid or pentaploid plants of S. formosissima are highly appreciated, they usually have lower growth rates than related diploid ones. For this reason, it is important to obtain triploid plants, which have advantages such as higher growth rates than tetraploid and pentaploid, larger flowers than those of the diploid plants and they are expected to not be able to produce seeds because their gametes are aneuploids. Furthermore, triploids may become very important for genomic research in the future, creating opportunities for discovering and monitoring genomic and transcriptomic changes in unbalanced genomes, hence the importance of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amaryllidaceae" title="Amaryllidaceae">Amaryllidaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=cytogenetics" title=" cytogenetics"> cytogenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental" title=" ornamental"> ornamental</a>, <a href="https://publications.waset.org/abstracts/search?q=ploidy%20level" title=" ploidy level"> ploidy level</a> </p> <a href="https://publications.waset.org/abstracts/137085/obtaining-triploid-plants-of-sprekelia-formosissima-by-artificial-hybridization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Effect of Hypoxia on the Antimicrobial Activity of Corvina Drum (Cilus Gilberti) Epidermal Mucus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belinda%20Vega">Belinda Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Alvarez"> Claudio Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9ctor%20Flores"> Héctor Flores</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcia%20Oliva"> Marcia Oliva</a>, <a href="https://publications.waset.org/abstracts/search?q=Katherine%20Alveal"> Katherine Alveal</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Toro"> Teresa Toro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20Jos%C3%A9%20Tapia"> María José Tapia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanny%20Guzm%C3%A1n"> Fanny Guzmán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increase in global temperatures and the decrease of oxygen (O2) concentration in the oceans, fish cultures are exposed to frequent fluctuations in dissolved O2 (DO) concentration that can cause chronic stress in the animals, altering the normal functioning of their immune system and making them vulnerable to infections, consequently increasing morbidity and mortality in the farms with economic losses. The mucosal organs (skin -and mucus-, gills, gut, and nasal mucosa) are the first line of defense of the fish against pathogens. Therefore, the objective of this study is to evaluate the effect of hypoxia on the antimicrobial activity of epidermal mucus from corvina drum (Cilus Gilberti), a native marine species with the potential for the diversification of aquaculture in Chile. To achieve this, the epidermal mucus of juveniles (~220g) kept under normoxia (7 mg/L DO) and hypoxia (2 mg/L DO) environmental conditions was collected after 6 weeks, as well as after 6 days of intraperitoneal inoculation with lipopolysaccharide from Vibrio anguillarum to induce an immune response in the fish. Total protein extracts of the mucus were used for bactericidal activity and lysozyme and peroxidase activity assays. Although the mucus from both experimental groups showed inhibitory effects on the bacterial growth of Vibrio anguillarum and Vibrio ordalli, this effect was more long-lasting in the normoxia group. We also observed a notable reduction in the presence of lysozyme in the mucus from fish exposed to hypoxia, with no differences in peroxidase content. Future proteomic studies of corvina mucus associated with the environmental conditions studied in this work will allow the isolation and identification of peptides with antimicrobial activity, those responsible for the results obtained. This will help establish strategies aimed at minimizing the impacts of hypoxia on the defense responses of corvina drum against potential pathogens. Funding: FONDECYT 3200440 and FONDECYT 1210056 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cilus%20gilberti" title="Cilus gilberti">Cilus gilberti</a>, <a href="https://publications.waset.org/abstracts/search?q=mucus" title=" mucus"> mucus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=HYPOXIA" title=" HYPOXIA"> HYPOXIA</a> </p> <a href="https://publications.waset.org/abstracts/165891/effect-of-hypoxia-on-the-antimicrobial-activity-of-corvina-drum-cilus-gilberti-epidermal-mucus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> A Multidimensional Indicator-Based Framework to Assess the Sustainability of Productive Green Roofs: A Case Study in Madrid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Maria%20Melucci">Francesca Maria Melucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Panettieri"> Marco Panettieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rocco%20Roma"> Rocco Roma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cities are at the forefront of achieving the sustainable development goals set out in the Sustainable Development Goals of Agenda 2030. For these reasons, increasing attention has been given to the creation of resilient, sustainable, inclusive and green cities and finding solutions to these problems is one of the greatest challenges faced by researchers today. In particular urban green infrastructures, including green roofs, play a key role in tackling environmental, social and economic problems. The starting point was an extensive literature review on 1. research developments on the benefits (environmental, economic and social) and implications of green roofs; 2. sustainability assessment and applied methodologies; 3. specific indicators to measure impacts on urban sustainability. Through this review, the appropriate qualitative and quantitative characteristics that are part of the complex 'green roof' system were identified, as studies that holistically capture its multifunctional nature are still lacking. So, this paper aims to find a method to improve community participation in green roof initiatives and support local governance processes in developing efficient proposals to achieve better sustainability and resilience of cities. To this aim, the multidimensional indicator-based framework, presented by Tapia in 2021, has been tested for the first time in the case of a green roof in the city of Madrid. The framework's set of indicators was implemented with other indicators such as those of waste management and circularity (OECD Inventory of Circular Economy indicators) and sustainability performance. The specific indicators to be used in the case study were decided after a consultation phase with relevant stakeholders. Data on the community's willingness to participate in green roof implementation initiatives were collected through interviews and online surveys with a heterogeneous sample of citizens. The results of the application of the framework suggest how the different aspects of sustainability influence the choice of a green roof and provide input on the main mechanisms involved in citizens' willingness to participate in such initiatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title="urban agriculture">urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title=" green roof"> green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20sustainability" title=" urban sustainability"> urban sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=indicators" title=" indicators"> indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20analysis" title=" multi-criteria analysis"> multi-criteria analysis</a> </p> <a href="https://publications.waset.org/abstracts/161766/a-multidimensional-indicator-based-framework-to-assess-the-sustainability-of-productive-green-roofs-a-case-study-in-madrid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Tapia%20Cortez">Carlos Tapia Cortez</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Saydam"> Serkan Saydam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeff%20Coulton"> Jeff Coulton</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Sammut"> Claude Sammut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commodity%20price%20simulation" title="commodity price simulation">commodity price simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=commodity%20price%20uncertainties" title=" commodity price uncertainties"> commodity price uncertainties</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic-cognition" title=" dynamic-cognition"> dynamic-cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20systems" title=" dynamic systems"> dynamic systems</a> </p> <a href="https://publications.waset.org/abstracts/36210/dynamic-cognition-of-strategic-mineral-commodities-an-empirical-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10