CINXE.COM
Search results for: submarine power cables
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: submarine power cables</title> <meta name="description" content="Search results for: submarine power cables"> <meta name="keywords" content="submarine power cables"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="submarine power cables" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="submarine power cables"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5647</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: submarine power cables</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5647</span> Seamounts and Submarine Landslides: Study Case of Island Arcs Area in North of Sulawesi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arif%20Rahman">Muhammad Arif Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamma%20Abdul%20Jabbar"> Gamma Abdul Jabbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Enggar%20Handra%20Pangestu"> Enggar Handra Pangestu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfi%20Syahrin%20Qadri"> Alfi Syahrin Qadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Iryan%20Anugrah%20Putra"> Iryan Anugrah Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizqi%20Ramadhandi."> Rizqi Ramadhandi.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia lies above three major tectonic plates, Indo-Australia plate, Eurasia plate, and Pacific plate. Interactions between those plates resulted in high tectonic and volcanic activities that corelates into high risk of geological hazards in adjacent areas, one of the areas is in North of Sulawesi’s Islands. This case raises a problem in terms of infrastructure in order to mitigate existing infrastructure and various future infrastructures plan. One of the infrastructures that is essentials to enhance telecommunication aspect is submarine fiber optic cable, that has risk to geological hazard. This cable is essential that act as backbone in telecommunication. Damaged fiber optic cables can pose serious problem that make existing signal to be loss and have negative impact to people’s social and economic factor with also decreasing various governmental services performance. Submarine cables are facing challenges in terms of geological hazards, for instance are seamounts activity. Previous studies show that until 2023, five seamounts are identified in North of Sulawesi. Seamounts itself can damage and trigger many activities that can risks submarine cables, one of the examples is submarine landslide. Main focuses of this study are to identify new possible seamounts and submarine landslide path in area North of Sulawesi Islands to help minimize risks pose by those hazards, either to existing or future plan submarine cables. Using bathymetry data, this study conduct slope analysis and use distinctive morphological features to interpret possible seamounts. Then we mapped out valleys in between seamounts and determine where sediments might flow in case of landslide, and to finally, know how it affect submarine cables in the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bathymetry" title="bathymetry">bathymetry</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20hazard" title=" geological hazard"> geological hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=seamount" title=" seamount"> seamount</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine%20cable" title=" submarine cable"> submarine cable</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine%20landslide" title=" submarine landslide"> submarine landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20activity" title=" volcanic activity"> volcanic activity</a> </p> <a href="https://publications.waset.org/abstracts/169644/seamounts-and-submarine-landslides-study-case-of-island-arcs-area-in-north-of-sulawesi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5646</span> An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok-Tae%20Yoon">Seok-Tae Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Yeong%20Choi"> Jae-Yeong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyu-Mok%20Jeon"> Gyu-Mok Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jin%20Cho"> Yong-Jin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Chun%20Park"> Jong-Chun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiment%20study" title="experiment study">experiment study</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20rate" title=" flow rate"> flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20signature" title=" infrared signature"> infrared signature</a>, <a href="https://publications.waset.org/abstracts/search?q=snorkeling" title=" snorkeling"> snorkeling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a> </p> <a href="https://publications.waset.org/abstracts/87195/an-experimental-study-on-the-temperature-reduction-of-exhaust-gas-at-a-snorkeling-of-submarine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5645</span> Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Mengistu">Tesfaye Mengistu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20net" title=" convolutional neural net"> convolutional neural net</a> </p> <a href="https://publications.waset.org/abstracts/167462/smart-defect-detection-in-xlpe-cables-using-convolutional-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5644</span> Vibration-Based Monitoring of Tensioning Stay Cables of an Extradosed Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Chung%20Chen">Chun-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Han%20Lee"> Bo-Han Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Sung"> Yu-Chi Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the status of tensioning force of stay cables is a significant issue for the assessment of structural safety of extradosed bridges. Moreover, it is known that there is a high correlation between the existing tension force and the vibration frequencies of cables. This paper presents the characteristic of frequencies of stay cables of a field extradosed bridge by using vibration-based monitoring methods. The vibration frequencies of each stay cables were measured in stages from the beginning to the completion of bridge construction. The result shows that the vibration frequency variation trend of different lengths of cables at each measured stage is different. The observed feature can help the application of the bridge long-term monitoring system and contribute to the assessment of bridge safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration-based%20method" title="vibration-based method">vibration-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=extradosed%20bridges" title=" extradosed bridges"> extradosed bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20health%20monitoring" title=" bridge health monitoring"> bridge health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20stay%20cables" title=" bridge stay cables"> bridge stay cables</a> </p> <a href="https://publications.waset.org/abstracts/105500/vibration-based-monitoring-of-tensioning-stay-cables-of-an-extradosed-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5643</span> Comprehensive Multilevel Practical Condition Monitoring Guidelines for Power Cables in Industries: Case Study of Mobarakeh Steel Company in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mani">S. Mani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kafil"> M. Kafil</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Asadi"> E. Asadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Condition Monitoring (CM) of electrical equipment has gained remarkable importance during the recent years; due to huge production losses, substantial imposed costs and increases in vulnerability, risk and uncertainty levels. Power cables feed numerous electrical equipment such as transformers, motors, and electric furnaces; thus their condition assessment is of a very great importance. This paper investigates electrical, structural and environmental failure sources, all of which influence cables' performances and limit their uptimes; and provides a comprehensive framework entailing practical CM guidelines for maintenance of cables in industries. The multilevel CM framework presented in this study covers performance indicative features of power cables; with a focus on both online and offline diagnosis and test scenarios, and covers short-term and long-term threats to the operation and longevity of power cables. The study, after concisely overviewing the concept of CM, thoroughly investigates five major areas of power quality, Insulation Quality features of partial discharges, tan delta and voltage withstand capabilities, together with sheath faults, shield currents and environmental features of temperature and humidity; and elaborates interconnections and mutual impacts between those areas; using mathematical formulation and practical guidelines. Detection, location, and severity identification methods for every threat or fault source are also elaborated. Finally, the comprehensive, practical guidelines presented in the study are presented for the specific case of Electric Arc Furnace (EAF) feeder MV power cables in Mobarakeh Steel Company (MSC), the largest steel company in MENA region, in Iran. Specific technical and industrial characteristics and limitations of a harsh industrial environment like MSC EAF feeder cable tunnels are imposed on the presented framework; making the suggested package more practical and tangible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title=" partial discharge"> partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20cables" title=" power cables"> power cables</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a> </p> <a href="https://publications.waset.org/abstracts/80181/comprehensive-multilevel-practical-condition-monitoring-guidelines-for-power-cables-in-industries-case-study-of-mobarakeh-steel-company-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5642</span> Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20A.%20AlGhamdi">Saeed A. AlGhamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Habli"> Nabil Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinoj%20Somasanran"> Vinoj Somasanran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20management" title="power management">power management</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a>, <a href="https://publications.waset.org/abstracts/search?q=subsea%20cables" title=" subsea cables"> subsea cables</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20shunt%20reactors" title=" variable shunt reactors"> variable shunt reactors</a> </p> <a href="https://publications.waset.org/abstracts/143206/variable-shunt-reactors-for-reactive-power-compensation-of-hv-subsea-cables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5641</span> Early Design Prediction of Submersible Maneuvers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hernani%20Brinati">Hernani Brinati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardel%20de%20Conti"> Mardel de Conti</a>, <a href="https://publications.waset.org/abstracts/search?q=Moyses%20Szajnbok"> Moyses Szajnbok</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Domiciano"> Valentina Domiciano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submarine%20maneuvers" title="submarine maneuvers">submarine maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine" title=" submarine"> submarine</a>, <a href="https://publications.waset.org/abstracts/search?q=maneuvering" title=" maneuvering"> maneuvering</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a> </p> <a href="https://publications.waset.org/abstracts/13769/early-design-prediction-of-submersible-maneuvers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5640</span> Undersea Communications Infrastructure: Risks, Opportunities, and Geopolitical Considerations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lori%20W.%20Gordon">Lori W. Gordon</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20A.%20Jones"> Karen A. Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today’s high-speed data connectivity depends on a vast global network of infrastructure across space, air, land, and sea, with undersea cable infrastructure (UCI) serving as the primary means for intercontinental and ‘long-haul’ communications. The UCI landscape is changing and includes an increasing variety of state actors, such as the growing economies of Brazil, Russia, India, China, and South Africa. Non-state commercial actors, such as hyper-scale content providers including Google, Facebook, Microsoft, and Amazon, are also seeking to control their data and networks through significant investments in submarine cables. Active investments by both state and non-state actors will invariably influence the growth, geopolitics, and security of this sector. Beyond these hyper-scale content providers, there are new commercial satellite communication providers. These new players include traditional geosynchronous (GEO) satellites that offer broad coverage, high throughput GEO satellites offering high capacity with spot beam technology, low earth orbit (LEO) ‘mega constellations’ – global broadband services. And potential new entrants such as High Altitude Platforms (HAPS) offer low latency connectivity, LEO constellations offer high-speed optical mesh networks, i.e., ‘fiber in the sky.’ This paper focuses on understanding the role of submarine cables within the larger context of the global data commons, spanning space, terrestrial, air, and sea networks, including an analysis of national security policy and geopolitical implications. As network operators and commercial and government stakeholders plan for emerging technologies and architectures, hedging risks for future connectivity will ensure that our data backbone will be secure for years to come. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communications" title="communications">communications</a>, <a href="https://publications.waset.org/abstracts/search?q=global" title=" global"> global</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/146258/undersea-communications-infrastructure-risks-opportunities-and-geopolitical-considerations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5639</span> Microgrid: An Alternative of Electricity Supply to an Island in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawitchaya%20Srijaiwong">Pawitchaya Srijaiwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Surin%20Khomfoi"> Surin Khomfoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=islanding" title=" islanding"> islanding</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/70040/microgrid-an-alternative-of-electricity-supply-to-an-island-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5638</span> Commercial Winding for Superconducting Cables and Magnets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glenn%20Auld%20Knierim">Glenn Auld Knierim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20winding%20manufacturing" title="automated winding manufacturing">automated winding manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20superconductor" title=" high temperature superconductor"> high temperature superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet" title=" magnet"> magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20cable" title=" power cable"> power cable</a> </p> <a href="https://publications.waset.org/abstracts/137346/commercial-winding-for-superconducting-cables-and-magnets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5637</span> Submarines Unmanned Vehicle for Underwater Exploration and Monitoring System in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabila%20Dwi%20Agustin">Nabila Dwi Agustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ria%20Septitis%20Mentari"> Ria Septitis Mentari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nugroho%20Adi%20Sasongko"> Nugroho Adi Sasongko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia is experiencing a crisis in the development of defense equipment. Most of Indonesia's defense equipment must import its parts from other countries. Moreover, the area of Indonesia is 2/3 of its territory is the sea areas. For the protection of marine areas, Indonesia relies solely on submarines in monitoring conditions and whether or not intruders enter their territory. In fact, we know the submarine has a large size so that the expenses are getting bigger, the time it takes longer and needs a big maneuver to operate the submarine. Indeed, the submarine can only be operated for deeper seas. Many other countries enter the underwater world of Indonesia but Indonesia could not do anything due to the limitations of underwater monitoring system. At the same time, reconnaissance and monitor for shallow seas cannot be done by submarine. Equipment that can be used for surveillance of shallow underwater areas shall be made. This study reviewed the current research and development initiative of the submarine unmanned vehicle (SUV) or unmanned undersea vehicle (UUV) in Indonesia. This can explore underwater without the need for an operator to operate in it, but we can monitor it from a long distance. UUV has several advantages that size can be reduced as we desired, rechargeable ship batteries, has a detection sonar commonly found on a submarine and agile movement to detect at shallow sea depth. In the sonar sensors consisted of MEMS (Micro Electro Mechanical System), the sonar system runs more efficiently and effectively to monitor the target. UUV that has been developed will be very useful if the equipment is used around the outlying islands and outer from Indonesia especially the island frequented by foreign submarines without us know. The impact of this may not be felt now but it will allow foreign countries to attack Indonesia from within for the future. In addition, UUV needs to be equipped with a anti-radar system so that submarines of other countries crossing borders cannot detect it and Indonesia anti-submarine vessels can take further security measures. As the recommendation, Indonesia should take decisive steps in the state border rules, especially submarines of other countries that deliberately cross the borders of the state. This decisive action not only by word alone but also action as well. Indonesia government should show the strength and sovereignty as the entire society unites and applies the principle of universal peace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submarine%20unmanned%20vehicle" title="submarine unmanned vehicle">submarine unmanned vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine" title=" submarine"> submarine</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20of%20defense%20equipment" title=" development of defense equipment"> development of defense equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20border%20of%20Indonesia" title=" the border of Indonesia"> the border of Indonesia</a> </p> <a href="https://publications.waset.org/abstracts/84876/submarines-unmanned-vehicle-for-underwater-exploration-and-monitoring-system-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5636</span> Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardhasaradhi%20Gudla">Pardhasaradhi Gudla</a>, <a href="https://publications.waset.org/abstracts/search?q=Imanual%20A."> Imanual A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20power" title="offshore wind power">offshore wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20techniques" title=" optimized techniques"> optimized techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20sea%20cable" title=" sub sea cable"> sub sea cable</a> </p> <a href="https://publications.waset.org/abstracts/91131/optimized-techniques-for-reducing-the-reactive-power-generation-in-offshore-wind-farms-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5635</span> The Use of PD and Tanδ Characteristics as Diagnostic Technique for the Insulation Integrity of XLPE Insulated Cable Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazen%20Al-Bulaihed">Mazen Al-Bulaihed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nissar%20Wani"> Nissar Wani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Al-Arainy"> Abdulrahman Al-Arainy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasin%20Khan"> Yasin Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partial Discharge (PD) measurements are widely used for diagnostic purposes in electrical equipment used in power systems. The main cause of these measurements is to prevent large power failures as cables are prone to aging, which usually results in embrittlement, cracking and eventual failure of the insulating and sheathing materials, exposing the conductor and risking a potential short circuit, a likely cause of the electrical fire. Many distribution networks rely heavily on medium voltage (MV) power cables. The presence of joints in these networks is a vital part of serving the consumer demand for electricity continuously. Such measurements become even more important when the extent of dependence increases. Moreover, it is known that the partial discharge in joints and termination are difficult to track and are the most crucial point of failures in large power systems. This paper discusses the diagnostic techniques of four samples of XLPE insulated cable joints, each included with a different type of defect. Experiments were carried out by measuring PD and tanδ at very low frequency applied high voltage. The results show the importance of combining PD and tanδ for effective cable assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title="partial discharge">partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=tan%20delta" title=" tan delta"> tan delta</a>, <a href="https://publications.waset.org/abstracts/search?q=very%20low%20frequency" title=" very low frequency"> very low frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=XLPE%20cable" title=" XLPE cable"> XLPE cable</a> </p> <a href="https://publications.waset.org/abstracts/147680/the-use-of-pd-and-tand-characteristics-as-diagnostic-technique-for-the-insulation-integrity-of-xlpe-insulated-cable-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5634</span> Review of Cable Fault Locating Methods and Usage of VLF for Real Cases of High Resistance Fault Locating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saadat%20Ali">Saadat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Abdulla%20Ahmed%20Alshehhi"> Rashid Abdulla Ahmed Alshehhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cable faults are always probable and common during or after commissioning, causing significant delays and disrupting power distribution or transmission network, which is intolerable for the utilities&service providers being their reliability and business continuity measures. Therefore, the adoption of rapid localization & rectification methodology is the main concern for them. This paper explores the present techniques available for high voltage cable localization & rectification and which is preferable with regards to easier, faster, and also less harmful to cables. It also provides insight experience of high resistance fault locating by utilization of the Very Low Frequency (VLF) method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=faults" title="faults">faults</a>, <a href="https://publications.waset.org/abstracts/search?q=VLF" title=" VLF"> VLF</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20cases" title=" real cases"> real cases</a>, <a href="https://publications.waset.org/abstracts/search?q=cables" title=" cables"> cables</a> </p> <a href="https://publications.waset.org/abstracts/163853/review-of-cable-fault-locating-methods-and-usage-of-vlf-for-real-cases-of-high-resistance-fault-locating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5633</span> Magnetic Simulation of the Underground Electric Cable in the Presence of a Short Circuit and Harmonics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Nour%20El%20Islam%20Ayad">Ahmed Nour El Islam Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Krika"> Wafa Krika</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Ayad"> Abdelghani Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulay%20Larab"> Moulay Larab</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20Boudjella"> Houari Boudjella</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Benhamida"> Farid Benhamida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to evaluate the magnetic emission of underground electric cable of high voltage, because these power lines generate electromagnetic interaction with other objects near to it. The aim of this work shows a numerical simulation of the magnetic field of buried 400 kV line in three cases: permanent and transient states of short circuit and the last case with the presence of the harmonics at different positions as a function of time variation, with finite element resolution using Comsol Multiphysics software. The results obtained showed that the amplitude and distribution of the magnetic flux density change in the transient state and the presence of harmonics. The results of this work calculate the magnetic field generated by the underground lines in order to evaluate and know their impact on ecology and health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground" title="underground">underground</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20cables" title=" electric power cables"> electric power cables</a>, <a href="https://publications.waset.org/abstracts/search?q=cables%20crossing" title=" cables crossing"> cables crossing</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic" title=" harmonic"> harmonic</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a> </p> <a href="https://publications.waset.org/abstracts/112134/magnetic-simulation-of-the-underground-electric-cable-in-the-presence-of-a-short-circuit-and-harmonics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5632</span> Power System Modeling for Calculations in Frequency and Steady State Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Levacic">G. Levacic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zupan"> A. Zupan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20system%20modeling" title="power system modeling">power system modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain" title=" frequency domain"> frequency domain</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=EMTP-RV" title=" EMTP-RV"> EMTP-RV</a>, <a href="https://publications.waset.org/abstracts/search?q=PSS%2FE" title=" PSS/E"> PSS/E</a> </p> <a href="https://publications.waset.org/abstracts/87152/power-system-modeling-for-calculations-in-frequency-and-steady-state-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5631</span> Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Hyuck%20Kim">Won Hyuck Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hwan%20Kim"> Chang Hwan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Wook%20Kim"> Hyun Wook Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myoung%20Hoon%20Lee"> Myoung Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Hong%20Park"> Chan Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Yeong%20Park"> Hyeon Yeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anmok" title="Anmok">Anmok</a>, <a href="https://publications.waset.org/abstracts/search?q=beach%20survey" title=" beach survey"> beach survey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipborne%20Mobile%20LiDAR%20System" title=" Shipborne Mobile LiDAR System"> Shipborne Mobile LiDAR System</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine%20topography" title=" submarine topography"> submarine topography</a> </p> <a href="https://publications.waset.org/abstracts/65092/submarine-topography-and-beach-survey-of-gang-neung-port-in-south-korea-using-multi-beam-echo-sounder-and-shipborne-mobile-light-detection-and-ranging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5630</span> Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akim%20Borbuev">Akim Borbuev</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20de%20Le%C3%B3n"> Francisco de León</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%20power%20systems" title="DC power systems">DC power systems</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20feeders" title=" distribution feeders"> distribution feeders</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20networks" title=" distribution networks"> distribution networks</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transfer%20capacity" title=" power transfer capacity"> power transfer capacity</a> </p> <a href="https://publications.waset.org/abstracts/122717/increasing-power-transfer-capacity-of-distribution-networks-using-direct-current-feeders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5629</span> Educational Plan and Program of the Subject: Maintenance of Electric Power Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rade%20M.%20Ciric">Rade M. Ciric</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasa%20Mandic"> Sasa Mandic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Students of Higher Education Technical School of Professional Studies, in Novi Sad follow the subject Maintenance of electric power equipment at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of electric power equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20plan%20and%20program" title="educational plan and program">educational plan and program</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20equipment" title=" electric power equipment"> electric power equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20documentation" title=" technical documentation"> technical documentation</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20work" title=" safe work"> safe work</a> </p> <a href="https://publications.waset.org/abstracts/7290/educational-plan-and-program-of-the-subject-maintenance-of-electric-power-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5628</span> Investigating The Effect Of Convection On The Rating Of Buried Cables Using The Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandy%20J.%20M.%20Balla">Sandy J. M. Balla</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerry%20J.%20Walker"> Jerry J. Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20K.%20Kyere"> Isaac K. Kyere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat transfer coefficient at the soil–air interface is important in calculating underground cable ampacity when convection occurs. Calculating the heat transfer coefficient accurately is complex because of the temperature variations at the earth's surface. This paper presents the effect of convection heat flow across the ground surface on the rating of three single-core, 132kV, XLPE cables buried underground. The Finite element method (FEM) is a numerical analysis technique used to determine the cable rating of buried cables under installation conditions that are difficult to support when using the analytical method. This study demonstrates the use of FEM to investigate the effect of convection on the rating ofburied cables in flat formation using QuickField finite element simulation software. As a result, developing a model to simulate this type of situation necessitates important considerations such as the following boundary conditions: burial depth, soil thermal resistivity, and soil temperature, which play an important role in the simulation's accuracy and reliability. The results show that when the ground surface is taken as a convection interface, the conductor temperature rises and may exceed the maximum permissible temperature when rated current flows. This is because the ground surface acts as a convection interface between the soil and the air (fluid). This result correlates and is compared with the rating obtained using the IEC60287 analytical method, which is based on the condition that the ground surface is an isotherm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/abstracts/search?q=buried%20cables" title=" buried cables"> buried cables</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20rating" title=" steady-state rating"> steady-state rating</a> </p> <a href="https://publications.waset.org/abstracts/147448/investigating-the-effect-of-convection-on-the-rating-of-buried-cables-using-the-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5627</span> Tunnel Convergence Monitoring by Distributed Fiber Optics Embedded into Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Farhoud">R. Farhoud</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Hermand"> G. Hermand</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Delepine-lesoille"> S. Delepine-lesoille </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Future underground facility of French radioactive waste disposal, named Cigeo, is designed to store intermediate and high level - long-lived French radioactive waste. Intermediate level waste cells are tunnel-like, about 400m length and 65 m² section, equipped with several concrete layers, which can be grouted in situ or composed of tunnel elements pre-grouted. The operating space into cells, to allow putting or removing waste containers, should be monitored for several decades without any maintenance. To provide the required information, design was performed and tested in situ in Andra’s underground laboratory (URL) at 500m under the surface. Based on distributed optic fiber sensors (OFS) and backscattered Brillouin for strain and Raman for temperature interrogation technics, the design consists of 2 loops of OFS, at 2 different radiuses, around the monitored section (Orthoradiale strains) and longitudinally. Strains measured by distributed OFS cables were compared to classical vibrating wire extensometers (VWE) and platinum probes (Pt). The OFS cables were composed of 2 cables sensitive to strains and temperatures and one only for temperatures. All cables were connected, between sensitive part and instruments, to hybrid cables to reduce cost. The connection has been made according to 2 technics: splicing fibers in situ after installation or preparing each fiber with a connector and only plugging them together in situ. Another challenge was installing OFS cables along a tunnel mad in several parts, without interruption along several parts. First success consists of the survival rate of sensors after installation and quality of measurements. Indeed, 100% of OFS cables, intended for long-term monitoring, survived installation. Few new configurations were tested with relative success. Measurements obtained were very promising. Indeed, after 3 years of data, no difference was observed between cables and connection methods of OFS and strains fit well with VWE and Pt placed at the same location. Data, from Brillouin instrument sensitive to strains and temperatures, were compensated with data provided by Raman instrument only sensitive to temperature and into a separated fiber. These results provide confidence in the next steps of the qualification processes which consists of testing several data treatment approach for direct analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monitoring" title="monitoring">monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20optic" title=" fiber optic"> fiber optic</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20treatment" title=" data treatment"> data treatment</a> </p> <a href="https://publications.waset.org/abstracts/100331/tunnel-convergence-monitoring-by-distributed-fiber-optics-embedded-into-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5626</span> Statistical Analysis of Cables in Long-Span Cable-Stayed Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceshi%20Sun">Ceshi Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueyu%20Zhao"> Yueyu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaobing%20Zhao"> Yaobing Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiqiang%20Wang"> Zhiqiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Peng"> Jian Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengxin%20Guo"> Pengxin Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid development of transportation, there are more than 100 cable-stayed bridges with main span larger than 300 m in China. In order to ascertain the statistical relationships among the design parameters of stay cables and their distribution characteristics, 1500 cables were selected from 25 practical long-span cable-stayed bridges. A new relationship between the first order frequency and the length of cable was found by conducting the curve fitting. Then, based on this relationship other interesting relationships were deduced. Several probability density functions (PDFs) were used to investigate the distributions of the parameters of first order frequency, stress level and the Irvine parameter. It was found that these parameters obey the Lognormal distribution, the Weibull distribution and the generalized Pareto distribution, respectively. Scatter diagrams of the three parameters were plotted and their 95% confidence intervals were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable" title="cable">cable</a>, <a href="https://publications.waset.org/abstracts/search?q=cable-stayed%20bridge" title=" cable-stayed bridge"> cable-stayed bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=long-span" title=" long-span"> long-span</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/12878/statistical-analysis-of-cables-in-long-span-cable-stayed-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5625</span> Cable De-Commissioning of Legacy Accelerators at CERN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adya%20Uluwita">Adya Uluwita</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Pedrosa"> Fernando Pedrosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20Georgiev"> Georgi Georgiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Bernard"> Christian Bernard</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoul%20Masterson"> Raoul Masterson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CERN is an international organisation funded by 23 countries that provide the particle physics community with excellence in particle accelerators and other related facilities. Founded in 1954, CERN has a wide range of accelerators that allow groundbreaking science to be conducted. Accelerators bring particles to high levels of energy and make them collide with each other or with fixed targets, creating specific conditions that are of high interest to physicists. A chain of accelerators is used to ramp up the energy of particles and eventually inject them into the largest and most recent one: the Large Hadron Collider (LHC). Among this chain of machines is, for instance the Proton Synchrotron, which was started in 1959 and is still in operation. These machines, called "injectors”, keep evolving over time, as well as the related infrastructure. Massive decommissioning of obsolete cables started in 2015 at CERN in the frame of the so-called "injectors de-cabling project phase 1". Its goal was to replace aging cables and remove unused ones, freeing space for new cables necessary for upgrades and consolidation campaigns. To proceed with the de-cabling, a project co-ordination team was assembled. The start of this project led to the investigation of legacy cables throughout the organisation. The identification of cables stacked over half a century proved to be arduous. Phase 1 of the injectors de-cabling was implemented for 3 years with success after overcoming some difficulties. Phase 2, started 3 years later, focused on improving safety and structure with the introduction of a quality assurance procedure. This paper discusses the implementation of this quality assurance procedure throughout phase 2 of the project and the transition between the two phases. Over hundreds of kilometres of cable were removed in the injectors complex at CERN from 2015 to 2023. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CERN" title="CERN">CERN</a>, <a href="https://publications.waset.org/abstracts/search?q=de-cabling" title=" de-cabling"> de-cabling</a>, <a href="https://publications.waset.org/abstracts/search?q=injectors" title=" injectors"> injectors</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance%20procedure" title=" quality assurance procedure"> quality assurance procedure</a> </p> <a href="https://publications.waset.org/abstracts/187307/cable-de-commissioning-of-legacy-accelerators-at-cern" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5624</span> Localization Problem in Optical Fiber Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zyczkowski">M. Zyczkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Markowski"> P. Markowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karol"> M. Karol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The security industry is making many efforts to lower the costs of system installation. However, the dominant technique is the application of fiber optic sensors. It is necessary to determine the location of the disorder of long optical fiber cables. For a number of years, many research centers developed their own solutions. The article presents the construction of the sensor systems with the possibility of disorder location. We present a methodology for determining location of the disorder. The aim of investigations is to answer the question of which of optical sensor configuration offer the best performance for location of the disorder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20optic%20sensor" title="fiber optic sensor">fiber optic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20sensor" title=" security sensor"> security sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20cables" title=" fiber cables"> fiber cables</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20instillation" title=" system instillation"> system instillation</a> </p> <a href="https://publications.waset.org/abstracts/9236/localization-problem-in-optical-fiber-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5623</span> Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Ta%20Yang">Ming-Ta Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Gu"> Jyh-Cherng Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Huang"> Chun-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Lung%20Guan"> Jin-Lung Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circuit%20breaker" title="circuit breaker">circuit breaker</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20base%20maintenance" title=" condition base maintenance"> condition base maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20electronic%20device" title=" intelligent electronic device"> intelligent electronic device</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20base%20maintenance" title=" time base maintenance"> time base maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/12921/application-of-ied-to-condition-based-maintenance-of-medium-voltage-gcbvcb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5622</span> Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daofan%20Guo">Daofan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Yang"> Dong Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-optical%20hybrid%20cable" title="electro-optical hybrid cable">electro-optical hybrid cable</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20photoelectric%20composite%20cable" title=" underground photoelectric composite cable"> underground photoelectric composite cable</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20cable" title=" seismic cable"> seismic cable</a>, <a href="https://publications.waset.org/abstracts/search?q=coiled%20tubing" title=" coiled tubing"> coiled tubing</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20monitoring" title=" real-time monitoring"> real-time monitoring</a> </p> <a href="https://publications.waset.org/abstracts/156152/application-of-electro-optical-hybrid-cables-in-horizontal-well-production-logging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5621</span> Large-Scale Experimental and Numerical Studies on the Temperature Response of Main Cables and Suspenders in Bridge Fires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaokun%20Ge">Shaokun Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%20Merci"> Bart Merci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fubao%20Zhou"> Fubao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Liu"> Gao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya%20Ni"> Ya Ni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the thermal response of main cables and suspenders in suspension bridges subjected to vehicle fires, integrating large-scale gasoline pool fire experiments with numerical simulations. Focusing on a suspension bridge in China, the research examines the impact of wind speed, pool size, and lane position on flame dynamics and temperature distribution along the cables. The results indicate that higher wind speeds and larger pool sizes markedly increase the mass burning rate, causing flame deflection and non-uniform temperature distribution along the cables. Under a wind speed of 1.56 m/s, maximum temperatures reached approximately 960 ℃ near the base in emergency lane fires and 909 ℃ at 1.6 m height for slow lane fires, underscoring the heightened thermal risk from emergency lane fires. The study recommends a zoning strategy for cable fire protection, suggesting a 0-12.8 m protection zone with a target temperature of 1000 ℃ and a 12.8-20.8 m zone with a target temperature of 700 ℃, both with a 90-minute fire resistance. This approach, based on precise temperature distribution data from experimental and simulation results, provides a vital reference for the fire protection design of suspension bridge cables. Understanding cable temperature response during vehicle fires is crucial for developing fire protection systems, as it dictates necessary structural protection, fire resistance duration, and maximum temperatures for mitigation. Challenges of controlling environmental wind in large-scale fire tests are also addressed, along with a call for further research on fire behavior mechanisms and structural temperature response in cable-supported bridges under varying wind conditions. Conclusively, the proposed zoning strategy enhances the theoretical understanding of near-field temperature response in bridge fires, contributing significantly to the field by supporting the design of passive fire protection systems for bridge cables, safeguarding their integrity under extreme fire conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20fire" title="bridge fire">bridge fire</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20response" title=" temperature response"> temperature response</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20experiment" title=" large-scale experiment"> large-scale experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20protection" title=" fire protection"> fire protection</a> </p> <a href="https://publications.waset.org/abstracts/193172/large-scale-experimental-and-numerical-studies-on-the-temperature-response-of-main-cables-and-suspenders-in-bridge-fires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5620</span> Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patience%20Muchini">Patience Muchini</a>, <a href="https://publications.waset.org/abstracts/search?q=Electdom%20Matandiroya"> Electdom Matandiroya</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Mashonjowa"> Emmanuel Mashonjowa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20space%20weather" title="adverse space weather">adverse space weather</a>, <a href="https://publications.waset.org/abstracts/search?q=DST%20index" title=" DST index"> DST index</a>, <a href="https://publications.waset.org/abstracts/search?q=geomagnetically%20induced%20currents" title=" geomagnetically induced currents"> geomagnetically induced currents</a>, <a href="https://publications.waset.org/abstracts/search?q=KP%20index" title=" KP index"> KP index</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a> </p> <a href="https://publications.waset.org/abstracts/163432/analysis-of-transformer-reactive-power-fluctuations-during-adverse-space-weather" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5619</span> Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Chang">Chien-Kuo Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsiang%20Lin"> Yu-Hsiang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Yun%20Tang"> Yi-Yun Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Chiu%20Wu"> Min-Chiu Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title="partial discharge">partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-insulated%20switches" title=" gas-insulated switches"> gas-insulated switches</a>, <a href="https://publications.waset.org/abstracts/search?q=straight%20cable%20joint" title=" straight cable joint"> straight cable joint</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20identification" title=" defect identification"> defect identification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20learning" title=" ensemble learning"> ensemble learning</a> </p> <a href="https://publications.waset.org/abstracts/169443/defect-identification-in-partial-discharge-patterns-of-gas-insulated-switchgear-and-straight-cable-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5618</span> Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moonesun">Mohammad Moonesun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Asadi%20Asrami"> Ehsan Asadi Asrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Bodnarchuk"> Julia Bodnarchuk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20vehicle" title="underwater vehicle">underwater vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20resistance" title=" hydrodynamic resistance"> hydrodynamic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a> </p> <a href="https://publications.waset.org/abstracts/126524/hydrodynamic-analysis-on-the-body-of-a-solar-autonomous-underwater-vehicle-by-numerical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=188">188</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=189">189</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>