CINXE.COM

Search results for: robotics and automation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: robotics and automation</title> <meta name="description" content="Search results for: robotics and automation"> <meta name="keywords" content="robotics and automation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="robotics and automation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="robotics and automation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 655</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: robotics and automation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Past, Present, and Future of Robotics Technology in Construction Industry (Literature Review)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Haghbin">Samira Haghbin</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Daryayelaal"> Behnam Daryayelaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Amiri"> Zeinab Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of rapid progress of technology in various industries, the only way to survive in a competitive market of business is to update one's situation along with the said developments. During recent decades, Robotics and automation of the construction operation has emerged as one of the important technologies grabbing the attention of various industries and specially the construction industry. Because of the coming labor shortage of the aging society in the near future, robots will be used in construction fields more than ever. By predicting the condition of Robotics in world's future construction industry, we can make necessary preparations to face with needs imposed by the time and stay ahead. This article takes a library study approach and presents a literature review of existing studies with an aim to investigate the use of robotics in past, present and future of construction industry and make predictions on its' growth and change process. Therefore, to make familiar with this kind of technology and its' requirements in the construction industry, the status of Robotics in construction industry of different countries of the world has been studied and necessary context for its' future progress is expressed. It is hoped that identifying needs and required contexts will facilitate further development of advanced technologies such as robotics industry and lead to more preparation for future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=future%20of%20robotics" title="future of robotics">future of robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title=" construction industry"> construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20automation" title=" construction automation"> construction automation</a>, <a href="https://publications.waset.org/abstracts/search?q=trends%20of%20automation" title=" trends of automation"> trends of automation</a> </p> <a href="https://publications.waset.org/abstracts/32603/past-present-and-future-of-robotics-technology-in-construction-industry-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> RAFU Functions in Robotics and Automation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alicia%20C.%20Sanchez">Alicia C. Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the implementation of RAFU functions (radical functions) in robotics and automation. Specifically, the main goal is to show how these functions may be useful in lane-keeping control and the lateral control of autonomous machines, vehicles, robots or the like. From the knowledge of several points of a certain route, the RAFU functions are used to achieve the lateral control purpose and maintain the lane-keeping errors within the fixed limits. The stability that these functions provide, their ease of approaching any continuous trajectory and the control of the possible error made on the approximation may be useful in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20navigation%20control" title="automatic navigation control">automatic navigation control</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20control" title=" lateral control"> lateral control</a>, <a href="https://publications.waset.org/abstracts/search?q=lane-keeping%20control" title=" lane-keeping control"> lane-keeping control</a>, <a href="https://publications.waset.org/abstracts/search?q=RAFU%20approximation" title=" RAFU approximation"> RAFU approximation</a> </p> <a href="https://publications.waset.org/abstracts/138558/rafu-functions-in-robotics-and-automation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> The Transformation of the Workplace through Robotics, Artificial Intelligence, and Automation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mohammed">Javed Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robotics is the fastest growing industry in the world, poised to become the largest in the next decade. The use of robots requires design, application and implementation of the appropriate safety controls in order to avoid creating hazards to production personnel, programmers, maintenance specialists and systems engineers. The increasing use of artificial intelligence (AI) and related technologies in the workplace are dramatically changing the employment landscape. The impact of robotics technology on workplace policy is dramatic and complex. The robotics revolution calls for a comprehensive approach to job training, and retraining, to mitigate worker displacement and enable workers to benefit from the new jobs that the technology will generate. It calls for a thoughtful, forward-thinking approach by lawmakers, regulators and employers to prepare for the oncoming transformation of the workplace and workforce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=programmers" title=" programmers"> programmers</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20engineers" title=" system engineers"> system engineers</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a> </p> <a href="https://publications.waset.org/abstracts/23294/the-transformation-of-the-workplace-through-robotics-artificial-intelligence-and-automation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">652</span> Training Undergraduate Engineering Students in Robotics and Automation through Model-Based Design Training: A Case Study at Assumption University of Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajed%20A.%20Habib">Sajed A. Habib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problem-based learning (PBL) is a student-centered pedagogy that originated in the medical field and has also been used extensively in other knowledge disciplines with recognized advantages and limitations. PBL has been used in various undergraduate engineering programs with mixed outcomes. The current fourth industrial revolution (digital era or Industry 4.0) has made it essential for many science and engineering students to receive effective training in advanced courses such as industrial automation and robotics. This paper presents a case study at Assumption University of Thailand, where a PBL-like approach was used to teach some aspects of automation and robotics to selected groups of undergraduate engineering students. These students were given some basic level training in automation prior to participating in a subsequent training session in order to solve technical problems with increased complexity. The participating students&rsquo; evaluation of the training sessions in terms of learning effectiveness, skills enhancement, and incremental knowledge following the problem-solving session was captured through a follow-up survey consisting of 14 questions and a 5-point scoring system. From the most recent training event, an overall 70% of the respondents indicated that their skill levels were enhanced to a much greater level than they had had before the training, whereas 60.4% of the respondents from the same event indicated that their incremental knowledge following the session was much greater than what they had prior to the training. The instructor-facilitator involved in the training events suggested that this method of learning was more suitable for senior/advanced level students than those at the freshmen level as certain skills to effectively participate in such problem-solving sessions are acquired over a period of time, and not instantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=model-based%20design%20training" title=" model-based design training"> model-based design training</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-based%20learning" title=" problem-based learning"> problem-based learning</a> </p> <a href="https://publications.waset.org/abstracts/113816/training-undergraduate-engineering-students-in-robotics-and-automation-through-model-based-design-training-a-case-study-at-assumption-university-of-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">651</span> A Survey on the Status of Test Automation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Contan">Andrei Contan</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Torkar"> Richard Torkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The process of test automation and its practices in industry have to be better understood, both for the industry itself and for the research community. Method: We conducted a quantitative industry survey by asking IT professionals to answer questions related to the area of test automation. Results: Test automation needs and practices vary greatly between organizations at different stages of the software development life cycle. Conclusions: Most of the findings are general test automation challenges and are specific to small- to medium-sized companies, developing software applications in the web, desktop or mobile domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=survey" title="survey">survey</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20automation" title=" test automation"> test automation</a>, <a href="https://publications.waset.org/abstracts/search?q=status%20of%20test%20automation" title=" status of test automation"> status of test automation</a> </p> <a href="https://publications.waset.org/abstracts/23900/a-survey-on-the-status-of-test-automation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">650</span> Factors Affecting Test Automation Stability and Their Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagmani%20Lnu">Nagmani Lnu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Test automation is a vital requirement of any organization to release products faster to their customers. In most cases, an organization has an approach to developing automation but struggles to maintain it. It results in an increased number of Flaky Tests, reducing return on investments and stakeholders’ confidence. Challenges grow in multiple folds when automation is for UI behaviors. This paper describes the approaches taken to identify the root cause of automation instability in an extensive payments application and the best practices to address that using processes, tools, and technologies, resulting in a 75% reduction of effort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation%20stability" title="automation stability">automation stability</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20stability" title=" test stability"> test stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaky%20Test" title=" Flaky Test"> Flaky Test</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20quality" title=" test quality"> test quality</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20automation%20quality" title=" test automation quality"> test automation quality</a> </p> <a href="https://publications.waset.org/abstracts/179362/factors-affecting-test-automation-stability-and-their-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">649</span> STEM Curriculum Development Using Robotics with K-12 Students in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Campos">Flavio Campos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=STEM%20curriculum" title="STEM curriculum">STEM curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20robotics" title=" educational robotics"> educational robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=constructionist%20approach" title=" constructionist approach"> constructionist approach</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20and%20technology" title=" education and technology"> education and technology</a> </p> <a href="https://publications.waset.org/abstracts/50492/stem-curriculum-development-using-robotics-with-k-12-students-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">648</span> Implication of E-Robot Kit in Kuwait’s Robotics Technology Learning and Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murtaza%20Hassan%20Sheikh">Murtaza Hassan Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20A.%20AlSaleh"> Ahmed A. A. AlSaleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Naser%20H.%20N.%20Jasem"> Naser H. N. Jasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuwait has not yet made its mark in the world of technology and research. Therefore, advancements have been made to fill in this gap. Since Robotics covers a wide variety of fields and helps innovation, efforts have been made to promote its education. Despite of the efforts made in Kuwait, robotics education is still on hold. The paper discusses the issues and obstacles in the implementation of robotics education in Kuwait and how a robotics kit “E-Robot” is making an impact in the Kuwait’s future education and innovation. Problems such as robotics competitions rather than education, complexity of robot programming and lack of organized open source platform are being addressed by the introduction of the E-Robot Kit in Kuwait. Due to its success since 2012 a total of 15 schools have accepted the Kit as a core subject, with 200 teaching it as an extracurricular activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotics%20education" title="robotics education">robotics education</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait%27s%20education" title=" Kuwait&#039;s education"> Kuwait&#039;s education</a>, <a href="https://publications.waset.org/abstracts/search?q=e-robot%20kit" title=" e-robot kit"> e-robot kit</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20and%20development" title=" research and development"> research and development</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20and%20creativity" title=" innovation and creativity"> innovation and creativity</a> </p> <a href="https://publications.waset.org/abstracts/52349/implication-of-e-robot-kit-in-kuwaits-robotics-technology-learning-and-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> Educational Robotics with Easy Implementation and Low Cost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20R.%20A.%20R.%20Moreira">Maria R. A. R. Moreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20R.%20O.%20Da%20Silva"> Francisco R. O. Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20O.%20A.%20Fontenele"> André O. A. Fontenele</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89rick%20A.%20Ribeiro"> Érick A. Ribeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with the influence of technology in education showing educational robotics as pedagogical method of solution for knowledge building. We are proposing the development and implementation of four robot models that can be used for teaching purposes involving the areas of mechatronics, mechanics, electronics and computing, making it efficient for learning other sciences and theories. One of the main reasons for application of the developed educational kits is its low cost, allowing its applicability to a greater number of educational institutions. The technology will add to education dissemination of knowledge by means of experiments in such a way that the pedagogical robotics promotes understanding, practice, solution and criticism about classroom challenges. We also present the relationship between education, science, technology and society through educational robotics, treated as an incentive to technological careers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=mecatronics" title=" mecatronics"> mecatronics</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/41312/educational-robotics-with-easy-implementation-and-low-cost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> Review of the Legislative and Policy Issues in Promoting Infrastructure Development to Promote Automation in Telecom Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marvin%20Ricardo%20Awarab">Marvin Ricardo Awarab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has never been a greater need for telecom services. The Internet of Things (IoT), 5G networking, and edge computing are the driving forces behind this increased demand. The fierce demand offers communications service providers significant income opportunities. The telecom sector is centered on automation, and realizing a digital operation that functions as a real-time business will be crucial for the industry as a whole. Automation in telecom refers to the application of technology to create a more effective, quick, and scalable alternative to the conventional method of operating the telecom industry. With the promotion of 5G and the Internet of Things (IoT), telecom companies will continue to invest extensively in telecom automation technology. Automation offers benefits in the telecom industry; developing countries such as Namibia may not fully tap into such benefits because of the lack of funds and infrastructural resources to invest in automation. This paper fully investigates the benefits of automation in the telecom industry. Furthermore, the paper identifies hiccups that developing countries such as Namibia face in their quest to fully introduce automation in the telecom industry. Additionally, the paper proposes possible avenues that Namibia, as a developing country, adopt investing in automation infrastructural resources with the aim of reaping the full benefits of automation in the telecom industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=telecom" title=" telecom"> telecom</a>, <a href="https://publications.waset.org/abstracts/search?q=telecommunications%20policy" title=" telecommunications policy"> telecommunications policy</a>, <a href="https://publications.waset.org/abstracts/search?q=5G" title=" 5G"> 5G</a> </p> <a href="https://publications.waset.org/abstracts/172893/review-of-the-legislative-and-policy-issues-in-promoting-infrastructure-development-to-promote-automation-in-telecom-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> A Systematic Review on Assistive Technology Robotics in Lower and Middle-Income Settings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumudu%20Sameera%20Perera%20Kimmantudawage">Sumudu Sameera Perera Kimmantudawage</a>, <a href="https://publications.waset.org/abstracts/search?q=Chapal%20Khasnabis"> Chapal Khasnabis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technology is changing at a rapid rate, with innovations in robotics being hailed and tested in countries such as Japan, the United States and Australia, however the conversation in a public health context is stagnant. While obvious barriers to robotics use in low and middle-income countries and regions exist, the avoidance of attempting to address these regions of the world may potentially lead to an ever-increasing divide between those of high income countries and those of less. A systematic review was undertaken to determine the number of projects involving research, development and testing of robotics considered low and middle-income regions. Major findings indicate that an overwhelmingly significant number of projects failed to consider low and middle-income countries or regions. These results are unsurprising however alarming, as bridging the divide is an important step forward in achieving the UN Sustainable Development Goals by 2030. It is hoped that this research would spawn future robotics research that focusses on lower and middle-income regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assistive%20technology" title="assistive technology">assistive technology</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20equality" title=" health equality"> health equality</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=socioeconomic" title=" socioeconomic"> socioeconomic</a> </p> <a href="https://publications.waset.org/abstracts/72918/a-systematic-review-on-assistive-technology-robotics-in-lower-and-middle-income-settings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> Learning in the Virtual Laboratory via Design of Automation Process for Wooden Hammers Marking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Javorova">A. Javorova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Oravcova"> J. Oravcova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Velisek"> K. Velisek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article summarizes the experience of technical subjects teaching methodologies using a number of software products to solve specific assigned tasks described in this paper. Task is about the problems of automation and mechanization in the industry. Specifically, it focuses on introducing automation in the wood industry. The article describes the design of the automation process for marking wooden hammers. Similar problems are solved by students in CA laboratory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CA%20system" title="CA system">CA system</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=subject" title=" subject"> subject</a> </p> <a href="https://publications.waset.org/abstracts/11656/learning-in-the-virtual-laboratory-via-design-of-automation-process-for-wooden-hammers-marking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> Mastering Test Automation: Bridging Gaps for Seamless QA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Khankhoje">Rohit Khankhoje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid evolution of software development practices has given rise to an increasing demand for efficient and effective test automation. The paper titled "Mastering Test Automation: Bridging Gaps for Seamless QA" delves into the crucial aspects of test automation, addressing the obstacles faced by organizations in achieving flawless quality assurance. The paper highlights the importance of bridging knowledge gaps within organizations, emphasizing the necessity for management to acquire a deeper comprehension of test automation scenarios, coverage, report trends, and the importance of communication. To tackle these challenges, this paper introduces innovative solutions, including the development of an automation framework that seamlessly integrates with test cases and reporting tools like TestRail and Jira. This integration facilitates the automatic recording of bugs in Jira, enhancing bug reporting and communication between manual QA and automation teams as well as TestRail have all newly added automated testcases as soon as it is part of the automation suite. The paper demonstrates how this framework empowers management by providing clear insights into ongoing automation activities, bug origins, trend analysis, and test case specifics. "Mastering Test Automation" serves as a comprehensive guide for organizations aiming to enhance their quality assurance processes through effective test automation. It not only identifies the common pitfalls and challenges but also offers practical solutions to bridge the gaps, resulting in a more streamlined and efficient QA process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation%20framework" title="automation framework">automation framework</a>, <a href="https://publications.waset.org/abstracts/search?q=API%20integration" title=" API integration"> API integration</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20automation" title=" test automation"> test automation</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20management%20tools" title=" test management tools"> test management tools</a> </p> <a href="https://publications.waset.org/abstracts/174500/mastering-test-automation-bridging-gaps-for-seamless-qa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yohannes%20Haile">Yohannes Haile</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipo%20Onipede"> Dipo Onipede</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr."> Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Ashour"> Omar Ashour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber-physical%20production%20system" title=" cyber-physical production system"> cyber-physical production system</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20manufacturing%20enterprises" title=" digital manufacturing enterprises"> digital manufacturing enterprises</a>, <a href="https://publications.waset.org/abstracts/search?q=disruptive%20innovation" title=" disruptive innovation"> disruptive innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20value%20creation" title=" new value creation"> new value creation</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-digital-physical%20loop" title=" physical-digital-physical loop"> physical-digital-physical loop</a> </p> <a href="https://publications.waset.org/abstracts/102165/adapting-cyber-physical-production-systems-to-small-and-mid-size-manufacturing-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> Robotics Technology Supported Pedagogic Models in Science, Technology, Engineering, Arts and Mathematics Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sereen%20Itani">Sereen Itani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world aspires for technological innovation, Innovative Robotics Technology-Supported Pedagogic Models in STEAM Education (Science, Technology, Engineering, Arts, and Mathematics) are critical in our global education system to build and enhance the next generation 21st century skills. Thus, diverse international schools endeavor in attempts to construct an integrated robotics and technology enhanced curriculum based on interdisciplinary subjects. Accordingly, it is vital that the globe remains resilient in STEAM fields by equipping the future learners and educators with Innovative Technology Experiences through robotics to support such fields. A variety of advanced teaching methods is employed to learn about Robotics Technology-integrated pedagogic models. Therefore, it is only when STEAM and innovations in Robotic Technology becomes integrated with real-world applications that transformational learning can occur. Robotics STEAM education implementation faces major challenges globally. Moreover, STEAM skills and concepts are communicated in separation from the real world. Instilling the passion for robotics and STEAM subjects and educators’ preparation could lead to the students’ majoring in such fields by acquiring enough knowledge to make vital contributions to the global STEAM industries. Thus, this necessitates the establishment of Pedagogic models such as Innovative Robotics Technologies to enhance STEAM education and develop students’ 21st-century skills. Moreover, an ICT innovative supported robotics classroom will help educators empower and assess students academically. Globally, the Robotics Design System and platforms are developing in schools and university labs creating a suitable environment for the robotics cross-discipline STEAM learning. Accordingly, the research aims at raising awareness about the importance of robotics design systems and methodologies of effective employment of robotics innovative technology-supported pedagogic models to enhance and develop (STEAM) education globally and enhance the next generation 21st century skills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=STEAM%20%28Science" title=" STEAM (Science"> STEAM (Science</a>, <a href="https://publications.waset.org/abstracts/search?q=Technology" title=" Technology"> Technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Engineering" title=" Engineering"> Engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=Arts%20and%20Mathematics%20Education%29" title=" Arts and Mathematics Education)"> Arts and Mathematics Education)</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a> </p> <a href="https://publications.waset.org/abstracts/79230/robotics-technology-supported-pedagogic-models-in-science-technology-engineering-arts-and-mathematics-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> Network Automation in Lab Deployment Using Ansible and Python</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Andal%20Priyadharshini">V. Andal Priyadharshini</a>, <a href="https://publications.waset.org/abstracts/search?q=Anumalasetty%20Yashwanth%20Nath"> Anumalasetty Yashwanth Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Network automation has evolved into a solution that ensures efficiency in all areas. The age-old technique to configure common software-defined networking protocols is inefficient as it requires a box-by-box approach that needs to be repeated often and is prone to manual errors. Network automation assists network administrators in automating and verifying the protocol configuration to ensure consistent configurations. This paper implemented network automation using Python and Ansible to configure different protocols and configurations in the container lab virtual environment. Ansible can help network administrators minimize human mistakes, reduce time consumption, and enable device visibility across the network environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Python%20network%20automation" title="Python network automation">Python network automation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansible%20configuration" title=" Ansible configuration"> Ansible configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20lab%20deployment" title=" container lab deployment"> container lab deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=software-defined%20networking" title=" software-defined networking"> software-defined networking</a>, <a href="https://publications.waset.org/abstracts/search?q=networking%20lab" title=" networking lab"> networking lab</a> </p> <a href="https://publications.waset.org/abstracts/149854/network-automation-in-lab-deployment-using-ansible-and-python" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Mujtaba%20Baig">Mirza Mujtaba Baig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=self-driving%20cars" title=" self-driving cars"> self-driving cars</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networking%20algorithm" title=" neural networking algorithm"> neural networking algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20intelligence" title=" business intelligence"> business intelligence</a> </p> <a href="https://publications.waset.org/abstracts/149208/blockchain-resilient-framework-for-cloud-based-network-devices-within-the-architecture-of-self-driving-cars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">638</span> A NoSQL Based Approach for Real-Time Managing of Robotics&#039;s Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gueidi%20Afef">Gueidi Afef</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharsellaoui%20Hamza"> Gharsellaoui Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Ahmed%20Samir"> Ben Ahmed Samir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NoSQL%20databases" title="NoSQL databases">NoSQL databases</a>, <a href="https://publications.waset.org/abstracts/search?q=database%20management%20systems" title=" database management systems"> database management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a> </p> <a href="https://publications.waset.org/abstracts/65886/a-nosql-based-approach-for-real-time-managing-of-roboticss-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">637</span> CONDUCTHOME: Gesture Interface Control of Home Automation Boxes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Branstett">J. Branstett</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Gagneux"> V. Gagneux</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Leleu"> A. Leleu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Levadoux"> B. Levadoux</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pascale"> J. Pascale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the interface CONDUCTHOME which controls home automation systems with a Leap Motion using ‘invariant gesture protocols’. The function of this interface is to simplify the interaction of the user with its environment. A hardware part allows the Leap Motion to be carried around the house. A software part interacts with the home automation box and displays the useful information for the user. An objective of this work is the development a natural/invariant/simple gesture control interface to help elder people/people with disabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title=" ergonomics"> ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=gesture%20recognition" title=" gesture recognition"> gesture recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability" title=" interoperability"> interoperability</a> </p> <a href="https://publications.waset.org/abstracts/38302/conducthome-gesture-interface-control-of-home-automation-boxes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Designing Online Professional Development Courses Using Video-Based Instruction to Teach Robotics and Computer Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaina%20Caulkett">Alaina Caulkett</a>, <a href="https://publications.waset.org/abstracts/search?q=Audra%20Selkowitz"> Audra Selkowitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%20Harter"> Lauren Harter</a>, <a href="https://publications.waset.org/abstracts/search?q=Aimee%20DeFoe"> Aimee DeFoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Educational robotics is an effective tool for teaching and learning STEM curricula. Yet, most traditional professional development programs do not cover engineering, coding, or robotics. This paper will give an overview of how and why the VEX Professional Development Plus Introductory Training courses were developed to provide guided, simple professional development in the area of robotics and computer science instruction. These training courses guide educators through learning the basics of VEX robotics platforms, including VEX 123, GO, IQ, and EXP. Because many educators do not have experience teaching robotics or computer science, this course is meant to simulate one on one training or tutoring through video-based instruction. These videos, led by education professionals, can be watched at any time, which allows educators to watch at their own pace and create their own personalized professional development timeline. This personalization expands beyond the course itself into an online community where educators at different points in the self-paced course can converse with one another or with instructors from the videos and learn from a growing community of practice. By the end of each course, educators are armed with the skills to introduce robotics or computer science in their classroom or educational setting. The design of the course was guided by a variation of the Understanding by Design (UbD) framework and included hands-on activities and challenges to keep educators engaged and excited about robotics. Some of the concepts covered include, but are not limited to, following build instructions, building a robot, updating firmware, coding the robot to drive and turn autonomously, coding a robot using multiple methods, and considerations for teaching robotics and computer science in the classroom, and more. A secondary goal of this research is to discuss how this professional development approach can serve as an example in the larger educational community and explore ways that it could be further researched or used in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20science%20education" title="computer science education">computer science education</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20professional%20development" title=" online professional development"> online professional development</a>, <a href="https://publications.waset.org/abstracts/search?q=professional%20development" title=" professional development"> professional development</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics%20education" title=" robotics education"> robotics education</a>, <a href="https://publications.waset.org/abstracts/search?q=video-based%20instruction" title=" video-based instruction"> video-based instruction</a> </p> <a href="https://publications.waset.org/abstracts/162632/designing-online-professional-development-courses-using-video-based-instruction-to-teach-robotics-and-computer-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> Identification of Risks Associated with Process Automation Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Visser">J. K. Visser</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Malan"> H. T. Malan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20control%20system" title="distributed control system">distributed control system</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20of%20risks" title=" identification of risks"> identification of risks</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title=" information technology"> information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20automation%20system" title=" process automation system"> process automation system</a> </p> <a href="https://publications.waset.org/abstracts/101059/identification-of-risks-associated-with-process-automation-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">634</span> Automation of Kitchen Chemical in the Textile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luiz%20da%20Silva%20Neto">José Luiz da Silva Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20Sipelli%20Silva"> Renato Sipelli Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89rick%20Arag%C3%A3o%20Ribeiro"> Érick Aragão Ribeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The automation of industrial processes plays a vital role in industries today, becoming an integral and important part of the industrial process and modern production. The process control systems are designed to maximize production, reduce costs and minimize risks in production. However, these systems are generally not deployed methodologies and planning. So that this article describes the development of an automation system of a kitchen preparation of chemicals in the textile industry based on a retrofitting methodology that provides more quality into the process at a lower cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20industry" title=" textile industry"> textile industry</a>, <a href="https://publications.waset.org/abstracts/search?q=kitchen%20chemical" title=" kitchen chemical"> kitchen chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20integration" title=" information integration"> information integration</a> </p> <a href="https://publications.waset.org/abstracts/41010/automation-of-kitchen-chemical-in-the-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">633</span> Control Algorithm for Home Automation Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marek%20D%C5%82ugosz">Marek Długosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20Skruch"> Paweł Skruch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of purposes of home automation systems is to provide appropriate comfort to the users by suitable air temperature control and stabilization inside the rooms. The control of temperature level is not a simple task and the basic difficulty results from the fact that accurate parameters of the object of control, that is a building, remain unknown. Whereas the structure of the model is known, the identification of model parameters is a difficult task. In this paper, a control algorithm allowing the present temperature to be reached inside the building within the specified time without the need to know accurate parameters of the building itself is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20automation%20system" title=" home automation system"> home automation system</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20networking" title=" wireless networking"> wireless networking</a>, <a href="https://publications.waset.org/abstracts/search?q=automation%20engineering" title=" automation engineering"> automation engineering</a> </p> <a href="https://publications.waset.org/abstracts/6970/control-algorithm-for-home-automation-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">632</span> The Task-Centered Instructional Strategy to Prepare Teachers for Integrating Robotics Activities in Science Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doaa%20Saad">Doaa Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Verner"> Igor Verner</a>, <a href="https://publications.waset.org/abstracts/search?q=Rinat%20B.%20Rosenberg-Kima"> Rinat B. Rosenberg-Kima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This case study demonstrates how the Task-Centered Instructional Strategy can be used to develop robotics competencies in middle-school science teachers without programming knowledge, thereby reducing their anxiety about robotics. Sixteen middle school science teachers participated in a teachers’ professional development program. The strategy combines the progression of real-world tasks with explicit instruction that serves as the backbone of instruction. The designed progression includes three tasks that integrate building and programming robots, pedagogy, and science knowledge, with an increasing level of complexity and decreasing level of support. We used EV3 LEGO kits and programming blocks, a new technology for most of the participating teachers. Pre-post questionnaires were used to examine teachers’ anxiety in performing robotics tasks before the program began and after the program ended. In addition, post-program questionnaires were used to obtain teachers’ feedback on the program’s overall quality. The case study results showed that teachers were less anxious about performing robotics tasks after the program and were highly satisfied with the professional development program. Overall, our research findings indicate a positive effect of the Task-Centered Instructional Strategy for preparing in-service science teachers to integrate robotics activities into their science classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competencies" title="competencies">competencies</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20robotics" title=" educational robotics"> educational robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=task-centered%20instructional%20strategy" title=" task-centered instructional strategy"> task-centered instructional strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=teachers%E2%80%99%20professional%20development" title=" teachers’ professional development"> teachers’ professional development</a> </p> <a href="https://publications.waset.org/abstracts/165845/the-task-centered-instructional-strategy-to-prepare-teachers-for-integrating-robotics-activities-in-science-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">631</span> Knowledge Based Behaviour Modelling and Execution in Service Robotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suraj%20Nair">Suraj Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravindkumar%20Vijayalingam"> Aravindkumar Vijayalingam</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Perzylo"> Alexander Perzylo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alois%20Knoll"> Alois Knoll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20robotics" title="cognitive robotics">cognitive robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=reasoning" title=" reasoning"> reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20robotics" title=" service robotics"> service robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20based%20systems" title=" task based systems"> task based systems</a> </p> <a href="https://publications.waset.org/abstracts/59980/knowledge-based-behaviour-modelling-and-execution-in-service-robotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> Robotic Assistance in Nursing Care: Survey on Challenges and Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Gliesche">Pascal Gliesche</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathrin%20Seibert"> Kathrin Seibert</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Kowalski"> Christian Kowalski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Domhoff"> Dominik Domhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Max%20Pfingsthorn"> Max Pfingsthorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Karin%20Wolf-Ostermann"> Karin Wolf-Ostermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Hein"> Andreas Hein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robotic assistance in nursing care is an increasingly important area of research and development. Facing a shortage of labor and an increasing number of people in need of care, the German Nursing Care Innovation Center (Pflegeinnovationszentrum, PIZ) aims to address these challenges from the side of technology. Little is known about nurses experiences with existing robotic assistance systems. Especially nurses perspectives on starting points for the development of robotic solutions, that target recurring burdensome tasks in everyday nursing care, are of interest. This paper presents findings focusing on robotics resulting from an explanatory mixed-methods study on nurses experiences with and their expectations for innovative technologies in nursing care in stationary and ambulant care facilities and hospitals in Germany. Based on the findings, eight scenarios for robotic assistance are identified based on the real needs of practitioners. An initial system addressing a single use-case is described to show perspectives for the use of robots in nursing care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation" title="robotics and automation">robotics and automation</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20management" title=" engineering management"> engineering management</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20in%20medicine%20and%20biology" title=" engineering in medicine and biology"> engineering in medicine and biology</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20services" title=" medical services"> medical services</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health-care" title=" public health-care"> public health-care</a> </p> <a href="https://publications.waset.org/abstracts/127492/robotic-assistance-in-nursing-care-survey-on-challenges-and-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> The Effect of Computerized Systems of Office Automation on Employees&#039; Productivity Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hemmati">Mohammad Hemmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taban"> Mohammad Taban</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yasini"> Ali Yasini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the factors that can play an important role in increasing productivity is the optimal use of information technology, which in this area today has a significant role to play in computer systems of office automation in organizations and companies. Therefore, this research has been conducted with the aim of investigating the effect of the relationship between computerized systems of office automation and the productivity of employees in the municipality of Ilam city. The statistical population of this study was 110 people. Using Cochran formula, the minimum sample size is 78 people. The present research is a descriptive-looking research in terms of the type of objective view. A questionnaire was used to collect data. To assess the reliability of variables, Cornbrash’s alpha coefficient was used, which was equal to 0.85; SPSS19 and Pearson test were used to analyze the data and test the hypothesis of the research. In this research, three hypotheses of the relationship between office automation with efficiency, performance, and effectiveness were investigated. The results showed a direct and positive relationship between the office automation system and the increase in the efficiency, effectiveness, and efficiency of employees, and there was no reason to reject these hypotheses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=effectiveness" title=" effectiveness"> effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a> </p> <a href="https://publications.waset.org/abstracts/97544/the-effect-of-computerized-systems-of-office-automation-on-employees-productivity-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> A Method of Manufacturing Low Cost Utility Robots and Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gregory%20E.%20Ofili">Gregory E. Ofili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=utility%20robot" title=" utility robot"> utility robot</a>, <a href="https://publications.waset.org/abstracts/search?q=small-hold%20farm" title=" small-hold farm"> small-hold farm</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20operating%20system" title=" robot operating system"> robot operating system</a> </p> <a href="https://publications.waset.org/abstracts/166220/a-method-of-manufacturing-low-cost-utility-robots-and-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> Automated Testing of Workshop Robot Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arne%20Hitzmann">Arne Hitzmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Wentscher"> Philipp Wentscher</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Gabel"> Alexander Gabel</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinhard%20Gerndt"> Reinhard Gerndt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous mobile robots can be found in a wide field of applications. Their types range from household robots over workshop robots to autonomous cars and many more. All of them undergo a number of testing steps during development, production and maintenance. This paper describes an approach to improve testing of robot behavior. It was inspired by the RoboCup @work competition that itself reflects a robotics benchmark for industrial robotics. There, scaled down versions of mobile industrial robots have to navigate through a workshop-like environment or operation area and have to perform tasks of manipulating and transporting work pieces. This paper will introduce an approach of automated vision-based testing of the behavior of the so called youBot robot, which is the most widely used robot platform in the RoboCup @work competition. The proposed system allows automated testing of multiple tries of the robot to perform a specific missions and it allows for the flexibility of the robot, e.g. selecting different paths between two tasks within a mission. The approach is based on a multi-camera setup using, off the shelf cameras and optical markers. It has been applied for test-driven development (TDD) and maintenance-like verification of the robot behavior and performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supervisory%20control" title="supervisory control">supervisory control</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=markers" title=" markers"> markers</a>, <a href="https://publications.waset.org/abstracts/search?q=mono%20vision" title=" mono vision"> mono vision</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a> </p> <a href="https://publications.waset.org/abstracts/8364/automated-testing-of-workshop-robot-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> Integration Network ASI in Lab Automation and Networks Industrial in IFCE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Fernandes%20Teixeira%20Filho">Jorge Fernandes Teixeira Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Oliveira%20Alcantara%20Fontenele"> André Oliveira Alcantara Fontenele</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89rick%20Arag%C3%A3o%20Ribeiro"> Érick Aragão Ribeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20networks" title=" industrial networks"> industrial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20systems" title=" SCADA systems"> SCADA systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20automation" title=" lab automation"> lab automation</a> </p> <a href="https://publications.waset.org/abstracts/41367/integration-network-asi-in-lab-automation-and-networks-industrial-in-ifce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=robotics%20and%20automation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10