CINXE.COM

Search results for: cosmic rays

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cosmic rays</title> <meta name="description" content="Search results for: cosmic rays"> <meta name="keywords" content="cosmic rays"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cosmic rays" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cosmic rays"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 256</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cosmic rays</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tathiana%20Yesenia%20Coy%20Mondrag%C3%B3n">Tathiana Yesenia Coy Mondragón</a>, <a href="https://publications.waset.org/abstracts/search?q=Jossitt%20William%20Vargas%20Cruz"> Jossitt William Vargas Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Leonardo%20Guti%C3%A9rrez%20G%C3%B3mez"> Cristian Leonardo Gutiérrez Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CORSIKA" title="CORSIKA">CORSIKA</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title=" cosmic rays"> cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=eas" title=" eas"> eas</a>, <a href="https://publications.waset.org/abstracts/search?q=Colombia" title=" Colombia"> Colombia</a> </p> <a href="https://publications.waset.org/abstracts/163412/study-of-atmospheric-cascades-generated-by-primary-comic-rays-from-simulations-in-corsika-for-the-city-of-tunja-in-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> The Galactic Magnetic Field in the Light of Starburst-Generated Ultrahigh-Energy Cosmic Rays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20A.%20Anchordoqui">Luis A. Anchordoqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20F.%20Soriano"> Jorge F. Soriano</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20F.%20Torres"> Diego F. Torres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auger data show evidence for a correlation between ultrahigh-energy cosmic rays (UHECRs) and nearby starburst galaxies. This intriguing correlation is consistent with data collected by the Telescope Array, which have revealed a much more pronounced directional 'hot spot' in arrival directions not far from the starburst galaxy M82. In this work, we assume starbursts are sources of UHECRs, and we investigate the prospects to use the observed distribution of UHECR arrival directions to constrain galactic magnetic field models. We show that if the Telescope Array hot spot indeed originates on M82, UHECR data would place a strong constraint on the turbulent component of the galactic magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galactic%20magnetic%20field" title="galactic magnetic field">galactic magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Auger%20observatory" title=" Pierre Auger observatory"> Pierre Auger observatory</a>, <a href="https://publications.waset.org/abstracts/search?q=telescope%20array" title=" telescope array"> telescope array</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-high%20energy%20cosmic%20rays" title=" ultra-high energy cosmic rays"> ultra-high energy cosmic rays</a> </p> <a href="https://publications.waset.org/abstracts/102702/the-galactic-magnetic-field-in-the-light-of-starburst-generated-ultrahigh-energy-cosmic-rays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Neuronal Networks for the Study of the Effects of Cosmic Rays on Climate Variations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jossitt%20Williams%20Vargas%20Cruz">Jossitt Williams Vargas Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aura%20Jazm%C3%ADn%20P%C3%A9rez%20R%C3%ADos"> Aura Jazmín Pérez Ríos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variations of solar dynamics have become a relevant topic of study due to the effects of climate changes generated on the earth. One of the most disconcerting aspects is the variability that the sun has on the climate is the role played by sunspots (extra-atmospheric variable) in the modulation of the Cosmic Rays CR (extra-atmospheric variable). CRs influence the earth's climate by affecting cloud formation (atmospheric variable), and solar cycle influence is associated with the presence of solar storms, and the magnetic activity is greater, resulting in less CR entering the earth's atmosphere. The different methods of climate prediction in Colombia do not take into account the extra-atmospheric variables. Therefore, correlations between atmospheric and extra-atmospheric variables were studied in order to implement a Python code based on neural networks to make the prediction of the extra-atmospheric variable with the highest correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlations" title="correlations">correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title=" cosmic rays"> cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=sun" title=" sun"> sun</a>, <a href="https://publications.waset.org/abstracts/search?q=sunspots%20and%20variations." title=" sunspots and variations."> sunspots and variations.</a> </p> <a href="https://publications.waset.org/abstracts/163231/neuronal-networks-for-the-study-of-the-effects-of-cosmic-rays-on-climate-variations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Cosmic Radiation Hazards and Protective Strategies in Space Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Mostafavi">Mehrnaz Mostafavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Azani"> Alireza Azani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahtab%20Shabani"> Mahtab Shabani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Ghafari"> Fatemeh Ghafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While filled with promise and wonder, space exploration also presents significant challenges, one of the foremost being the threat of cosmic radiation to astronaut health. Recent advancements in assessing these risks and developing protective strategies have shed new light on this issue. Cosmic radiation encompasses a variety of high-energy particles originating from sources like solar particle events, galactic cosmic rays, and cosmic rays from beyond the solar system. These particles, composed of protons, electrons, and heavy ions, pose a substantial threat to human health in space due to the lack of Earth's protective atmosphere and magnetic field. Researchers have made significant progress in assessing the risks associated with cosmic radiation exposure. By employing advanced dosimetry techniques and conducting biological studies, they have gained insights into how cosmic radiation affects astronauts' health, including increasing the risk of cancer and radiation sickness. This research has led to personalized risk assessment methods tailored to individual astronaut profiles. Distinctive protection strategies have been proposed to combat the dangers of cosmic radiation. These include developing spacecraft shielding materials and designs to enhance radiation protection. Additionally, researchers are exploring pharmacological interventions such as radioprotective drugs and antioxidant therapies to mitigate the biological effects of radiation exposure and preserve astronaut well-being. The findings from recent research have significant implications for the future of space exploration. By advancing our understanding of cosmic radiation risks and developing effective protection strategies, we pave the way for safer and more sustainable human missions beyond Earth's orbit. This is especially crucial for long-duration missions to destinations like Mars, where astronauts will face prolonged exposure to cosmic radiation. In conclusion, recent research has marked a milestone in addressing the challenges posed by cosmic radiation in space exploration. By delving into the complexities of cosmic radiation exposure and developing innovative protection strategies, scientists are ensuring the health and resilience of astronauts as they venture into the vast expanse of the cosmos. Continued research and collaboration in this area are essential for overcoming the cosmic radiation challenge and enabling humanity to embark on new frontiers of exploration and discovery in space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Space%20exploration" title="Space exploration">Space exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20radiation" title=" cosmic radiation"> cosmic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=astronaut%20health" title=" astronaut health"> astronaut health</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=protective%20strategies" title=" protective strategies"> protective strategies</a> </p> <a href="https://publications.waset.org/abstracts/186188/cosmic-radiation-hazards-and-protective-strategies-in-space-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Correlation Between Forbush-Decrease Amplitude Detected by Mountain Chacaltaya Neutron Monitor and Solar Wind Electric Filed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebwato%20Nasurudiin">Sebwato Nasurudiin</a>, <a href="https://publications.waset.org/abstracts/search?q=Akimasa%20Yoshikawa"> Akimasa Yoshikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elsaid"> Ahmed Elsaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Mahrous"> Ayman Mahrous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the correlation between the amplitude of Forbush Decreases (FDs) detected by the Mountain Chacaltaya neutron monitor and the solar wind electric field (E). Forbush Decreases, characterized by sudden drops in cosmic ray intensity, are typically associated with interplanetary coronal mass ejections (ICMEs) and high-speed solar wind streams. The Mountain Chacaltaya neutron monitor, located at a high altitude in Bolivia, offers an optimal setting for observing cosmic ray variations. The solar wind electric field, influenced by the solar wind velocity and interplanetary magnetic field, significantly impacts cosmic ray transport in the heliosphere. By analyzing neutron monitor data alongside solar wind parameters, we found a high correlation between E and FD amplitudes with a correlation factor of nearly 87%. The findings enhance our understanding of space weather processes, cosmic ray modulation, and solar-terrestrial interactions, providing valuable insights for predicting space weather events and mitigating their technological impacts. This study contributes to the broader astrophysics field by offering empirical data on cosmic ray modulation mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title="cosmic rays">cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=Forbush%20decrease" title=" Forbush decrease"> Forbush decrease</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20wind" title=" solar wind"> solar wind</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20monitor" title=" neutron monitor"> neutron monitor</a> </p> <a href="https://publications.waset.org/abstracts/188217/correlation-between-forbush-decrease-amplitude-detected-by-mountain-chacaltaya-neutron-monitor-and-solar-wind-electric-filed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Kemmer Oscillator in Cosmic String Background</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Messai">N. Messai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boumali"> A. Boumali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we aim to solve the two dimensional Kemmer equation including Dirac oscillator interaction term, in the background space-time generated by a cosmic string which is submitted to an uniform magnetic field. Eigenfunctions and eigenvalues of our problem have been found and the influence of the cosmic string space-time on the energy spectrum has been analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemmer%20oscillator" title="Kemmer oscillator">Kemmer oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20string" title=" cosmic string"> cosmic string</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20oscillator" title=" Dirac oscillator"> Dirac oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunctions" title=" eigenfunctions"> eigenfunctions</a> </p> <a href="https://publications.waset.org/abstracts/22318/kemmer-oscillator-in-cosmic-string-background" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Design and Analysis of Shielding Magnetic Field for Active Space Radiation Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaoyan%20Huang">Chaoyan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongxia%20Zheng"> Hongxia Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For deep space exploration and long duration interplanetary manned missions, protection of astronauts from cosmic radiation is an unavoidable problem. However, passive shielding can be little effective for protecting particles which energies are greater than 1GeV/nucleon. In this study, active magnetic protection method is adopted. Taking into account the structure and size of the end-cap, eight shielding magnetic field configurations are designed based on the Hoffman configuration. The shielding effect of shielding magnetic field structure, intensity B and thickness L on H particles with 2GeV energy is compared by test particle simulation. The result shows that the shielding effect is better with the linear type magnetic field structure in the end-cap region. Furthermore, two magnetic field configurations with better shielding effect are investigated through H and He galactic cosmic spectra. And the shielding effect of the linear type configuration adopted in the barrel and end-cap regions is best. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galactic%20cosmic%20rays" title="galactic cosmic rays">galactic cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20protection" title=" active protection"> active protection</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20magnetic%20field%20configuration" title=" shielding magnetic field configuration"> shielding magnetic field configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effect" title=" shielding effect"> shielding effect</a> </p> <a href="https://publications.waset.org/abstracts/108740/design-and-analysis-of-shielding-magnetic-field-for-active-space-radiation-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Cosmic Dust as Dark Matter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Prevenslik">Thomas Prevenslik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weakly Interacting Massive Particle (WIMP) experiments suggesting dark matter does not exist are consistent with the argument that the long-standing galaxy rotation problem may be resolved without the need for dark matter if the redshift measurements giving the higher than expected galaxy velocities are corrected for the redshift in cosmic dust. Because of the ubiquity of cosmic dust, all velocity measurements in astronomy based on redshift are most likely overstated, e.g., an accelerating Universe expansion need not exist if data showing supernovae brighter than expected based on the redshift/distance relation is corrected for the redshift in dust. Extensions of redshift corrections for cosmic dust to other historical astronomical observations are briefly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20theories" title="alternative theories">alternative theories</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20dust%20redshift" title=" cosmic dust redshift"> cosmic dust redshift</a>, <a href="https://publications.waset.org/abstracts/search?q=doppler%20effect" title=" doppler effect"> doppler effect</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20electrodynamics" title=" quantum electrodynamics"> quantum electrodynamics</a> </p> <a href="https://publications.waset.org/abstracts/60993/cosmic-dust-as-dark-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Transcendental Birth of the Column from the Full Jar Expressed at the Notre Dame of Paris and Saint Germain-des-Pres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Woobang">Kang Woobang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The base of the column is not only a support but also the embodiment of profound symbolism full of cosmic energy. Finding the full jars from which various energy emanate at the Notre Dame of Paris and Saint-Germain-des-Pres in France, the author was so shocked. As the column is cosmic tree, from the Full Jar full with cosmic energy emerges the cosmic tree composed of shaft and capital. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full%20picher%20or%20jar" title="full picher or jar">full picher or jar</a>, <a href="https://publications.waset.org/abstracts/search?q=transcendental%20or%20supernatural%20birth%20from%20yonggi" title=" transcendental or supernatural birth from yonggi"> transcendental or supernatural birth from yonggi</a>, <a href="https://publications.waset.org/abstracts/search?q=yonggimun" title=" yonggimun"> yonggimun</a>, <a href="https://publications.waset.org/abstracts/search?q=yonggissak" title=" yonggissak"> yonggissak</a> </p> <a href="https://publications.waset.org/abstracts/18833/transcendental-birth-of-the-column-from-the-full-jar-expressed-at-the-notre-dame-of-paris-and-saint-germain-des-pres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> The Relationship between the Speed of Light and Cosmic Background Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youping%20Dai">Youping Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinping%20Dai"> Xinping Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyun%20Li"> Xiaoyun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of Cosmic Background Gravitational Potential (CBGP) was discussed. It is helpful to reveal the equivalence of gravitational and inertial mass, and to understand the origin of inertia. The derivation is similar to the classic approach adopted by Landau in the book 'Classical Theory of Fields'.The main differences are that we used CBGP = Lambda^2 instead of c^2, and used CBGP energy E = m*Lambda^2 instead of kinetic energy E = (1/2)m*v^2 as initial assumptions (where Lambda has the same units for measuring velocity). It showed that Lorentz transformation, rest energy and Newtonian mechanics are all affected by $CBGP$, and the square of the speed of light is equal to CBGP too. Finally, the top value of cosmic mass density and cosmic radius were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20origin%20of%20inertia" title="the origin of inertia">the origin of inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach%27s%20principle" title=" Mach&#039;s principle"> Mach&#039;s principle</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20principle" title=" equivalence principle"> equivalence principle</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20background%20potential" title=" cosmic background potential"> cosmic background potential</a> </p> <a href="https://publications.waset.org/abstracts/29057/the-relationship-between-the-speed-of-light-and-cosmic-background-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> A Cosmic Time Dilation Model for the Week of Creation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20W.%20Cheung">Kwok W. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A scientific interpretation of creation reconciling the beliefs of six literal days of creation and a 13.7-billion-year-old universe currently perceived by most modern cosmologists is proposed. We hypothesize that the reference timeframe of God’s creation is associated with some cosmic time different from the earth's time. We show that the scale factor of earth time to cosmic time can be determined by the solution of the Friedmann equations. Based on this scale factor and some basic assumptions, we derive a Cosmic Time Dilation model that harmonizes the literal meaning of creation days and scientific discoveries with remarkable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmological%20expansion" title="cosmological expansion">cosmological expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20dilation" title=" time dilation"> time dilation</a>, <a href="https://publications.waset.org/abstracts/search?q=creation" title=" creation"> creation</a>, <a href="https://publications.waset.org/abstracts/search?q=genesis" title=" genesis"> genesis</a>, <a href="https://publications.waset.org/abstracts/search?q=relativity" title=" relativity"> relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=Big%20Bang" title=" Big Bang"> Big Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=biblical%20hermeneutics" title=" biblical hermeneutics"> biblical hermeneutics</a> </p> <a href="https://publications.waset.org/abstracts/181901/a-cosmic-time-dilation-model-for-the-week-of-creation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Cosmic Background Reduction in the Radiocarbon Measurements by Liquid Scintillation Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natasa%20Todorovic">Natasa Todorovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Nikolov">Jovana Nikolov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Guard detector efficiency, cosmic background, and its variation were determinate using ultra low-level liquid scintillation spectrometer Quantulus 1220, equipped with an anti-Compton guard detector, in the surface laboratory at the University of Novi Sad, Serbia, Atmospheric pressure variation has an observable effect on the anti-Compton guard detector count rate. and the cosmic muon flux is lower during a high-pressure period. Also, the guard detector Compton continuum provides a good view of the level of gamma radiation in the laboratory environment. The efficiency of the guard detector in the channel interval from 750 to 1024 was assessed to 93.45%; efficiency in the entire window (channels 1 to 1024) was 75.23%, which is in good agreement with literature data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20radiation" title="cosmic radiation">cosmic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20reduction" title=" background reduction"> background reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20scintillation%20counting" title=" liquid scintillation counting"> liquid scintillation counting</a>, <a href="https://publications.waset.org/abstracts/search?q=guard%20detector%20efficiency" title=" guard detector efficiency"> guard detector efficiency</a> </p> <a href="https://publications.waset.org/abstracts/140808/cosmic-background-reduction-in-the-radiocarbon-measurements-by-liquid-scintillation-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubens%20P.%20Costa">Rubens P. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20A.%20Leigui%20de%20Oliveira"> Marcelo A. Leigui de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays%20propagation" title="cosmic rays propagation">cosmic rays propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=extragalactic%20magnetic%20fields" title=" extragalactic magnetic fields"> extragalactic magnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20deflections" title=" magnetic deflections"> magnetic deflections</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-high%20energy" title=" ultra-high energy"> ultra-high energy</a> </p> <a href="https://publications.waset.org/abstracts/95547/propagation-of-ultra-high-energy-cosmic-rays-through-extragalactic-magnetic-fields-an-exploratory-study-of-the-distance-amplification-from-rectilinear-propagation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Collins">Ronald Collins</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathon%20Coleman"> Jonathon Coleman</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Dasari"> Joel Dasari</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Holt"> George Holt</a>, <a href="https://publications.waset.org/abstracts/search?q=Carl%20Metelko"> Carl Metelko</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Murdoch"> Matthew Murdoch</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Morgan"> Alexander Morgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Jie%20Schnellbach"> Yan-Jie Schnellbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Mills"> Robert Mills</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20Edwards"> Gareth Edwards</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Roberts"> Alexander Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-neutrino" title="anti-neutrino">anti-neutrino</a>, <a href="https://publications.waset.org/abstracts/search?q=GEANT4" title=" GEANT4"> GEANT4</a>, <a href="https://publications.waset.org/abstracts/search?q=muon" title=" muon"> muon</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=occlusion" title=" occlusion"> occlusion</a> </p> <a href="https://publications.waset.org/abstracts/150759/cosmic-muon-tomography-at-the-wylfa-reactor-site-using-an-anti-neutrino-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Cyclic Evolution of a Two Fluid Diffusive Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhayan%20Maity">Subhayan Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complete scenario of cosmic evolution from emergent phase to late time acceleration (i.e. non-singular ever expanding Universe) is a popular preference in the recent cosmology. Yet one can’t exclude the idea that other type of evolution pattern of the Universe may also be possible. Especially, the bouncing scenario is becoming a matter of interest now a days. The present work is an exhibition of such a different pattern of cosmic evolution where the evolution of Universe has been shown as a cyclic thermodynamic process. Under diffusion mechanism (non-equilibrium thermodynamic process), the cosmic evolution has been modelled as [ emergent - accelerated expansion - decelerated expansion - decelerated contraction - accelerated contraction - emergent] . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-equilibrium%20thermodynamics" title="non-equilibrium thermodynamics">non-equilibrium thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20singular%20evolution%20of%20universe" title=" non singular evolution of universe"> non singular evolution of universe</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20evolution" title=" cyclic evolution"> cyclic evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusive%20fluid" title=" diffusive fluid"> diffusive fluid</a> </p> <a href="https://publications.waset.org/abstracts/146121/cyclic-evolution-of-a-two-fluid-diffusive-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> X-Ray Shielding Properties of Bismuth-Borate Glass Doped with Rare-Earth Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Kheswa">Vincent Kheswa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-rays are ionizing electromagnetic radiation that is used in various industries such as computed tomography scans, dental X-rays, and screening freight trains. However, they pose health risks to humans if they are not shielded properly. In recent years, many researchers around the globe have been searching for nontoxic best possible glass materials for shielding X-rays. In this work, the x-ray shielding properties of 45Na₂O + 10 Bi₂O₃ + (5 - x)TiO₂+ (x) Nb₂O₅ + 40 P₂O₅, were x = 0, 1, 3, 5 mol%, glass materials were studied. The results revealed that the glass sample with the highest TiO2 content has the highest mass and linear attenuation coefficients and lowest half-value thickness, tenth-value thickness and mean-free path in the 20 to 80 keV energy region. The sample with 3 mol% of Nb₂O₅ has the highest mass and linear attenuation coefficients and the lowest half-value thickness, tenth-value thickness, and mean-free path at 15 keV and photon energies between 80 to 300 keV. It was, therefore, concluded that 45Na₂O + 10 Bi₂O₃ + 5 TiO₂ + 40 P₂O₅ glass is best for shielding x-rays of energies between 20 and 80 keV, while 45Na₂O + 10 Bi₂O₃ + 2 TiO₂ + 3 Nb₂O₅ + 40 P₂O₅ is best for shielding 15 keV x-rays and x-rays of energies between 80 keV and 300 keV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth-titanium-phosphate%20glass" title="bismuth-titanium-phosphate glass">bismuth-titanium-phosphate glass</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20shielding" title=" x-ray shielding"> x-ray shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=LAC" title=" LAC"> LAC</a>, <a href="https://publications.waset.org/abstracts/search?q=MAC" title=" MAC"> MAC</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20shielding" title=" radiation shielding"> radiation shielding</a> </p> <a href="https://publications.waset.org/abstracts/180562/x-ray-shielding-properties-of-bismuth-borate-glass-doped-with-rare-earth-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghodbane">A. Ghodbane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saad"> M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Boland"> J. F. Boland</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thibeault"> C. Thibeault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators%E2%80%99%20faults" title="actuators’ faults">actuators’ faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20diagnosis" title=" fault detection and diagnosis"> fault detection and diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20flight%20control" title=" fault tolerant flight control"> fault tolerant flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20approach%20for%20fault%20reconstruction" title=" geometric approach for fault reconstruction"> geometric approach for fault reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability" title=" Lyapunov stability"> Lyapunov stability</a> </p> <a href="https://publications.waset.org/abstracts/7903/applied-actuator-fault-accommodation-in-flight-control-systems-using-fault-reconstruction-based-fdd-and-smc-reconfiguration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Promoting Stem Education and a Cosmic Perspective by Using 21st Century Science of Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohan%20Roberts">Rohan Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this project was to collaborate with a group of high-functioning, more-able students (aged 15-18) to promote STEM Education and a love for science by bringing a cosmic perspective into the classroom and high school environment. This was done using 21st century science of learning, a focus on the latest research on Neuroeducation, and modern pedagogical methods based on Howard Gardner's theory of Multiple Intelligences, Bill Lucas’ theory of New Smarts, and Sir Ken Robinson’s recommendations on encouraging creativity. The result was an increased sense of passion, excitement, and wonder about science in general, and about the marvels of space and the universe in particular. In addition to numerous unique and innovative science-based initiatives, clubs, workshops, and science trips, this project also saw a marked rise in student-teacher collaboration in science learning and in student engagement with the general public through the press, social media, and community-based initiatives. This paper also outlines the practical impact that bringing a cosmic perspective into the classroom has had on the lives, interests, and future career prospects of the students involved in this endeavour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20perspective" title="cosmic perspective">cosmic perspective</a>, <a href="https://publications.waset.org/abstracts/search?q=gifted%20and%20talented" title=" gifted and talented"> gifted and talented</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-education" title=" neuro-education"> neuro-education</a>, <a href="https://publications.waset.org/abstracts/search?q=STEM%20education" title=" STEM education"> STEM education</a> </p> <a href="https://publications.waset.org/abstracts/26695/promoting-stem-education-and-a-cosmic-perspective-by-using-21st-century-science-of-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousif%20Mohamed%20Y.%20Abdallah">Yousif Mohamed Y. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Razan%20Manofely"> Razan Manofely</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajab%20M.%20Ben%20Yousef"> Rajab M. Ben Yousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhancement" title="enhancement">enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=x-rays" title=" x-rays"> x-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20intensity%20values" title=" pixel intensity values"> pixel intensity values</a>, <a href="https://publications.waset.org/abstracts/search?q=MatLab" title=" MatLab"> MatLab</a> </p> <a href="https://publications.waset.org/abstracts/31031/enhancement-of-x-rays-images-intensity-using-pixel-values-adjustments-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Peruvian Diagnostic Reference Levels for Patients Undergoing Different X-Rays Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20Portocarrero%20Bonifaz">Andres Portocarrero Bonifaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Caterina%20Sandra%20Camarena%20Rodriguez"> Caterina Sandra Camarena Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Palma%20Esparza"> Ricardo Palma Esparza</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Antonio%20Romero%20Carlos"> Nicolas Antonio Romero Carlos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reference levels for common X-rays procedures have been set in many protocols. In Peru, during quality control tests, the dose tolerance is set by these international recommendations. Nevertheless, further studies can be made to assess the national reality and relate dose levels with different parameters such as kV, mA/mAs, exposure time, type of processing (digital, digitalized or conventional), etc. In this paper three radiologic procedures were taken into account for study, general X-rays (fixed and mobile), intraoral X-rays (fixed, mobile and portable) and mammography. For this purpose, an Unfors Xi detector was used; the dose was measured at a focus - detector distance which varied depending on the procedure, and was corrected afterward to find the surface entry dose. The data used in this paper was gathered over a period of over 3 years (2015-2018). In addition, each X-ray machine was taken into consideration only once. The results hope to achieve a new standard which reflects the local practice, and address the issues of the ‘Bonn Call for Action’ in Peru. For this purpose, the 75% percentile of the dose of each radiologic procedure was calculated. In future quality control services, those machines with dose values higher than the selected threshold should be informed that they surpass the reference dose levels established in comparison other radiological centers in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20X-rays" title="general X-rays">general X-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=intraoral%20X-rays" title=" intraoral X-rays"> intraoral X-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20dose%20levels" title=" reference dose levels"> reference dose levels</a> </p> <a href="https://publications.waset.org/abstracts/94936/peruvian-diagnostic-reference-levels-for-patients-undergoing-different-x-rays-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Radioprotective Effects of Selenium and Vitamin-E against 6Mv X-Rays in Human Volunteers Blood Lymphocytes by Micronuclei Assay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Changizi">Vahid Changizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aram%20Rostami"> Aram Rostami</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Mosavi"> Akbar Mosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose of study: Critical macromolecules of cells such as DNA are in exposure to damage of free radicals that induced from interaction of ionizing radiation with biological systems. Selenium and vitamin-E are natural compound that has been shown to be a direct free radical scavenger. The aim of this study was to investigate the in vivo/in vitro radioprotective effect of selenium and vitamin-E separately and synergistically against genotoxicity induced by 6MV x-rays irradiation in cultured blood lymphocytes from 15 human volunteers. Methods: Fifteen volunteers were divided in three groups include A, B and C. These groups were given slenium(800 IU), vitamin-E(100 mg) and selenium(400 IU) + vitamin-E(50 mg), respectively. Peripheral blood samples were collected from each group before(0 hr) and 1, 2 and 3 hr after selenium and vitamin-E administration (separately and synergistically). Then the blood samples were irradiated to 200 cGy of 6 Mv x-rays. After that, lymphocyte samples were cultured with mitogenic stimulation to determine the chromosomal aberrations wih micronucleus assay in cytokinesis-blocked binucleated cells. Results: The lymphocytes in the blood samples collected at 1 hr after ingestion selenium and vitamin-E, exposed in vitro to x-rays exhibited a significant decrease in the incidence of micronuclei, compared with control group at 0 hr. The maximum protection and decrease in frequency of micronuclei(50%) was observed at 1 hr after administration of selenium and vitamin-E synergistically. Conclusion: The data suggest that ingestion of selenium and vitamin-E as a radioprotector substances before exposures may reduce genetic damage caused by x-rays irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=x-rays" title="x-rays">x-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=selenium" title=" selenium"> selenium</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin-e" title=" vitamin-e"> vitamin-e</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocyte" title=" lymphocyte"> lymphocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=micronuclei" title=" micronuclei"> micronuclei</a> </p> <a href="https://publications.waset.org/abstracts/44233/radioprotective-effects-of-selenium-and-vitamin-e-against-6mv-x-rays-in-human-volunteers-blood-lymphocytes-by-micronuclei-assay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Factors Affecting Air Surface Temperature Variations in the Philippines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Christian%20Lequiron">John Christian Lequiron</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerry%20Bagtasa"> Gerry Bagtasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Cabrera"> Olivia Cabrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Leoncio%20Amadore"> Leoncio Amadore</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolentino%20Moya"> Tolentino Moya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20surface%20temperature" title="air surface temperature">air surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ENSO" title=" ENSO"> ENSO</a>, <a href="https://publications.waset.org/abstracts/search?q=galactic%20cosmic%20rays" title=" galactic cosmic rays"> galactic cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothed%20sunspot%20number" title=" smoothed sunspot number"> smoothed sunspot number</a> </p> <a href="https://publications.waset.org/abstracts/58180/factors-affecting-air-surface-temperature-variations-in-the-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> An Exploratory Study Applied to Search Relationship between Humans and Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hashelaf">Mohamed Hashelaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Osdody"> Ahmed Al-Osdody</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we focused our efforts on one of the vaguest subjects in astrophysics that is the formation and evolution of the universe until the arrival of humans. Through an in-depth exploration of the origins of the universe, understanding what has happened since the Big Bang until now and checking the history of creation, we can answer questions about the future of life, the possibility of its existence elsewhere in the universe and to be able to understand how we came, what our role in the circle of life is and what the future of our development will be. Here is where we used systematic steps that allowed us first and foremost to identify the reason behind the big bang itself that formed a large cloud of cosmic dust. Then after a period of time from the expansion of the universe and its coolness, the initial molecules of gases from the cosmic cloud began to condense, forming a very dense field of gravity that after millions of years led to the formation of stars, galaxies, even earth and the else planets. Finally, it became clear before us that after the earth has formed, the existence of liquid water made it possible for life to form, starting from the bacteria all the way until the appearance of the humans that we know today. But it does not stop here. If we look and contemplate in ourselves as humans, we will understand that the universe is inside us and that’s what makes us exceptional. All of this means that just as life on earth was created, it could have been on other planets as well. It also means that we are the universe’s key to understand itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Big%20Bang" title="Big Bang">Big Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20dust" title=" cosmic dust"> cosmic dust</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20elements" title=" primary elements"> primary elements</a>, <a href="https://publications.waset.org/abstracts/search?q=universe" title=" universe"> universe</a> </p> <a href="https://publications.waset.org/abstracts/99846/an-exploratory-study-applied-to-search-relationship-between-humans-and-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Measurement of Rayleigh Scattering Cross-Section of ₆₀Nd K X-Rays Elements with 26 ≤ Z≤ 90</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Govind%20Sharma">Govind Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20S.%20Kainth"> Harpreet S. Kainth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rayleigh scattering differential cross sections have been measured for the 36.84 keV (60Nd Kα2), 37.36 keV (60Nd Kα1) and 42.27 keV (60Nd Kβ1,3) X-rays. These measurements have been done in 44 elements with 22 ≤ Z ≤ 90 at an angle of 1390. The measurements are performed by using a radiation source consisting of an annular 60Nd foil excited by the 59.54 KeV γ-ray photons from 241Am radioactive source. The Nd Kα2, Kβ1,3 X-ray photons from the 60Nd annular foil (secondary photon source) are made to scatter from the target and the scattered photons are detected using Canberra made low energy Germanium (LEGe) detector. The measured Rayleigh scattering cross sections are compared with the theoretical MF, MFASF and the SM values. The noticeable deviations are observed from the MF, MFASF and SM values for 36.84 keV (60Nd Kα2), 37.36 keV (60Nd Kα1) and 42.27 keV (60Nd Kβ1,3) X-rays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Photon-electron%20interaction" title="Photon-electron interaction">Photon-electron interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20scattering" title=" Rayleigh scattering"> Rayleigh scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20fluorescence" title=" X-ray fluorescence"> X-ray fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray "> X-ray </a> </p> <a href="https://publications.waset.org/abstracts/79355/measurement-of-rayleigh-scattering-cross-section-of-60nd-k-x-rays-elements-with-26-z-90" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Investigation of Cost Effective Double Layered Slab for γ-Ray Shielding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kulwinder%20Singh%20Mann">Kulwinder Singh Mann</a>, <a href="https://publications.waset.org/abstracts/search?q=Manmohan%20Singh%20Heer"> Manmohan Singh Heer</a>, <a href="https://publications.waset.org/abstracts/search?q=Asha%20Rani"> Asha Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safe storage of radioactive materials has become an important issue. Nuclear engineering necessitates the safe handling of radioactive materials emitting high energy gamma-rays. Hazards involved in handling radioactive materials insist suitable shielded enclosures. With overgrowing use of nuclear energy for meeting the increasing demand of power, there is a need to investigate the shielding behavior of cost effective shielded enclosure (CESE) made from clay-bricks (CB) and fire-bricks (FB). In comparison to the lead-bricks (conventional-shielding), the CESE are the preferred choice in nuclear waste management. The objective behind the present investigation is to evaluate the double layered transmission exposure buildup factors (DLEBF) for gamma-rays for CESE in energy range 0.5-3MeV. For necessary computations of shielding parameters, using existing huge data regarding gamma-rays interaction parameters of all periodic table elements, two computer programs (GRIC-toolkit and BUF-toolkit) have been designed. It has been found that two-layered slabs show effective shielding for gamma-rays in orientation CB followed by FB than the reverse. It has been concluded that the arrangement, FB followed by CB reduces the leakage of scattered gamma-rays from the radioactive source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildup%20factor" title="buildup factor">buildup factor</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20bricks" title=" clay bricks"> clay bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20bricks" title=" fire bricks"> fire bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20wastage%20management" title=" nuclear wastage management"> nuclear wastage management</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20protective%20double%20layered%20slabs" title=" radiation protective double layered slabs"> radiation protective double layered slabs</a> </p> <a href="https://publications.waset.org/abstracts/43993/investigation-of-cost-effective-double-layered-slab-for-gh-ray-shielding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I-Huan%20Chiu">I-Huan Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhiko%20Ninomiya"> Kazuhiko Ninomiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%E2%80%99ichiro%20Takeda"> Shin’ichiro Takeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Meito%20Kajino"> Meito Kajino</a>, <a href="https://publications.waset.org/abstracts/search?q=Miho%20Katsuragawa"> Miho Katsuragawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunsaku%20Nagasawa"> Shunsaku Nagasawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Shinohara"> Atsushi Shinohara</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadayuki%20Takahashi"> Tadayuki Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Tomaru"> Ryota Tomaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin%20Watanabe"> Shin Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Goro%20Yabu"> Goro Yabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical observation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the non-destructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSSD" title="DSSD">DSSD</a>, <a href="https://publications.waset.org/abstracts/search?q=muon" title=" muon"> muon</a>, <a href="https://publications.waset.org/abstracts/search?q=muonic%20X-ray" title=" muonic X-ray"> muonic X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20analysis" title=" non-destructive analysis"> non-destructive analysis</a> </p> <a href="https://publications.waset.org/abstracts/137568/development-of-nondestructive-imaging-analysis-method-using-muonic-x-ray-with-a-double-sided-silicon-strip-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Analytical Solution for Stellar Distance Based on Photon Dominated Cosmic Expansion Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoyun%20Li">Xiaoyun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Suoang%20Longzhou"> Suoang Longzhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper derives the analytical solution of stellar distance according to its redshift based on the photon-dominated universe expansion model. Firstly, it calculates stellar separation speed and the farthest distance of observable stars via simulation. Then the analytical solution of stellar distance according to its redshift is derived. It shows that when the redshift is large, the stellar distance (and its separation speed) is not proportional to its redshift due to the relativity effect. It also reveals the relationship between stellar age and its redshift. The correctness of the analytical solution is verified by the latest astronomic observations of Ia supernovas in 2020. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redshift" title="redshift">redshift</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20expansion%20model" title=" cosmic expansion model"> cosmic expansion model</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=stellar%20distance" title=" stellar distance"> stellar distance</a> </p> <a href="https://publications.waset.org/abstracts/132729/analytical-solution-for-stellar-distance-based-on-photon-dominated-cosmic-expansion-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Mobulid Ray Post-Release Mortality to Assess the Feasibility of Live-Release Management Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sila%20K.%20Sari">Sila K. Sari</a>, <a href="https://publications.waset.org/abstracts/search?q=Betty%20J.L.%20Laglbauer"> Betty J.L. Laglbauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20G.%20Salim"> Muhammad G. Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Irianies%20C.%20Gozali"> Irianies C. Gozali</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqbal%20Herwata"> Iqbal Herwata</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahmi%20Fahmi"> Fahmi Fahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Selvia%20Oktaviyani"> Selvia Oktaviyani</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Ender"> Isabel Ender</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20%20Lewis"> Sarah Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Sianipar"> Abraham Sianipar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Erdmann"> Mark Erdmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Taking strides towards the sustainable use of marine stocks requires science-based management of target fish populations and reduction of bycatch in non-selective fisheries. Among elasmobranchs, mobulid rays are faced with high extinction risk due to intrinsic vulnerability to fishing and their conservation has been recognized as a strong priority both in Indonesia and worldwide. Despite their common vulnerabilities to fishing pressure due to slow growth, late maturation and low fecundity, only manta rays, but not devil rays, are protected in Indonesian waters. However, both manta and devil rays are captured in non-selective fisheries, in particular drift gillnets, since their habitat overlaps with fishing grounds for primary target species (e.g. marlin, swordfish and bullet tuna off the coast of Muncar). For this reason, mobulid populations are being heavily impacted, and while national-level protections are crucial to help conservation, they may not suffice alone to insure populations sustainability. In order to assess the potential of applying live-release management measures to conserve mobulids captured as bycatch in drift gillnets, we deployed pop-up survival archival transmitters to assess post-release mortality in Indonesian mobulid rays. We also assessed which fishing practices, in particular, soak duration, affected post-release mortality in order to draw relevant conclusions for management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mobulid" title="Mobulid">Mobulid</a>, <a href="https://publications.waset.org/abstracts/search?q=Devil%20ray" title=" Devil ray"> Devil ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Manta%20ray" title=" Manta ray"> Manta ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Bycatch" title=" Bycatch"> Bycatch</a> </p> <a href="https://publications.waset.org/abstracts/120119/mobulid-ray-post-release-mortality-to-assess-the-feasibility-of-live-release-management-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Evaluation of a Hybrid Configuration for Active Space Radiation Bio-Shielding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahui%20Song">Jiahui Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20P.%20Joshi"> Ravindra P. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest obstacles to human space exploration of the solar system is the risk posed by prolonged exposure to space radiation. It is generally agreed that particles with energies around 1-2 GeV per nucleon are the most damaging to humans. Passive shielding techniques entail using solid material to create a shield that prevents particles from penetrating a given region by absorbing the energy of incident particles. Previous techniques resulted in adding ‘dead mass’ to spacecraft, which is not an economically viable solution. Additionally, collisions of the incoming ionized particles with traditional passive protective material lead to secondary radiation. This study develops an enhanced hybrid active space radiation bio-shielding concept, a combination of the electrostatic and magnetostatic shielding, by varying the size of the magnetic ring, and by having multiple current-carrying rings, to mitigate the biohazards of severe space radiation for the success of deep-space explorations. The simulation results show an unprecedented reduction of 1GeV GCR (Galactic Cosmic Rays) proton transmission to about 15%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-shielding" title="bio-shielding">bio-shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic" title=" electrostatic"> electrostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetostatic" title=" magnetostatic"> magnetostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/40427/evaluation-of-a-hybrid-configuration-for-active-space-radiation-bio-shielding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Solar and Galactic Cosmic Ray Impacts on Ambient Dose Equivalent Considering a Flight Path Statistic Representative to World-Traffic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Hubert">G. Hubert</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aubry"> S. Aubry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earth is constantly bombarded by cosmic rays that can be of either galactic or solar origin. Thus, humans are exposed to high levels of galactic radiation due to altitude aircraft. The typical total ambient dose equivalent for a transatlantic flight is about 50 μSv during quiet solar activity. On the contrary, estimations differ by one order of magnitude for the contribution induced by certain solar particle events. Indeed, during Ground Level Enhancements (GLE) event, the Sun can emit particles of sufficient energy and intensity to raise radiation levels on Earth's surface. Analyses of GLE characteristics occurring since 1942 showed that for the worst of them, the dose level is of the order of 1 mSv and more. The largest of these events was observed on February 1956 for which the ambient dose equivalent rate is in the orders of 10 mSv/hr. The extra dose at aircraft altitudes for a flight during this event might have been about 20 mSv, i.e. comparable with the annual limit for aircrew. The most recent GLE, occurred on September 2017 resulting from an X-class solar flare, and it was measured on the surface of both the Earth and Mars using the Radiation Assessment Detector on the Mars Science Laboratory's Curiosity Rover. Recently, Hubert et al. proposed a GLE model included in a particle transport platform (named ATMORAD) describing the extensive air shower characteristics and allowing to assess the ambient dose equivalent. In this approach, the GCR is based on the Force-Field approximation model. The physical description of the Solar Cosmic Ray (i.e. SCR) considers the primary differential rigidity spectrum and the distribution of primary particles at the top of the atmosphere. ATMORAD allows to determine the spectral fluence rate of secondary particles induced by extensive showers, considering altitude range from ground to 45 km. Ambient dose equivalent can be determined using fluence-to-ambient dose equivalent conversion coefficients. The objective of this paper is to analyze the GCR and SCR impacts on ambient dose equivalent considering a high number statistic of world-flight paths. Flight trajectories are based on the Eurocontrol Demand Data Repository (DDR) and consider realistic flight plan with and without regulations or updated with Radar Data from CFMU (Central Flow Management Unit). The final paper will present exhaustive analyses implying solar impacts on ambient dose equivalent level and will propose detailed analyses considering route and airplane characteristics (departure, arrival, continent, airplane type etc.), and the phasing of the solar event. Preliminary results show an important impact of the flight path, particularly the latitude which drives the cutoff rigidity variations. Moreover, dose values vary drastically during GLE events, on the one hand with the route path (latitude, longitude altitude), on the other hand with the phasing of the solar event. Considering the GLE occurred on 23 February 1956, the average ambient dose equivalent evaluated for a flight Paris - New York is around 1.6 mSv, which is relevant to previous works This point highlights the importance of monitoring these solar events and of developing semi-empirical and particle transport method to obtain a reliable calculation of dose levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmic%20ray" title="cosmic ray">cosmic ray</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20dose" title=" human dose"> human dose</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20flare" title=" solar flare"> solar flare</a>, <a href="https://publications.waset.org/abstracts/search?q=aviation" title=" aviation"> aviation</a> </p> <a href="https://publications.waset.org/abstracts/83651/solar-and-galactic-cosmic-ray-impacts-on-ambient-dose-equivalent-considering-a-flight-path-statistic-representative-to-world-traffic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cosmic%20rays&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10