CINXE.COM
Search results for: daytime/nighttime classification
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: daytime/nighttime classification</title> <meta name="description" content="Search results for: daytime/nighttime classification"> <meta name="keywords" content="daytime/nighttime classification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="daytime/nighttime classification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="daytime/nighttime classification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2267</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: daytime/nighttime classification</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2267</span> Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Taha">M. Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20H.%20Zayed"> Hala H. Zayed</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nazmy"> T. Nazmy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalifa"> M. Khalifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=day%2Fnight%20detector" title="day/night detector">day/night detector</a>, <a href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification" title=" daytime/nighttime classification"> daytime/nighttime classification</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20tracking" title=" vehicle tracking"> vehicle tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20monitoring" title=" traffic monitoring"> traffic monitoring</a> </p> <a href="https://publications.waset.org/abstracts/34948/daynight-detector-for-vehicle-tracking-in-traffic-monitoring-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agata%20Zakrzewska">Agata Zakrzewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Kope%C4%87"> Dominik Kopeć</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Ochtyra"> Adrian Ochtyra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=middle%20wave%20infrared" title="middle wave infrared">middle wave infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imagery" title=" thermal imagery"> thermal imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20discoloration" title=" tree discoloration"> tree discoloration</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20trees" title=" urban trees"> urban trees</a> </p> <a href="https://publications.waset.org/abstracts/149926/canopy-temperature-acquired-from-daytime-and-nighttime-aerial-data-as-an-indicator-of-trees-health-status" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> Analysis and Measurement on Indoor Environment of University Dormitories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuechen%20Gui">Xuechen Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=Senmiao%20Li"> Senmiao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Kan"> Qi Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dormitory is a place for college students to study and live their daily life. The indoor environment quality of the dormitory is closely related to the physical health, mood status and work efficiency of the dormitory students. In this paper, the temperature, humidity and carbon dioxide concentration of the dormitory in Zijingang campus of Zhejiang University have been tested for three days. The experimental results show that the concentration of carbon dioxide is related to the size of the window opens and the number of dormitory staff, and presents a high concentration of carbon dioxide at nighttime while a low concentration at daytime. In terms of temperature and humidity, there is no significant difference between different orientation and time and presents a small humidity at daytime while a high humidity at nighttime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dormitory" title="dormitory">dormitory</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment" title=" indoor environment"> indoor environment</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20concentration" title=" carbon dioxide concentration"> carbon dioxide concentration</a> </p> <a href="https://publications.waset.org/abstracts/92273/analysis-and-measurement-on-indoor-environment-of-university-dormitories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> Nighttime Dehaze - Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshan%20Baskar">Harshan Baskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20S.%20Chakravarthy"> Anirudh S. Chakravarthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Garg"> Prateek Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Divyam%20Goel"> Divyam Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijith%20S.%20Raj"> Abhijith S. Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Kumar"> Kshitij Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshya"> Lakshya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravichandra%20Parvatham"> Ravichandra Parvatham</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sushant"> V. Sushant</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijay%20Kumar%20Rout"> Bijay Kumar Rout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task, particularly for autonomous navigation applications, and we hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dehazing" title="dehazing">dehazing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20enhancement" title=" image enhancement"> image enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=nighttime" title=" nighttime"> nighttime</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/144724/nighttime-dehaze-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hutasavi">S. Hutasavi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chen"> D. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=built-up%20area%20extraction" title="built-up area extraction">built-up area extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=google%20earth%20engine" title=" google earth engine"> google earth engine</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20thresholding%20method" title=" adaptive thresholding method"> adaptive thresholding method</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20mapping" title=" rapid mapping"> rapid mapping</a> </p> <a href="https://publications.waset.org/abstracts/133603/multi-temporal-mapping-of-built-up-areas-using-daytime-and-nighttime-satellite-images-based-on-google-earth-engine-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> Nighttime Power Generation Using Thermoelectric Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Alajlan">Abdulrahman Alajlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nighttime%20power%20generation" title="nighttime power generation">nighttime power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20devices" title=" thermoelectric devices"> thermoelectric devices</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20cooling" title=" radiative cooling"> radiative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a> </p> <a href="https://publications.waset.org/abstracts/179075/nighttime-power-generation-using-thermoelectric-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Alajlan">Abdulrahman M. Alajlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saichao%20Dang"> Saichao Dang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiaoqiang%20Gan"> Qiaoqiang Gan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic-thermoelectric%20systems" title="photovoltaic-thermoelectric systems">photovoltaic-thermoelectric systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nighttime%20power%20generation" title=" nighttime power generation"> nighttime power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20thermal%20management" title=" PV thermal management"> PV thermal management</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20cooling" title=" PV cooling"> PV cooling</a> </p> <a href="https://publications.waset.org/abstracts/178929/combined-pv-cooling-and-nighttime-power-generation-through-smart-thermal-management-of-photovoltaic-thermoelectric-hybrid-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Associations between Sleep Problems and Disordered Eating in Japanese Adolescents: A Cross-Sectional Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takaharu%20Hirai">Takaharu Hirai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Mitobe"> Yuta Mitobe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromi%20Hirai"> Hiromi Hirai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Eating disorders (ED) are serious psychiatric disorders that affect individuals, especially adolescents. It has been suggested that nonclinical ED-like characteristics are related to sleep problems. However, studies exploring the association between potential ED and sleep disorders have primarily been conducted in Europe and the United States. We conducted a survey of Japanese adolescents to investigate this claim. Method: In this cross-sectional study, 398 school-aged adolescents, aged 12–18 years old, matched for gender ratio, responded to a self-administered questionnaire survey. We used the Eating Attitudes Test-26 (EAT-26) and the Athens Insomnia Scale (AIS) to measure potential ED and sleep problems, respectively. In this study, participants with an EAT-26 total score of 0–19 points were classified as non-ED, while those with scores of 20 points or higher were classified as potential ED. Result: Of the 398 participants, 17 (4.3%) had an EAT-26 total score of 20 or higher. Among boys, the rate was 6 of 199 participants (3%), and among girls, the rate was 11 of 182 participants (6%). There were 89 participants (22.4%) with an AIS score of 6 points or higher, of which 36 (17.6%) were boys, and 53 (27.5%) were girls. Adolescents with potential ED had significantly higher rates of daytime sleep problems than those without ED. Further, while examining the types of sleep problems, adolescents with potential ED had greater problems with a sense of well-being and physical and mental functioning during the day. In contrast, no significant associations were found between potential ED and sleep initiation, awakenings during the night, early morning awakening, total sleep duration, or overall quality of sleep. Finally, nocturnal and daytime sleep scores were significantly associated with dieting, bulimia, and oral control EAT-26 sub-scores. Discussion: While Japanese adolescents with possible ED do not experience nighttime sleep problems, they do experience problems related to well-being and mental and physical functioning, which are indicators of daytime sleep problems. This may assist with early detection of disordered eating in adolescents. The study suggested that professionals working towards adolescent mental health issues need an approach that comprehensively integrates both sleep problems and potential ED. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adolescents" title="adolescents">adolescents</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20eating%20disorders" title=" potential eating disorders"> potential eating disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20problems" title=" sleep problems"> sleep problems</a>, <a href="https://publications.waset.org/abstracts/search?q=eating%20attitudes%20test-26" title=" eating attitudes test-26"> eating attitudes test-26</a> </p> <a href="https://publications.waset.org/abstracts/142858/associations-between-sleep-problems-and-disordered-eating-in-japanese-adolescents-a-cross-sectional-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> TiO2/PDMS Coating With Minimum Solar Absorption Loss for Passive Daytime Radiative Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhrigu%20Rishi%20Mishra">Bhrigu Rishi Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreerag%20Sundaram"> Sreerag Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Nithin%20Jo%20Varghese"> Nithin Jo Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthik%20Sasihithlu"> Karthik Sasihithlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have designed a TiO2/PDMS coating with 94% solar reflection, 96% IR emission, and 81.8 W/m2 cooling power for passive daytime radiative cooling using Kubelka Munk theory and CST microwave studio. To reduce solar absorption loss in 0.3-0.39 m wavelength region, a TiO2 thin film on top of the coating is used. Simulation using Ansys Lumerical shows that for a 20 m thick TiO2/PDMS coating, a TiO2 thin film of 84 nm increases the coating's reflectivity by 11% in the solar region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20daytime%20radiative%20cooling" title="passive daytime radiative cooling">passive daytime radiative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=disordered%20metamaterial" title=" disordered metamaterial"> disordered metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=Kudelka%20Munk%20theory" title=" Kudelka Munk theory"> Kudelka Munk theory</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20reflectivity" title=" solar reflectivity"> solar reflectivity</a> </p> <a href="https://publications.waset.org/abstracts/146810/tio2pdms-coating-with-minimum-solar-absorption-loss-for-passive-daytime-radiative-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> The Relationship Between Sleep Characteristics and Cognitive Impairment in Patients with Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Guo">Peng Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: This study investigates the clinical characteristics of sleep disorders (SD) in patients with Alzheimer's disease (AD) and their relationship with cognitive impairment. Methods: According to the inclusion and exclusion criteria of AD, 460 AD patients were consecutively included in Beijing Tiantan Hospital from January 2016 to April 2022. Demographic data, including gender, age, age of onset, course of disease, years of education and body mass index, were collected. The Pittsburgh sleep quality index (PSQI) scale was used to evaluate the overall sleep status. AD patients with PSQI ≥7 was divided into AD with SD (AD-SD) group, and those with PSQI < 7 were divided into AD with no SD (AD-nSD) group. The overall cognitive function of AD patients was evaluated by the scales of Mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA), memory was evaluated by the AVLT-immediate recall, AVLT-delayed recall and CFT-delayed memory scales, the language was evaluated by BNT scale, visuospatial ability was evaluated by CFT-imitation, executive function was evaluated by Stroop-A, Stroop-B and Stroop-C scales, attention was evaluated by TMT-A, TMT-B, and SDMT scales. The correlation between cognitive function and PSQI score in AD-SD group was analyzed. Results: Among the 460 AD patients, 173 cases (37.61%) had SD. There was no significant difference in gender, age, age of onset, course of disease, years of education and body mass index between AD-SD and AD-nSD groups (P>0.05). The factors with significant difference in PSQI scale between AD-SD and AD-nSD groups include sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, use of sleeping medication and daytime dysfunction (P<0.05). Compared with AD-nSD group, the total scores of MMSE, MoCA, AVLT-immediate recall and CFT-imitation scales in AD-SD group were significantly lower(P<0.01,P<0.01,P<0.01,P<0.05). In AD-SD group, subjective sleep quality was significantly and negatively correlated with the scores of MMSE, MoCA, AVLT-immediate recall and CFT-imitation scales (r=-0.277,P=0.000; r=-0.216,P=0.004; r=-0.253,P=0.001; r=-0.239, P=0.004), daytime dysfunction was significantly and negatively correlated with the score of AVLT-immediate recall scale (r=-0.160,P=0.043). Conclusion The incidence of AD-SD is 37.61%. AD-SD patients have worse subjective sleep quality, longer time to fall asleep, shorter sleep time, lower sleep efficiency, severer nighttime SD, more use of sleep medicine, and severer daytime dysfunction. The overall cognitive function, immediate recall and visuospatial ability of AD-SD patients are significantly impaired and are closely correlated with the decline of subjective sleep quality. The impairment of immediate recall is highly correlated with daytime dysfunction in AD-SD patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer's disease">Alzheimer's disease</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20disorders" title=" sleep disorders"> sleep disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20impairment" title=" cognitive impairment"> cognitive impairment</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/188413/the-relationship-between-sleep-characteristics-and-cognitive-impairment-in-patients-with-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Evaluating Classification with Efficacy Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guofan%20Shao">Guofan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Tang"> Lina Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Zhang"> Hao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20assessment" title="accuracy assessment">accuracy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/142555/evaluating-classification-with-efficacy-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Mapping Poverty in the Philippines: Insights from Satellite Data and Spatial Econometrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Htet%20Khaing%20Lin">Htet Khaing Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the relationship between a diverse set of variables, encompassing both environmental and socio-economic factors, and poverty levels in the Philippines for the years 2012, 2015, and 2018. Employing Ordinary Least Squares (OLS), Spatial Lag Models (SLM), and Spatial Error Models (SEM), this study delves into the dynamics of key indicators, including daytime and nighttime land surface temperature, cropland surface, urban land surface, rainfall, population size, normalized difference water, vegetation, and drought indices. The findings reveal consistent patterns and unexpected correlations, highlighting the need for nuanced policies that address the multifaceted challenges arising from the interplay of environmental and socio-economic factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poverty%20analysis" title="poverty analysis">poverty analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=OLS" title=" OLS"> OLS</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20lag%20models" title=" spatial lag models"> spatial lag models</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20error%20models" title=" spatial error models"> spatial error models</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippines" title=" Philippines"> Philippines</a>, <a href="https://publications.waset.org/abstracts/search?q=google%20earth%20engine" title=" google earth engine"> google earth engine</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20data" title=" satellite data"> satellite data</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20dynamics" title=" environmental dynamics"> environmental dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20factors" title=" socio-economic factors"> socio-economic factors</a> </p> <a href="https://publications.waset.org/abstracts/179134/mapping-poverty-in-the-philippines-insights-from-satellite-data-and-spatial-econometrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> Thermal Performance of the Extensive Wetland Green Roofs in Winter in Humid Subtropical Climate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Yu%20%20Huang">Yi-Yu Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20%20Wang"> Chien-Kuo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreerag%20%20Chota%20Veettil"> Sreerag Chota Veettil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hang%20%20Zhang"> Hang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20%20Yike"> Hu Yike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regarding the pressing issue of reducing energy consumption and carbon footprint of buildings, past research has focused more on analyzing the thermal performance of the extensive terrestrial green roofs with sedum plants in summer. However, the disadvantages of this type of green roof are relatively limited thermal performance, low extreme weather adaptability, relatively higher demands in maintenance, and lower added value in healing landscape. In view of this, this research aims to develop the extensive wetland green roofs with higher thermal performance, high extreme weather adaptability, low demands in maintenance, and high added value in healing landscape, and to measure its thermal performance for buildings in winter. The following factors are considered including the type and mixing formula of growth medium (light weight soil, akadama, creek gravel, pure water) and the type of aquatic plants. The research adopts a four-stage field experiment conducting on the rooftop of a building in a humid subtropical climate. The results found that emergent (Roundleaf rotala), submerged (Ribbon weed), floating-leaved (Water lily) wetland green roofs had similar thermal performance, and superior over wetland green roof without plant, traditional terrestrial green roof (without plant), and pure water green roof (without plant, nighttime only) in terms of overall passive cooling (8.00C) and thermal insulation (4.50C) effects as well as a reduction in heat amplitude (77-85%) in winter in a humid subtropical climate. The thermal performance of the free-floating (Water hyacinth) wetland green roof is inferior to that of the other three types of wetland green roofs, whether in daytime or nighttime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title="thermal performance">thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=extensive%20wetland%20green%20roof" title=" extensive wetland green roof"> extensive wetland green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=Aquatic%20plant" title=" Aquatic plant"> Aquatic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Winter" title=" Winter "> Winter </a>, <a href="https://publications.waset.org/abstracts/search?q=Humid%20subtropical%20climate" title=" Humid subtropical climate"> Humid subtropical climate</a> </p> <a href="https://publications.waset.org/abstracts/136841/thermal-performance-of-the-extensive-wetland-green-roofs-in-winter-in-humid-subtropical-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> The Artificial Intelligence Driven Social Work</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avi%20Shrivastava">Avi Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20work" title="social work">social work</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=AI%20based%20social%20work" title=" AI based social work"> AI based social work</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/151313/the-artificial-intelligence-driven-social-work" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Lane Detection Using Labeling Based RANSAC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeongyu%20Choi">Yeongyu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20H.%20Park"> Ju H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Youl%20Jung"> Ho-Youl Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Canny%20edge%20detection" title="Canny edge detection">Canny edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means%20algorithm" title=" k-means algorithm"> k-means algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=RANSAC" title=" RANSAC"> RANSAC</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20perspective%20mapping" title=" inverse perspective mapping"> inverse perspective mapping</a> </p> <a href="https://publications.waset.org/abstracts/92894/lane-detection-using-labeling-based-ransac-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamyaa%20Gamal%20El-Deen%20Taha">Lamyaa Gamal El-Deen Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Sharawi"> Ashraf Sharawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GF-2%20images" title="GF-2 images">GF-2 images</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction-rectification" title=" feature extraction-rectification"> feature extraction-rectification</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbour%20object%20based%20classification" title=" nearest neighbour object based classification"> nearest neighbour object based classification</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation%20algorithms" title=" segmentation algorithms"> segmentation algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20classification" title=" neural network classification"> neural network classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a> </p> <a href="https://publications.waset.org/abstracts/84243/urban-land-cover-from-gf-2-satellite-images-using-object-based-and-neural-network-classifications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Arabic Text Representation and Classification Methods: Current State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rami%20Ayadi">Rami Ayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Maraoui"> Mohsen Maraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Zrigui"> Mounir Zrigui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have presented a brief current state of the art for Arabic text representation and classification methods. We decomposed Arabic Task Classification into four categories. First we describe some algorithms applied to classification on Arabic text. Secondly, we cite all major works when comparing classification algorithms applied on Arabic text, after this, we mention some authors who proposing new classification methods and finally we investigate the impact of preprocessing on Arabic TC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20classification" title="text classification">text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic" title=" Arabic"> Arabic</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20of%20preprocessing" title=" impact of preprocessing"> impact of preprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20algorithms" title=" classification algorithms"> classification algorithms</a> </p> <a href="https://publications.waset.org/abstracts/10277/arabic-text-representation-and-classification-methods-current-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> Urbanization and Income Inequality in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acumsiri%20Tantikarnpanit">Acumsiri Tantikarnpanit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to examine the relationship between urbanization and income inequality in Thailand during the period 2002–2020. Using a panel of data for 76 provinces collected from Thailand’s National Statistical Office (Labor Force Survey: LFS), as well as geospatial data from the U.S. Air Force Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite Day/Night band (VIIRS-DNB) satellite for nineteen selected years. This paper employs two different definitions to identify urban areas: 1) Urban areas defined by Thailand's National Statistical Office (Labor Force Survey: LFS), and 2) Urban areas estimated using nighttime light data from the DMSP and VIIRS-DNB satellite. The second method includes two sub-categories: 2.1) Determining urban areas by calculating nighttime light density with a population density of 300 people per square kilometer, and 2.2) Calculating urban areas based on nighttime light density corresponding to a population density of 1,500 people per square kilometer. The empirical analysis based on Ordinary Least Squares (OLS), fixed effects, and random effects models reveals a consistent U-shaped relationship between income inequality and urbanization. The findings from the econometric analysis demonstrate that urbanization or population density has a significant and negative impact on income inequality. Moreover, the square of urbanization shows a statistically significant positive impact on income inequality. Additionally, there is a negative association between logarithmically transformed income and income inequality. This paper also proposes the inclusion of satellite imagery, geospatial data, and spatial econometric techniques in future studies to conduct quantitative analysis of spatial relationships. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=income%20inequality" title="income inequality">income inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=nighttime%20light" title=" nighttime light"> nighttime light</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20density" title=" population density"> population density</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/168855/urbanization-and-income-inequality-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makram%20Ben%20Jeddou">Makram Ben Jeddou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABC%20classification" title="ABC classification">ABC classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20criteria%20inventory%20%20classification%20models" title=" multi criteria inventory classification models"> multi criteria inventory classification models</a>, <a href="https://publications.waset.org/abstracts/search?q=ZF-model" title=" ZF-model"> ZF-model</a> </p> <a href="https://publications.waset.org/abstracts/22613/sensitive-analysis-of-the-zf-model-for-abc-multi-criteria-inventory-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Sunshine Hour as a Factor to Maintain the Circadian Rhythm of Heart Rate: Analysis of Ambulatory ECG and Weather Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emi%20Yuda">Emi Yuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yutaka%20Yoshida"> Yutaka Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Junichiro%20Hayano"> Junichiro Hayano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distinct circadian rhythm of activity, i.e., high activity during the day and deep rest at night are a typical feature of a healthy lifestyle. Exposure to the skylight is thought to be an important factor to increase arousal level and maintain normal circadian rhythm. To examine whether sunshine hours influence the day-night contract of activity, we analyzed the relationship between 24-hour heart rate (HR) and weather data of the recording day. We analyzed data in 36,500 males and 49,854 females of Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) database in Japan. Median (IQR) sunshine duration was 5.3 (2.8-7.9) hr. While sunshine hours had only modest effects of increasing 24-hour average HR in either gender (P=0.0282 and 0.0248 for male and female) and no significant effects on nighttime HR in either gender, it increased daytime HR (P = 0.0007 and 0.0015) and day-night HF difference in both genders (P < 0.0001 for both) even after adjusting for the effects of average temperature, atmospheric pressure, and humidity. Our observations support for the hypothesis that longer sunshine hours enhance circadian rhythm of activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=circadian%20rhythm" title=" circadian rhythm"> circadian rhythm</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=sunshine" title=" sunshine"> sunshine</a> </p> <a href="https://publications.waset.org/abstracts/74290/sunshine-hour-as-a-factor-to-maintain-the-circadian-rhythm-of-heart-rate-analysis-of-ambulatory-ecg-and-weather-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> A New Approach for Improving Accuracy of Multi Label Stream Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunal%20Shah">Kunal Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Patel"> Swati Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20relevance" title="binary relevance">binary relevance</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20drift" title=" concept drift"> concept drift</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20stream%20mining" title=" data stream mining"> data stream mining</a>, <a href="https://publications.waset.org/abstracts/search?q=MLSC" title=" MLSC"> MLSC</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20window%20with%20buffer" title=" multiple window with buffer"> multiple window with buffer</a> </p> <a href="https://publications.waset.org/abstracts/33035/a-new-approach-for-improving-accuracy-of-multi-label-stream-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Classification of Attacks Over Cloud Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Abouelmehdi">Karim Abouelmehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Loubna%20Dali"> Loubna Dali</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmoutaoukkil%20Abdelmajid"> Elmoutaoukkil Abdelmajid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Elsayed"> Hoda Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Eladnani%20Fatiha"> Eladnani Fatiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Benihssane%20Abderahim"> Benihssane Abderahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/31849/classification-of-attacks-over-cloud-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> Real-Time Web Map Service Based on Solar-Powered Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunghun%20Jung">Sunghun Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The existing web map service providers contract with the satellite operators to update their maps by paying an astronomical amount of money, but the cost could be minimized by operating a cheap and small UAV. In contrast to the satellites, we only need to replace aged battery packs from time to time for the usage of UAVs. Utilizing both a regular camera and an infrared camera mounted on a small, solar-powered, long-endurance, and hoverable UAV, daytime ground surface photographs, and nighttime infrared photographs will be continuously and repeatedly uploaded to the web map server and overlapped with the existing ground surface photographs in real-time. The real-time web map service using a small, solar-powered, long-endurance, and hoverable UAV can also be applied to the surveillance missions, in particular, to detect border area intruders. The improved real-time image stitching algorithm is developed for the graphic map data overlapping. Also, a small home server will be developed to manage the huge size of incoming map data. The map photographs taken at tens or hundreds of kilometers by a UAV would improve the map graphic resolution compared to the map photographs taken at thousands of kilometers by satellites since the satellite photographs are limited by weather conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=long-endurance" title="long-endurance">long-endurance</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20web%20map%20service%20%28RWMS%29" title=" real-time web map service (RWMS)"> real-time web map service (RWMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-powered" title=" solar-powered"> solar-powered</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title=" unmanned aerial vehicle (UAV)"> unmanned aerial vehicle (UAV)</a> </p> <a href="https://publications.waset.org/abstracts/80443/real-time-web-map-service-based-on-solar-powered-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> Review and Comparison of Associative Classification Data Mining Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzan%20Wedyan">Suzan Wedyan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=associative%20classification" title="associative classification">associative classification</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20ranking" title=" rule ranking"> rule ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20pruning" title=" rule pruning"> rule pruning</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/4191/review-and-comparison-of-associative-classification-data-mining-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Meta-Learning for Hierarchical Classification and Applications in Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Fabris">Fabio Fabris</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Freitas"> Alex A. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20recommendation" title="algorithm recommendation">algorithm recommendation</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20classification" title=" hierarchical classification"> hierarchical classification</a> </p> <a href="https://publications.waset.org/abstracts/81005/meta-learning-for-hierarchical-classification-and-applications-in-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> Review on Effective Texture Classification Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujata%20S.%20Kulkarni">Sujata S. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20analysis" title=" texture analysis"> texture analysis</a> </p> <a href="https://publications.waset.org/abstracts/24461/review-on-effective-texture-classification-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2241</span> Circadian Rhythm of Blood-Sucking Behavior of Female Forcipomyia taiwana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang-Liang%20Shih">Chang-Liang Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuei-Min%20Liao"> Kuei-Min Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Yuan%20Wang"> Ya-Yuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu-Chun%20Tu"> Wu-Chun Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forcipomyia taiwana, an important vexing pest, influences the development of the industry of Taiwan tourism and the quality of country life. Using human-attractant method to investigate the blood-sucking behavior of Forcipomyia taiwana in three districts in Taichung, it revealed that female F. taiwana only exhibits blood-sucking behavior in daytime, not in nighttime. The blooding-sucking behavior of female F. taiwana was affected by some factors, i.e., season and atmospheric factors. During 2008 to 2010, our study revealed that blood-sucking behavior commenced from 7:00 to 8:00 in the spring equinox, the summer solstice and the autumnal equinox, but from 8:00 to 9:00 in the winter solstice. However, regardless of any seasons, it revealed that blood-sucking behavior reached the acme between 13:00 and 15:00, and then descending. In those four seasons, the summer solstice had longer lighting and higher temperature, the average sucking activity was around 12 hours, on the contrary, the winter solstice had shorter lighting and lower temperature, the average sucking activity bridled to around 8 hours whilst it retrenched to 11 hours in the spring equinox and the autumnal equinox. To analyze the correlation between blood-sucking behavior and atmospheric factors, it revealed that female blood-sucking behavior was correlated positively to temperature and lighting but negatively to humidity. In addition, our study also showed that there is no blood-sucking behavior under 18ºC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Forcipomyia%20taiwana" title="Forcipomyia taiwana">Forcipomyia taiwana</a>, <a href="https://publications.waset.org/abstracts/search?q=circadian%20rhythm" title=" circadian rhythm"> circadian rhythm</a>, <a href="https://publications.waset.org/abstracts/search?q=blood-sucking%20behavior" title=" blood-sucking behavior"> blood-sucking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=season" title=" season"> season</a> </p> <a href="https://publications.waset.org/abstracts/11741/circadian-rhythm-of-blood-sucking-behavior-of-female-forcipomyia-taiwana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2240</span> Precursors Signatures of Few Major Earthquakes in Italy Using Very Low Frequency Signal of 45.9kHz </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keshav%20Prasad%20Kandel">Keshav Prasad Kandel</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaram%20Khadka"> Balaram Khadka</a>, <a href="https://publications.waset.org/abstracts/search?q=Karan%20Bhatta"> Karan Bhatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Basu%20Dev%20Ghimire"> Basu Dev Ghimire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes still exist as a threating disaster. Being able to predict earthquakes will certainly help prevent substantial loss of life and property. Perhaps, Very Low Frequency/Low Frequency (VLF/LF) signal band (3-30 kHz), which is effectively reflected from D-layer of ionosphere, can be established as a tool to predict earthquake. On May 20 and May 29, 2012, earthquakes of magnitude 6.1 and 5.8 respectively struck Emilia-Romagna of Italy. A year back, on August 24, 2016, an earthquake of magnitude 6.2 struck Central Italy (42.7060 N and 13.2230 E) at 1:36 UT. We present the results obtained from the US Navy VLF Transmitter’s NSY signal of 45.9 kHz transmitted from Niscemi, in the province of Sicily, Italy and received at the Kiel Longwave Monitor, Germany for 2012 and 2016. We analyzed the terminator times, their individual differences and nighttime fluctuation counts. We also analyzed trends, dispersion and nighttime fluctuation which gave us a possible precursors to these earthquakes. Since perturbations in VLF amplitude could also be due to various other factors like lightning, geomagnetic activities (storms, auroras etc.) and solar activities (flares, UV flux, etc.), we filtered the possible perturbations due to these agents to guarantee that the perturbations seen in VLF/LF amplitudes were as a precursor to Earthquakes. As our TRGCP path is North-south, the sunrise and sunset time in transmitter and receiver places matches making pathway for VLF/LF smoother and therefore hoping to obtain more natural data. To our surprise, we found many clear anomalies (as precursors) in terminator times 5 days to 16 days before the earthquakes. Moreover, using night time fluctuation method, we found clear anomalies 5 days to 13 days prior to main earthquakes. This exactly correlates with the findings of previous authors that ionospheric perturbations are seen few days to one month before the seismic activity. In addition to this, we were amazed to observe unexpected decrease of dispersion on certain anomalies where it was supposed to increase, thereby not supporting our finding to some extent. To resolve this problem, we devised a new parameter called dispersion nighttime (dispersion). On analyzing, this parameter decreases significantly on days of nighttime anomalies thereby supporting our precursors to much extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D-layer" title="D-layer">D-layer</a>, <a href="https://publications.waset.org/abstracts/search?q=TRGCP%20%28Transmitter%20Receiver%20Great%20Circle%20Path%29" title=" TRGCP (Transmitter Receiver Great Circle Path)"> TRGCP (Transmitter Receiver Great Circle Path)</a>, <a href="https://publications.waset.org/abstracts/search?q=terminator%20times" title=" terminator times"> terminator times</a>, <a href="https://publications.waset.org/abstracts/search?q=VLF%2FLF" title=" VLF/LF"> VLF/LF</a> </p> <a href="https://publications.waset.org/abstracts/81436/precursors-signatures-of-few-major-earthquakes-in-italy-using-very-low-frequency-signal-of-459khz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2239</span> Spatial Heterogeneity of Urban Land Use in the Yangtze River Economic Belt Based on DMSP/OLS Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Zhou">Liang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Qinke%20Sun"> Qinke Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Taking the Yangtze River Economic Belt as an example, using long-term nighttime lighting data from DMSP/OLS from 1992 to 2012, support vector machine classification (SVM) was used to quantitatively extract urban built-up areas of economic belts, and spatial analysis of expansion intensity index, standard deviation ellipse, etc. was introduced. The model conducts detailed and in-depth discussions on the strength, direction, and type of the expansion of the middle and lower reaches of the economic belt and the key node cities. The results show that: (1) From 1992 to 2012, the built-up areas of the major cities in the Yangtze River Valley showed a rapid expansion trend. The built-up area expanded by 60,392 km², and the average annual expansion rate was 31%, that is, from 9615 km² in 1992 to 70007 km² in 2012. The spatial gradient analysis of the watershed shows that the expansion of urban built-up areas in the middle and lower reaches of the river basin takes Shanghai as the leading force, and the 'bottom-up' model shows an expanding pattern of 'upstream-downstream-middle-range' declines. The average annual rate of expansion is 36% and 35%, respectively. 17% of which the midstream expansion rate is about 50% of the upstream and downstream. (2) The analysis of expansion intensity shows that the urban expansion intensity in the Yangtze River Basin has generally shown an upward trend, the downstream region has continued to rise, and the upper and middle reaches have experienced different amplitude fluctuations. To further analyze the strength of urban expansion at key nodes, Chengdu, Chongqing, and Wuhan in the upper and middle reaches maintain a high degree of consistency with the intensity of regional expansion. Node cities with Shanghai as the core downstream continue to maintain a high level of expansion. (3) The standard deviation ellipse analysis shows that the overall center of gravity of the Yangtze River basin city is located in Anqing City, Anhui Province, and it showed a phenomenon of reciprocating movement from 1992 to 2012. The nighttime standard deviation ellipse distribution range increased from 61.96 km² to 76.52 km². The growth of the major axis of the ellipse was significantly larger than that of the minor axis. It had obvious east-west axiality, in which the nighttime lights in the downstream area occupied in the entire luminosity scale urban system leading position. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20space" title="urban space">urban space</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20characteristics" title=" spatial characteristics"> spatial characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=night%20lights" title=" night lights"> night lights</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangtze%20River%20Economic%20Belt" title=" Yangtze River Economic Belt"> Yangtze River Economic Belt</a> </p> <a href="https://publications.waset.org/abstracts/103737/spatial-heterogeneity-of-urban-land-use-in-the-yangtze-river-economic-belt-based-on-dmspols-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2238</span> Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Youjun">Tao Youjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Younan"> Zhao Younan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocyclone" title="hydrocyclone">hydrocyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20classification" title=" ultrafine classification"> ultrafine classification</a>, <a href="https://publications.waset.org/abstracts/search?q=slime" title=" slime"> slime</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20efficiency" title=" classification efficiency"> classification efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20size" title=" classification size "> classification size </a> </p> <a href="https://publications.waset.org/abstracts/99752/research-on-ultrafine-particles-classification-using-hydrocyclone-with-annular-rinse-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=daytime%2Fnighttime%20classification&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>