CINXE.COM
Search results for: active cooling
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: active cooling</title> <meta name="description" content="Search results for: active cooling"> <meta name="keywords" content="active cooling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="active cooling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="active cooling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4475</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: active cooling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4475</span> Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasath%20Subramanian">Arun Prasath Subramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20technologies" title=" cooling technologies"> cooling technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20cooling" title=" internal cooling"> internal cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pin-fin%20cooling" title=" pin-fin cooling"> pin-fin cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement%20cooling" title=" jet impingement cooling"> jet impingement cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib%20turbulated%20cooling" title=" rib turbulated cooling"> rib turbulated cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20foam%20cooling" title=" metallic foam cooling"> metallic foam cooling</a> </p> <a href="https://publications.waset.org/abstracts/39117/review-of-modern-gas-turbine-blade-cooling-technologies-used-in-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4474</span> Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Min%20Choi">Seok Min Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Bang"> Minho Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seuong%20Yun%20Kim"> Seuong Yun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungmin%20Lee"> Hyungmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Gu%20Joo"> Won-Gu Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matrix%20cooling" title="matrix cooling">matrix cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib" title=" rib"> rib</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a> </p> <a href="https://publications.waset.org/abstracts/80524/numerical-simulation-of-effect-of-various-rib-configurations-on-enhancing-heat-transfer-of-matrix-cooling-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4473</span> An Overview of Heating and Cooling Techniques Used in Green Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Kumar%20Soni">Umesh Kumar Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kumar%20Soni"> Suresh Kumar Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Awasthi"> S. R. Awasthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide biggest difficulties are climate change, future availability of fossil fuels, and economical feasibility of renewable energy. They force us to use to a greater extent renewable energy and develop suitable hybrid renewable systems. Building heating/cooling consumes significant amount of energy. It can be conserved by use of proper heating/cooling techniques. This paper reviews and critically analyzes various active, passive and hybrid heating/cooling techniques used in green buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title="natural ventilation">natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title=" energy conservation"> energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20ventilation%20techniques" title=" hybrid ventilation techniques"> hybrid ventilation techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/57920/an-overview-of-heating-and-cooling-techniques-used-in-green-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4472</span> Mathematical Modeling of District Cooling Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Alghool">Dana Alghool</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20%20ElMekkawy"> Tarek ElMekkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haouari"> Mohamed Haouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Elomari"> Adel Elomari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annual%20Cooling%20Demand" title="Annual Cooling Demand">Annual Cooling Demand</a>, <a href="https://publications.waset.org/abstracts/search?q=Compression%20Chiller" title=" Compression Chiller"> Compression Chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modeling" title=" Mathematical Modeling"> Mathematical Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=District%20Cooling%20Systems" title=" District Cooling Systems"> District Cooling Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Optimization" title=" Optimization"> Optimization</a> </p> <a href="https://publications.waset.org/abstracts/118677/mathematical-modeling-of-district-cooling-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4471</span> [Keynote Speaker]: Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Amine%20Hachicha">Ahmed Amine Hachicha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature effect on the performance of a photovoltaic module is one of the main concern that face this renewable energy, especially in the hot arid region, e.g United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to a non-cooling module and the performance of the PV module is determined for different situations. A mathematical model is presented to estimate the theoretical performance and validate the experimental results with and without cooling. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20cooling" title="PV cooling">PV cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20methods" title=" cooling methods"> cooling methods</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20efficiency" title=" electrical efficiency"> electrical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a> </p> <a href="https://publications.waset.org/abstracts/34166/keynote-speaker-enhancing-the-performance-of-a-photovoltaic-module-using-different-cooling-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4470</span> Parametric Study on Water-Cooling Plates to Improve Cooling Performance on 18650 Li-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raksit%20Nanthatanti">Raksit Nanthatanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarruwat%20Charoensuk"> Jarruwat Charoensuk</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hirai"> S. Hirai</a>, <a href="https://publications.waset.org/abstracts/search?q=Manop%20Masomtop"> Manop Masomtop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of channel geometry and operating circumstances on a liquid cooling plate for Lithium-ion Battery modules has been investigated Inlet temperature, water velocity, and channel count were the main factors. According to the passage, enhancing the number of cooling channels[2,3,4,6channelperbases] will affect water flow distribution caused by varying the velocity inlet inside the cooling block[0.5,1.0,1.5,2.0 m/sec] and intake temperatures[25,30,35,40oC], The findings indicate that the battery’s temperature drops as the number of channels increases. The maximum battery's operating temperature [45 oC] rises, but ∆t is needed to be less than 5 oC [v≤1m/sec]. Maximum temperature and local temperature difference of the battery change significantly with the change of the velocity inlet in the cooling channel and its thermal conductivity. The results of the simulation will help to increase cooling efficiency on the cooling system for Li-ion Battery based on a Mini channel in a liquid-cooling configuration <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20efficiency" title="cooling efficiency">cooling efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20count" title=" channel count"> channel count</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=operating" title=" operating"> operating</a> </p> <a href="https://publications.waset.org/abstracts/165565/parametric-study-on-water-cooling-plates-to-improve-cooling-performance-on-18650-li-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4469</span> Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiin-Yuh%20Jang">Jiin-Yuh Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Feng%20Gan"> Yu-Feng Gan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20cooling" title="controlled cooling">controlled cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=H-Beam" title=" H-Beam"> H-Beam</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress "> thermal stress </a> </p> <a href="https://publications.waset.org/abstracts/62779/optimization-analysis-of-controlled-cooling-process-for-h-shape-steam-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4468</span> Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alharbi">A. Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Boukhanouf"> R. Boukhanouf</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Habeebullah"> T. Habeebullah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ibrahim"> H. Ibrahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title="evaporative cooling">evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20compression" title=" vapor compression"> vapor compression</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20consumption" title=" electricity consumption"> electricity consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a> </p> <a href="https://publications.waset.org/abstracts/9649/thermal-performance-and-environmental-assessment-of-evaporative-cooling-systems-case-of-mina-valley-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4467</span> Sympathetic Cooling of Antiprotons with Molecular Anions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Gerber">Sebastian Gerber</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Fesel"> Julian Fesel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Zimmer"> Christian Zimmer</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20Yzombard"> Pauline Yzombard</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Comparat"> Daniel Comparat</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Doser"> Michael Doser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular anions play a central role in a wide range of fields: from atmospheric and interstellar science, anionic superhalogens to the chemistry of highly correlated systems. However, up to now the synthesis of negative ions in a controlled manner at ultracold temperatures, relevant for the processes in which they are involved, is currently limited to a few Kelvin by supersonic beam expansion followed by resistive, buffer gas or electron cooling in cryogenic environments. We present a realistic scheme for laser cooling of C2- molecules to sub-Kelvin temperatures, which has so far only been achieved for a few neutral diatomic molecules. The generation of a pulsed source of C2- and subsequent laser cooling techniques of C2- molecules confined in a Penning trap are reviewed. Further, laser cooling of one anionic species would allow to sympathetically cool other molecular anions, electrons and antiprotons that are confined in the same trapping potential. In this presentation the status of the experiment and the feasibility of C2- sympathetic Doppler laser cooling, photo-detachment cooling and AC-Stark Sisyphus cooling will be reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiprotons" title="antiprotons">antiprotons</a>, <a href="https://publications.waset.org/abstracts/search?q=anions" title=" anions"> anions</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20of%20ions%20and%20molecules" title=" cooling of ions and molecules"> cooling of ions and molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=Doppler%20cooling" title=" Doppler cooling"> Doppler cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-detachment" title=" photo-detachment"> photo-detachment</a>, <a href="https://publications.waset.org/abstracts/search?q=penning%20trap" title=" penning trap"> penning trap</a>, <a href="https://publications.waset.org/abstracts/search?q=Sisyphus%20cooling" title=" Sisyphus cooling"> Sisyphus cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=sympathetic%20cooling" title=" sympathetic cooling"> sympathetic cooling</a> </p> <a href="https://publications.waset.org/abstracts/60744/sympathetic-cooling-of-antiprotons-with-molecular-anions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4466</span> Research and Development of Intelligent Cooling Channels Design System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q.%20Niu">Q. Niu</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20H.%20Zhou"> X. H. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Liu"> W. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cooling channels of injection mould play a crucial role in determining the productivity of moulding process and the product quality. It’s not a simple task to design high quality cooling channels. In this paper, an intelligent cooling channels design system including automatic layout of cooling channels, interference checking and assembly of accessories is studied. Automatic layout of cooling channels using genetic algorithm is analyzed. Through integrating experience criteria of designing cooling channels, considering the factors such as the mould temperature and interference checking, the automatic layout of cooling channels is implemented. The method of checking interference based on distance constraint algorithm and the function of automatic and continuous assembly of accessories are developed and integrated into the system. Case studies demonstrate the feasibility and practicality of the intelligent design system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20mould" title="injection mould">injection mould</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20channel" title=" cooling channel"> cooling channel</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20design" title=" intelligent design"> intelligent design</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20layout" title=" automatic layout"> automatic layout</a>, <a href="https://publications.waset.org/abstracts/search?q=interference%20checking" title=" interference checking"> interference checking</a> </p> <a href="https://publications.waset.org/abstracts/11809/research-and-development-of-intelligent-cooling-channels-design-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4465</span> The Effect of Window Position and Ceiling Height on Cooling Load in Architectural Studio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedehzahra%20Mirrahimi">Seyedehzahra Mirrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effect of variations in window and ceiling heights on cooling inside an architectural training studio with a full-width window. For architectural training, students use the studio more often than they use ordinary classrooms. Therefore, studio dimensions and size, and the window position, directly influence the cooling load. Energy for cooling is one of the most expensive costs in the studio because of the high activity levels of students during the warm season. The methodology of analysis involves measuring energy changes in the Energy Plus <EP> software in Kish Island. It was proved that the cooling energy in an architecture studio can be increased by changing window levels and ceiling heights to add a range of cooling energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20energy" title="cooling energy">cooling energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Plus" title=" Energy Plus"> Energy Plus</a>, <a href="https://publications.waset.org/abstracts/search?q=studio%20classroom" title=" studio classroom"> studio classroom</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20position" title=" window position"> window position</a> </p> <a href="https://publications.waset.org/abstracts/116834/the-effect-of-window-position-and-ceiling-height-on-cooling-load-in-architectural-studio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4464</span> 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zina%20Ghiloufi">Zina Ghiloufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Khir"> Tahar Khir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20room" title=" cold room"> cold room</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title=" cooling rate"> cooling rate</a>, <a href="https://publications.waset.org/abstracts/search?q=dDates" title=" dDates"> dDates</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CF%89%20%28SST%29" title=" k-ω (SST)"> k-ω (SST)</a> </p> <a href="https://publications.waset.org/abstracts/90986/3d-cfd-modelling-of-the-airflow-and-heat-transfer-in-cold-room-filled-with-dates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4463</span> Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changyong%20Liu">Changyong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junda%20Tong"> Junda Tong</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu"> Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ninggui%20Huang"> Ninggui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conformal%20cooling%20channels" title="conformal cooling channels">conformal cooling channels</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20performance" title=" cooling performance"> cooling performance</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a> </p> <a href="https://publications.waset.org/abstracts/102200/investigation-on-the-cooling-performance-of-cooling-channels-fabricated-via-selective-laser-melting-for-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4462</span> Assessment of Power Formation in Gas Turbine Power Plants Using Different Inlet Air Cooling Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20V.%20Nayak">Nikhil V. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of air cooling intake on the gas turbine performance is presented. A comparison among different cooling systems, i.e., evaporative and cooling coil, is performed. A computer simulation model for the employed systems is developed in order to evaluate the performance of the studied gas turbine unit, at Marka Power Station, Amman, Bangalore. The performance characteristics are examined for a set of actual operational parameters including ambient temperature, relative humidity, turbine inlet temperature, pressure ratio, etc. The obtained results showed that the evaporative cooling system is capable of boosting the power and enhancing the efficiency of the studied gas turbine unit in a way much cheaper than cooling coil system due to its high power consumption required to run the vapor-compression refrigeration unit. Nevertheless, it provides full control on the temperature inlet conditions regardless of the relative humidity ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20augmentation" title="power augmentation">power augmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20control" title=" temperature control"> temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title=" evaporative cooling"> evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20coil" title=" cooling coil"> cooling coil</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine "> gas turbine </a> </p> <a href="https://publications.waset.org/abstracts/14670/assessment-of-power-formation-in-gas-turbine-power-plants-using-different-inlet-air-cooling-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4461</span> CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naci%20Kalkan">Naci Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20Dagtekin"> Ihsan Dagtekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20and%20passive%20solar%20technologies" title="active and passive solar technologies">active and passive solar technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling%20system" title=" solar cooling system"> solar cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20chimney" title=" solar chimney"> solar chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation" title=" natural ventilation"> natural ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20depth" title=" cavity depth"> cavity depth</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20models%20for%20solar%20chimney" title=" CFD models for solar chimney"> CFD models for solar chimney</a> </p> <a href="https://publications.waset.org/abstracts/33632/cfd-analysis-of-passive-cooling-building-by-using-solar-chimney-for-mild-or-warm-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4460</span> Control Strategy of Solar Thermal Cooling System under the Indonesia Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Budihardjo%20Sarwo%20Sastrosudiro">Budihardjo Sarwo Sastrosudiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnas%20Lubis"> Arnas Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Idrus%20Alhamid"> Muhammad Idrus Alhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasruddin%20Jusuf"> Nasruddin Jusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m<sup>2</sup>, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 <sup>o</sup>C. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20chiller" title="absorption chiller">absorption chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling" title=" solar cooling"> solar cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/43453/control-strategy-of-solar-thermal-cooling-system-under-the-indonesia-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4459</span> CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thulodin%20Mat%20Lazim">Thulodin Mat Lazim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aminuddin%20Saat"> Aminuddin Saat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Fakhir%20Abdulwahid"> Ammar Fakhir Abdulwahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Sattar%20Kareem"> Zaid Sattar Kareem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade%20cooling" title="turbine blade cooling">turbine blade cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20cooling" title=" film cooling"> film cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry%20shape%20of%20hole" title=" geometry shape of hole"> geometry shape of hole</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/6868/cfd-simulation-on-gas-turbine-blade-and-effect-of-twisted-hole-shape-on-film-cooling-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4458</span> Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Bloushi">Mohammed Al-Bloushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghyun%20Jeong"> Sanghyun Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Torove%20Leiknes"> Torove Leiknes </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biocide" title=" biocide"> biocide</a>, <a href="https://publications.waset.org/abstracts/search?q=biofouling" title=" biofouling"> biofouling</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20cooling%20tower" title=" seawater cooling tower"> seawater cooling tower</a> </p> <a href="https://publications.waset.org/abstracts/74335/alternative-biocides-to-reduce-algal-fouling-in-seawater-industrial-cooling-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4457</span> Part Performance Improvement through Design Optimisation of Cooling Channels in the Injection Moulding Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Alhubail">M. A. Alhubail</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Alateyah"> A. I. Alateyah</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Alenezi"> D. Alenezi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Aldousiri"> B. Aldousiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study conformal cooling channel (CCC) was employed to dissipate heat of, Polypropylene (PP) parts injected into the Stereolithography (SLA) insert to form tensile and flexural test specimens. The direct metal laser sintering (DMLS) process was used to fabricate a mould with optimised CCC, while optimum parameters of injection moulding were obtained using Optimal-D. The obtained results show that optimisation of the cooling channel layout using a DMLS mould has significantly shortened cycle time without sacrificing the part’s mechanical properties. By applying conformal cooling channels, the cooling time phase was reduced by 20 seconds, and also defected parts were eliminated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20parameters" title="optimum parameters">optimum parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20moulding" title=" injection moulding"> injection moulding</a>, <a href="https://publications.waset.org/abstracts/search?q=conformal%20cooling%20channels" title=" conformal cooling channels"> conformal cooling channels</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20time" title=" cycle time"> cycle time</a> </p> <a href="https://publications.waset.org/abstracts/44273/part-performance-improvement-through-design-optimisation-of-cooling-channels-in-the-injection-moulding-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4456</span> Energy Saving Potential of a Desiccant-Based Indirect-Direct Evaporative Cooling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Heidari">Amirreza Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Avami"> Akram Avami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Heidari"> Ehsan Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaporative cooling systems are known as energy efficient cooling systems, with much lower electricity consumption than conventional vapor compression systems. A serious limitation of these systems, however, is that they are not applicable in humid regions. Combining a desiccant wheel with these systems, known as desiccant-based evaporative cooling systems, makes it possible to use evaporative cooling in humid climates. This paper evaluates the performane of a cooling system combining desiccant wheel, direct and indirect evaporative coolers (called desiccant-based indirect-direct evaporative cooling (DIDE) system) and then evaluates the energy saving potential of this system over the conventional vapor compression cooling and drying system. To illustrate the system ability of providing comfort conditions, a dynamic hourly simulation of this system is performed for a typical 60 m² building in Sydney, Australia. To evaluate the energy saving potential of this system, a conventional cooling and drying system is also simulated for the same cooling capacity. It has been found that the DIE system is able to provide comfort temperature and relative humidity in a subtropical humid climate like Sydney. The electricity and natural gas consumption of this system are respectively 39.2% and 2.6% lower than that of conventional system over a week. As the research has demonstrated, the innovative DIDE system is an energy efficient cooling system for subtropical humid regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desiccant" title="desiccant">desiccant</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title=" evaporative cooling"> evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20evaporative%20cooler" title=" indirect evaporative cooler"> indirect evaporative cooler</a> </p> <a href="https://publications.waset.org/abstracts/102350/energy-saving-potential-of-a-desiccant-based-indirect-direct-evaporative-cooling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4455</span> Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavesh%20N.%20Bhatt">Bhavesh N. Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Zozimus%20D.%20Labana"> Zozimus D. Labana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title=" conjugate heat transfer"> conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=NASA%20C3X%20Blade" title=" NASA C3X Blade"> NASA C3X Blade</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20film%20cooling%20channel" title=" circular film cooling channel"> circular film cooling channel</a> </p> <a href="https://publications.waset.org/abstracts/87587/numerical-analysis-of-internal-cooled-turbine-blade-using-conjugate-heat-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4454</span> The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hrabovsk%C3%BD">J. Hrabovský</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chabi%C4%8Dovsk%C3%BD"> M. Chabičovský</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Horsk%C3%BD"> J. Horský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20layer" title=" oxide layer"> oxide layer</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20cooling" title=" spray cooling"> spray cooling</a> </p> <a href="https://publications.waset.org/abstracts/15544/the-effect-of-discontinued-water-spray-cooling-on-the-heat-transfer-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4453</span> A Study of Standing-Wave Thermoacoustic Refrigerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patcharin%20Saechan">Patcharin Saechan</a>, <a href="https://publications.waset.org/abstracts/search?q=Isares%20Dhuchakallaya"> Isares Dhuchakallaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoacoustic refrigerator is a cooling device which uses the acoustic waves to produce the cooling effect. The aim of this paper is to explore the experimental and numerical feasibility of a standing-wave thermoacoustic refrigerator. The effects of the stack length, position of stack and operating frequency on the cooling performance are carried out. The circular pore stacks are tested under the atmospheric pressure. A low-cost loudspeaker is used as an acoustic driver. The results show that the location of stack installed in resonator tube has a greater effect on the cooling performance than the stack length and operating frequency, respectively. The temperature difference across the ends of the stack can be generated up to 13.7°C, and the temperature of cold-end is dropped down by 5.3°C from the ambient temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20performance" title="cooling performance">cooling performance</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigerator" title=" refrigerator"> refrigerator</a>, <a href="https://publications.waset.org/abstracts/search?q=standing-wave" title=" standing-wave"> standing-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustics" title=" thermoacoustics"> thermoacoustics</a> </p> <a href="https://publications.waset.org/abstracts/39857/a-study-of-standing-wave-thermoacoustic-refrigerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4452</span> Maximizing the Output of Solar Photovoltaic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipresh%20Mehta">Vipresh Mehta </a>, <a href="https://publications.waset.org/abstracts/search?q=Aman%20Abhishek"> Aman Abhishek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatin%20Batra"> Jatin Batra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautam%20Iyer"> Gautam Iyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Huge amount of solar radiation reaching the earth can be harnessed to provide electricity through Photo voltaic (PV) panels. The solar PV is an exciting technology but suffers from low efficiency. A study on low efficiency in multi MW solar power plants reveals that the electric yield of the PV modules is reduced due to reflection of the irradiation from the sun and when a module’s temperature is elevated, as there is decrease in the voltage and efficiency. We intend to alter the structure of the PV system, We also intend to improve the efficiency of the Solar Photo Voltaic Panels by active cooling to reduce the temperature losses considerably and decrease reflection losses to some extent. Reflectors/concentrators and anti-reflecting coatings are also used to intensify the amount of output produced from the system. Apart from this, transformer-less Grid-tied Inverter. And also, a T-LCL immitance circuit is used to reduce the harmonics and produce a constant output from the entire system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20panels" title="PV panels">PV panels</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20improvement" title=" efficiency improvement"> efficiency improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20cooling" title=" active cooling"> active cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=organic-inorganic%20hybrid%203D%20panel" title=" organic-inorganic hybrid 3D panel"> organic-inorganic hybrid 3D panel</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20water%20tunneling" title=" ground water tunneling"> ground water tunneling</a> </p> <a href="https://publications.waset.org/abstracts/26786/maximizing-the-output-of-solar-photovoltaic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">772</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4451</span> Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Sadek%20H.%20Nour%20El-deen">El-Sadek H. Nour El-deen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Harby"> K. Harby </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/92060/solar-powered-adsorption-cooling-system-a-case-study-on-the-climatic-conditions-of-al-minya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4450</span> Feasibility Study on a Conductive-Type Cooling System for an Axial Flux Permanent Magnet Generator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang-Gyun%20Kim">Yang-Gyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Taek%20Woo"> Eun-Taek Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Myeong-Gon%20Lee"> Myeong-Gon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Hyun%20Cho"> Yun-Hyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Ho%20Han"> Seung-Ho Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind turbines such as an axial flux permanent magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5 MW. In this paper, we proposed a newly developed conductive-type cooling system using a heat pipe wound to the stator of a 2.5 MW AFPM generator installed on an offshore wind turbine. The numerical results showed that the temperatures on the stator surface using convective-type cooling system and the proposed conductive-type cooling system at thermal saturation were 60 and 76°C, respectively, which met the requirements for power production. The temperatures of the permanent magnet cased by the radiant heating from the stator surface were 53°C and 66°C, respectively, in each case. As a result, the permanent magnet did not reach the malfunction temperature. Although the cooling temperatures in the case of the conductive-type cooling system were higher than that of the convective-type cooling system, the relatively small size of the water pump and radiators make a light-weight design of the AFPM generator possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20flux%20permanent%20magnet%20%28AFPM%29%20generator" title=" axial flux permanent magnet (AFPM) generator"> axial flux permanent magnet (AFPM) generator</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive-type%20cooling%20system" title=" conductive-type cooling system"> conductive-type cooling system</a> </p> <a href="https://publications.waset.org/abstracts/14914/feasibility-study-on-a-conductive-type-cooling-system-for-an-axial-flux-permanent-magnet-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4449</span> Effective Cooling of Photovoltaic Solar Cells by Inserting Triangular Ribs: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Saadi">S. Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Benissaad"> S. Benissaad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Poncet"> S. Poncet</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kabar"> Y. Kabar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In photovoltaic (PV) cells, most of the absorbed solar radiation cannot be converted into electricity. A large amount of solar radiation is converted to heat, which should be dissipated by any cooling techniques. In the present study, the cooling is achieved by inserting triangular ribs in the duct. A comprehensive two-dimensional thermo-fluid model for the effective cooling of PV cells has been developed. It has been first carefully validated against experimental and numerical results available in the literature. A parametric analysis was then carried out about the influence of the number and size of the ribs, wind speed, solar irradiance and inlet fluid velocity on the average solar cell and outlet air temperatures as well as the thermal and electrical efficiencies of the module. Results indicated that the use of triangular ribbed channels is a very effective cooling technique, which significantly reduces the average temperature of the PV cell, especially when increasing the number of ribs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20cooling" title="effective cooling">effective cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cell" title=" photovoltaic cell"> photovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20ribs" title=" triangular ribs"> triangular ribs</a> </p> <a href="https://publications.waset.org/abstracts/90057/effective-cooling-of-photovoltaic-solar-cells-by-inserting-triangular-ribs-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4448</span> The Effectiveness of Scalp Cooling Therapy on Reducing Chemotherapy Induced Alopecia: A Critical Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Krishna">M. Krishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was intended to identify if scalp cooling therapy is effective on preventing chemotherapy-induced hair loss among cancer patients. Critical literature of non-randomized controlled trials was used to investigate whether scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. The review identified that scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. Most of the patients receiving chemotherapy experience alopecia. It is also perceived as the worst effect of chemotherapy. This may be severe and lead the patients to withdraw the chemo treatment. The image disturbance caused by alopecia will make the patient depressed and will lead to declined immunity. With the knowledge on effectiveness of scalp cooling therapy on preventing chemotherapy-induced alopecia, patient undergoing chemotherapy will not be hesitant to undergo the treatment. Patients are recommended to go through scalp cooling therapy every chemo cycle and the proper therapy duration is 30 minutes before, during chemo. The suggested duration of the scalp cooling therapy is 45-90 minutes for an effective and positive outcome. This finding is excluding other factors of alopecia such as menopause, therapeutic drugs, poor hair density, liver function problems, and drug regimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alopecia" title="alopecia">alopecia</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemotherapy" title=" chemotherapy"> chemotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=scalp%20cooling%20therapy" title=" scalp cooling therapy"> scalp cooling therapy</a> </p> <a href="https://publications.waset.org/abstracts/111661/the-effectiveness-of-scalp-cooling-therapy-on-reducing-chemotherapy-induced-alopecia-a-critical-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4447</span> Thermal Management of Ground Heat Exchangers Applied in High Power LED</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ching%20Chiang">Yuan-Ching Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Yeh%20Hsu"> Chien-Yeh Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chih-Hao"> Chen Chih-Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sih-Li%20Chen"> Sih-Li Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20ground%20heat%20exchanger" title="helical ground heat exchanger">helical ground heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20power%20LED" title=" high power LED"> high power LED</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20source%20cooling%20system" title=" ground source cooling system"> ground source cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title=" heat dissipation"> heat dissipation</a> </p> <a href="https://publications.waset.org/abstracts/34341/thermal-management-of-ground-heat-exchangers-applied-in-high-power-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4446</span> Thermo-Economic Analysis of a Natural Draft Direct Cooling System for a Molten Salt Power Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huiqiang%20Yang">Huiqiang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Domingo%20Santana"> Domingo Santana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing parasitic power consumption of concentrating solar power plants is the main challenge to increase the overall efficiency, particularly for molten salt tower technology. One of the most effective approaches to reduce the parasitic power consumption is to implement a natural draft dry cooling system instead of the standard utilized mechanical draft dry cooling system. In this paper, a thermo-economic analysis of a natural draft direct cooling system was performed based on a 100MWe commercial scale molten salt power plant. In this configuration with a natural draft direct cooling system, the exhaust steam from steam turbine flows directly to the heat exchanger bundles inside the natural draft dry cooling tower, which eliminates the power consumption of circulation pumps or fans, although the cooling tower shadows a portion of the heliostat field. The simulation results also show that compared to a mechanical draft cooling system the annual solar field efficiency is decreased by about 0.2% due to the shadow, which is equal to a reduction of approximately 13% of the solar field area. As a contrast, reducing the solar field size by 13% in purpose in a molten salt power plant with a natural draft drying cooling system actually will lead to a reduction of levelized cost of electricity (LCOE) by about 4.06% without interfering the power generated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molten%20salt%20power%20tower" title="molten salt power tower">molten salt power tower</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20draft%20dry%20cooling" title=" natural draft dry cooling"> natural draft dry cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=parasitic%20power%20consumption" title=" parasitic power consumption"> parasitic power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20scale" title=" commercial scale"> commercial scale</a> </p> <a href="https://publications.waset.org/abstracts/93523/thermo-economic-analysis-of-a-natural-draft-direct-cooling-system-for-a-molten-salt-power-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=149">149</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=150">150</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=active%20cooling&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>