CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 83 results for author: <span class="mathjax">Jeffrey, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Jeffrey%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Jeffrey, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Jeffrey%2C+N&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Jeffrey, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Jeffrey%2C+N&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Jeffrey%2C+N&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Jeffrey%2C+N&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19105">arXiv:2502.19105</a> <span> [<a href="https://arxiv.org/pdf/2502.19105">pdf</a>, <a href="https://arxiv.org/ps/2502.19105">ps</a>, <a href="https://arxiv.org/format/2502.19105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Exploring the Origin of Solar Energetic Electrons II: Investigating Turbulent Coronal Acceleration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pallister%2C+R">Ross Pallister</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Stores%2C+M">Morgan Stores</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19105v1-abstract-short" style="display: inline;"> Non-thermal particle acceleration in the solar corona is evident from both remote hard X-ray (HXR) sources in the chromosphere and direct in-situ detection in the heliosphere. Correlation of spectral indices between remote and in-situ energy spectra presents the possibility of a common source acceleration region within the corona, however the properties and location of this region are not well con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19105v1-abstract-full').style.display = 'inline'; document.getElementById('2502.19105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19105v1-abstract-full" style="display: none;"> Non-thermal particle acceleration in the solar corona is evident from both remote hard X-ray (HXR) sources in the chromosphere and direct in-situ detection in the heliosphere. Correlation of spectral indices between remote and in-situ energy spectra presents the possibility of a common source acceleration region within the corona, however the properties and location of this region are not well constrained. To investigate this we perform a parameter study for both the properties of the ambient plasma of a simulated acceleration region and the turbulent acceleration profile acting on an initially isotropic thermal electron population. We find that the independently varying the turbulent acceleration timescale $蟿_{acc}$, acceleration profile standard deviation $蟽$ and acceleration region length L result in in-situ spectral index variation of between 0.5 and 2.0 at 1.0 AU for < 100 keV electrons. Short timescale turbulent scattering in the flaring corona steepens the spectra by $\sim$ 0.5. It was also found that the in-situ spectral index $未$ derived from the peak electron flux produces a spectral index $\sim$ 1.6 harder than that from a full-flare X-ray photon flux (of spectral index $纬$) simulated with the same intermediate parameters. Previous studies have indicated an approximate $未\approx 纬$ relationship for selected flares with measured in-situ electron and X-ray photon observations, suggesting that an extended source region with non-uniform plasma and/or acceleration properties may be necessary to reproduce this relationship. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19105v1-abstract-full').style.display = 'none'; document.getElementById('2502.19105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in The Astrophysical Journal 14 pages 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.19117">arXiv:2501.19117</a> <span> [<a href="https://arxiv.org/pdf/2501.19117">pdf</a>, <a href="https://arxiv.org/format/2501.19117">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> It's not $蟽_8$ : constraining the non-linear matter power spectrum with the Dark Energy Survey Year-5 supernova sample </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shah%2C+P">Paul Shah</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+T+M">T. M. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Vincenzi%2C+M">M. Vincenzi</a>, <a href="/search/astro-ph?searchtype=author&query=Armstrong%2C+P">P. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&query=Brout%2C+D">D. Brout</a>, <a href="/search/astro-ph?searchtype=author&query=Camilleri%2C+R">R. Camilleri</a>, <a href="/search/astro-ph?searchtype=author&query=Galbany%2C+L">L. Galbany</a>, <a href="/search/astro-ph?searchtype=author&query=Gill%2C+M+S+S">M. S. S. Gill</a>, <a href="/search/astro-ph?searchtype=author&query=Huterer%2C+D">D. Huterer</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Lahav%2C+O">O. Lahav</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+J">J. Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Lidman%2C+C">C. Lidman</a>, <a href="/search/astro-ph?searchtype=author&query=M%C3%B6ller%2C+A">A. M枚ller</a>, <a href="/search/astro-ph?searchtype=author&query=Sullivan%2C+M">M. Sullivan</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Wiseman%2C+P">P. Wiseman</a>, <a href="/search/astro-ph?searchtype=author&query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Carretero%2C+J">J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&query=Conselice%2C+C">C. Conselice</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.19117v1-abstract-short" style="display: inline;"> The weak gravitational lensing magnification of Type Ia supernovae (SNe Ia) is sensitive to the matter power spectrum on scales $k>1 h$ Mpc$^{-1}$, making it unwise to interpret SNe Ia lensing in terms of power on linear scales. We compute the probability density function of SNe Ia magnification as a function of standard cosmological parameters, plus an empirical parameter $A_{\rm mod}$ which desc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19117v1-abstract-full').style.display = 'inline'; document.getElementById('2501.19117v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.19117v1-abstract-full" style="display: none;"> The weak gravitational lensing magnification of Type Ia supernovae (SNe Ia) is sensitive to the matter power spectrum on scales $k>1 h$ Mpc$^{-1}$, making it unwise to interpret SNe Ia lensing in terms of power on linear scales. We compute the probability density function of SNe Ia magnification as a function of standard cosmological parameters, plus an empirical parameter $A_{\rm mod}$ which describes the suppression or enhancement of matter power on non-linear scales compared to a cold dark matter only model. While baryons are expected to enhance power on the scales relevant to SN Ia lensing, other physics such as neutrino masses or non-standard dark matter may suppress power. Using the Dark Energy Survey Year-5 sample, we find $A_{\rm mod} = 0.77^{+0.69}_{-0.40}$ (68\% credible interval around the median). Although the median is consistent with unity there are hints of power suppression, with $A_{\rm mod} < 1.09$ at 68\% credibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.19117v1-abstract-full').style.display = 'none'; document.getElementById('2501.19117v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, submitted to MNRAS. arXiv admin note: text overlap with arXiv:2410.07956</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DES-2024-0863 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05739">arXiv:2501.05739</a> <span> [<a href="https://arxiv.org/pdf/2501.05739">pdf</a>, <a href="https://arxiv.org/format/2501.05739">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 6 Results: Photometric Data Set for Cosmology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Sevilla-Noarbe%2C+I">I. Sevilla-Noarbe</a>, <a href="/search/astro-ph?searchtype=author&query=Drlica-Wagner%2C+A">A. Drlica-Wagner</a>, <a href="/search/astro-ph?searchtype=author&query=Yanny%2C+B">B. Yanny</a>, <a href="/search/astro-ph?searchtype=author&query=Gruendl%2C+R+A">R. A. Gruendl</a>, <a href="/search/astro-ph?searchtype=author&query=Sheldon%2C+E">E. Sheldon</a>, <a href="/search/astro-ph?searchtype=author&query=Rykoff%2C+E+S">E. S. Rykoff</a>, <a href="/search/astro-ph?searchtype=author&query=De+Vicente%2C+J">J. De Vicente</a>, <a href="/search/astro-ph?searchtype=author&query=Adamow%2C+M">M. Adamow</a>, <a href="/search/astro-ph?searchtype=author&query=Anbajagane%2C+D">D. Anbajagane</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Gschwend%2C+J">J. Gschwend</a>, <a href="/search/astro-ph?searchtype=author&query=Gorsuch%2C+M">M. Gorsuch</a>, <a href="/search/astro-ph?searchtype=author&query=Hartley%2C+W+G">W. G. Hartley</a>, <a href="/search/astro-ph?searchtype=author&query=Jarvis%2C+M">M. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&query=Jeltema%2C+T">T. Jeltema</a>, <a href="/search/astro-ph?searchtype=author&query=Kron%2C+R">R. Kron</a>, <a href="/search/astro-ph?searchtype=author&query=Manning%2C+T+A">T. A. Manning</a>, <a href="/search/astro-ph?searchtype=author&query=O%27Donnell%2C+J">J. O'Donnell</a>, <a href="/search/astro-ph?searchtype=author&query=Pieres%2C+A">A. Pieres</a>, <a href="/search/astro-ph?searchtype=author&query=Rodr%C3%ADguez-Monroy%2C+M">M. Rodr铆guez-Monroy</a>, <a href="/search/astro-ph?searchtype=author&query=Cid%2C+D+S">D. Sanchez Cid</a>, <a href="/search/astro-ph?searchtype=author&query=Tabbutt%2C+M">M. Tabbutt</a> , et al. (81 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05739v2-abstract-short" style="display: inline;"> We describe the photometric data set assembled from the full six years of observations by the Dark Energy Survey (DES) in support of static-sky cosmology analyses. DES Y6 Gold is a curated data set derived from DES Data Release 2 (DR2) that incorporates improved measurement, photometric calibration, object classification and value added information. Y6 Gold comprises nearly $5000~{\rm deg}^2$ of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05739v2-abstract-full').style.display = 'inline'; document.getElementById('2501.05739v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05739v2-abstract-full" style="display: none;"> We describe the photometric data set assembled from the full six years of observations by the Dark Energy Survey (DES) in support of static-sky cosmology analyses. DES Y6 Gold is a curated data set derived from DES Data Release 2 (DR2) that incorporates improved measurement, photometric calibration, object classification and value added information. Y6 Gold comprises nearly $5000~{\rm deg}^2$ of $grizY$ imaging in the south Galactic cap and includes 669 million objects with a depth of $i_{AB} \sim 23.4$ mag at S/N $\sim 10$ for extended objects and a top-of-the-atmosphere photometric uniformity $< 2~{\rm mmag}$. Y6 Gold augments DES DR2 with simultaneous fits to multi-epoch photometry for more robust galaxy shapes, colors, and photometric redshift estimates. Y6 Gold features improved morphological star-galaxy classification with efficiency $98.6\%$ and contamination $0.8\%$ for galaxies with $17.5 < i_{AB} < 22.5$. Additionally, it includes per-object quality information, and accompanying maps of the footprint coverage, masked regions, imaging depth, survey conditions, and astrophysical foregrounds that are used for cosmology analyses. After quality selections, benchmark samples contain 448 million galaxies and 120 million stars. This paper will be complemented by online data access and documentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05739v2-abstract-full').style.display = 'none'; document.getElementById('2501.05739v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data products and documentation are publicly available at https://des.ncsa.illinois.edu/releases</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22272">arXiv:2410.22272</a> <span> [<a href="https://arxiv.org/pdf/2410.22272">pdf</a>, <a href="https://arxiv.org/format/2410.22272">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3: Blue Shear </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=McCullough%2C+J">J. McCullough</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Legnani%2C+E">E. Legnani</a>, <a href="/search/astro-ph?searchtype=author&query=Gruen%2C+D">D. Gruen</a>, <a href="/search/astro-ph?searchtype=author&query=Roodman%2C+A">A. Roodman</a>, <a href="/search/astro-ph?searchtype=author&query=Friedrich%2C+O">O. Friedrich</a>, <a href="/search/astro-ph?searchtype=author&query=MacCrann%2C+N">N. MacCrann</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Myles%2C+J">J. Myles</a>, <a href="/search/astro-ph?searchtype=author&query=Dodelson%2C+S">S. Dodelson</a>, <a href="/search/astro-ph?searchtype=author&query=Samuroff%2C+S">S. Samuroff</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Prat%2C+J">J. Prat</a>, <a href="/search/astro-ph?searchtype=author&query=Honscheid%2C+K">K. Honscheid</a>, <a href="/search/astro-ph?searchtype=author&query=Pieres%2C+A">A. Pieres</a>, <a href="/search/astro-ph?searchtype=author&query=Fert%C3%A9%2C+A">A. Fert茅</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Drlica-Wagner%2C+A">A. Drlica-Wagner</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Navarro-Alsina%2C+A">A. Navarro-Alsina</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Malag%C3%B3n%2C+A+A+P">A. A. Plazas Malag贸n</a>, <a href="/search/astro-ph?searchtype=author&query=Porredon%2C+A">A. Porredon</a>, <a href="/search/astro-ph?searchtype=author&query=Farahi%2C+A">A. Farahi</a>, <a href="/search/astro-ph?searchtype=author&query=Ross%2C+A+J">A. J. Ross</a> , et al. (93 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22272v1-abstract-short" style="display: inline;"> Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this blue cosmic shear sample are stable to IA model choice, unlike passive galaxies in the full DES Y3 sample, the goodness-of-fit is improved and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22272v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22272v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22272v1-abstract-full" style="display: none;"> Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this blue cosmic shear sample are stable to IA model choice, unlike passive galaxies in the full DES Y3 sample, the goodness-of-fit is improved and the $惟_{m}$ and $S_8$ better agree with the cosmic microwave background. Mitigating IA with sample selection, instead of flexible model choices, can reduce uncertainty in $S_8$ by a factor of 1.5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22272v1-abstract-full').style.display = 'none'; document.getElementById('2410.22272v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Data access available at https://jamiemccullough.github.io/data/blueshear/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04722">arXiv:2409.04722</a> <span> [<a href="https://arxiv.org/pdf/2409.04722">pdf</a>, <a href="https://arxiv.org/format/2409.04722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae2029">10.1093/mnras/stae2029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First joint X-ray solar microflare observations with NuSTAR and Solar Orbiter/STIX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bajnokov%C3%A1%2C+N">Nat谩lia Bajnokov谩</a>, <a href="/search/astro-ph?searchtype=author&query=Hannah%2C+I+G">Iain G. Hannah</a>, <a href="/search/astro-ph?searchtype=author&query=Cooper%2C+K">Kristopher Cooper</a>, <a href="/search/astro-ph?searchtype=author&query=Krucker%2C+S">S盲m Krucker</a>, <a href="/search/astro-ph?searchtype=author&query=Grefenstette%2C+B+W">Brian W. Grefenstette</a>, <a href="/search/astro-ph?searchtype=author&query=Smith%2C+D+M">David M. Smith</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Duncan%2C+J">Jessie Duncan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04722v1-abstract-short" style="display: inline;"> We present the first joint spectral and imaging analysis of hard X-ray (HXR) emission from 3 microflares observed by the Nuclear Spectroscopic Telescope ARray (NuSTAR) and Solar Orbiter/Spectrometer/Telescope for Imaging X-rays (STIX). We studied 5 joint spectra from GOES A7, B1 and B6 class microflares from active region AR12765 on 2020 June 6 and 7. As these events are very bright for NuSTAR, re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04722v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04722v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04722v1-abstract-full" style="display: none;"> We present the first joint spectral and imaging analysis of hard X-ray (HXR) emission from 3 microflares observed by the Nuclear Spectroscopic Telescope ARray (NuSTAR) and Solar Orbiter/Spectrometer/Telescope for Imaging X-rays (STIX). We studied 5 joint spectra from GOES A7, B1 and B6 class microflares from active region AR12765 on 2020 June 6 and 7. As these events are very bright for NuSTAR, resulting in extremely low (<1%) livetime, we introduce a pile-up correction method. All five joint spectra were fitted with an isothermal model finding temperatures in the 9-11 MK range. Furthermore, three joint spectra required an additional non-thermal thick-target model finding non-thermal powers of $10^{25}$-$10^{26}$ erg s$^{-1}$. All the fit parameters were within the ranges expected for HXR microflares. The fit results give a relative scaling of STIX and NuSTAR mostly between 6-28% (one outlier at 52%) suggesting each instrument are well calibrated. In addition to spectral analysis, we performed joint HXR imaging of the June 6 and one of the June 7 microflares. In NuSTAR's field of view (FOV), we observed two separate non-thermal sources connected by an elongated thermal source during the June 6 microflares. In STIX's FOV (44 degrees W with respect to NuSTAR), we imaged thermal emission from the hot flare loops which when reprojected to an Earth viewpoint matches the thermal sources seen with NuSTAR and in the hotter EUV channels with the Solar Dynamic Observatory's Atmospheric Imaging Assembly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04722v1-abstract-full').style.display = 'none'; document.getElementById('2409.04722v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 533, Issue 3, September 2024, Pages 3742 -3755 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16903">arXiv:2408.16903</a> <span> [<a href="https://arxiv.org/pdf/2408.16903">pdf</a>, <a href="https://arxiv.org/format/2408.16903">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202452018">10.1051/0004-6361/202452018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Euclid preparation. LIX. Angular power spectra from discrete observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Euclid+Collaboration"> Euclid Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Tessore%2C+N">N. Tessore</a>, <a href="/search/astro-ph?searchtype=author&query=Joachimi%2C+B">B. Joachimi</a>, <a href="/search/astro-ph?searchtype=author&query=Loureiro%2C+A">A. Loureiro</a>, <a href="/search/astro-ph?searchtype=author&query=Hall%2C+A">A. Hall</a>, <a href="/search/astro-ph?searchtype=author&query=Ca%C3%B1as-Herrera%2C+G">G. Ca帽as-Herrera</a>, <a href="/search/astro-ph?searchtype=author&query=Tutusaus%2C+I">I. Tutusaus</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Naidoo%2C+K">K. Naidoo</a>, <a href="/search/astro-ph?searchtype=author&query=McEwen%2C+J+D">J. D. McEwen</a>, <a href="/search/astro-ph?searchtype=author&query=Amara%2C+A">A. Amara</a>, <a href="/search/astro-ph?searchtype=author&query=Andreon%2C+S">S. Andreon</a>, <a href="/search/astro-ph?searchtype=author&query=Auricchio%2C+N">N. Auricchio</a>, <a href="/search/astro-ph?searchtype=author&query=Baccigalupi%2C+C">C. Baccigalupi</a>, <a href="/search/astro-ph?searchtype=author&query=Baldi%2C+M">M. Baldi</a>, <a href="/search/astro-ph?searchtype=author&query=Bardelli%2C+S">S. Bardelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardeau%2C+F">F. Bernardeau</a>, <a href="/search/astro-ph?searchtype=author&query=Bonino%2C+D">D. Bonino</a>, <a href="/search/astro-ph?searchtype=author&query=Branchini%2C+E">E. Branchini</a>, <a href="/search/astro-ph?searchtype=author&query=Brescia%2C+M">M. Brescia</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">J. Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Caillat%2C+A">A. Caillat</a>, <a href="/search/astro-ph?searchtype=author&query=Camera%2C+S">S. Camera</a>, <a href="/search/astro-ph?searchtype=author&query=Capobianco%2C+V">V. Capobianco</a>, <a href="/search/astro-ph?searchtype=author&query=Carbone%2C+C">C. Carbone</a> , et al. (244 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16903v2-abstract-short" style="display: inline;"> We present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without treating observations as maps of an underlying continu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16903v2-abstract-full').style.display = 'inline'; document.getElementById('2408.16903v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16903v2-abstract-full" style="display: none;"> We present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without treating observations as maps of an underlying continuous field that is overlaid with a noise component. This formalism allows us to compute exact theoretical expectations for our measured spectra, under a number of assumptions that we track explicitly. In particular, we obtain exact expressions for the additive biases ("shot noise") in angular galaxy clustering and cosmic shear. For efficient practical computations, we introduce a spin-weighted spherical convolution with a well-defined convolution theorem, which allows us to apply exact theoretical predictions to finite-resolution maps, including HEALPix. When validating our methodology, we find that our measurements are biased by less than 1% of their statistical uncertainty in simulations of Euclid's first data release. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16903v2-abstract-full').style.display = 'none'; document.getElementById('2408.16903v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures. Code available at https://github.com/heracles-ec/heracles. v2: Author Accepted Manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 694, A141 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13491">arXiv:2405.13491</a> <span> [<a href="https://arxiv.org/pdf/2405.13491">pdf</a>, <a href="https://arxiv.org/format/2405.13491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Euclid. I. Overview of the Euclid mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Euclid+Collaboration"> Euclid Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Mellier%2C+Y">Y. Mellier</a>, <a href="/search/astro-ph?searchtype=author&query=Abdurro%27uf"> Abdurro'uf</a>, <a href="/search/astro-ph?searchtype=author&query=Barroso%2C+J+A+A">J. A. Acevedo Barroso</a>, <a href="/search/astro-ph?searchtype=author&query=Ach%C3%BAcarro%2C+A">A. Ach煤carro</a>, <a href="/search/astro-ph?searchtype=author&query=Adamek%2C+J">J. Adamek</a>, <a href="/search/astro-ph?searchtype=author&query=Adam%2C+R">R. Adam</a>, <a href="/search/astro-ph?searchtype=author&query=Addison%2C+G+E">G. E. Addison</a>, <a href="/search/astro-ph?searchtype=author&query=Aghanim%2C+N">N. Aghanim</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Ajani%2C+V">V. Ajani</a>, <a href="/search/astro-ph?searchtype=author&query=Akrami%2C+Y">Y. Akrami</a>, <a href="/search/astro-ph?searchtype=author&query=Al-Bahlawan%2C+A">A. Al-Bahlawan</a>, <a href="/search/astro-ph?searchtype=author&query=Alavi%2C+A">A. Alavi</a>, <a href="/search/astro-ph?searchtype=author&query=Albuquerque%2C+I+S">I. S. Albuquerque</a>, <a href="/search/astro-ph?searchtype=author&query=Alestas%2C+G">G. Alestas</a>, <a href="/search/astro-ph?searchtype=author&query=Alguero%2C+G">G. Alguero</a>, <a href="/search/astro-ph?searchtype=author&query=Allaoui%2C+A">A. Allaoui</a>, <a href="/search/astro-ph?searchtype=author&query=Allen%2C+S+W">S. W. Allen</a>, <a href="/search/astro-ph?searchtype=author&query=Allevato%2C+V">V. Allevato</a>, <a href="/search/astro-ph?searchtype=author&query=Alonso-Tetilla%2C+A+V">A. V. Alonso-Tetilla</a>, <a href="/search/astro-ph?searchtype=author&query=Altieri%2C+B">B. Altieri</a>, <a href="/search/astro-ph?searchtype=author&query=Alvarez-Candal%2C+A">A. Alvarez-Candal</a>, <a href="/search/astro-ph?searchtype=author&query=Alvi%2C+S">S. Alvi</a>, <a href="/search/astro-ph?searchtype=author&query=Amara%2C+A">A. Amara</a> , et al. (1115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13491v2-abstract-short" style="display: inline;"> The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13491v2-abstract-full').style.display = 'inline'; document.getElementById('2405.13491v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13491v2-abstract-full" style="display: none;"> The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13491v2-abstract-full').style.display = 'none'; document.getElementById('2405.13491v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the A&A special issue`Euclid on Sky'</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10881">arXiv:2405.10881</a> <span> [<a href="https://arxiv.org/pdf/2405.10881">pdf</a>, <a href="https://arxiv.org/format/2405.10881">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps II. Cosmological results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Campailla%2C+G">G. Campailla</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Porredon%2C+A">A. Porredon</a>, <a href="/search/astro-ph?searchtype=author&query=Prat%2C+J">J. Prat</a>, <a href="/search/astro-ph?searchtype=author&query=Williamson%2C+J">J. Williamson</a>, <a href="/search/astro-ph?searchtype=author&query=Raveri%2C+M">M. Raveri</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajani%2C+V">V. Ajani</a>, <a href="/search/astro-ph?searchtype=author&query=Giannini%2C+G">G. Giannini</a>, <a href="/search/astro-ph?searchtype=author&query=Yamamoto%2C+M">M. Yamamoto</a>, <a href="/search/astro-ph?searchtype=author&query=Zhou%2C+C">C. Zhou</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Anbajagane%2C+D">D. Anbajagane</a>, <a href="/search/astro-ph?searchtype=author&query=Samuroff%2C+S">S. Samuroff</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G">G. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10881v1-abstract-short" style="display: inline;"> We present a simulation-based cosmological analysis using a combination of Gaussian and non-Gaussian statistics of the weak lensing mass (convergence) maps from the first three years (Y3) of the Dark Energy Survey (DES). We implement: 1) second and third moments; 2) wavelet phase harmonics; 3) the scattering transform. Our analysis is fully based on simulations, spans a space of seven $谓w$CDM cosm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10881v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10881v1-abstract-full" style="display: none;"> We present a simulation-based cosmological analysis using a combination of Gaussian and non-Gaussian statistics of the weak lensing mass (convergence) maps from the first three years (Y3) of the Dark Energy Survey (DES). We implement: 1) second and third moments; 2) wavelet phase harmonics; 3) the scattering transform. Our analysis is fully based on simulations, spans a space of seven $谓w$CDM cosmological parameters, and forward models the most relevant sources of systematics inherent in the data: masks, noise variations, clustering of the sources, intrinsic alignments, and shear and redshift calibration. We implement a neural network compression of the summary statistics, and we estimate the parameter posteriors using a simulation-based inference approach. Including and combining different non-Gaussian statistics is a powerful tool that strongly improves constraints over Gaussian statistics (in our case, the second moments); in particular, the Figure of Merit $\textrm{FoM}(S_8, 惟_{\textrm{m}})$ is improved by 70 percent ($螞$CDM) and 90 percent ($w$CDM). When all the summary statistics are combined, we achieve a 2 percent constraint on the amplitude of fluctuations parameter $S_8 \equiv 蟽_8 (惟_{\textrm{m}}/0.3)^{0.5}$, obtaining $S_8 = 0.794 \pm 0.017$ ($螞$CDM) and $S_8 = 0.817 \pm 0.021$ ($w$CDM). The constraints from different statistics are shown to be internally consistent (with a $p$-value>0.1 for all combinations of statistics examined). We compare our results to other weak lensing results from the DES Y3 data, finding good consistency; we also compare with results from external datasets, such as \planck{} constraints from the Cosmic Microwave Background, finding statistical agreement, with discrepancies no greater than $<2.2蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10881v1-abstract-full').style.display = 'none'; document.getElementById('2405.10881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 13 figures, to be submitted to PRD. Comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.18278">arXiv:2404.18278</a> <span> [<a href="https://arxiv.org/pdf/2404.18278">pdf</a>, <a href="https://arxiv.org/format/2404.18278">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Gravitational Lensing Imprints of DES Y3 Superstructures on the CMB: A Matched Filtering Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Demirbozan%2C+U">Umut Demirbozan</a>, <a href="/search/astro-ph?searchtype=author&query=Nadathur%2C+S">Seshadri Nadathur</a>, <a href="/search/astro-ph?searchtype=author&query=Ferrero%2C+I">Ismael Ferrero</a>, <a href="/search/astro-ph?searchtype=author&query=Fosalba%2C+P">Pablo Fosalba</a>, <a href="/search/astro-ph?searchtype=author&query=Kovacs%2C+A">Andras Kovacs</a>, <a href="/search/astro-ph?searchtype=author&query=Miquel%2C+R">Ramon Miquel</a>, <a href="/search/astro-ph?searchtype=author&query=Davies%2C+C+T">Christopher T. Davies</a>, <a href="/search/astro-ph?searchtype=author&query=Pandey%2C+S">Shivam Pandey</a>, <a href="/search/astro-ph?searchtype=author&query=Adamow%2C+M">Monika Adamow</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">Keith Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Drlica-Wagner%2C+A">Alex Drlica-Wagner</a>, <a href="/search/astro-ph?searchtype=author&query=Gruendl%2C+R">Robert Gruendl</a>, <a href="/search/astro-ph?searchtype=author&query=Hartley%2C+W">Will Hartley</a>, <a href="/search/astro-ph?searchtype=author&query=Pieres%2C+A">Adriano Pieres</a>, <a href="/search/astro-ph?searchtype=author&query=Ross%2C+A">Ashley Ross</a>, <a href="/search/astro-ph?searchtype=author&query=Rykoff%2C+E">Eli Rykoff</a>, <a href="/search/astro-ph?searchtype=author&query=Sheldon%2C+E">Erin Sheldon</a>, <a href="/search/astro-ph?searchtype=author&query=Yanny%2C+B">Brian Yanny</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T">Tim Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">Michel Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Allam%2C+S">Sahar Allam</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">Otavio Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">David Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Bertin%2C+E">Emmanuel Bertin</a>, <a href="/search/astro-ph?searchtype=author&query=Bocquet%2C+S">Sebastian Bocquet</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.18278v2-abstract-short" style="display: inline;"> $ $Low density cosmic voids gravitationally lens the cosmic microwave background (CMB), leaving a negative imprint on the CMB convergence $魏… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18278v2-abstract-full').style.display = 'inline'; document.getElementById('2404.18278v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.18278v2-abstract-full" style="display: none;"> $ $Low density cosmic voids gravitationally lens the cosmic microwave background (CMB), leaving a negative imprint on the CMB convergence $魏$. This effect provides insight into the distribution of matter within voids, and can also be used to study the growth of structure. We measure this lensing imprint by cross-correlating the Planck CMB lensing convergence map with voids identified in the Dark Energy Survey Year 3 data set, covering approximately 4,200 deg$^2$ of the sky. We use two distinct void-finding algorithms: a 2D void-finder which operates on the projected galaxy density field in thin redshift shells, and a new code, Voxel, which operates on the full 3D map of galaxy positions. We employ an optimal matched filtering method for cross-correlation, using the MICE N-body simulation both to establish the template for the matched filter and to calibrate detection significances. Using the DES Y3 photometric luminous red galaxy sample, we measure $A_魏$, the amplitude of the observed lensing signal relative to the simulation template, obtaining $A_魏= 1.03 \pm 0.22$ ($4.6蟽$ significance) for Voxel and $A_魏= 1.02 \pm 0.17$ ($5.9蟽$ significance) for 2D voids, both consistent with $螞$CDM expectations. We additionally invert the 2D void-finding process to identify superclusters in the projected density field, for which we measure $A_魏= 0.87 \pm 0.15$ ($5.9蟽$ significance). The leading source of noise in our measurements is Planck noise, implying that future data from the Atacama Cosmology Telescope (ACT), South Pole Telescope (SPT) and CMB-S4 will increase sensitivity and allow for more precise measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.18278v2-abstract-full').style.display = 'none'; document.getElementById('2404.18278v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09397">arXiv:2404.09397</a> <span> [<a href="https://arxiv.org/pdf/2404.09397">pdf</a>, <a href="https://arxiv.org/format/2404.09397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.33232/001c.121260">10.33232/001c.121260 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Systematic Effects in Galaxy-Galaxy Lensing with DESI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lange%2C+J+U">J. U. Lange</a>, <a href="/search/astro-ph?searchtype=author&query=Blake%2C+C">C. Blake</a>, <a href="/search/astro-ph?searchtype=author&query=Saulder%2C+C">C. Saulder</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&query=Beltz-Mohrmann%2C+G">G. Beltz-Mohrmann</a>, <a href="/search/astro-ph?searchtype=author&query=Emas%2C+N">N. Emas</a>, <a href="/search/astro-ph?searchtype=author&query=Garcia-Quintero%2C+C">C. Garcia-Quintero</a>, <a href="/search/astro-ph?searchtype=author&query=Hadzhiyska%2C+B">B. Hadzhiyska</a>, <a href="/search/astro-ph?searchtype=author&query=Heydenreich%2C+S">S. Heydenreich</a>, <a href="/search/astro-ph?searchtype=author&query=Ishak%2C+M">M. Ishak</a>, <a href="/search/astro-ph?searchtype=author&query=Joudaki%2C+S">S. Joudaki</a>, <a href="/search/astro-ph?searchtype=author&query=Jullo%2C+E">E. Jullo</a>, <a href="/search/astro-ph?searchtype=author&query=Krolewski%2C+A">A. Krolewski</a>, <a href="/search/astro-ph?searchtype=author&query=Leauthaud%2C+A">A. Leauthaud</a>, <a href="/search/astro-ph?searchtype=author&query=Medina-Varela%2C+L">L. Medina-Varela</a>, <a href="/search/astro-ph?searchtype=author&query=Porredon%2C+A">A. Porredon</a>, <a href="/search/astro-ph?searchtype=author&query=Rossi%2C+G">G. Rossi</a>, <a href="/search/astro-ph?searchtype=author&query=Ruggeri%2C+R">R. Ruggeri</a>, <a href="/search/astro-ph?searchtype=author&query=Xhakaj%2C+E">E. Xhakaj</a>, <a href="/search/astro-ph?searchtype=author&query=Yuan%2C+S">S. Yuan</a>, <a href="/search/astro-ph?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&query=Ahlen%2C+S">S. Ahlen</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Claybaugh%2C+T">T. Claybaugh</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09397v2-abstract-short" style="display: inline;"> The Dark Energy Spectroscopic Instrument (DESI) survey will measure spectroscopic redshifts for millions of galaxies across roughly $14,000 \, \mathrm{deg}^2$ of the sky. Cross-correlating targets in the DESI survey with complementary imaging surveys allows us to measure and analyze shear distortions caused by gravitational lensing in unprecedented detail. In this work, we analyze a series of mock… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09397v2-abstract-full').style.display = 'inline'; document.getElementById('2404.09397v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09397v2-abstract-full" style="display: none;"> The Dark Energy Spectroscopic Instrument (DESI) survey will measure spectroscopic redshifts for millions of galaxies across roughly $14,000 \, \mathrm{deg}^2$ of the sky. Cross-correlating targets in the DESI survey with complementary imaging surveys allows us to measure and analyze shear distortions caused by gravitational lensing in unprecedented detail. In this work, we analyze a series of mock catalogs with ray-traced gravitational lensing and increasing sophistication to estimate systematic effects on galaxy-galaxy lensing estimators such as the tangential shear $纬_{\mathrm{t}}$ and the excess surface density $螖危$. We employ mock catalogs tailored to the specific imaging surveys overlapping with the DESI survey: the Dark Energy Survey (DES), the Hyper Suprime-Cam (HSC) survey, and the Kilo-Degree Survey (KiDS). Among others, we find that fiber incompleteness can have significant effects on galaxy-galaxy lensing estimators but can be corrected effectively by up-weighting DESI targets with fibers by the inverse of the fiber assignment probability. Similarly, we show that intrinsic alignment and lens magnification are expected to be statistically significant given the precision forecasted for the DESI year-1 data set. Our study informs several analysis choices for upcoming cross-correlation studies of DESI with DES, HSC, and KiDS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09397v2-abstract-full').style.display = 'none'; document.getElementById('2404.09397v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures, version accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.02314">arXiv:2403.02314</a> <span> [<a href="https://arxiv.org/pdf/2403.02314">pdf</a>, <a href="https://arxiv.org/format/2403.02314">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 results: likelihood-free, simulation-based $w$CDM inference with neural compression of weak-lensing map statistics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Williamson%2C+J">J. Williamson</a>, <a href="/search/astro-ph?searchtype=author&query=Alsing%2C+J">J. Alsing</a>, <a href="/search/astro-ph?searchtype=author&query=Porredon%2C+A">A. Porredon</a>, <a href="/search/astro-ph?searchtype=author&query=Prat%2C+J">J. Prat</a>, <a href="/search/astro-ph?searchtype=author&query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Cheng%2C+T+-">T. -Y. Cheng</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Lemos%2C+P">P. Lemos</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&query=Drlica-Wagner%2C+A">A. Drlica-Wagner</a>, <a href="/search/astro-ph?searchtype=author&query=Eckert%2C+K">K. Eckert</a> , et al. (66 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.02314v1-abstract-short" style="display: inline;"> We present simulation-based cosmological $w$CDM inference using Dark Energy Survey Year 3 weak-lensing maps, via neural data compression of weak-lensing map summary statistics: power spectra, peak counts, and direct map-level compression/inference with convolutional neural networks (CNN). Using simulation-based inference, also known as likelihood-free or implicit inference, we use forward-modelled… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02314v1-abstract-full').style.display = 'inline'; document.getElementById('2403.02314v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.02314v1-abstract-full" style="display: none;"> We present simulation-based cosmological $w$CDM inference using Dark Energy Survey Year 3 weak-lensing maps, via neural data compression of weak-lensing map summary statistics: power spectra, peak counts, and direct map-level compression/inference with convolutional neural networks (CNN). Using simulation-based inference, also known as likelihood-free or implicit inference, we use forward-modelled mock data to estimate posterior probability distributions of unknown parameters. This approach allows all statistical assumptions and uncertainties to be propagated through the forward-modelled mock data; these include sky masks, non-Gaussian shape noise, shape measurement bias, source galaxy clustering, photometric redshift uncertainty, intrinsic galaxy alignments, non-Gaussian density fields, neutrinos, and non-linear summary statistics. We include a series of tests to validate our inference results. This paper also describes the Gower Street simulation suite: 791 full-sky PKDGRAV dark matter simulations, with cosmological model parameters sampled with a mixed active-learning strategy, from which we construct over 3000 mock DES lensing data sets. For $w$CDM inference, for which we allow $-1<w<-\frac{1}{3}$, our most constraining result uses power spectra combined with map-level (CNN) inference. Using gravitational lensing data only, this map-level combination gives $惟_{\rm m} = 0.283^{+0.020}_{-0.027}$, ${S_8 = 0.804^{+0.025}_{-0.017}}$, and $w < -0.80$ (with a 68 per cent credible interval); compared to the power spectrum inference, this is more than a factor of two improvement in dark energy parameter ($惟_{\rm DE}, w$) precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.02314v1-abstract-full').style.display = 'none'; document.getElementById('2403.02314v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 15 figures, submitted to Monthly Notices of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08455">arXiv:2402.08455</a> <span> [<a href="https://arxiv.org/pdf/2402.08455">pdf</a>, <a href="https://arxiv.org/format/2402.08455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348615">10.1051/0004-6361/202348615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The SRG/eROSITA All-Sky Survey: Dark Energy Survey Year 3 Weak Gravitational Lensing by eRASS1 selected Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Grandis%2C+S">S. Grandis</a>, <a href="/search/astro-ph?searchtype=author&query=Ghirardini%2C+V">V. Ghirardini</a>, <a href="/search/astro-ph?searchtype=author&query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&query=Garrel%2C+C">C. Garrel</a>, <a href="/search/astro-ph?searchtype=author&query=Mohr%2C+J+J">J. J. Mohr</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+A">A. Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Kluge%2C+M">M. Kluge</a>, <a href="/search/astro-ph?searchtype=author&query=Kimmig%2C+L">L. Kimmig</a>, <a href="/search/astro-ph?searchtype=author&query=Reiprich%2C+T+H">T. H. Reiprich</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Artis%2C+E">E. Artis</a>, <a href="/search/astro-ph?searchtype=author&query=Bahar%2C+Y+E">Y. E. Bahar</a>, <a href="/search/astro-ph?searchtype=author&query=Balzer%2C+F">F. Balzer</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G">G. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Bulbul%2C+E">E. Bulbul</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chiu%2C+I">I. Chiu</a> , et al. (97 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08455v1-abstract-short" style="display: inline;"> Number counts of galaxy clusters across redshift are a powerful cosmological probe, if a precise and accurate reconstruction of the underlying mass distribution is performed -- a challenge called mass calibration. With the advent of wide and deep photometric surveys, weak gravitational lensing by clusters has become the method of choice to perform this measurement. We measure and validate the weak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08455v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08455v1-abstract-full" style="display: none;"> Number counts of galaxy clusters across redshift are a powerful cosmological probe, if a precise and accurate reconstruction of the underlying mass distribution is performed -- a challenge called mass calibration. With the advent of wide and deep photometric surveys, weak gravitational lensing by clusters has become the method of choice to perform this measurement. We measure and validate the weak gravitational lensing (WL) signature in the shape of galaxies observed in the first 3 years of the DES Y3 caused by galaxy clusters selected in the first all-sky survey performed by SRG/eROSITA. These data are then used to determine the scaling between X-ray photon count rate of the clusters and their halo mass and redshift. We empirically determine the degree of cluster member contamination in our background source sample. The individual cluster shear profiles are then analysed with a Bayesian population model that self-consistently accounts for the lens sample selection and contamination, and includes marginalization over a host of instrumental and astrophysical systematics. To quantify the accuracy of the mass extraction of that model, we perform mass measurements on mock cluster catalogs with realistic synthetic shear profiles. This allows us to establish that hydro-dynamical modelling uncertainties at low lens redshifts ($z<0.6$) are the dominant systematic limitation. At high lens redshift the uncertainties of the sources' photometric redshift calibration dominate. With regard to the X-ray count rate to halo mass relation, we constrain all its parameters. This work sets the stage for a joint analysis with the number counts of eRASS1 clusters to constrain a host of cosmological parameters. We demonstrate that WL mass calibration of galaxy clusters can be performed successfully with source galaxies whose calibration was performed primarily for cosmic shear experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08455v1-abstract-full').style.display = 'none'; document.getElementById('2402.08455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 18 figures, 2 appendices, submitted to A\&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 687, A178 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16032">arXiv:2401.16032</a> <span> [<a href="https://arxiv.org/pdf/2401.16032">pdf</a>, <a href="https://arxiv.org/format/2401.16032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> A Modelling Investigation for Solar Flare X-ray Stereoscopy with Solar Orbiter/STIX and Earth Orbiting Missions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Krucker%2C+S">S盲m Krucker</a>, <a href="/search/astro-ph?searchtype=author&query=Stores%2C+M">Morgan Stores</a>, <a href="/search/astro-ph?searchtype=author&query=Kontar%2C+E+P">Eduard P. Kontar</a>, <a href="/search/astro-ph?searchtype=author&query=Saint-Hilaire%2C+P">Pascal Saint-Hilaire</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+A+F">Andrea F. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Hayes%2C+L">Laura Hayes</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+H">Hannah Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Veronig%2C+A">Astrid Veronig</a>, <a href="/search/astro-ph?searchtype=author&query=Su%2C+Y">Yang Su</a>, <a href="/search/astro-ph?searchtype=author&query=Tadepalli%2C+S+P">Srikar Paavan Tadepalli</a>, <a href="/search/astro-ph?searchtype=author&query=Xia%2C+F">Fanxiaoyu Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16032v1-abstract-short" style="display: inline;"> The Spectrometer/Telescope for Imaging X-rays (STIX) on board Solar Orbiter (SolO) provides a unique opportunity to systematically perform stereoscopic X-ray observations of solar flares with current and upcoming X-ray missions at Earth. These observations will produce the first reliable measurements of hard X-ray (HXR) directivity in decades, providing a new diagnostic of the flare-accelerated el… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16032v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16032v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16032v1-abstract-full" style="display: none;"> The Spectrometer/Telescope for Imaging X-rays (STIX) on board Solar Orbiter (SolO) provides a unique opportunity to systematically perform stereoscopic X-ray observations of solar flares with current and upcoming X-ray missions at Earth. These observations will produce the first reliable measurements of hard X-ray (HXR) directivity in decades, providing a new diagnostic of the flare-accelerated electron angular distribution and helping to constrain the processes that accelerate electrons in flares. However, such observations must be compared to modelling, taking into account electron and X-ray transport effects and realistic plasma conditions, all of which can change the properties of the measured HXR directivity. Here, we show how HXR directivity, defined as the ratio of X-ray spectra at different spacecraft viewing angles, varies with different electron and flare properties (e.g., electron angular distribution, highest energy electrons, and magnetic configuration), and how modelling can be used to extract these typically unknown properties from the data. Lastly, we present a preliminary HXR directivity analysis of two flares, observed by the Fermi Gamma-ray Burst Monitor (GBM) and SolO/STIX, demonstrating the feasibility and challenges associated with such observations, and how HXR directivity can be extracted by comparison with the modelling presented here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16032v1-abstract-full').style.display = 'none'; document.getElementById('2401.16032v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ (January 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02929">arXiv:2401.02929</a> <span> [<a href="https://arxiv.org/pdf/2401.02929">pdf</a>, <a href="https://arxiv.org/format/2401.02929">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Dark Energy Survey: Cosmology Results With ~1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=DES+Collaboration"> DES Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Acevedo%2C+M">M. Acevedo</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&query=Armstrong%2C+P">P. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&query=Asorey%2C+J">J. Asorey</a>, <a href="/search/astro-ph?searchtype=author&query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Bassett%2C+B+A">B. A. Bassett</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Bernardinelli%2C+P+H">P. H. Bernardinelli</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Brout%2C+D">D. Brout</a>, <a href="/search/astro-ph?searchtype=author&query=Buckley-Geer%2C+E">E. Buckley-Geer</a>, <a href="/search/astro-ph?searchtype=author&query=Burke%2C+D+L">D. L. Burke</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02929v3-abstract-short" style="display: inline;"> We present cosmological constraints from the sample of Type Ia supernovae (SN Ia) discovered during the full five years of the Dark Energy Survey (DES) Supernova Program. In contrast to most previous cosmological samples, in which SN are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02929v3-abstract-full').style.display = 'inline'; document.getElementById('2401.02929v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02929v3-abstract-full" style="display: none;"> We present cosmological constraints from the sample of Type Ia supernovae (SN Ia) discovered during the full five years of the Dark Energy Survey (DES) Supernova Program. In contrast to most previous cosmological samples, in which SN are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being a SN Ia, we find 1635 DES SNe in the redshift range $0.10<z<1.13$ that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-quality $z>0.5$ SNe compared to the previous leading compilation of Pantheon+, and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints we combine the DES supernova data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning $0.025<z<0.10$. Using SN data alone and including systematic uncertainties we find $惟_{\rm M}=0.352\pm 0.017$ in flat $螞$CDM. Supernova data alone now require acceleration ($q_0<0$ in $螞$CDM) with over $5蟽$ confidence. We find $(惟_{\rm M},w)=(0.264^{+0.074}_{-0.096},-0.80^{+0.14}_{-0.16})$ in flat $w$CDM. For flat $w_0w_a$CDM, we find $(惟_{\rm M},w_0,w_a)=(0.495^{+0.033}_{-0.043},-0.36^{+0.36}_{-0.30},-8.8^{+3.7}_{-4.5})$. Including Planck CMB data, SDSS BAO data, and DES $3\times2$-point data gives $(惟_{\rm M},w)=(0.321\pm0.007,-0.941\pm0.026)$. In all cases dark energy is consistent with a cosmological constant to within $\sim2蟽$. In our analysis, systematic errors on cosmological parameters are subdominant compared to statistical errors; paving the way for future photometrically classified supernova analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02929v3-abstract-full').style.display = 'none'; document.getElementById('2401.02929v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures; Accepted by ApJL 29 March 2024; v3 updates to accepted version and includes links to data</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-0821-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.17557">arXiv:2310.17557</a> <span> [<a href="https://arxiv.org/pdf/2310.17557">pdf</a>, <a href="https://arxiv.org/format/2310.17557">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps I: validation on simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Williamson%2C+J">J. Williamson</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Ajani%2C+V">V. Ajani</a>, <a href="/search/astro-ph?searchtype=author&query=Anbajagane%2C+D">D. Anbajagane</a>, <a href="/search/astro-ph?searchtype=author&query=Giannini%2C+G">G. Giannini</a>, <a href="/search/astro-ph?searchtype=author&query=Zhou%2C+C">C. Zhou</a>, <a href="/search/astro-ph?searchtype=author&query=Porredon%2C+A">A. Porredon</a>, <a href="/search/astro-ph?searchtype=author&query=Prat%2C+J">J. Prat</a>, <a href="/search/astro-ph?searchtype=author&query=Yamamoto%2C+M">M. Yamamoto</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Samuroff%2C+S">S. Samuroff</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G">G. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+C">C. Davis</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.17557v2-abstract-short" style="display: inline;"> Beyond-two-point statistics contain additional information on cosmological as well as astrophysical and observational (systematics) parameters. In this methodology paper we provide an end-to-end simulation-based analysis of a set of Gaussian and non-Gaussian weak lensing statistics using detailed mock catalogues of the Dark Energy Survey. We implement: 1) second and third moments; 2) wavelet phase… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17557v2-abstract-full').style.display = 'inline'; document.getElementById('2310.17557v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.17557v2-abstract-full" style="display: none;"> Beyond-two-point statistics contain additional information on cosmological as well as astrophysical and observational (systematics) parameters. In this methodology paper we provide an end-to-end simulation-based analysis of a set of Gaussian and non-Gaussian weak lensing statistics using detailed mock catalogues of the Dark Energy Survey. We implement: 1) second and third moments; 2) wavelet phase harmonics (WPH); 3) the scattering transform (ST). Our analysis is fully based on simulations, it spans a space of seven $谓w$CDM cosmological parameters, and it forward models the most relevant sources of systematics of the data (masks, noise variations, clustering of the sources, intrinsic alignments, and shear and redshift calibration). We implement a neural network compression of the summary statistics, and we estimate the parameter posteriors using a likelihood-free-inference approach. We validate the pipeline extensively, and we find that WPH exhibits the strongest performance when combined with second moments, followed by ST. and then by third moments. The combination of all the different statistics further enhances constraints with respect to second moments, up to 25 per cent, 15 per cent, and 90 per cent for $S_8$, $惟_{\rm m}$, and the Figure-Of-Merit ${\rm FoM_{S_8,惟_{\rm m}}}$, respectively. We further find that non-Gaussian statistics improve constraints on $w$ and on the amplitude of intrinsic alignment with respect to second moments constraints. The methodological advances presented here are suitable for application to Stage IV surveys from Euclid, Rubin-LSST, and Roman with additional validation on mock catalogues for each survey. In a companion paper we present an application to DES Year 3 data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.17557v2-abstract-full').style.display = 'none'; document.getElementById('2310.17557v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 18 figures. Comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04234">arXiv:2310.04234</a> <span> [<a href="https://arxiv.org/pdf/2310.04234">pdf</a>, <a href="https://arxiv.org/format/2310.04234">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347706">10.1051/0004-6361/202347706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The existence of hot X-ray onsets in solar flares </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+A+F">Andrea Francesco Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Hudson%2C+H">Hugh Hudson</a>, <a href="/search/astro-ph?searchtype=author&query=Warmuth%2C+A">Alexander Warmuth</a>, <a href="/search/astro-ph?searchtype=author&query=Collier%2C+H">Hannah Collier</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Caspi%2C+A">Amir Caspi</a>, <a href="/search/astro-ph?searchtype=author&query=Dickson%2C+E+C+M">Ewan C. M. Dickson</a>, <a href="/search/astro-ph?searchtype=author&query=Saqri%2C+J">Jonas Saqri</a>, <a href="/search/astro-ph?searchtype=author&query=Purkhart%2C+S">Stefan Purkhart</a>, <a href="/search/astro-ph?searchtype=author&query=Veronig%2C+A+M">Astrid M. Veronig</a>, <a href="/search/astro-ph?searchtype=author&query=Harra%2C+L">Louise Harra</a>, <a href="/search/astro-ph?searchtype=author&query=Krucker%2C+S">S盲m Krucker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04234v1-abstract-short" style="display: inline;"> It is well known among the scientific community that solar flare activity often begins well before the main impulsive energy release. Our aim is to investigate the earliest phase of four distinct flares observed by Solar Orbiter/STIX and determine the relationships of the newly heated plasma to flare structure and dynamics. The analysis focuses on four events that were observed from both Earth and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04234v1-abstract-full').style.display = 'inline'; document.getElementById('2310.04234v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04234v1-abstract-full" style="display: none;"> It is well known among the scientific community that solar flare activity often begins well before the main impulsive energy release. Our aim is to investigate the earliest phase of four distinct flares observed by Solar Orbiter/STIX and determine the relationships of the newly heated plasma to flare structure and dynamics. The analysis focuses on four events that were observed from both Earth and Solar Orbiter, which allows for a comparison of STIX observations with those of GOES/XRS and SDO/AIA. The early phases of the events were studied using STIX and GOES spectroscopic analysis to investigate the evolution of the physical parameters of the plasma, including the isothermal temperature and emission measure. Furthermore, to determine the location of the heated plasma, STIX observations were combined with AIA images. The events with clear emission prior to the impulsive phase show elevated temperatures ($> 10\,\mathrm{MK}$) from the very beginning, which indicates that energy release started before any detection by STIX. Although the temperature shows little variation during the initial phase, the emission measure increases by about two orders of magnitude, implying a series of incrementally greater energy releases. The spectral analysis of STIX and GOES from the very first time bins suggests that the emission has a multi-thermal nature, with a hot component of more than $10\,\mathrm{MK}$. This analysis confirms the existence of "hot onsets," with STIX detecting the hot onset pattern even earlier than GOES. These elevated temperatures imply that energy release actually begins well before any detection by STIX. Therefore, hot onsets may be significant in the initiation, early development, or even prediction of solar flares. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04234v1-abstract-full').style.display = 'none'; document.getElementById('2310.04234v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 679, A139 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04229">arXiv:2310.04229</a> <span> [<a href="https://arxiv.org/pdf/2310.04229">pdf</a>, <a href="https://arxiv.org/ps/2310.04229">ps</a>, <a href="https://arxiv.org/format/2310.04229">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploring the Origin of Solar Energetic Electrons I: Constraining the Properties of the Acceleration Region Plasma Environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pallister%2C+R">Ross Pallister</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04229v1-abstract-short" style="display: inline;"> Solar flare electron acceleration is an efficient process, but its properties (mechanism, location) are not well constrained. Via hard X-ray (HXR) emission, we routinely observe energetic electrons at the Sun, and sometimes we detect energetic electrons in interplanetary space. We examine if the plasma properties of an acceleration region (size, temperature, density) can be constrained from in-sit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04229v1-abstract-full').style.display = 'inline'; document.getElementById('2310.04229v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04229v1-abstract-full" style="display: none;"> Solar flare electron acceleration is an efficient process, but its properties (mechanism, location) are not well constrained. Via hard X-ray (HXR) emission, we routinely observe energetic electrons at the Sun, and sometimes we detect energetic electrons in interplanetary space. We examine if the plasma properties of an acceleration region (size, temperature, density) can be constrained from in-situ observations, helping to locate the acceleration region in the corona, and infer the relationship between electrons observed in-situ and at the Sun. We model the transport of energetic electrons, accounting for collisional and non-collisional effects, from the corona into the heliosphere (to 1.0 AU). In the corona, electrons are transported through a hot, over-dense region. We test if the properties of this region can be extracted from electron spectra (fluence and peak flux) at different heliospheric locations. We find that cold, dense coronal regions significantly reduce the energy at which we see the peak flux and fluence for distributions measured out to 1.0 AU, the degree of which correlates with the temperature and density of plasma in the region. Where instrument energy resolution is insufficient to differentiate the corresponding peak values, the spectral ratio of [7-10) to [4-7) keV can be more readily identified and demonstrates the same relationship. If flare electrons detected in-situ are produced in, and/or transported through hot, over-dense regions close to HXR-emitting electrons, then this plasma signature should be present in their lower-energy spectra (1-20 keV), observable at varying heliospheric distances with missions such as Solar Orbiter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04229v1-abstract-full').style.display = 'none'; document.getElementById('2310.04229v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04412">arXiv:2309.04412</a> <span> [<a href="https://arxiv.org/pdf/2309.04412">pdf</a>, <a href="https://arxiv.org/format/2309.04412">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3987">10.1093/mnras/stad3987 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmology from Cross-Correlation of ACT-DR4 CMB Lensing and DES-Y3 Cosmic Shear </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shaikh%2C+S">S. Shaikh</a>, <a href="/search/astro-ph?searchtype=author&query=Harrison%2C+I">I. Harrison</a>, <a href="/search/astro-ph?searchtype=author&query=van+Engelen%2C+A">A. van Engelen</a>, <a href="/search/astro-ph?searchtype=author&query=Marques%2C+G+A">G. A. Marques</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=An%2C+R">R. An</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Burke%2C+D+L">D. L. Burke</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Carretero%2C+J">J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a> , et al. (83 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04412v1-abstract-short" style="display: inline;"> Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04412v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04412v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04412v1-abstract-full" style="display: none;"> Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and $\textit{Planck}$ data, where most of the contamination due to the thermal Sunyaev Zel'dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio $= 7.1$ and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution ($S_8 \equiv 蟽_8 (惟_{\rm m}/0.3)^{0.5} = 0.782\pm 0.059$) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6x2pt analysis between DES and ACT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04412v1-abstract-full').style.display = 'none'; document.getElementById('2309.04412v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 30 figures (including appendices). Data associated with this article is available at https://github.com/itrharrison/actdr4kappa-x-desy3gamma-data</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-432-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05839">arXiv:2308.05839</a> <span> [<a href="https://arxiv.org/pdf/2308.05839">pdf</a>, <a href="https://arxiv.org/ps/2308.05839">ps</a>, <a href="https://arxiv.org/format/2308.05839">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acf6c1">10.3847/1538-4357/acf6c1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kontar%2C+E+P">Eduard P. Kontar</a>, <a href="/search/astro-ph?searchtype=author&query=Emslie%2C+A+G">A. Gordon Emslie</a>, <a href="/search/astro-ph?searchtype=author&query=Clarkson%2C+D+L">Daniel L. Clarkson</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+X">Xingyao Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Chrysaphi%2C+N">Nicolina Chrysaphi</a>, <a href="/search/astro-ph?searchtype=author&query=Azzollini%2C+F">Francesco Azzollini</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Gordovskyy%2C+M">Mykola Gordovskyy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05839v2-abstract-short" style="display: inline;"> Solar radio bursts are strongly affected by radio-wave scattering on density inhomogeneities, changing their observed time characteristics, sizes, and positions. The same turbulence causes angular broadening and scintillation of galactic and extra-galactic compact radio sources observed through the solar atmosphere. Using large-scale simulations of radio-wave transport, the characteristics of anis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05839v2-abstract-full').style.display = 'inline'; document.getElementById('2308.05839v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05839v2-abstract-full" style="display: none;"> Solar radio bursts are strongly affected by radio-wave scattering on density inhomogeneities, changing their observed time characteristics, sizes, and positions. The same turbulence causes angular broadening and scintillation of galactic and extra-galactic compact radio sources observed through the solar atmosphere. Using large-scale simulations of radio-wave transport, the characteristics of anisotropic density turbulence from $0.1 \, R_\odot$ to $1$ au are explored. For the first time, a profile of heliospheric density fluctuations is deduced that accounts for the properties of extra-solar radio sources, solar radio bursts, and in-situ density fluctuation measurements in the solar wind at $1$ au. The radial profile of the spectrum-weighted mean wavenumber of density fluctuations (a quantity proportional to the scattering rate of radio-waves) is found to have a broad maximum at around $(4-7) \, R_\odot$, where the slow solar wind becomes supersonic. The level of density fluctuations at the inner scale (which is consistent with the proton resonance scale) decreases with heliocentric distance as $\langle未{n_i}^2 \rangle (r) \simeq 2 \times 10^7 \, (r/R_\odot-1)^{-3.7}$ cm$^{-6}$. Due to scattering, the apparent positions of solar burst sources observed at frequencies between $0.1$ and $300$ MHz are computed to be essentially cospatial and to have comparable sizes, for both fundamental and harmonic emission. Anisotropic scattering is found to account for the shortest solar radio burst decay times observed, and the required wavenumber anisotropy is $q_\parallel/q_\perp =0.25-0.4$, depending on whether fundamental or harmonic emission is involved. The deduced radio-wave scattering rate paves the way to quantify intrinsic solar radio burst characteristics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05839v2-abstract-full').style.display = 'none'; document.getElementById('2308.05839v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03863">arXiv:2308.03863</a> <span> [<a href="https://arxiv.org/pdf/2308.03863">pdf</a>, <a href="https://arxiv.org/format/2308.03863">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Beyond the 3rd moment: A practical study of using lensing convergence CDFs for cosmology with DES Y3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Anbajagane%2C+D">D. Anbajagane</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/astro-ph?searchtype=author&query=Abel%2C+T">T. Abel</a>, <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Ajani%2C+V">V. Ajani</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+C">C. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&query=Diehl%2C+H+T">H. T. Diehl</a>, <a href="/search/astro-ph?searchtype=author&query=Dodelson%2C+S">S. Dodelson</a>, <a href="/search/astro-ph?searchtype=author&query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&query=Drlica-Wagner%2C+A">A. Drlica-Wagner</a>, <a href="/search/astro-ph?searchtype=author&query=Eckert%2C+K">K. Eckert</a>, <a href="/search/astro-ph?searchtype=author&query=Elvin-Poole%2C+J">J. Elvin-Poole</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03863v1-abstract-short" style="display: inline;"> Widefield surveys of the sky probe many clustered scalar fields -- such as galaxy counts, lensing potential, gas pressure, etc. -- that are sensitive to different cosmological and astrophysical processes. Our ability to constrain such processes from these fields depends crucially on the statistics chosen to summarize the field. In this work, we explore the cumulative distribution function (CDF) at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03863v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03863v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03863v1-abstract-full" style="display: none;"> Widefield surveys of the sky probe many clustered scalar fields -- such as galaxy counts, lensing potential, gas pressure, etc. -- that are sensitive to different cosmological and astrophysical processes. Our ability to constrain such processes from these fields depends crucially on the statistics chosen to summarize the field. In this work, we explore the cumulative distribution function (CDF) at multiple scales as a summary of the galaxy lensing convergence field. Using a suite of N-body lightcone simulations, we show the CDFs' constraining power is modestly better than that of the 2nd and 3rd moments of the field, as they approximately capture the information from all moments of the field in a concise data vector. We then study the practical aspects of applying the CDFs to observational data, using the first three years of the Dark Energy Survey (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions from the point spread function are 2-3 orders of magnitude below the cosmological signal, while those from reduced shear approximation contribute $\lesssim 1\%$ to the signal. Source clustering effects and baryon imprints contribute $1-10\%$. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrades these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We also detect correlations between the observed convergence field and the shape noise field at $13蟽$. We find that the non-Gaussian correlations in the noise field must be modeled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03863v1-abstract-full').style.display = 'none'; document.getElementById('2308.03863v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13860">arXiv:2307.13860</a> <span> [<a href="https://arxiv.org/pdf/2307.13860">pdf</a>, <a href="https://arxiv.org/format/2307.13860">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Detection of the significant impact of source clustering on higher-order statistics with DES Year 3 weak gravitational lensing data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Ajani%2C+V">V. Ajani</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Z%C3%BCrcher%2C+D">D. Z眉rcher</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Krause%2C+E">E. Krause</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G">G. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+C">C. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Derose%2C+J">J. Derose</a>, <a href="/search/astro-ph?searchtype=author&query=Diehl%2C+H+T">H. T. Diehl</a>, <a href="/search/astro-ph?searchtype=author&query=Dodelson%2C+S">S. Dodelson</a>, <a href="/search/astro-ph?searchtype=author&query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&query=Eckert%2C+K">K. Eckert</a>, <a href="/search/astro-ph?searchtype=author&query=Elvin-Poole%2C+J">J. Elvin-Poole</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13860v2-abstract-short" style="display: inline;"> We demonstrate and measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. Source clustering effects are large… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13860v2-abstract-full').style.display = 'inline'; document.getElementById('2307.13860v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13860v2-abstract-full" style="display: none;"> We demonstrate and measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. Source clustering effects are larger at small scales and for statistics applied to combinations of low and high redshift samples, and diminish at high redshift. We evaluate the impact on different weak lensing observables, finding that third moments and wavelet phase harmonics are more affected than peak count statistics. Using Dark Energy Survey Year 3 data we construct null tests for the source-clustering-free case, finding a $p$-value of $p=4\times10^{-3}$ (2.6 $蟽$) using third-order map moments and $p=3\times10^{-11}$ (6.5 $蟽$) using wavelet phase harmonics. The impact of source clustering on cosmological inference can be either be included in the model or minimized through \textit{ad-hoc} procedures (e.g. scale cuts). We verify that the procedures adopted in existing DES Y3 cosmological analyses (using map moments and peaks) were sufficient to render this effect negligible. Failing to account for source clustering can significantly impact cosmological inference from higher-order gravitational lensing statistics, e.g. higher-order N-point functions, wavelet-moment observables (including phase harmonics and scattering transforms), and deep learning or field level summary statistics of weak lensing maps. We provide recipes both to minimise the impact of source clustering and to incorporate source clustering effects into forward-modelled mock data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13860v2-abstract-full').style.display = 'none'; document.getElementById('2307.13860v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, submitted to MNRAS Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17268">arXiv:2306.17268</a> <span> [<a href="https://arxiv.org/pdf/2306.17268">pdf</a>, <a href="https://arxiv.org/format/2306.17268">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Marques%2C+G+A">G. A. Marques</a>, <a href="/search/astro-ph?searchtype=author&query=Madhavacheril%2C+M+S">M. S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&query=Darwish%2C+O">O. Darwish</a>, <a href="/search/astro-ph?searchtype=author&query=Shaikh%2C+S">S. Shaikh</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Carretero%2C+M+C+K+J">M. Carrasco Kind J. Carretero</a>, <a href="/search/astro-ph?searchtype=author&query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&query=Crocce%2C+M">M. Crocce</a>, <a href="/search/astro-ph?searchtype=author&query=da+Costa%2C+L+N">L. N. da Costa</a>, <a href="/search/astro-ph?searchtype=author&query=Pereira%2C+M+E+S">M. E. S. Pereira</a>, <a href="/search/astro-ph?searchtype=author&query=De+Vicente%2C+J">J. De Vicente</a>, <a href="/search/astro-ph?searchtype=author&query=Desai%2C+S">S. Desai</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17268v2-abstract-short" style="display: inline;"> We present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over $\sim 436$ sq.deg. of the sky. Our galaxy sample, which covers $\sim 4143$ sq.deg., is divided into six redshi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17268v2-abstract-full').style.display = 'inline'; document.getElementById('2306.17268v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17268v2-abstract-full" style="display: none;"> We present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over $\sim 436$ sq.deg. of the sky. Our galaxy sample, which covers $\sim 4143$ sq.deg., is divided into six redshift bins spanning the redshift range of $0.20<z<1.05$. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1蟽. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat \LCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude $S_8\equiv 蟽_8 (惟_m/0.3)^{0.5} = 0.75^{+0.04}_{-0.05}$. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower $S_8$ compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level ($< 2 蟽$) of statistical significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17268v2-abstract-full').style.display = 'none'; document.getElementById('2306.17268v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09160">arXiv:2306.09160</a> <span> [<a href="https://arxiv.org/pdf/2306.09160">pdf</a>, <a href="https://arxiv.org/format/2306.09160">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347185">10.1051/0004-6361/202347185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Source positions of an interplanetary type III radio burst and anisotropic radio-wave scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+X">Xingyao Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Kontar%2C+E+P">Eduard P. Kontar</a>, <a href="/search/astro-ph?searchtype=author&query=Chrysaphi%2C+N">Nicolina Chrysaphi</a>, <a href="/search/astro-ph?searchtype=author&query=Zhang%2C+P">Peijin Zhang</a>, <a href="/search/astro-ph?searchtype=author&query=Krupar%2C+V">Vratislav Krupar</a>, <a href="/search/astro-ph?searchtype=author&query=Musset%2C+S">Sophie Musset</a>, <a href="/search/astro-ph?searchtype=author&query=Maksimovic%2C+M">Milan Maksimovic</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Azzollini%2C+F">Francesco Azzollini</a>, <a href="/search/astro-ph?searchtype=author&query=Vecchio%2C+A">Antonio Vecchio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09160v2-abstract-short" style="display: inline;"> Interplanetary solar radio type III bursts provide the means for remotely studying and tracking energetic electrons propagating in the interplanetary medium. Due to the lack of direct radio source imaging, several methods have been developed to determine the source positions from space-based observations. Moreover, none of the methods consider the propagation effects of anisotropic radio-wave scat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09160v2-abstract-full').style.display = 'inline'; document.getElementById('2306.09160v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09160v2-abstract-full" style="display: none;"> Interplanetary solar radio type III bursts provide the means for remotely studying and tracking energetic electrons propagating in the interplanetary medium. Due to the lack of direct radio source imaging, several methods have been developed to determine the source positions from space-based observations. Moreover, none of the methods consider the propagation effects of anisotropic radio-wave scattering, which would strongly distort the trajectory of radio waves, delay their arrival times, and affect their apparent characteristics. We investigate the source positions and directivity of an interplanetary type III burst simultaneously observed by Parker Solar Probe, Solar Orbiter, STEREO, and Wind and compare the results of applying the intensity fit and timing methods with ray-tracing simulations of radio-wave propagation with anisotropic density fluctuations. The simulation calculates the trajectories of the rays, their time profiles at different viewing sites, and the apparent characteristics for various density fluctuation parameters. The results indicate that the observed source positions are displaced away from the locations where emission is produced, and their deduced radial distances are larger than expected from density models. This suggests that the apparent position is affected by anisotropic radio-wave scattering, which leads to an apparent position at a larger heliocentric distance from the Sun. The methods to determine the source positions may underestimate the apparent positions if they do not consider the path of radio-wave propagation and incomplete scattering at a viewing site close to the intrinsic source position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09160v2-abstract-full').style.display = 'none'; document.getElementById('2306.09160v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 680, A1 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05447">arXiv:2306.05447</a> <span> [<a href="https://arxiv.org/pdf/2306.05447">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/25c2cfeb.78fa7c49">10.3847/25c2cfeb.78fa7c49 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The need for focused, hard X-ray investigations of the Sun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Glesener%2C+L">Lindsay Glesener</a>, <a href="/search/astro-ph?searchtype=author&query=Shih%2C+A+Y">Albert Y. Shih</a>, <a href="/search/astro-ph?searchtype=author&query=Caspi%2C+A">Amir Caspi</a>, <a href="/search/astro-ph?searchtype=author&query=Milligan%2C+R">Ryan Milligan</a>, <a href="/search/astro-ph?searchtype=author&query=Hudson%2C+H">Hugh Hudson</a>, <a href="/search/astro-ph?searchtype=author&query=Oka%2C+M">Mitsuo Oka</a>, <a href="/search/astro-ph?searchtype=author&query=Buitrago-Casas%2C+J+C">Juan Camilo Buitrago-Casas</a>, <a href="/search/astro-ph?searchtype=author&query=Guo%2C+F">Fan Guo</a>, <a href="/search/astro-ph?searchtype=author&query=Ryan%2C+D">Dan Ryan</a>, <a href="/search/astro-ph?searchtype=author&query=Kontar%2C+E">Eduard Kontar</a>, <a href="/search/astro-ph?searchtype=author&query=Veronig%2C+A">Astrid Veronig</a>, <a href="/search/astro-ph?searchtype=author&query=Hayes%2C+L+A">Laura A. Hayes</a>, <a href="/search/astro-ph?searchtype=author&query=Inglis%2C+A">Andrew Inglis</a>, <a href="/search/astro-ph?searchtype=author&query=Golub%2C+L">Leon Golub</a>, <a href="/search/astro-ph?searchtype=author&query=Vilmer%2C+N">Nicole Vilmer</a>, <a href="/search/astro-ph?searchtype=author&query=Gary%2C+D">Dale Gary</a>, <a href="/search/astro-ph?searchtype=author&query=Reid%2C+H">Hamish Reid</a>, <a href="/search/astro-ph?searchtype=author&query=Hannah%2C+I">Iain Hannah</a>, <a href="/search/astro-ph?searchtype=author&query=Kerr%2C+G+S">Graham S. Kerr</a>, <a href="/search/astro-ph?searchtype=author&query=Reeves%2C+K+K">Katharine K. Reeves</a>, <a href="/search/astro-ph?searchtype=author&query=Allred%2C+J">Joel Allred</a>, <a href="/search/astro-ph?searchtype=author&query=Guidoni%2C+S">Silvina Guidoni</a>, <a href="/search/astro-ph?searchtype=author&query=Yu%2C+S">Sijie Yu</a>, <a href="/search/astro-ph?searchtype=author&query=Christe%2C+S">Steven Christe</a>, <a href="/search/astro-ph?searchtype=author&query=Musset%2C+S">Sophie Musset</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05447v1-abstract-short" style="display: inline;"> Understanding the nature of energetic particles in the solar atmosphere is one of the most important outstanding problems in heliophysics. Flare-accelerated particles compose a huge fraction of the flare energy budget; they have large influences on how events develop; they are an important source of high-energy particles found in the heliosphere; and they are the single most important corollary to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05447v1-abstract-full').style.display = 'inline'; document.getElementById('2306.05447v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05447v1-abstract-full" style="display: none;"> Understanding the nature of energetic particles in the solar atmosphere is one of the most important outstanding problems in heliophysics. Flare-accelerated particles compose a huge fraction of the flare energy budget; they have large influences on how events develop; they are an important source of high-energy particles found in the heliosphere; and they are the single most important corollary to other areas of high-energy astrophysics. Despite the importance of this area of study, this topic has in the past decade received only a small fraction of the resources necessary for a full investigation. For example, NASA has selected no new Explorer-class instrument in the past two decades that is capable of examining this topic. The advances that are currently being made in understanding flare-accelerated electrons are largely undertaken with data from EOVSA (NSF), STIX (ESA), and NuSTAR (NASA Astrophysics). This is despite the inclusion in the previous Heliophysics decadal survey of the FOXSI concept as part of the SEE2020 mission, and also despite NASA's having invested heavily in readying the technology for such an instrument via four flights of the FOXSI sounding rocket experiment. Due to that investment, the instrumentation stands ready to implement a hard X-ray mission to investigate flare-accelerated electrons. This white paper describes the scientific motivation for why this venture should be undertaken soon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05447v1-abstract-full').style.display = 'none'; document.getElementById('2306.05447v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">White paper submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033; 15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Bulletin of the AAS, Vol. 55, Issue 3, Whitepaper #129 (14pp); 2023 July 31 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17173">arXiv:2305.17173</a> <span> [<a href="https://arxiv.org/pdf/2305.17173">pdf</a>, <a href="https://arxiv.org/format/2305.17173">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21105/astro.2305.17173">10.21105/astro.2305.17173 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Survey%2C+D+E">Dark Energy Survey</a>, <a href="/search/astro-ph?searchtype=author&query=Collaboration%2C+K+S">Kilo-Degree Survey Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&query=Asgari%2C+M">M. Asgari</a>, <a href="/search/astro-ph?searchtype=author&query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&query=Bilicki%2C+M">M. Bilicki</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Burger%2C+P">P. Burger</a>, <a href="/search/astro-ph?searchtype=author&query=Burke%2C+D+L">D. L. Burke</a>, <a href="/search/astro-ph?searchtype=author&query=Camacho%2C+H">H. Camacho</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17173v2-abstract-short" style="display: inline;"> We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3) and the Kilo-Degree Survey (KiDS-1000) in a collaborative effort between the two survey teams. We find consistent cosmological parameter constraints between DES Y3 and KiDS-1000 which, when combined in a joint-survey analysis, constrain the parameter $S_8 = 蟽_8 \sqrt{惟_{\rm m}/0.3}$ with a mean value of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17173v2-abstract-full').style.display = 'inline'; document.getElementById('2305.17173v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17173v2-abstract-full" style="display: none;"> We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3) and the Kilo-Degree Survey (KiDS-1000) in a collaborative effort between the two survey teams. We find consistent cosmological parameter constraints between DES Y3 and KiDS-1000 which, when combined in a joint-survey analysis, constrain the parameter $S_8 = 蟽_8 \sqrt{惟_{\rm m}/0.3}$ with a mean value of $0.790^{+0.018}_{-0.014}$. The mean marginal is lower than the maximum a posteriori estimate, $S_8=0.801$, owing to skewness in the marginal distribution and projection effects in the multi-dimensional parameter space. Our results are consistent with $S_8$ constraints from observations of the cosmic microwave background by Planck, with agreement at the $1.7蟽$ level. We use a Hybrid analysis pipeline, defined from a mock survey study quantifying the impact of the different analysis choices originally adopted by each survey team. We review intrinsic alignment models, baryon feedback mitigation strategies, priors, samplers and models of the non-linear matter power spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17173v2-abstract-full').style.display = 'none'; document.getElementById('2305.17173v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 21 figures, 15 tables, accepted Open Journal of Astrophysics. Download the chains from https://des.ncsa.illinois.edu/releases/y3a2/Y3key-joint-des-kids or create your own chains with CosmoSIS using https://github.com/joezuntz/cosmosis-standard-library/blob/main/examples/des-y3_and_kids-1000.ini Watch the core team discuss this analysis at https://cosmologytalks.com/2023/05/26/des-kids</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-267-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11241">arXiv:2305.11241</a> <span> [<a href="https://arxiv.org/pdf/2305.11241">pdf</a>, <a href="https://arxiv.org/format/2305.11241">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/ad1a4d">10.1088/2632-2153/ad1a4d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence Networks: simple losses for fast, amortized, neural Bayesian model comparison </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Wandelt%2C+B+D">Benjamin D. Wandelt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11241v2-abstract-short" style="display: inline;"> Evidence Networks can enable Bayesian model comparison when state-of-the-art methods (e.g. nested sampling) fail and even when likelihoods or priors are intractable or unknown. Bayesian model comparison, i.e. the computation of Bayes factors or evidence ratios, can be cast as an optimization problem. Though the Bayesian interpretation of optimal classification is well-known, here we change perspec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11241v2-abstract-full').style.display = 'inline'; document.getElementById('2305.11241v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11241v2-abstract-full" style="display: none;"> Evidence Networks can enable Bayesian model comparison when state-of-the-art methods (e.g. nested sampling) fail and even when likelihoods or priors are intractable or unknown. Bayesian model comparison, i.e. the computation of Bayes factors or evidence ratios, can be cast as an optimization problem. Though the Bayesian interpretation of optimal classification is well-known, here we change perspective and present classes of loss functions that result in fast, amortized neural estimators that directly estimate convenient functions of the Bayes factor. This mitigates numerical inaccuracies associated with estimating individual model probabilities. We introduce the leaky parity-odd power (l-POP) transform, leading to the novel ``l-POP-Exponential'' loss function. We explore neural density estimation for data probability in different models, showing it to be less accurate and scalable than Evidence Networks. Multiple real-world and synthetic examples illustrate that Evidence Networks are explicitly independent of dimensionality of the parameter space and scale mildly with the complexity of the posterior probability density function. This simple yet powerful approach has broad implications for model inference tasks. As an application of Evidence Networks to real-world data we compute the Bayes factor for two models with gravitational lensing data of the Dark Energy Survey. We briefly discuss applications of our methods to other, related problems of model comparison and evaluation in implicit inference settings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11241v2-abstract-full').style.display = 'none'; document.getElementById('2305.11241v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures, accepted by Machine Learning: Science and Technology</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> http://iopscience.iop.org/article/10.1088/2632-2153/ad1a4d, 2024, Machine Learning: Science and Technology, 2632-2153 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01942">arXiv:2302.01942</a> <span> [<a href="https://arxiv.org/pdf/2302.01942">pdf</a>, <a href="https://arxiv.org/format/2302.01942">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21105/astro.2302.01942">10.21105/astro.2302.01942 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GLASS: Generator for Large Scale Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Tessore%2C+N">Nicolas Tessore</a>, <a href="/search/astro-ph?searchtype=author&query=Loureiro%2C+A">Arthur Loureiro</a>, <a href="/search/astro-ph?searchtype=author&query=Joachimi%2C+B">Benjamin Joachimi</a>, <a href="/search/astro-ph?searchtype=author&query=von+Wietersheim-Kramsta%2C+M">Maximilian von Wietersheim-Kramsta</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01942v2-abstract-short" style="display: inline;"> We present GLASS, the Generator for Large Scale Structure, a new code for the simulation of galaxy surveys for cosmology, which iteratively builds a light cone with matter, galaxies, and weak gravitational lensing signals as a sequence of nested shells. This allows us to create deep and realistic simulations of galaxy surveys at high angular resolution on standard computer hardware and with low re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01942v2-abstract-full').style.display = 'inline'; document.getElementById('2302.01942v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01942v2-abstract-full" style="display: none;"> We present GLASS, the Generator for Large Scale Structure, a new code for the simulation of galaxy surveys for cosmology, which iteratively builds a light cone with matter, galaxies, and weak gravitational lensing signals as a sequence of nested shells. This allows us to create deep and realistic simulations of galaxy surveys at high angular resolution on standard computer hardware and with low resource consumption. GLASS also introduces a new technique to generate transformations of Gaussian random fields (including lognormal) to essentially arbitrary precision, an iterative line-of-sight integration over matter shells to obtain weak lensing fields, and flexible modelling of the galaxies sector. We demonstrate that GLASS readily produces simulated data sets with per cent-level accurate two-point statistics of galaxy clustering and weak lensing, thus enabling simulation-based validation and inference that is limited only by our current knowledge of the input matter and galaxy properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01942v2-abstract-full').style.display = 'none'; document.getElementById('2302.01942v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 15 figures; v2 accepted by OJAp with minor changes; code available at https://github.com/glass-dev/glass</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13682">arXiv:2301.13682</a> <span> [<a href="https://arxiv.org/pdf/2301.13682">pdf</a>, <a href="https://arxiv.org/format/2301.13682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb7dc">10.3847/1538-4357/acb7dc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Stores%2C+M">Morgan Stores</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=McLaughlin%2C+J+A">James A. McLaughlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13682v1-abstract-short" style="display: inline;"> Solar flares are efficient particle accelerators with a large fraction of released magnetic energy (10-50%) converted into energetic particles such as hard X-ray producing electrons. This energy transfer process is not well constrained, with competing theories regarding the acceleration mechanism(s), including MHD turbulence. We perform a detailed parameter study examining how various properties o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13682v1-abstract-full').style.display = 'inline'; document.getElementById('2301.13682v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13682v1-abstract-full" style="display: none;"> Solar flares are efficient particle accelerators with a large fraction of released magnetic energy (10-50%) converted into energetic particles such as hard X-ray producing electrons. This energy transfer process is not well constrained, with competing theories regarding the acceleration mechanism(s), including MHD turbulence. We perform a detailed parameter study examining how various properties of the acceleration region, including its spatial extent and the spatial distribution of turbulence, affect the observed electron properties, such as those routinely determined from X-ray imaging and spectroscopy. Here, a time-independent Fokker-Planck equation is used to describe the acceleration and transport of flare electrons through a coronal plasma of finite temperature. Motivated by recent non-thermal line broadening observations that suggested extended regions of turbulence in coronal loops, an extended turbulent acceleration region is incorporated into the model. We produce outputs for the density weighted electron flux, a quantity directly related to observed X-rays, modelled in energy and space from the corona to chromosphere. We find that by combining several spectral and imaging diagnostics (such as spectral index differences or ratios, energy or spatial-dependent flux ratios, and electron depths into the chromosphere) the acceleration properties, including the timescale and velocity dependence, can be constrained alongside the spatial properties. Our diagnostics provide a foundation for constraining the properties of acceleration in an individual flare from X-ray imaging spectroscopy alone, and can be applied to past, current and future observations including those from RHESSI and Solar Orbiter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13682v1-abstract-full').style.display = 'none'; document.getElementById('2301.13682v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ Accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01031">arXiv:2208.01031</a> <span> [<a href="https://arxiv.org/pdf/2208.01031">pdf</a>, <a href="https://arxiv.org/format/2208.01031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1651">10.1093/mnras/stad1651 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A data compression and optimal galaxy weights scheme for Dark Energy Spectroscopic Instrument and weak lensing datasets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ruggeri%2C+R">Rossana Ruggeri</a>, <a href="/search/astro-ph?searchtype=author&query=Blake%2C+C">Chris Blake</a>, <a href="/search/astro-ph?searchtype=author&query=DeRose%2C+J">Joseph DeRose</a>, <a href="/search/astro-ph?searchtype=author&query=Garcia-Quintero%2C+C">C. Garcia-Quintero</a>, <a href="/search/astro-ph?searchtype=author&query=Hadzhiyska%2C+B">B. Hadzhiyska</a>, <a href="/search/astro-ph?searchtype=author&query=Ishak%2C+M">M. Ishak</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Joudaki%2C+S">S. Joudaki</a>, <a href="/search/astro-ph?searchtype=author&query=Krolewski%2C+A">Alex Krolewski</a>, <a href="/search/astro-ph?searchtype=author&query=Lange%2C+J+U">J. U. Lange</a>, <a href="/search/astro-ph?searchtype=author&query=Leauthaud%2C+A">A. Leauthaud</a>, <a href="/search/astro-ph?searchtype=author&query=Porredon%2C+A">A. Porredon</a>, <a href="/search/astro-ph?searchtype=author&query=Rossi%2C+G">G. Rossi</a>, <a href="/search/astro-ph?searchtype=author&query=Saulder%2C+C">C. Saulder</a>, <a href="/search/astro-ph?searchtype=author&query=Xhakaj%2C+E">E. Xhakaj</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+1+D">1 D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Dhungana%2C+G">G. Dhungana</a>, <a href="/search/astro-ph?searchtype=author&query=de+la+Macorra%2C+A">A. de la Macorra</a>, <a href="/search/astro-ph?searchtype=author&query=Doel%2C+P">P. Doel</a>, <a href="/search/astro-ph?searchtype=author&query=Gontcho%2C+S+G+A">S. Gontcho A Gontcho</a>, <a href="/search/astro-ph?searchtype=author&query=Kremin%2C+A">A. Kremin</a>, <a href="/search/astro-ph?searchtype=author&query=Landriau%2C+M">M. Landriau</a>, <a href="/search/astro-ph?searchtype=author&query=Miquel%2C+R">R. Miquel</a>, <a href="/search/astro-ph?searchtype=author&query=Poppett%2C+0+C">0 C. Poppett</a>, <a href="/search/astro-ph?searchtype=author&query=Prada%2C+F">F. Prada</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01031v1-abstract-short" style="display: inline;"> Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing measurements: the Kilo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01031v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01031v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01031v1-abstract-full" style="display: none;"> Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing measurements: the Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES) and the Hyper Suprime-Cam (HSC) survey. In this work we analyse simulated redshift and lensing catalogues to establish a new strategy for combining high-quality cosmological imaging and spectroscopic data, in view of the first-year data assembly analysis of DESI. In a test case fitting for a reduced parameter set, we employ an optimal data compression scheme able to identify those aspects of the data that are most sensitive to the cosmological information, and amplify them with respect to other aspects of the data. We find this optimal compression approach is able to preserve all the information related to the growth of structure; we also extend this scheme to derive weights to be applied to individual galaxies, and show that these produce near-optimal results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01031v1-abstract-full').style.display = 'none'; document.getElementById('2208.01031v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 12 Figures, DESI collaboration article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.05766">arXiv:2207.05766</a> <span> [<a href="https://arxiv.org/pdf/2207.05766">pdf</a>, <a href="https://arxiv.org/format/2207.05766">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.083504">10.1103/PhysRevD.107.083504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 Results: Constraints on extensions to $螞$CDM with weak lensing and galaxy clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=DES+Collaboration"> DES Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Birrer%2C+S">S. Birrer</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&query=Brandao-Souza%2C+A">A. Brandao-Souza</a>, <a href="/search/astro-ph?searchtype=author&query=Bridle%2C+S+L">S. L. Bridle</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Burke%2C+D+L">D. L. Burke</a>, <a href="/search/astro-ph?searchtype=author&query=Camacho%2C+H">H. Camacho</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&query=Carretero%2C+J">J. Carretero</a> , et al. (137 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.05766v4-abstract-short" style="display: inline;"> We constrain extensions to the $螞$CDM model using measurements from the Dark Energy Survey's first three years of observations and external data. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data and blind analyses of real data to validate the robustness of our results. In many cases, constraini… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05766v4-abstract-full').style.display = 'inline'; document.getElementById('2207.05766v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.05766v4-abstract-full" style="display: none;"> We constrain extensions to the $螞$CDM model using measurements from the Dark Energy Survey's first three years of observations and external data. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data and blind analyses of real data to validate the robustness of our results. In many cases, constraining power is limited by the absence of nonlinear predictions that are reliable at our required precision. The models are: dark energy with a time-dependent equation of state, non-zero spatial curvature, sterile neutrinos, modifications of gravitational physics, and a binned $蟽_8(z)$ model which serves as a probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find $(w_{\rm p}, w_a)= (-0.99^{+0.28}_{-0.17},-0.9\pm 1.2)$ at 68% confidence with $z_{\rm p}=0.24$ from the DES measurements alone, and $(w_{\rm p}, w_a)= (-1.03^{+0.04}_{-0.03},-0.4^{+0.4}_{-0.3})$ with $z_{\rm p}=0.21$ for the combination of all data considered. Curvature constraints of $惟_k=0.0009\pm 0.0017$ and effective relativistic species $N_{\rm eff}=3.10^{+0.15}_{-0.16}$ are dominated by external data. For massive sterile neutrinos, we improve the upper bound on the mass $m_{\rm eff}$ by a factor of three compared to previous analyses, giving 95% limits of $(螖N_{\rm eff},m_{\rm eff})\leq (0.28, 0.20\, {\rm eV})$. We also constrain changes to the lensing and Poisson equations controlled by functions $危(k,z) = 危_0 惟_螞(z)/惟_{螞,0}$ and $渭(k,z)=渭_0 惟_螞(z)/惟_{螞,0}$ respectively to $危_0=0.6^{+0.4}_{-0.5}$ from DES alone and $(危_0,渭_0)=(0.04\pm 0.05,0.08^{+0.21}_{-0.19})$ for the combination of all data. Overall, we find no significant evidence for physics beyond $螞$CDM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.05766v4-abstract-full').style.display = 'none'; document.getElementById('2207.05766v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to match published version and fix a citation reference. 46 pages, 25 figures, data available at https://dev.des.ncsa.illinois.edu/releases/y3a2/Y3key-extensions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-470-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.08591">arXiv:2206.08591</a> <span> [<a href="https://arxiv.org/pdf/2206.08591">pdf</a>, <a href="https://arxiv.org/format/2206.08591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3213">10.1093/mnras/stac3213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining the Baryonic Feedback with Cosmic Shear Using the DES Year-3 Small-Scale Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+A">A. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Aric%C3%B2%2C+G">G. Aric貌</a>, <a href="/search/astro-ph?searchtype=author&query=Huterer%2C+D">D. Huterer</a>, <a href="/search/astro-ph?searchtype=author&query=Angulo%2C+R">R. Angulo</a>, <a href="/search/astro-ph?searchtype=author&query=Weaverdyck%2C+N">N. Weaverdyck</a>, <a href="/search/astro-ph?searchtype=author&query=Friedrich%2C+O">O. Friedrich</a>, <a href="/search/astro-ph?searchtype=author&query=Secco%2C+L+F">L. F. Secco</a>, <a href="/search/astro-ph?searchtype=author&query=Hern%C3%A1ndez-Monteagudo%2C+C">C. Hern谩ndez-Monteagudo</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Brandao-Souza%2C+A">A. Brandao-Souza</a>, <a href="/search/astro-ph?searchtype=author&query=Bridle%2C+S+L">S. L. Bridle</a>, <a href="/search/astro-ph?searchtype=author&query=Camacho%2C+H">H. Camacho</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a> , et al. (117 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.08591v1-abstract-short" style="display: inline;"> We use the small scales of the Dark Energy Survey (DES) Year-3 cosmic shear measurements, which are excluded from the DES Year-3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package \texttt{Baccoemu} to accelerate the evaluation of the baryonic nonlinear matter power spectrum. We design our ana… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08591v1-abstract-full').style.display = 'inline'; document.getElementById('2206.08591v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.08591v1-abstract-full" style="display: none;"> We use the small scales of the Dark Energy Survey (DES) Year-3 cosmic shear measurements, which are excluded from the DES Year-3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package \texttt{Baccoemu} to accelerate the evaluation of the baryonic nonlinear matter power spectrum. We design our analysis pipeline to focus on the constraints of the baryonic suppression effects, utilizing the implication given by a principal component analysis on the Fisher forecasts. Our constraint on the baryonic effects can then be used to better model and ameliorate the effects of baryons in producing cosmological constraints from the next generation large-scale structure surveys. We detect the baryonic suppression on the cosmic shear measurements with a $\sim 2 蟽$ significance. The characteristic halo mass for which half of the gas is ejected by baryonic feedback is constrained to be $M_c > 10^{13.2} h^{-1} M_{\odot}$ (95\% C.L.). The best-fit baryonic suppression is $\sim 5\%$ at $k=1.0 {\rm Mpc}\ h^{-1}$ and $\sim 15\%$ at $k=5.0 {\rm Mpc} \ h^{-1}$. Our findings are robust with respect to the assumptions about the cosmological parameters, specifics of the baryonic model, and intrinsic alignments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.08591v1-abstract-full').style.display = 'none'; document.getElementById('2206.08591v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures. DES Collaboration, Year-3 analysis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07128">arXiv:2203.07128</a> <span> [<a href="https://arxiv.org/pdf/2203.07128">pdf</a>, <a href="https://arxiv.org/format/2203.07128">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1826">10.1093/mnras/stac1826 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Zeurcher%2C+D">D. Zeurcher</a>, <a href="/search/astro-ph?searchtype=author&query=Lee%2C+J">J. Lee</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+X">X. Fang</a>, <a href="/search/astro-ph?searchtype=author&query=Rosenfeld%2C+R">R. Rosenfeld</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Camacho%2C+H">H. Camacho</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Secco%2C+L+F">L. F. Secco</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Gaztanaga%2C+E">E. Gaztanaga</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Raveri%2C+M">M. Raveri</a>, <a href="/search/astro-ph?searchtype=author&query=Samuroff%2C+S">S. Samuroff</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07128v1-abstract-short" style="display: inline;"> We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-$C_\ell$ method and offer a view complementary to that of the two-point correlation functions in real space, as the two estimators are known to compress and select Ga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07128v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07128v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07128v1-abstract-full" style="display: none;"> We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-$C_\ell$ method and offer a view complementary to that of the two-point correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, such as baryons and intrinsic alignments (IA), making this analysis an important cross-check. In the context of $螞$CDM, and using the same fiducial model as in the DES Y3 real space analysis, we find ${S_8 \equiv 蟽_8 \sqrt{惟_{\rm m}/0.3} = 0.793^{+0.038}_{-0.025}}$, which further improves to ${S_8 = 0.784\pm 0.026 }$ when including shear ratios. This constraint is within expected statistical fluctuations from the real space analysis, and in agreement with DES~Y3 analyses of non-Gaussian statistics, but favors a slightly higher value of $S_8$, which reduces the tension with the Planck cosmic microwave background 2018 results from $2.3蟽$ in the real space analysis to $1.5蟽$ in this work. We explore less conservative IA models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include small scales, using an increased Fourier mode cut-off up to $k_{\rm max}={5}{h{\rm Mpc}^{-1}}$, which allows to constrain baryonic feedback while leaving cosmological constraints essentially unchanged. Finally, we present an approximate reconstruction of the linear matter power spectrum at present time, which is found to be about 20\% lower than predicted by Planck 2018, as reflected by the $1.5蟽$ lower $S_8$ value. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07128v1-abstract-full').style.display = 'none'; document.getElementById('2203.07128v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-042-PPD-SCD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02306">arXiv:2202.02306</a> <span> [<a href="https://arxiv.org/pdf/2202.02306">pdf</a>, <a href="https://arxiv.org/format/2202.02306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Rediscovering orbital mechanics with machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lemos%2C+P">Pablo Lemos</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Cranmer%2C+M">Miles Cranmer</a>, <a href="/search/astro-ph?searchtype=author&query=Ho%2C+S">Shirley Ho</a>, <a href="/search/astro-ph?searchtype=author&query=Battaglia%2C+P">Peter Battaglia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02306v1-abstract-short" style="display: inline;"> We present an approach for using machine learning to automatically discover the governing equations and hidden properties of real physical systems from observations. We train a "graph neural network" to simulate the dynamics of our solar system's Sun, planets, and large moons from 30 years of trajectory data. We then use symbolic regression to discover an analytical expression for the force law im… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02306v1-abstract-full').style.display = 'inline'; document.getElementById('2202.02306v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02306v1-abstract-full" style="display: none;"> We present an approach for using machine learning to automatically discover the governing equations and hidden properties of real physical systems from observations. We train a "graph neural network" to simulate the dynamics of our solar system's Sun, planets, and large moons from 30 years of trajectory data. We then use symbolic regression to discover an analytical expression for the force law implicitly learned by the neural network, which our results showed is equivalent to Newton's law of gravitation. The key assumptions that were required were translational and rotational equivariance, and Newton's second and third laws of motion. Our approach correctly discovered the form of the symbolic force law. Furthermore, our approach did not require any assumptions about the masses of planets and moons or physical constants. They, too, were accurately inferred through our methods. Though, of course, the classical law of gravitation has been known since Isaac Newton, our result serves as a validation that our method can discover unknown laws and hidden properties from observed data. More broadly this work represents a key step toward realizing the potential of machine learning for accelerating scientific discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02306v1-abstract-full').style.display = 'none'; document.getElementById('2202.02306v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05561">arXiv:2201.05561</a> <span> [<a href="https://arxiv.org/pdf/2201.05561">pdf</a>, <a href="https://arxiv.org/format/2201.05561">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243054">10.1051/0004-6361/202243054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probabilistic Mass Mapping with Neural Score Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Remy%2C+B">Benjamin Remy</a>, <a href="/search/astro-ph?searchtype=author&query=Lanusse%2C+F">Francois Lanusse</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+J">Jia Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Starck%2C+J">Jean-Luc Starck</a>, <a href="/search/astro-ph?searchtype=author&query=Osato%2C+K">Ken Osato</a>, <a href="/search/astro-ph?searchtype=author&query=Schrabback%2C+T">Tim Schrabback</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05561v2-abstract-short" style="display: inline;"> Weak lensing mass-mapping is a useful tool to access the full distribution of dark matter on the sky, but because of intrinsic galaxy ellipticies and finite fields/missing data, the recovery of dark matter maps constitutes a challenging ill-posed inverse problem. We introduce a novel methodology allowing for efficient sampling of the high-dimensional Bayesian posterior of the weak lensing mass-map… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05561v2-abstract-full').style.display = 'inline'; document.getElementById('2201.05561v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05561v2-abstract-full" style="display: none;"> Weak lensing mass-mapping is a useful tool to access the full distribution of dark matter on the sky, but because of intrinsic galaxy ellipticies and finite fields/missing data, the recovery of dark matter maps constitutes a challenging ill-posed inverse problem. We introduce a novel methodology allowing for efficient sampling of the high-dimensional Bayesian posterior of the weak lensing mass-mapping problem, and relying on simulations for defining a fully non-Gaussian prior. We aim to demonstrate the accuracy of the method on simulations, and then proceed to applying it to the mass reconstruction of the HST/ACS COSMOS field. The proposed methodology combines elements of Bayesian statistics, analytic theory, and a recent class of Deep Generative Models based on Neural Score Matching. This approach allows us to do the following: 1) Make full use of analytic cosmological theory to constrain the 2pt statistics of the solution. 2) Learn from cosmological simulations any differences between this analytic prior and full simulations. 3) Obtain samples from the full Bayesian posterior of the problem for robust Uncertainty Quantification. We demonstrate the method on the $魏$TNG simulations and find that the posterior mean significantly outperfoms previous methods (Kaiser-Squires, Wiener filter, Sparsity priors) both on root-mean-square error and in terms of the Pearson correlation. We further illustrate the interpretability of the recovered posterior by establishing a close correlation between posterior convergence values and SNR of clusters artificially introduced into a field. Finally, we apply the method to the reconstruction of the HST/ACS COSMOS field and yield the highest quality convergence map of this field to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05561v2-abstract-full').style.display = 'none'; document.getElementById('2201.05561v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&A, 20 pages, 15 figures, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> YITP-21-159 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07699">arXiv:2112.07699</a> <span> [<a href="https://arxiv.org/pdf/2112.07699">pdf</a>, <a href="https://arxiv.org/format/2112.07699">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3309">10.1093/mnras/stab3309 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The DES view of the Eridanus supervoid and the CMB Cold Spot </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kov%C3%A1cs%2C+A">A. Kov谩cs</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Hamaus%2C+N">N. Hamaus</a>, <a href="/search/astro-ph?searchtype=author&query=Lahav%2C+O">O. Lahav</a>, <a href="/search/astro-ph?searchtype=author&query=Pollina%2C+G">G. Pollina</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Mawdsley%2C+B">B. Mawdsley</a>, <a href="/search/astro-ph?searchtype=author&query=Nadathur%2C+S">S. Nadathur</a>, <a href="/search/astro-ph?searchtype=author&query=Zeurcher%2C+D">D. Zeurcher</a>, <a href="/search/astro-ph?searchtype=author&query=Garc%C3%ADa-Bellido%2C+J">J. Garc铆a-Bellido</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&query=Cawthon%2C+R">R. Cawthon</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Cordero%2C+J">J. Cordero</a> , et al. (97 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07699v1-abstract-short" style="display: inline;"> The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard $螞$CDM model, only about 10-20$\%$ of the observed temperature depression can be accoun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07699v1-abstract-full').style.display = 'inline'; document.getElementById('2112.07699v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07699v1-abstract-full" style="display: none;"> The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard $螞$CDM model, only about 10-20$\%$ of the observed temperature depression can be accounted for via its Integrated Sachs-Wolfe imprint. However, $R\gtrsim100~h^{-1}\mathrm{Mpc}$ supervoids elsewhere in the sky have shown ISW imprints $A_{\mathrm{ISW}}\approx5.2\pm1.6$ times stronger than expected from $螞$CDM ($A_{\mathrm{ISW}}=1$), which warrants further inspection. Using the Year-3 redMaGiC catalogue of luminous red galaxies from the Dark Energy Survey, here we confirm the detection of the Eridanus supervoid as a significant under-density in the Cold Spot's direction at $z<0.2$. We also show, with $\mathrm{S/N}\gtrsim5$ significance, that the Eridanus supervoid appears as the most prominent large-scale under-density in the dark matter mass maps that we reconstructed from DES Year-3 gravitational lensing data. While we report no significant anomalies, an interesting aspect is that the amplitude of the lensing signal from the Eridanus supervoid at the Cold Spot centre is about $30\%$ lower than expected from similar peaks found in N-body simulations based on the standard $螞$CDM model with parameters $惟_{\rm m} = 0.279$ and $蟽_8 = 0.82$. Overall, our results confirm the causal relation between these individually rare structures in the cosmic web and in the CMB, motivating more detailed future surveys in the Cold Spot region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07699v1-abstract-full').style.display = 'none'; document.getElementById('2112.07699v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication by MNRAS, 14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01138">arXiv:2111.01138</a> <span> [<a href="https://arxiv.org/pdf/2111.01138">pdf</a>, <a href="https://arxiv.org/format/2111.01138">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnrasl/slab120">10.1093/mnrasl/slab120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single frequency CMB B-mode inference with realistic foregrounds from a single training image </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Boulanger%2C+F">Fran莽ois Boulanger</a>, <a href="/search/astro-ph?searchtype=author&query=Wandelt%2C+B+D">Benjamin D. Wandelt</a>, <a href="/search/astro-ph?searchtype=author&query=Blancard%2C+B+R">Bruno Regaldo-Saint Blancard</a>, <a href="/search/astro-ph?searchtype=author&query=Allys%2C+E">Erwan Allys</a>, <a href="/search/astro-ph?searchtype=author&query=Levrier%2C+F">Fran莽ois Levrier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01138v1-abstract-short" style="display: inline;"> With a single training image and using wavelet phase harmonic augmentation, we present polarized Cosmic Microwave Background (CMB) foreground marginalization in a high-dimensional likelihood-free (Bayesian) framework. We demonstrate robust foreground removal using only a single frequency of simulated data for a BICEP-like sky patch. Using Moment Networks we estimate the pixel-level posterior proba… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01138v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01138v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01138v1-abstract-full" style="display: none;"> With a single training image and using wavelet phase harmonic augmentation, we present polarized Cosmic Microwave Background (CMB) foreground marginalization in a high-dimensional likelihood-free (Bayesian) framework. We demonstrate robust foreground removal using only a single frequency of simulated data for a BICEP-like sky patch. Using Moment Networks we estimate the pixel-level posterior probability for the underlying {E,B} signal and validate the statistical model with a quantile-type test using the estimated marginal posterior moments. The Moment Networks use a hierarchy of U-Net convolutional neural networks. This work validates such an approach in the most difficult limiting case: pixel-level, noise-free, highly non-Gaussian dust foregrounds with a single training image at a single frequency. For a real CMB experiment, a small number of representative sky patches would provide the training data required for full cosmological inference. These results enable robust likelihood-free, simulation-based parameter and model inference for primordial B-mode detection using observed CMB polarization data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01138v1-abstract-full').style.display = 'none'; document.getElementById('2111.01138v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Monthly Notices of the Royal Astronomical Society Letters. 5 pages with 3 figures (plus 1 page of Supporting Materials with 2 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10141">arXiv:2110.10141</a> <span> [<a href="https://arxiv.org/pdf/2110.10141">pdf</a>, <a href="https://arxiv.org/format/2110.10141">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Raveri%2C+M">M. Raveri</a>, <a href="/search/astro-ph?searchtype=author&query=Z%C3%BCrcher%2C+D">D. Z眉rcher</a>, <a href="/search/astro-ph?searchtype=author&query=Secco%2C+L">L. Secco</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Fosalba%2C+P">P. Fosalba</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G">G. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+C">C. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Derose%2C+J">J. Derose</a>, <a href="/search/astro-ph?searchtype=author&query=Dodelson%2C+S">S. Dodelson</a>, <a href="/search/astro-ph?searchtype=author&query=Elsner%2C+F">F. Elsner</a>, <a href="/search/astro-ph?searchtype=author&query=Elvin-Poole%2C+J">J. Elvin-Poole</a> , et al. (85 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10141v2-abstract-short" style="display: inline;"> We present a cosmological analysis using the second and third moments of the weak lensing mass (convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey (DES). The survey spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to reconstruct the convergence field. The second moment of the convergence as a function of smoothing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10141v2-abstract-full').style.display = 'inline'; document.getElementById('2110.10141v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10141v2-abstract-full" style="display: none;"> We present a cosmological analysis using the second and third moments of the weak lensing mass (convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey (DES). The survey spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to reconstruct the convergence field. The second moment of the convergence as a function of smoothing scale contains information similar to standard shear 2-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The data is analysed in the context of the $螞$CDM model, varying 5 cosmological parameters and 19 nuisance parameters modelling astrophysical and measurement systematics. Our modelling of the observables is completely analytical, and has been tested with simulations in our previous methodology study. We obtain a 1.7\% measurement of the amplitude of fluctuations parameter $S_8\equiv 蟽_8 (惟_m/0.3)^{0.5} = 0.784\pm 0.013$. The measurements are shown to be internally consistent across redshift bins, angular scales, and between second and third moments. In particular, the measured third moment is consistent with the expectation of gravitational clustering under the $螞$CDM model. The addition of the third moment improves the constraints on $S_8$ and $惟_{\rm m}$ by $\sim$15\% and $\sim$25\% compared to an analysis that only uses second moments. We compare our results with {\it Planck} constraints from the Cosmic Microwave Background (CMB), finding a $2.2$ \textendash $2.8蟽$ tension in the full parameter space, depending on the combination of moments considered. The third moment independently is in $2.8蟽$ tension with {\it Planck}, and thus provides a cross-check on analyses of 2-point correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10141v2-abstract-full').style.display = 'none'; document.getElementById('2110.10141v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 20 figures, accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10135">arXiv:2110.10135</a> <span> [<a href="https://arxiv.org/pdf/2110.10135">pdf</a>, <a href="https://arxiv.org/format/2110.10135">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac078">10.1093/mnras/stac078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 results: Cosmology with peaks using an emulator approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Z%C3%BCrcher%2C+D">D. Z眉rcher</a>, <a href="/search/astro-ph?searchtype=author&query=Fluri%2C+J">J. Fluri</a>, <a href="/search/astro-ph?searchtype=author&query=Sgier%2C+R">R. Sgier</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Refregier%2C+A">A. Refregier</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Lemos%2C+P">P. Lemos</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G">G. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+C">C. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Derose%2C+J">J. Derose</a>, <a href="/search/astro-ph?searchtype=author&query=Dodelson%2C+S">S. Dodelson</a>, <a href="/search/astro-ph?searchtype=author&query=Elsner%2C+F">F. Elsner</a> , et al. (97 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10135v2-abstract-short" style="display: inline;"> We constrain the matter density $惟_{\mathrm{m}}$ and the amplitude of density fluctuations $蟽_8$ within the $螞$CDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including cross-peaks: peak counts calculated on maps create… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10135v2-abstract-full').style.display = 'inline'; document.getElementById('2110.10135v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10135v2-abstract-full" style="display: none;"> We constrain the matter density $惟_{\mathrm{m}}$ and the amplitude of density fluctuations $蟽_8$ within the $螞$CDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including cross-peaks: peak counts calculated on maps created by taking a harmonic space product of the convergence of two tomographic redshift bins. Our analysis follows a forward-modelling scheme to create a likelihood of these statistics using N-body simulations, using a Gaussian process emulator. We include the following lensing systematics: multiplicative shear bias, photometric redshift uncertainty, and galaxy intrinsic alignment. Stringent scale cuts are applied to avoid biases from unmodelled baryonic physics. We find that the additional non-Gaussian information leads to a tightening of the constraints on the structure growth parameter yielding $S_8~\equiv~蟽_8\sqrt{惟_{\mathrm{m}}/0.3}~=~0.797_{-0.013}^{+0.015}$ (68% confidence limits), with a precision of 1.8%, an improvement of ~38% compared to the angular power spectra only case. The results obtained with the angular power spectra and peak counts are found to be in agreement with each other and no significant difference in $S_8$ is recorded. We find a mild tension of $1.5 \thinspace 蟽$ between our study and the results from Planck 2018, with our analysis yielding a lower $S_8$. Furthermore, we observe that the combination of angular power spectra and tomographic peak counts breaks the degeneracy between galaxy intrinsic alignment $A_{\mathrm{IA}}$ and $S_8$, improving cosmological constraints. We run a suite of tests concluding that our results are robust and consistent with the results from other studies using DES Y3 data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10135v2-abstract-full').style.display = 'none'; document.getElementById('2110.10135v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01542">arXiv:2110.01542</a> <span> [<a href="https://arxiv.org/pdf/2110.01542">pdf</a>, <a href="https://arxiv.org/ps/2110.01542">ps</a>, <a href="https://arxiv.org/format/2110.01542">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac2c65">10.3847/1538-4357/ac2c65 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Spatial and Temporal Variations of Turbulence in a Solar Flare </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Stores%2C+M">Morgan Stores</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Kontar%2C+E+P">Eduard P. Kontar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01542v1-abstract-short" style="display: inline;"> Magnetohydrodynamic (MHD) plasma turbulence is believed to play a vital role in the production of energetic electrons during solar flares and the non-thermal broadening of spectral lines is a key sign of this turbulence. Here, we determine how flare turbulence evolves in time and space using spectral profiles of Fe xxiv, Fe xxiii and Fe xvi, observed by Hinode/EIS. Maps of non-thermal velocity are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01542v1-abstract-full').style.display = 'inline'; document.getElementById('2110.01542v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01542v1-abstract-full" style="display: none;"> Magnetohydrodynamic (MHD) plasma turbulence is believed to play a vital role in the production of energetic electrons during solar flares and the non-thermal broadening of spectral lines is a key sign of this turbulence. Here, we determine how flare turbulence evolves in time and space using spectral profiles of Fe xxiv, Fe xxiii and Fe xvi, observed by Hinode/EIS. Maps of non-thermal velocity are created for times covering the X-ray rise, peak, and decay. For the first time, the creation of kinetic energy density maps reveal where energy is available for energization, suggesting that similar levels of energy may be available to heat and/or accelerate electrons in large regions of the flare. We find that turbulence is distributed throughout the entire flare; often greatest in the coronal loop tops, and decaying at different rates at different locations. For hotter ions (Fe xxiv and Fe xxiii), the non-thermal velocity decreases as the flare evolves and during/after the X-ray peak shows a clear spatial variation decreasing linearly from the loop apex towards the ribbon. For the cooler ion (Fe xvi), the non-thermal velocity remains relativity constant throughout the flare, but steeply increases in one region corresponding to the southern ribbon, peaking just prior to the peak in hard X-rays before declining. The results suggest turbulence has a more complex temporal and spatial structure than previously assumed, while newly introduced turbulent kinetic energy maps show the availability of the energy and identify important spatial inhomogeneities in the macroscopic plasma motions leading to turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01542v1-abstract-full').style.display = 'none'; document.getElementById('2110.01542v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication to Astrophysical Journal (October 1st 2021). Some figures may appear blurry in some pdf viewers, such as Preview. Please view pdf using Adobe</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13549">arXiv:2105.13549</a> <span> [<a href="https://arxiv.org/pdf/2105.13549">pdf</a>, <a href="https://arxiv.org/format/2105.13549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.023520">10.1103/PhysRevD.105.023520 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=DES+Collaboration"> DES Collaboration</a>, <a href="/search/astro-ph?searchtype=author&query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Becker%2C+M+R">M. R. Becker</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Bhargava%2C+S">S. Bhargava</a>, <a href="/search/astro-ph?searchtype=author&query=Birrer%2C+S">S. Birrer</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Brandao-Souza%2C+A">A. Brandao-Souza</a>, <a href="/search/astro-ph?searchtype=author&query=Bridle%2C+S+L">S. L. Bridle</a>, <a href="/search/astro-ph?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&query=Buckley-Geer%2C+E">E. Buckley-Geer</a>, <a href="/search/astro-ph?searchtype=author&query=Burke%2C+D+L">D. L. Burke</a>, <a href="/search/astro-ph?searchtype=author&query=Camacho%2C+H">H. Camacho</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a> , et al. (146 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13549v3-abstract-short" style="display: inline;"> We present the first cosmology results from large-scale structure in the Dark Energy Survey (DES) spanning 5000 deg$^2$. We perform an analysis combining three two-point correlation functions (3$\times$2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions. The analysis was designed to miti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13549v3-abstract-full').style.display = 'inline'; document.getElementById('2105.13549v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13549v3-abstract-full" style="display: none;"> We present the first cosmology results from large-scale structure in the Dark Energy Survey (DES) spanning 5000 deg$^2$. We perform an analysis combining three two-point correlation functions (3$\times$2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions. The analysis was designed to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results. We model the data within the flat $螞$CDM and $w$CDM cosmological models. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude $S_8=0.776^{+0.017}_{-0.017}$ and matter density $惟_{\mathrm{m}} = 0.339^{+0.032}_{-0.031}$ in $螞$CDM, mean with 68% confidence limits; $S_8=0.775^{+0.026}_{-0.024}$, $惟_{\mathrm{m}} = 0.352^{+0.035}_{-0.041}$, and dark energy equation-of-state parameter $w=-0.98^{+0.32}_{-0.20}$ in $w$CDM. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed $p=0.13$ to $0.48$. When combining DES 3$\times$2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find $p=0.34$. Combining all of these data sets with Planck CMB lensing yields joint parameter constraints of $S_8 = 0.812^{+0.008}_{-0.008}$, $惟_{\mathrm{m}} = 0.306^{+0.004}_{-0.005}$, $h=0.680^{+0.004}_{-0.003}$, and $\sum m_谓<0.13 \;\mathrm{eV\; (95\% \;CL)}$ in $螞$CDM; $S_8 = 0.812^{+0.008}_{-0.008}$, $惟_{\mathrm{m}} = 0.302^{+0.006}_{-0.006}$, $h=0.687^{+0.006}_{-0.007}$, and $w=-1.031^{+0.030}_{-0.027}$ in $w$CDM. (abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13549v3-abstract-full').style.display = 'none'; document.getElementById('2105.13549v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">See https://www.darkenergysurvey.org/des-year-3-cosmology-results-papers/ for the full DES Y3 3x2pt cosmology release. Matches version accepted in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13544">arXiv:2105.13544</a> <span> [<a href="https://arxiv.org/pdf/2105.13544">pdf</a>, <a href="https://arxiv.org/format/2105.13544">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.023515">10.1103/PhysRevD.105.023515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Modeling Uncertainty </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Secco%2C+L+F">L. F. Secco</a>, <a href="/search/astro-ph?searchtype=author&query=Samuroff%2C+S">S. Samuroff</a>, <a href="/search/astro-ph?searchtype=author&query=Krause%2C+E">E. Krause</a>, <a href="/search/astro-ph?searchtype=author&query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&query=Raveri%2C+M">M. Raveri</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Chen%2C+A">A. Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Gruen%2C+D">D. Gruen</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&query=Myles%2C+J">J. Myles</a>, <a href="/search/astro-ph?searchtype=author&query=Fert%C3%A9%2C+A">A. Fert茅</a>, <a href="/search/astro-ph?searchtype=author&query=Lemos%2C+P">P. Lemos</a>, <a href="/search/astro-ph?searchtype=author&query=Huterer%2C+D">D. Huterer</a>, <a href="/search/astro-ph?searchtype=author&query=Prat%2C+J">J. Prat</a>, <a href="/search/astro-ph?searchtype=author&query=Troxel%2C+M+A">M. A. Troxel</a>, <a href="/search/astro-ph?searchtype=author&query=MacCrann%2C+N">N. MacCrann</a>, <a href="/search/astro-ph?searchtype=author&query=Liddle%2C+A+R">A. R. Liddle</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Fang%2C+X">X. Fang</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13544v2-abstract-short" style="display: inline;"> This work and its companion paper, Amon et al. (2021), present cosmic shear measurements and cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter $S_8\equiv蟽_8\sqrt{惟_\textrm{m}/0.3}$ at the 3% level in $螞$CDM: $S_8=0.759^{+0.025}_{-0.023}$ (68% CL). Our constraint is at the 2% level when using angu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13544v2-abstract-full').style.display = 'inline'; document.getElementById('2105.13544v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13544v2-abstract-full" style="display: none;"> This work and its companion paper, Amon et al. (2021), present cosmic shear measurements and cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter $S_8\equiv蟽_8\sqrt{惟_\textrm{m}/0.3}$ at the 3% level in $螞$CDM: $S_8=0.759^{+0.025}_{-0.023}$ (68% CL). Our constraint is at the 2% level when using angular scale cuts that are optimized for the $螞$CDM analysis: $S_8=0.772^{+0.018}_{-0.017}$ (68% CL). With cosmic shear alone, we find no statistically significant constraint on the dark energy equation-of-state parameter at our present statistical power. We carry out our analysis blind, and compare our measurement with constraints from two other contemporary weak-lensing experiments: the Kilo-Degree Survey (KiDS) and Hyper-Suprime Camera Subaru Strategic Program (HSC). We additionally quantify the agreement between our data and external constraints from the Cosmic Microwave Background (CMB). Our DES Y3 result under the assumption of $螞$CDM is found to be in statistical agreement with Planck 2018, although favors a lower $S_8$ than the CMB-inferred value by $2.3蟽$ (a $p$-value of 0.02). This paper explores the robustness of these cosmic shear results to modeling of intrinsic alignments, the matter power spectrum and baryonic physics. We additionally explore the statistical preference of our data for intrinsic alignment models of different complexity. The fiducial cosmic shear model is tested using synthetic data, and we report no biases greater than 0.3$蟽$ in the plane of $S_8\times惟_\textrm{m}$ caused by uncertainties in the theoretical models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13544v2-abstract-full').style.display = 'none'; document.getElementById('2105.13544v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor modifications, results unchanged. Matches version published in PRD. DES Y3 cosmology data products in https://des.ncsa.illinois.edu/releases/y3a2</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13539">arXiv:2105.13539</a> <span> [<a href="https://arxiv.org/pdf/2105.13539">pdf</a>, <a href="https://arxiv.org/format/2105.13539">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1495">10.1093/mnras/stab1495 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Energy Survey Year 3 results: curved-sky weak lensing mass map reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">L. Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Demirbozan%2C+U">U. Demirbozan</a>, <a href="/search/astro-ph?searchtype=author&query=Kovacs%2C+A">A. Kovacs</a>, <a href="/search/astro-ph?searchtype=author&query=Pollina%2C+G">G. Pollina</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Hamaus%2C+N">N. Hamaus</a>, <a href="/search/astro-ph?searchtype=author&query=Kacprzak%2C+T">T. Kacprzak</a>, <a href="/search/astro-ph?searchtype=author&query=Lahav%2C+O">O. Lahav</a>, <a href="/search/astro-ph?searchtype=author&query=Lanusse%2C+F">F. Lanusse</a>, <a href="/search/astro-ph?searchtype=author&query=Mawdsley%2C+B">B. Mawdsley</a>, <a href="/search/astro-ph?searchtype=author&query=Nadathur%2C+S">S. Nadathur</a>, <a href="/search/astro-ph?searchtype=author&query=Starck%2C+J+L">J. L. Starck</a>, <a href="/search/astro-ph?searchtype=author&query=Vielzeuf%2C+P">P. Vielzeuf</a>, <a href="/search/astro-ph?searchtype=author&query=Zeurcher%2C+D">D. Zeurcher</a>, <a href="/search/astro-ph?searchtype=author&query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&query=Kind%2C+M+C">M. Carrasco Kind</a>, <a href="/search/astro-ph?searchtype=author&query=Cawthon%2C+R">R. Cawthon</a> , et al. (105 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13539v2-abstract-short" style="display: inline;"> We present reconstructed convergence maps, \textit{mass maps}, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground of the observed galaxies. We use four reconstruction methods, each is a \textit{maximum a posteriori} estimate with a different model for the prior… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13539v2-abstract-full').style.display = 'inline'; document.getElementById('2105.13539v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13539v2-abstract-full" style="display: none;"> We present reconstructed convergence maps, \textit{mass maps}, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground of the observed galaxies. We use four reconstruction methods, each is a \textit{maximum a posteriori} estimate with a different model for the prior probability of the map: Kaiser-Squires, null B-mode prior, Gaussian prior, and a sparsity prior. All methods are implemented on the celestial sphere to accommodate the large sky coverage of the DES Y3 data. We compare the methods using realistic $螞$CDM simulations with mock data that are closely matched to the DES Y3 data. We quantify the performance of the methods at the map level and then apply the reconstruction methods to the DES Y3 data, performing tests for systematic error effects. The maps are compared with optical foreground cosmic-web structures and are used to evaluate the lensing signal from cosmic-void profiles. The recovered dark matter map covers the largest sky fraction of any galaxy weak lensing map to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13539v2-abstract-full').style.display = 'none'; document.getElementById('2105.13539v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final updates matching published MNRAS version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-342-AE-SCD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 505, Issue 3, August 2021, Pages 4626-4645 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04127">arXiv:2102.04127</a> <span> [<a href="https://arxiv.org/pdf/2102.04127">pdf</a>, <a href="https://arxiv.org/format/2102.04127">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039451">10.1051/0004-6361/202039451 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak lensing mass reconstruction using sparsity and a Gaussian random field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Starck%2C+J+-">J. -L. Starck</a>, <a href="/search/astro-ph?searchtype=author&query=Themelis%2C+K+E">K. E. Themelis</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">N. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Peel%2C+A">A. Peel</a>, <a href="/search/astro-ph?searchtype=author&query=Lanusse%2C+F">F. Lanusse</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04127v1-abstract-short" style="display: inline;"> We introduce a novel approach to reconstruct dark matter mass maps from weak gravitational lensing measurements. The cornerstone of the proposed method lies in a new modelling of the matter density field in the Universe as a mixture of two components:(1) a sparsity-based component that captures the non-Gaussian structure of the field, such as peaks or halos at different spatial scales; and (2) a G… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04127v1-abstract-full').style.display = 'inline'; document.getElementById('2102.04127v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04127v1-abstract-full" style="display: none;"> We introduce a novel approach to reconstruct dark matter mass maps from weak gravitational lensing measurements. The cornerstone of the proposed method lies in a new modelling of the matter density field in the Universe as a mixture of two components:(1) a sparsity-based component that captures the non-Gaussian structure of the field, such as peaks or halos at different spatial scales; and (2) a Gaussian random field, which is known to well represent the linear characteristics of the field.Methods. We propose an algorithm called MCALens which jointly estimates these two components. MCAlens is based on an alternating minimization incorporating both sparse recovery and a proximal iterative Wiener filtering. Experimental results on simulated data show that the proposed method exhibits improved estimation accuracy compared to state-of-the-art mass map reconstruction methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04127v1-abstract-full').style.display = 'none'; document.getElementById('2102.04127v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A&A, accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 649, A99 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.03160">arXiv:2102.03160</a> <span> [<a href="https://arxiv.org/pdf/2102.03160">pdf</a>, <a href="https://arxiv.org/format/2102.03160">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140503">10.1051/0004-6361/202140503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A new approach for the statistical denoising of Planck interstellar dust polarization data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Blancard%2C+B+R">Bruno Regaldo-Saint Blancard</a>, <a href="/search/astro-ph?searchtype=author&query=Allys%2C+E">Erwan Allys</a>, <a href="/search/astro-ph?searchtype=author&query=Boulanger%2C+F">Fran莽ois Boulanger</a>, <a href="/search/astro-ph?searchtype=author&query=Levrier%2C+F">Fran莽ois Levrier</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.03160v2-abstract-short" style="display: inline;"> Dust emission is the main foreground for cosmic microwave background (CMB) polarization. Its statistical characterization must be derived from the analysis of observational data because the precision required for a reliable component separation is far greater than what is currently achievable with physical models of the turbulent magnetized interstellar medium. This letter takes a significant step… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03160v2-abstract-full').style.display = 'inline'; document.getElementById('2102.03160v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.03160v2-abstract-full" style="display: none;"> Dust emission is the main foreground for cosmic microwave background (CMB) polarization. Its statistical characterization must be derived from the analysis of observational data because the precision required for a reliable component separation is far greater than what is currently achievable with physical models of the turbulent magnetized interstellar medium. This letter takes a significant step toward this goal by proposing a method that retrieves non-Gaussian statistical characteristics of dust emission from noisy Planck polarization observations at 353 GHz. We devised a statistical denoising method based on wavelet phase harmonics (WPH) statistics, which characterize the coherent structures in non-Gaussian random fields and define a generative model of the data. The method was validated on mock data combining a dust map from a magnetohydrodynamic simulation and Planck noise maps. The denoised map reproduces the true power spectrum down to scales where the noise power is an order of magnitude larger than that of the signal. It remains highly correlated to the true emission and retrieves some of its non-Gaussian properties. Applied to Planck data, the method provides a new approach to building a generative model of dust polarization that will characterize the full complexity of the dust emission. We also release PyWPH, a public Python package, to perform GPU-accelerated WPH analyses on images. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.03160v2-abstract-full').style.display = 'none'; document.getElementById('2102.03160v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures, accepted by A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 649, L18 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08271">arXiv:2011.08271</a> <span> [<a href="https://arxiv.org/pdf/2011.08271">pdf</a>, <a href="https://arxiv.org/format/2011.08271">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Probabilistic Mapping of Dark Matter by Neural Score Matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Remy%2C+B">Benjamin Remy</a>, <a href="/search/astro-ph?searchtype=author&query=Lanusse%2C+F">Francois Lanusse</a>, <a href="/search/astro-ph?searchtype=author&query=Ramzi%2C+Z">Zaccharie Ramzi</a>, <a href="/search/astro-ph?searchtype=author&query=Liu%2C+J">Jia Liu</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Starck%2C+J">Jean-Luc Starck</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08271v1-abstract-short" style="display: inline;"> The Dark Matter present in the Large-Scale Structure of the Universe is invisible, but its presence can be inferred through the small gravitational lensing effect it has on the images of far away galaxies. By measuring this lensing effect on a large number of galaxies it is possible to reconstruct maps of the Dark Matter distribution on the sky. This, however, represents an extremely challenging i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08271v1-abstract-full').style.display = 'inline'; document.getElementById('2011.08271v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08271v1-abstract-full" style="display: none;"> The Dark Matter present in the Large-Scale Structure of the Universe is invisible, but its presence can be inferred through the small gravitational lensing effect it has on the images of far away galaxies. By measuring this lensing effect on a large number of galaxies it is possible to reconstruct maps of the Dark Matter distribution on the sky. This, however, represents an extremely challenging inverse problem due to missing data and noise dominated measurements. In this work, we present a novel methodology for addressing such inverse problems by combining elements of Bayesian statistics, analytic physical theory, and a recent class of Deep Generative Models based on Neural Score Matching. This approach allows to do the following: (1) make full use of analytic cosmological theory to constrain the 2pt statistics of the solution, (2) learn from cosmological simulations any differences between this analytic prior and full simulations, and (3) obtain samples from the full Bayesian posterior of the problem for robust Uncertainty Quantification. We present an application of this methodology on the first deep-learning-assisted Dark Matter map reconstruction of the Hubble Space Telescope COSMOS field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08271v1-abstract-full').style.display = 'none'; document.getElementById('2011.08271v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, accepted submission to the NeurIPS 2019 Machine Learning and the Physical Sciences Workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05991">arXiv:2011.05991</a> <span> [<a href="https://arxiv.org/pdf/2011.05991">pdf</a>, <a href="https://arxiv.org/format/2011.05991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Wandelt%2C+B+D">Benjamin D. Wandelt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05991v1-abstract-short" style="display: inline;"> High-dimensional probability density estimation for inference suffers from the "curse of dimensionality". For many physical inference problems, the full posterior distribution is unwieldy and seldom used in practice. Instead, we propose direct estimation of lower-dimensional marginal distributions, bypassing high-dimensional density estimation or high-dimensional Markov chain Monte Carlo (MCMC) sa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05991v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05991v1-abstract-full" style="display: none;"> High-dimensional probability density estimation for inference suffers from the "curse of dimensionality". For many physical inference problems, the full posterior distribution is unwieldy and seldom used in practice. Instead, we propose direct estimation of lower-dimensional marginal distributions, bypassing high-dimensional density estimation or high-dimensional Markov chain Monte Carlo (MCMC) sampling. By evaluating the two-dimensional marginal posteriors we can unveil the full-dimensional parameter covariance structure. We additionally propose constructing a simple hierarchy of fast neural regression models, called Moment Networks, that compute increasing moments of any desired lower-dimensional marginal posterior density; these reproduce exact results from analytic posteriors and those obtained from Masked Autoregressive Flows. We demonstrate marginal posterior density estimation using high-dimensional LIGO-like gravitational wave time series and describe applications for problems of fundamental cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05991v1-abstract-full').style.display = 'none'; document.getElementById('2011.05991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the Third Workshop on Machine Learning and the Physical Sciences, NeurIPS 2020, Vancouver, Canada</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08782">arXiv:2010.08782</a> <span> [<a href="https://arxiv.org/pdf/2010.08782">pdf</a>, <a href="https://arxiv.org/ps/2010.08782">ps</a>, <a href="https://arxiv.org/format/2010.08782">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abc24e">10.3847/1538-4357/abc24e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Chen%2C+X">Xingyao Chen</a>, <a href="/search/astro-ph?searchtype=author&query=Kontar%2C+E+P">Eduard P. Kontar</a>, <a href="/search/astro-ph?searchtype=author&query=Chrysaphi%2C+N">Nicolina Chrysaphi</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N+L+S">Natasha L. S. Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Gordovskyy%2C+M">Mykola Gordovskyy</a>, <a href="/search/astro-ph?searchtype=author&query=Yan%2C+Y">Yihua Yan</a>, <a href="/search/astro-ph?searchtype=author&query=Tan%2C+B">Baolin Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08782v3-abstract-short" style="display: inline;"> Recent developments in astronomical radio telescopes opened new opportunities in imaging and spectroscopy of solar radio bursts at sub-second timescales. Imaging in narrow frequency bands has revealed temporal variations in the positions and source sizes that do not fit into the standard picture of type III solar radio bursts, and require a better understanding of radio-wave transport. In this pap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08782v3-abstract-full').style.display = 'inline'; document.getElementById('2010.08782v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08782v3-abstract-full" style="display: none;"> Recent developments in astronomical radio telescopes opened new opportunities in imaging and spectroscopy of solar radio bursts at sub-second timescales. Imaging in narrow frequency bands has revealed temporal variations in the positions and source sizes that do not fit into the standard picture of type III solar radio bursts, and require a better understanding of radio-wave transport. In this paper, we utilise 3D Monte Carlo ray-tracing simulations that account for the anisotropic density turbulence in the inhomogeneous solar corona to quantitatively explain the image dynamics at the fundamental (near plasma frequency) and harmonic (double) plasma emissions observed at \sim 32~MHz. Comparing the simulations with observations, we find that anisotropic scattering from an instantaneous emission point source can account for the observed time profiles, centroid locations, and source sizes of the fundamental component of type III radio bursts (generated where f_{pe} \approx 32~MHz). The best agreement with observations is achieved when the ratio of the perpendicular to the parallel component of the wave vector of anisotropic density turbulence is around 0.25. Harmonic emission sources observed at the same frequency (\sim 32~MHz, but generated where f_{pe} \approx 16~MHz) have apparent sizes comparable to those produced by the fundamental emission, but demonstrate a much slower temporal evolution. The simulations of radio-wave propagation make it possible to quantitatively explain the variations of apparent source sizes and positions at sub-second time-scales both for the fundamental and harmonic emissions, and can be used as a diagnostic tool for the plasma turbulence in the upper corona. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08782v3-abstract-full').style.display = 'none'; document.getElementById('2010.08782v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures, accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08537">arXiv:2010.08537</a> <span> [<a href="https://arxiv.org/pdf/2010.08537">pdf</a>, <a href="https://arxiv.org/format/2010.08537">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.023009">10.1103/PhysRevD.103.023009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The sum of the masses of the Milky Way and M31: a likelihood-free inference approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Lemos%2C+P">Pablo Lemos</a>, <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Whiteway%2C+L">Lorne Whiteway</a>, <a href="/search/astro-ph?searchtype=author&query=Lahav%2C+O">Ofer Lahav</a>, <a href="/search/astro-ph?searchtype=author&query=Libeskind%2C+N+I">Niam I Libeskind</a>, <a href="/search/astro-ph?searchtype=author&query=Hoffman%2C+Y">Yehuda Hoffman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08537v2-abstract-short" style="display: inline;"> We use Density Estimation Likelihood-Free Inference, $螞$ Cold Dark Matter simulations of $\sim 2M$ galaxy pairs, and data from Gaia and the Hubble Space Telescope to infer the sum of the masses of the Milky Way and Andromeda (M31) galaxies, the two main components of the Local Group. This method overcomes most of the approximations of the traditional timing argument, makes the writing of a theoret… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08537v2-abstract-full').style.display = 'inline'; document.getElementById('2010.08537v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08537v2-abstract-full" style="display: none;"> We use Density Estimation Likelihood-Free Inference, $螞$ Cold Dark Matter simulations of $\sim 2M$ galaxy pairs, and data from Gaia and the Hubble Space Telescope to infer the sum of the masses of the Milky Way and Andromeda (M31) galaxies, the two main components of the Local Group. This method overcomes most of the approximations of the traditional timing argument, makes the writing of a theoretical likelihood unnecessary, and allows the non-linear modelling of observational errors that take into account correlations in the data and non-Gaussian distributions. We obtain an $M_{200}$ mass estimate $M_{\rm MW+M31} = 4.6^{+2.3}_{-1.8} \times 10^{12} M_{\odot}$ ($68 \%$ C.L.), in agreement with previous estimates both for the sum of the two masses and for the individual masses. This result is not only one of the most reliable estimates of the sum of the two masses to date, but is also an illustration of likelihood-free inference in a problem with only one parameter and only three data points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08537v2-abstract-full').style.display = 'none'; document.getElementById('2010.08537v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures. Accepted by Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 023009 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10772">arXiv:2009.10772</a> <span> [<a href="https://arxiv.org/pdf/2009.10772">pdf</a>, <a href="https://arxiv.org/format/2009.10772">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038445">10.1051/0004-6361/202038445 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Solar Orbiter Science Activity Plan: translating solar and heliospheric physics questions into action </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zouganelis%2C+I">I. Zouganelis</a>, <a href="/search/astro-ph?searchtype=author&query=De+Groof%2C+A">A. De Groof</a>, <a href="/search/astro-ph?searchtype=author&query=Walsh%2C+A+P">A. P. Walsh</a>, <a href="/search/astro-ph?searchtype=author&query=Williams%2C+D+R">D. R. Williams</a>, <a href="/search/astro-ph?searchtype=author&query=Mueller%2C+D">D. Mueller</a>, <a href="/search/astro-ph?searchtype=author&query=Cyr%2C+O+C+S">O. C. St Cyr</a>, <a href="/search/astro-ph?searchtype=author&query=Auchere%2C+F">F. Auchere</a>, <a href="/search/astro-ph?searchtype=author&query=Berghmans%2C+D">D. Berghmans</a>, <a href="/search/astro-ph?searchtype=author&query=Fludra%2C+A">A. Fludra</a>, <a href="/search/astro-ph?searchtype=author&query=Horbury%2C+T+S">T. S. Horbury</a>, <a href="/search/astro-ph?searchtype=author&query=Howard%2C+R+A">R. A. Howard</a>, <a href="/search/astro-ph?searchtype=author&query=Krucker%2C+S">S. Krucker</a>, <a href="/search/astro-ph?searchtype=author&query=Maksimovic%2C+M">M. Maksimovic</a>, <a href="/search/astro-ph?searchtype=author&query=Owen%2C+C+J">C. J. Owen</a>, <a href="/search/astro-ph?searchtype=author&query=Rodriiguez-Pacheco%2C+J">J. Rodriiguez-Pacheco</a>, <a href="/search/astro-ph?searchtype=author&query=Romoli%2C+M">M. Romoli</a>, <a href="/search/astro-ph?searchtype=author&query=Solanki%2C+S+K">S. K. Solanki</a>, <a href="/search/astro-ph?searchtype=author&query=Watson%2C+C">C. Watson</a>, <a href="/search/astro-ph?searchtype=author&query=Sanchez%2C+L">L. Sanchez</a>, <a href="/search/astro-ph?searchtype=author&query=Lefort%2C+J">J. Lefort</a>, <a href="/search/astro-ph?searchtype=author&query=Osuna%2C+P">P. Osuna</a>, <a href="/search/astro-ph?searchtype=author&query=Gilbert%2C+H+R">H. R. Gilbert</a>, <a href="/search/astro-ph?searchtype=author&query=Nieves-Chinchilla%2C+T">T. Nieves-Chinchilla</a>, <a href="/search/astro-ph?searchtype=author&query=Abbo%2C+L">L. Abbo</a>, <a href="/search/astro-ph?searchtype=author&query=Alexandrova%2C+O">O. Alexandrova</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10772v1-abstract-short" style="display: inline;"> Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10772v1-abstract-full').style.display = 'inline'; document.getElementById('2009.10772v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10772v1-abstract-full" style="display: none;"> Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate? (2) How do solar transients drive heliospheric variability? (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere? (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans (SOOPs), resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10772v1-abstract-full').style.display = 'none'; document.getElementById('2009.10772v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 1 figure, accepted by Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 642, A3 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.08459">arXiv:2009.08459</a> <span> [<a href="https://arxiv.org/pdf/2009.08459">pdf</a>, <a href="https://arxiv.org/format/2009.08459">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3594">10.1093/mnras/staa3594 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Likelihood-free inference with neural compression of DES SV weak lensing map statistics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Jeffrey%2C+N">Niall Jeffrey</a>, <a href="/search/astro-ph?searchtype=author&query=Alsing%2C+J">Justin Alsing</a>, <a href="/search/astro-ph?searchtype=author&query=Lanusse%2C+F">Fran莽ois Lanusse</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.08459v2-abstract-short" style="display: inline;"> In many cosmological inference problems, the likelihood (the probability of the observed data as a function of the unknown parameters) is unknown or intractable. This necessitates approximations and assumptions, which can lead to incorrect inference of cosmological parameters, including the nature of dark matter and dark energy, or create artificial model tensions. Likelihood-free inference covers… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.08459v2-abstract-full').style.display = 'inline'; document.getElementById('2009.08459v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.08459v2-abstract-full" style="display: none;"> In many cosmological inference problems, the likelihood (the probability of the observed data as a function of the unknown parameters) is unknown or intractable. This necessitates approximations and assumptions, which can lead to incorrect inference of cosmological parameters, including the nature of dark matter and dark energy, or create artificial model tensions. Likelihood-free inference covers a novel family of methods to rigorously estimate posterior distributions of parameters using forward modelling of mock data. We present likelihood-free cosmological parameter inference using weak lensing maps from the Dark Energy Survey (DES) SV data, using neural data compression of weak lensing map summary statistics. We explore combinations of the power spectra, peak counts, and neural compressed summaries of the lensing mass map using deep convolution neural networks. We demonstrate methods to validate the inference process, for both the data modelling and the probability density estimation steps. Likelihood-free inference provides a robust and scalable alternative for rigorous large-scale cosmological inference with galaxy survey data (for DES, Euclid and LSST). We have made our simulated lensing maps publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.08459v2-abstract-full').style.display = 'none'; document.getElementById('2009.08459v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted MNRAS, 18 pages, 10 figures, submitted MNRAS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Jeffrey%2C+N&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Jeffrey%2C+N&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Jeffrey%2C+N&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>