CINXE.COM
Search results for: bench-top helicopter
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bench-top helicopter</title> <meta name="description" content="Search results for: bench-top helicopter"> <meta name="keywords" content="bench-top helicopter"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bench-top helicopter" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bench-top helicopter"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 51</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bench-top helicopter</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wendeker">M. Wendeker</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Siadkowska"> K. Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Magryta"> P. Magryta</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Czyz"> Z. Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Skiba"> K. Skiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/5115/optimal-diesel-engine-technology-analysis-matching-the-platform-of-the-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Numerical Simulation of Air Flow, Exhaust and Their Mixture in a Helicopter Exhaust Injective Cooler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko">Mateusz Paszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Pietrykowski"> Konrad Pietrykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba"> Krzysztof Skiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to low-altitude and relatively low flight speed, today’s combat assets like missile weapons equipped with infrared guidance systems are one of the most important threats to the helicopters performing combat missions. Especially meaningful in helicopter aviation is infrared emission by exhaust gases, regressed to the surroundings. Due to high temperature, exhaust gases are a major factor in detectability of a helicopter performing air combat operations. This study presents the results of simulating the flow of the mixture of exhaust and air in the flow duct of an injective exhaust cooler, adapted to cooperate with the PZL 10W turbine engine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted for set flight conditions of the PZL W-3 Falcon helicopter. The conclusions resulting from the conducted numerical computations should allow for optimisation of the flow duct geometry in the cooler, in order to achieve the greatest possible temperature reduction of exhaust exiting into the surroundings. It is expected that the obtained results should be useful for further works related to the development of the final version of exhaust cooler for the PZL W-3 Falcon helicopter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20cooler" title="exhaust cooler">exhaust cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stealth" title=" stealth"> stealth</a> </p> <a href="https://publications.waset.org/abstracts/106682/numerical-simulation-of-air-flow-exhaust-and-their-mixture-in-a-helicopter-exhaust-injective-cooler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Cooling of Exhaust Gases Emitted Into the Atmosphere as the Possibility to Reduce the Helicopter Radiation Emission Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko">Mateusz Paszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Wendeker"> Mirosław Wendeker</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak"> Adam Majczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every material body that temperature is higher than 0K (absolute zero) emits infrared radiation to the surroundings. Infrared radiation is highly meaningful in military aviation, especially in military applications of helicopters. Helicopters, in comparison to other aircraft, have much lower flight speeds and maneuverability, which makes them easy targets for actual combat assets like infrared-guided missiles. When designing new helicopter types, especially for combat applications, it is essential to pay enormous attention to infrared emissions of the solid parts composing the helicopter’s structure, as well as to exhaust gases egressing from the engine’s exhaust system. Due to their high temperature, exhaust gases, egressed to the surroundings are a major factor in infrared radiation emission and, in consequence, detectability of a helicopter performing air combat operations. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. This paper presents the analysis of possibilities to decrease the infrared radiation level that is emitted to the environment by helicopter in flight, by cooling exhaust in special ejection-based coolers. The paper also presents the concept 3D model and results of numeric analysis of ejective-based cooler cooperation with PA-10W turbine engine. Numeric analysis presented promising results in decreasing the infrared emission level by PA W-3 helicopter in flight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20cooler" title="exhaust cooler">exhaust cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20propulsion" title=" helicopter propulsion"> helicopter propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20radiation" title=" infrared radiation"> infrared radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=stealth" title=" stealth"> stealth</a> </p> <a href="https://publications.waset.org/abstracts/50177/cooling-of-exhaust-gases-emitted-into-the-atmosphere-as-the-possibility-to-reduce-the-helicopter-radiation-emission-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Self-Tuning Dead-Beat PD Controller for Pitch Angle Control of a Bench-Top Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mansor">H. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.B.%20Mohd-Noor"> S.B. Mohd-Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Othman"> N. I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tazali"> N. Tazali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20I.%20Boby"> R. I. Boby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an improved robust Proportional Derivative controller for a 3-Degree-of-Freedom (3-DOF) bench-top helicopter by using adaptive methodology. Bench-top helicopter is a laboratory scale helicopter used for experimental purposes which is widely used in teaching laboratory and research. Proportional Derivative controller has been developed for a 3-DOF bench-top helicopter by Quanser. Experiments showed that the transient response of designed PD controller has very large steady state error i.e., 50%, which is very serious. The objective of this research is to improve the performance of existing pitch angle control of PD controller on the bench-top helicopter by integration of PD controller with adaptive controller. Usually standard adaptive controller will produce zero steady state error; however response time to reach desired set point is large. Therefore, this paper proposed an adaptive with deadbeat algorithm to overcome the limitations. The output response that is fast, robust and updated online is expected. Performance comparisons have been performed between the proposed self-tuning deadbeat PD controller and standard PD controller. The efficiency of the self-tuning dead beat controller has been proven from the tests results in terms of faster settling time, zero steady state error and capability of the controller to be updated online. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=deadbeat%20control" title=" deadbeat control"> deadbeat control</a>, <a href="https://publications.waset.org/abstracts/search?q=bench-top%20helicopter" title=" bench-top helicopter"> bench-top helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=self-tuning%20control" title=" self-tuning control"> self-tuning control</a> </p> <a href="https://publications.waset.org/abstracts/10581/self-tuning-dead-beat-pd-controller-for-pitch-angle-control-of-a-bench-top-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> A Model for Helicopter Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Sipahioglu">Aydin Sipahioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Celik"> Gokhan Celik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Helicopter routing problem (HRP) is finding good tours for helicopter so as to pick up and deliver personnel or material among specified nodes, mutually. It can be encountered in case of being lots of supply and demand points for different commodities and requiring delivering commodities with helicopter. For instance, to deliver personnel or material from shore to oil rig is a good example. In fact, HRP is a branch of vehicle routing problem with pickup and delivery (VRPPD). However, it has additional constraints such that fuel capacity, performance of helicopter in different altitude and temperature, and the number of maximum takeoff and landing allowed. This kind of pickup and delivery problems can be classified into 3 groups, basically. 1-1 (one to one), M-M (many to many) and 1-M-1 (one to many to one). 1-1 means each commodity has only one supply and one demand point. M-M means there can be more than one supply and demand points for each kind of commodity. 1-M-1 means commodities at depot are delivered to demand points and commodities at customers are delivered to depot. In this case helicopter takes off from its own base, complete its tour and return to its own base. In this study, we define 1-M-M-1 type HRP. That means helicopter takes off from its home base, deliver commodities among the nodes as well as between depot and customers and return to its home base. These problems have NP-hard nature. Therefore, obtaining a good solution in a reasonable time is not easy. In this study, a model is offered for 1-M-M-1 type HRP. It is shown on small scale test instances that the model can find the optimal solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20routing%20problem" title="helicopter routing problem">helicopter routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20with%20pickup%20and%20delivery" title=" vehicle routing with pickup and delivery"> vehicle routing with pickup and delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20programming" title=" integer programming"> integer programming</a> </p> <a href="https://publications.waset.org/abstracts/9651/a-model-for-helicopter-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmen%20Bouguerra">Abderrahmen Bouguerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Kara"> Kamel Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Saigaa"> Djamel Saigaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Zeghlache"> Samir Zeghlache</a>, <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Loukal"> Keltoum Loukal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title="fuzzy control">fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=gain-adaptive%20PID" title=" gain-adaptive PID"> gain-adaptive PID</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20model" title=" helicopter model"> helicopter model</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20control" title=" PID control"> PID control</a>, <a href="https://publications.waset.org/abstracts/search?q=TRMS%20system" title=" TRMS system"> TRMS system</a> </p> <a href="https://publications.waset.org/abstracts/21698/fault-tolerant-fuzzy-gain-adaptive-pid-control-for-a-2-dof-helicopter-trms-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mansor">H. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Mohd-Noor"> S. B. Mohd-Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Gunawan"> T. S. Gunawan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan"> S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Othman"> N. I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tazali"> N. Tazali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Islam"> R. B. Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (pole-placement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=deadbeat" title=" deadbeat"> deadbeat</a>, <a href="https://publications.waset.org/abstracts/search?q=pole-placement" title=" pole-placement"> pole-placement</a>, <a href="https://publications.waset.org/abstracts/search?q=bench-top%20helicopter" title=" bench-top helicopter"> bench-top helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=self-tuning%20control" title=" self-tuning control"> self-tuning control</a> </p> <a href="https://publications.waset.org/abstracts/15094/performance-comparisons-between-pid-and-adaptive-pid-controllers-for-travel-angle-control-of-a-bench-top-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Prediction of the Aerodynamic Stall of a Helicopter’s Main Rotor Using a Computational Fluid Dynamics Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assel%20Thami%20Lahlou">Assel Thami Lahlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Soufiane%20Stouti"> Soufiane Stouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Lagrat"> Ismail Lagrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mounir"> Hamid Mounir</a>, <a href="https://publications.waset.org/abstracts/search?q=Oussama%20Bouazaoui"> Oussama Bouazaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research work is to predict the helicopter from stalling by finding the minimum and maximum values that the pitch angle can take in order to fly in a hover state condition. The stall of a helicopter in hover occurs when the pitch angle is too small to generate the thrust required to support its weight or when the critical angle of attack that gives maximum lift is reached or exceeded. In order to find the minimum pitch angle, a 3D CFD simulation was done in this work using ANSYS FLUENT as the CFD solver. We started with a small value of the pitch angle θ, and we kept increasing its value until we found the thrust coefficient required to fly in a hover state and support the weight of the helicopter. For the CFD analysis, the Multiple Reference Frame (MRF) method with k-ε turbulent model was used to study the 3D flow around the rotor for θmin. On the other hand, a 2D simulation of the airfoil NACA 0012 was executed with a velocity inlet Vin=ΩR/2 to visualize the flow at the location span R/2 of the disk rotor using the Spallart-Allmaras turbulent model. Finding the critical angle of attack at this position will give us the ability to predict the stall in hover flight. The results obtained will be exposed later in the article. This study was so useful in analyzing the limitations of the helicopter’s main rotor and thus, in predicting accidents that can lead to a lot of damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=stall" title=" stall"> stall</a>, <a href="https://publications.waset.org/abstracts/search?q=blades" title=" blades"> blades</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20rotor" title=" main rotor"> main rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20pitch%20angle" title=" minimum pitch angle"> minimum pitch angle</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20pitch%20angle" title=" maximum pitch angle"> maximum pitch angle</a> </p> <a href="https://publications.waset.org/abstracts/186086/prediction-of-the-aerodynamic-stall-of-a-helicopters-main-rotor-using-a-computational-fluid-dynamics-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> 2D Point Clouds Features from Radar for Helicopter Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Habermann">Danilo Habermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Medella"> Aleksander Medella</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Cremon"> Carla Cremon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusef%20Caceres"> Yusef Caceres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20classification" title="helicopter classification">helicopter classification</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds%20features" title=" point clouds features"> point clouds features</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classifiers" title=" supervised classifiers"> supervised classifiers</a> </p> <a href="https://publications.waset.org/abstracts/85676/2d-point-clouds-features-from-radar-for-helicopter-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Increasing Performance of Autopilot Guided Small Unmanned Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugrul%20Oktay">Tugrul Oktay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Konar"> Mehmet Konar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soylak"> Mustafa Soylak</a>, <a href="https://publications.waset.org/abstracts/search?q=Firat%20Sal"> Firat Sal</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Onay"> Murat Onay</a>, <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Kizilkaya"> Orhan Kizilkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20helicopters" title="small helicopters">small helicopters</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20control" title=" hierarchical control"> hierarchical control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20optimization" title=" stochastic optimization"> stochastic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20performance%20maximization" title=" autonomous performance maximization"> autonomous performance maximization</a>, <a href="https://publications.waset.org/abstracts/search?q=autopilots" title=" autopilots"> autopilots</a> </p> <a href="https://publications.waset.org/abstracts/35994/increasing-performance-of-autopilot-guided-small-unmanned-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Helicopter Exhaust Gases Cooler in Terms of Computational Fluid Dynamics (CFD) Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko">Mateusz Paszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska"> Ksenia Siadkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the low-altitude and relatively low-speed flight, helicopters are easy targets for actual combat assets e.g. infrared-guided missiles. Current techniques aim to increase the combat effectiveness of the military helicopters. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. One of them is cooling hot exhaust gasses, emitting from the engines to the atmosphere in special heat exchangers. Nowadays, this process is realized in ejective coolers, where strong heat and momentum exchange between hot exhaust gases and cold air ejected from atmosphere takes place. Flow effects of air, exhaust gases; mixture of those two and the heat transfer between cold air and hot exhaust gases are given by differential equations of: Mass transportation–flow continuity, ejection of cold air through expanding exhaust gasses, conservation of momentum, energy and physical relationship equations. Calculation of those processes in ejective cooler by means of classic mathematical analysis is extremely hard or even impossible. Because of this, it is necessary to apply the numeric approach with modern, numeric computer programs. The paper discussed the general usability of the Computational Fluid Dynamics (CFD) in a process of projecting the ejective exhaust gases cooler cooperating with helicopter turbine engine. In this work, the CFD calculations have been performed for ejective-based cooler cooperating with the PA W3 helicopter’s engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation" title="aviation">aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ejective-cooler" title=" ejective-cooler"> ejective-cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20techniques" title=" helicopter techniques"> helicopter techniques</a> </p> <a href="https://publications.waset.org/abstracts/50171/helicopter-exhaust-gases-cooler-in-terms-of-computational-fluid-dynamics-cfd-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Design of a Sliding Mode Control Using Nonlinear Sliding Surface and Nonlinear Observer Applied to the Trirotor Mini-Aircraft </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Zeghlache">Samir Zeghlache</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahmen%20Bouguerra"> Abderrahmen Bouguerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Kara"> Kamel Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Saigaa"> Djamel Saigaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control of the trirotor helicopter includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. This paper presents a control strategy for an underactuated six degrees of freedom (6 DOF) trirotor helicopter, based on the coupling of the fuzzy logic control and sliding mode control (SMC). The main purpose of this work is to eliminate the chattering phenomenon. To achieve our purpose we have used a fuzzy logic control to generate the hitting control signal, also the non linear observer is then synthesized in order to estimate the unmeasured states. Finally simulation results are included to indicate the trirotor UAV with the proposed controller can greatly alleviate the chattering effect and remain robust to the external disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sliding%20mode%20control" title="fuzzy sliding mode control">fuzzy sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=trirotor%20helicopter" title=" trirotor helicopter"> trirotor helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modelling" title=" dynamic modelling"> dynamic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=underactuated%20systems" title=" underactuated systems "> underactuated systems </a> </p> <a href="https://publications.waset.org/abstracts/21720/design-of-a-sliding-mode-control-using-nonlinear-sliding-surface-and-nonlinear-observer-applied-to-the-trirotor-mini-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> The Development of Micro Patterns Using Benchtop Lithography for Marine Antifouling Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felicia%20Wong%20Yen%20Myan">Felicia Wong Yen Myan</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Walker"> James Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of micro topographies usually begins with the fabrication of a master stamp. Fabrication of such small structures can be technically challenging and expensive. These techniques are often used for applications where patterns only cover a small surface area (e.g. semiconductors, microfluidic channels). This research investigated the use of benchtop lithography to fabricate patterns with average widths of 50 and 100 microns on silicon wafer substrates. Further development of this method will attempt to layer patterns to create hierarchical structures. Photomasks consisted of patterns printed onto transparency films with a high resolution printer and a fully patterned 10cm by 10cm area has been successfully developed. UV exposure was carried out with a self-made array of ultraviolet LEDs that was positioned a distance above a glass diffuser. Observations under a light microscope and SEM showed that developed patterns exhibit an adequate degree of fidelity with patterns from the master stamp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithography" title="lithography">lithography</a>, <a href="https://publications.waset.org/abstracts/search?q=antifouling" title=" antifouling"> antifouling</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=microtopography" title=" microtopography "> microtopography </a> </p> <a href="https://publications.waset.org/abstracts/4376/the-development-of-micro-patterns-using-benchtop-lithography-for-marine-antifouling-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficient to Solidity (Ct/σ) Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Saijaand">K. K. Saijaand</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Prabhakaran%20Nair"> K. Prabhakaran Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine change in optimal lo-cations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multi-objective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization results shows that the inboard flap location at low Ct/σ ratio move farther from the baseline value and at high Ct/σ ratio move towards the root of the blade for minimizing hub vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor" title="helicopter rotor">helicopter rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=trailing-edge%20flap" title=" trailing-edge flap"> trailing-edge flap</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20coefficient%20to%20solidity%20%28Ct%20%2F%CF%83%29%20ratio" title=" thrust coefficient to solidity (Ct /σ) ratio"> thrust coefficient to solidity (Ct /σ) ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/2861/optimal-trailing-edge-flap-positions-of-helicopter-rotor-for-various-thrust-coefficient-to-solidity-cts-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Environmental Impacts on the Appearance of Disbonds in Metal Rotor Blades of Mi-2 Helicopters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Synaszko">Piotr Synaszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Sa%C5%82aci%C5%84ski"> Michał Sałaciński</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Leski"> Andrzej Leski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the analysis of construction Mi-2 helicopter rotor blades in order to determine the causes of appearance disbonds. Authors describe construction of rotor blade with impact on bonded joins and areas of water migration. They also made analysis which determines possibility of disbond between critical parts of rotor blades based on more than one hundred non-destructive inspections results. They showed which parts of the blades most likely to damage. The main source of damage is water presence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disbonds" title="disbonds">disbonds</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20effect" title=" environmental effect"> environmental effect</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor%20blades" title=" helicopter rotor blades"> helicopter rotor blades</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life%20extension" title=" service life extension"> service life extension</a> </p> <a href="https://publications.waset.org/abstracts/46613/environmental-impacts-on-the-appearance-of-disbonds-in-metal-rotor-blades-of-mi-2-helicopters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstanca%20Nikolajevic">Konstanca Nikolajevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Belanger"> Nicolas Belanger</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Duvivier"> David Duvivier</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabie%20Ben%20Atitallah"> Rabie Ben Atitallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhakim%20Artiba"> Abdelhakim Artiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotics" title="robotics">robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=aerial%20robots" title=" aerial robots"> aerial robots</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20primitives" title=" motion primitives"> motion primitives</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a> </p> <a href="https://publications.waset.org/abstracts/25294/a-method-to-compute-efficient-3d-helicopters-flight-trajectories-based-on-a-motion-polymorph-primitives-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Rotorcraft Performance and Environmental Impact Evaluation by Multidisciplinary Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre-Marie%20Basset">Pierre-Marie Basset</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Reboul"> Gabriel Reboul</a>, <a href="https://publications.waset.org/abstracts/search?q=Binh%20DangVu"> Binh DangVu</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Mercier"> Sébastien Mercier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotorcraft provides invaluable services thanks to their Vertical Take-Off and Landing (VTOL), hover and low speed capabilities. Yet their use is still often limited by their cost and environmental impact, especially noise and energy consumption. One of the main brakes to the expansion of the use of rotorcraft for urban missions is the environmental impact. The first main concern for the population is the noise. In order to develop the transversal competency to assess the rotorcraft environmental footprint, a collaboration has been launched between six research departments within ONERA. The progress in terms of models and methods are capitalized into the numerical workshop C.R.E.A.T.I.O.N. “Concepts of Rotorcraft Enhanced Assessment Through Integrated Optimization Network”. A typical mission for which the environmental impact issue is of great relevance has been defined. The first milestone is to perform the pre-sizing of a reference helicopter for this mission. In a second milestone, an alternate rotorcraft concept has been defined: a tandem rotorcraft with optional propulsion. The key design trends are given for the pre-sizing of this rotorcraft aiming at a significant reduction of the global environmental impact while still giving equivalent flight performance and safety with respect to the reference helicopter. The models and methods have been improved for catching sooner and more globally, the relative variations on the environmental impact when changing the rotorcraft architecture, the pre-design variables and the operation parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title="environmental impact">environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20performance" title=" flight performance"> flight performance</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20objectives%20multidisciplinary%20optimization" title=" multi objectives multidisciplinary optimization"> multi objectives multidisciplinary optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=rotorcraft" title=" rotorcraft"> rotorcraft</a> </p> <a href="https://publications.waset.org/abstracts/53783/rotorcraft-performance-and-environmental-impact-evaluation-by-multidisciplinary-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz">Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Magryta"> Pawel Magryta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko"> Mateusz Paszko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20bearings" title="gas bearings">gas bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopters" title=" helicopters"> helicopters</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20maneuvers" title=" helicopter maneuvers"> helicopter maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20engines" title=" turbine engines"> turbine engines</a> </p> <a href="https://publications.waset.org/abstracts/50082/analysis-of-the-operating-load-of-gas-bearings-in-the-gas-generator-of-the-turbine-engine-during-a-deceleration-to-dash-maneuver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Development of a Tilt-Rotor Aircraft Model Using System Identification Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferdinando%20Montemari">Ferdinando Montemari</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Vitale"> Antonio Vitale</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicola%20Genito"> Nicola Genito</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Cuciniello"> Giovanni Cuciniello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flapping%20dynamics" title="flapping dynamics">flapping dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20dynamics" title=" flight dynamics"> flight dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt-rotor%20modeling%20and%20simulation" title=" tilt-rotor modeling and simulation"> tilt-rotor modeling and simulation</a> </p> <a href="https://publications.waset.org/abstracts/78487/development-of-a-tilt-rotor-aircraft-model-using-system-identification-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Defne%20Uz">Defne Uz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20analysis" title="fatigue analysis">fatigue analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20horizontal%20tail" title=" helicopter horizontal tail"> helicopter horizontal tail</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20prediction" title=" life prediction"> life prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a> </p> <a href="https://publications.waset.org/abstracts/109457/fatigue-analysis-and-life-estimation-of-the-helicopter-horizontal-tail-under-cyclic-loading-by-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Trajectory Tracking Control for Quadrotor Helicopter by Controlled Lagrangian Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ce%20Liu">Ce Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Huo"> Wei Huo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear trajectory tracking controller for quadrotor helicopter based on controlled Lagrangian (CL) method is proposed in this paper. A Lagrangian system with virtual angles as generated coordinates rather than Euler angles is developed. Based on the model, the matching conditions presented by nonlinear partial differential equations are simplified and explicitly solved. Smooth tracking control laws and the range of control parameters are deduced based on the controlled energy of closed-loop system. Besides, a constraint condition for reference accelerations is deduced to identify the trackable reference trajectories by the proposed controller and to ensure the stability of the closed-loop system. The proposed method in this paper does not rely on the division of the quadrotor system, and the design of the control torques does not depend on the thrust as in backstepping or hierarchical control method. Simulations for a quadrotor model demonstrate the feasibility and efficiency of the theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quadrotor" title="quadrotor">quadrotor</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking%20control" title=" trajectory tracking control"> trajectory tracking control</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20lagrangians" title=" controlled lagrangians"> controlled lagrangians</a>, <a href="https://publications.waset.org/abstracts/search?q=underactuated%20system" title=" underactuated system"> underactuated system</a> </p> <a href="https://publications.waset.org/abstracts/136555/trajectory-tracking-control-for-quadrotor-helicopter-by-controlled-lagrangian-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Daniel%20Giraldo%20Arias">Jose Daniel Giraldo Arias</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Rojas%20Gomez"> Camilo Rojas Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Villegas%20Delgado"> David Villegas Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Gullermo%20Idarraga%20Alarcon"> Gullermo Idarraga Alarcon</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Meza%20Meza"> Juan Meza Meza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20engineering" title="reverse engineering">reverse engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich-structured%20composite%20parts" title=" sandwich-structured composite parts"> sandwich-structured composite parts</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a> </p> <a href="https://publications.waset.org/abstracts/55501/reverse-engineering-of-a-secondary-structure-of-a-helicopter-a-study-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Numerical Investigations on Dynamic Stall of a Pitching-Plunging Helicopter Blade Airfoil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xie%20Kai">Xie Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Laith%20K.%20Abbas"> Laith K. Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Dongyang"> Chen Dongyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Fufeng"> Yang Fufeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Xiaoting"> Rui Xiaoting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of plunging motion on the pitch oscillating NACA0012 airfoil is investigated using computational fluid dynamics (CFD). A simulation model based on overset grid technology and <em>k - ω</em> shear stress transport (SST) turbulence model is established, and the numerical simulation results are compared with available experimental data and other simulations. Two cases of phase angle <em>φ = 0, μ </em>which represents the phase difference between the pitching and plunging motions of an airfoil are performed. Airfoil vortex generation, moving, and shedding are discussed in detail. Good agreements have been achieved with the available literature. The upward plunging motion made the equivalent angle of attack less than the actual one during pitching analysis. It is observed that the formation of the stall vortex is suppressed, resulting in a decrease in the lift coefficient and a delay of the stall angle. However, the downward plunging motion made the equivalent angle of attack higher the actual one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stall" title="dynamic stall">dynamic stall</a>, <a href="https://publications.waset.org/abstracts/search?q=pitching-plunging" title=" pitching-plunging"> pitching-plunging</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20blade%20rotor" title=" helicopter blade rotor"> helicopter blade rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=airfoil" title=" airfoil"> airfoil</a> </p> <a href="https://publications.waset.org/abstracts/75693/numerical-investigations-on-dynamic-stall-of-a-pitching-plunging-helicopter-blade-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> An Analytical Method for Maintenance Cost Estimating Relationships of Helicopters Using Linear Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meesun%20Sun">Meesun Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongmin%20Kim"> Yongmin Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimating maintenance cost is crucial in defense management because it affects military budgets and availability of equipment. When it comes to estimating maintenance cost of the deployed equipment, time series forecasting can be applied with the actual historical cost data. It is more difficult issue to estimate maintenance cost of new equipment for which the actual costs are not provided. In this underlying context, this study proposes an analytical method for maintenance cost estimating relationships (CERs) development of helicopters using linear programming. The CERs can be applied to a new helicopter because they use non-cost independent variables such as the number of engines, the empty weight and so on. In the Republic of Korea, the maintenance cost of new equipment has been usually estimated by reflecting maintenance cost to unit price ratio of the legacy equipment. This study confirms that the CERs perform well for the 10 types of airmobile helicopters in terms of mean absolute percentage error by applying leave-one-out cross-validation. The suggested method is very useful to estimate the maintenance cost of new equipment and can help in the affordability assessment of acquisition program portfolios for total life cycle systems management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=affordability%20analysis" title="affordability analysis">affordability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20estimating%20relationship" title=" cost estimating relationship"> cost estimating relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter" title=" helicopter"> helicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20cost" title=" maintenance cost"> maintenance cost</a> </p> <a href="https://publications.waset.org/abstracts/121012/an-analytical-method-for-maintenance-cost-estimating-relationships-of-helicopters-using-linear-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Design and Tooth Contact Analysis of Face Gear Drive with Modified Tooth Surface in Helicopter Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kawasaki">Kazumasa Kawasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Isamu%20Tsuji"> Isamu Tsuji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Gunbara"> Hiroshi Gunbara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A face gear drive is actually composed of a spur or helical pinion that is in mesh with a face gear and transfers power and motion between intersecting or skew axes. Due to the peculiarity of the face gear drive in shunt and confluence drive, it shows potential advantages in the application in the helicopter transmission. The advantages of such applications are the possibility of the split of the torque that appears to be significant where a pinion drives two face gears to provide an accurate division of power and motion. This mechanism greatly reduces the weight and cost compared to conventional design. Therefore, this has been led to revived interest and the face gear drive has been utilized in substitution for bevel and hypoid gears in limited cases. The face gear drive with a spur or a helical pinion is newly designed in order to determine an effective meshing area under the design parameters and specific design dimensions. The face gear has two unique dimensions which control the face width of the tooth, and the outside and inside diameters of the face gear. On the other hand, it is necessary to modify the tooth surfaces of face gear drive in order to avoid the influences of alignment errors on the tooth contact patterns in practical use. In this case, the pinion tooth surfaces are usually modified in the conventional method. However, it is hard to control the tooth contact pattern intentionally and adjust the position of the pinion axis in meshing of the gear pair. Therefore, a method of the modification of the tooth surfaces of the face gear is proposed. Moreover, based on tooth contact analysis, the tooth contact pattern and transmission errors of the designed face gear drive are analyzed, and the influences of alignment errors on the tooth contact patterns and transmission errors are investigated. These results showed that the tooth contact patterns and transmission errors were controllable and the face gear drive which is insensitive to alignment errors can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alignment%20error" title="alignment error">alignment error</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20gear" title=" face gear"> face gear</a>, <a href="https://publications.waset.org/abstracts/search?q=gear%20design" title=" gear design"> gear design</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20transmission" title=" helicopter transmission"> helicopter transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20contact%20analysis" title=" tooth contact analysis"> tooth contact analysis</a> </p> <a href="https://publications.waset.org/abstracts/52629/design-and-tooth-contact-analysis-of-face-gear-drive-with-modified-tooth-surface-in-helicopter-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Comparative Analysis of Characterologic Features of Cadets with High Psychomotor Skills Who Study in Polish Air Force Academy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Skrzy%C5%84ska">Justyna Skrzyńska</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzis%C5%82aw%20Kobos"> Zdzisław Kobos</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Wochy%C5%84ski"> Zbigniew Wochyński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of characterologic type is an essential element which decides about the proper task performance in the Air Forces. The aim of the research was to specify the percentage distribution of characterologic features by cadets studying particular courses in Polish Air Force Academy with the use of questionnaire. 34 first-year cadets chosen by lot and disunited into aircrafts pilots (N-10), helicopter pilots (N-13) and navigators(N-11) participated in the research. All of the questioned have had their psychomotor education examined in Military Aviation Medicine Institute in Warsaw, Poland. Moreover all of them are characterised by very good fitness. In the research, an anonymous poll(based on Myers-Briggs Type Indicator) appraising cadets’ characterologic type has been used. Cadets were provided with the same accommodation and nutrition. The findings have shown that percentage distribution was diversified, however it could be distinctly observed that most of future helicopter pilots (69%) are introverts whereas the majority of aircrafts pilots (70%) and navigators (100%) are extraverts. Moreover, it was also observed that 70% of cadets studying aircrafts pilotage run regular lifestyle and have judging skill according to Myers-Briggs Type Indicator. In future navigators group, 73% of students do not have this characteristic. The research has shown that cadets studying pilotage are more likely to demonstrate the characteristics which are essential for a performance of the important tasks in pilots environment than the cadets studying navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pilot" title="pilot">pilot</a>, <a href="https://publications.waset.org/abstracts/search?q=Myers-Briggs%20Type%20indicator" title=" Myers-Briggs Type indicator"> Myers-Briggs Type indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire%20research" title=" questionnaire research"> questionnaire research</a>, <a href="https://publications.waset.org/abstracts/search?q=cadets" title=" cadets"> cadets</a>, <a href="https://publications.waset.org/abstracts/search?q=psychomotor%20education" title=" psychomotor education"> psychomotor education</a> </p> <a href="https://publications.waset.org/abstracts/25318/comparative-analysis-of-characterologic-features-of-cadets-with-high-psychomotor-skills-who-study-in-polish-air-force-academy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Designing Electronic Kanban in Assembly Line Tailboom at XYZ Corp to Reducing Lead Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadhifah%20A.%20Nugraha">Nadhifah A. Nugraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dida%20D.%20Damayanti"> Dida D. Damayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Widia%20Juliani"> Widia Juliani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airplanes manufacturing is growing along with the increasing demand from consumers. The helicopter's tail called Tailboom is a product of the helicopter division at XYZ Corp, where the Tailboom assembly line is a pull system. Based on observations of existing conditions that occur at XYZ Corp, production is still unable to meet the demands of consumers; lead time occurs greater than the plan agreed upon by the consumers. In the assembly process, each work station experiences a lack of parts and components needed to assemble components. This happens because of the delay in getting the required part information, and there is no warning about the availability of parts needed, it makes some parts unavailable in assembly warehouse. The lack of parts and components from the previous work station causes the assembly process to stop, and the assembly line also stops at the next station. In its completion, the production time was late and not on the schedule. In resolving these problems, the controlling process is needed, which is controlling the assembly line to get all components and subassembly in the right amount and at the right time. This study applies one of Just In Time tools, namely Kanban and automation, should be added as efficiently and effectively communication line becomes electronic Kanban. The problem can be solved by reducing non-value added time, such as waiting time and idle time. The proposed results of controlling the assembly line of Tailboom result in a smooth assembly line without waiting, reduced lead time, and achieving production time according to the schedule agreed with the consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kanban" title="kanban">kanban</a>, <a href="https://publications.waset.org/abstracts/search?q=e-Kanban" title=" e-Kanban"> e-Kanban</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20time" title=" lead time"> lead time</a>, <a href="https://publications.waset.org/abstracts/search?q=pull%20system" title=" pull system"> pull system</a> </p> <a href="https://publications.waset.org/abstracts/114704/designing-electronic-kanban-in-assembly-line-tailboom-at-xyz-corp-to-reducing-lead-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> The Effect of Perceived Parental Overprotection on Morality in College Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunghyun%20Cho">Sunghyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Ah%20Lee"> Seung-Ah Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parental overprotection is known to have negative effects such as low independence, immature emotion regulation, and immoral behaviors on children’s development. This study investigated the effects of parental overprotection on Korean college students’ moral behaviors. In order to test the hypothesis that overprotected participants are more likely to show immoral behaviors in moral dilemma situations, we measured perceived parental overprotection using Korean-Parental Overprotection Scale (K-POS), Helicopter Parenting Behaviors, and Helicopter Parenting Instrument (HPI) for 200 college students. Participants’ level of morality was assessed using two types of online experimental tasks consisting of a word-searching puzzle and a visual perception task. Based on the level of perceived parental overprotection, 14 participants with high total scores in overparenting scales and 14 participants with average total scores in the scales were assigned to a high perceived overparenting student group, and control group, respectively. Results revealed that the high perceived overparenting group submitted significantly more untruthful answers compared to the control group in the visual perception task (t = 2.72, p < .05). However, there was no significant difference in immorality in the word-searching puzzle(t = 1.30, p > .05), yielding inconsistent results for the relationship between. These inconsistent results of two tasks assessing morality may be because submitting untruthful answers in the word-searching puzzle initiated a larger sense of immorality compared to the visual perception task. Thus, even the perceived overparenting participants seemingly tended not to submit immoral answers. Further implications and limitations of the study are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=college%20students" title="college students">college students</a>, <a href="https://publications.waset.org/abstracts/search?q=morality" title=" morality"> morality</a>, <a href="https://publications.waset.org/abstracts/search?q=overparenting" title=" overparenting"> overparenting</a>, <a href="https://publications.waset.org/abstracts/search?q=parental%20overprotection" title=" parental overprotection"> parental overprotection</a> </p> <a href="https://publications.waset.org/abstracts/97138/the-effect-of-perceived-parental-overprotection-on-morality-in-college-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Interoperability of 505th Search and Rescue Group and the 205th Tactical Helicopter Wing of the Philippine Air Force in Search and Rescue Operations: An Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20C.%20Igama">Ryan C. Igama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The complexity of disaster risk reduction management paved the way for various innovations and approaches to mitigate the loss of lives and casualties during disaster-related situations. The efficiency of doing response operations during disasters relies on the timely and organized deployment of search, rescue and retrieval teams. Indeed, the assistance provided by the search, rescue, and retrieval teams during disaster operations is a critical service needed to further minimize the loss of lives and casualties. The Armed Forces of the Philippines was mandated to provide humanitarian assistance and disaster relief operations during calamities and disasters. Thus, this study “Interoperability of 505TH Search and Rescue Group and the 205TH Tactical Helicopter Wing of the Philippine Air Force in Search and Rescue Operations: An Assessment” was intended to provide substantial information to further strengthen and promote the capabilities of search and rescue operations in the Philippines. Further, this study also aims to assess the interoperability of the 505th Search and Rescue Group of the Philippine Air Force and the 205th Tactical Helicopter Wing Philippine Air Force. This study was undertaken covering the component units in the Philippine Air Force of the Armed Forces of the Philippines – specifically the 505th SRG and the 205th THW as the involved units who also acted as the respondents of the study. The qualitative approach was the mechanism utilized in the form of focused group discussions, key informant interviews, and documentary analysis as primary means to obtain the needed data for the study. Essentially, this study was geared towards the evaluation of the effectiveness of the interoperability of the two (2) involved PAF units during search and rescue operations. Further, it also delved into the identification of the impacts, gaps, and challenges confronted regarding interoperability as to training, equipment, and coordination mechanism vis-à-vis the needed measures for improvement, respectively. The result of the study regarding the interoperability of the two (2) PAF units during search and rescue operations showed that there was a duplication in terms of functions or tasks in HADR activities, specifically during the conduct of air rescue operations in situations like calamities. In addition, it was revealed that there was a lack of equipment and training for the personnel involved in search and rescue operations which is a vital element during calamity response activities. Based on the findings of the study, it was recommended that a strategic planning workshop/activity must be conducted regarding the duties and responsibilities of the personnel involved in the search and rescue operations to address the command and control and interoperability issues of these units. Additionally, the conduct of intensive HADR-related training for the personnel involved in search and rescue operations of the two (2) PAF Units must also be conducted so they can be more proficient in their skills and sustainably increase their knowledge of search and rescue scenarios, including the capabilities of the respective units. Lastly, the updating of existing doctrines or policies must be undertaken to adapt advancement to the evolving situations in search and rescue operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interoperability" title="interoperability">interoperability</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20and%20rescue%20capability" title=" search and rescue capability"> search and rescue capability</a>, <a href="https://publications.waset.org/abstracts/search?q=humanitarian%20assistance" title=" humanitarian assistance"> humanitarian assistance</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20response" title=" disaster response"> disaster response</a> </p> <a href="https://publications.waset.org/abstracts/157108/interoperability-of-505th-search-and-rescue-group-and-the-205th-tactical-helicopter-wing-of-the-philippine-air-force-in-search-and-rescue-operations-an-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz">Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Siadkowska"> Ksenia Siadkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba"> Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Scislowski"> Karol Scislowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=main%20rotor" title="main rotor">main rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=rotorcraft%20aerodynamics" title=" rotorcraft aerodynamics"> rotorcraft aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20helicopter" title=" unmanned helicopter"> unmanned helicopter</a> </p> <a href="https://publications.waset.org/abstracts/106637/designing-and-simulation-of-the-rotor-and-hub-of-the-unmanned-helicopter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bench-top%20helicopter&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bench-top%20helicopter&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>