CINXE.COM

Search results for: H2S selectivity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: H2S selectivity</title> <meta name="description" content="Search results for: H2S selectivity"> <meta name="keywords" content="H2S selectivity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="H2S selectivity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="H2S selectivity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 436</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: H2S selectivity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Experimental Study - Inorganic Membranes for Air Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20O.%20Orimoloye">Adesola O. Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20N.%20Kajama"> Mohammed N. Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas permeation of Oxygen [O2] and Nitrogen [N2] were investigated at room temperature using 15 and 6000nm pore diameter tubular commercial alumina ceramic membranes with pressure values ranging 1.00 to 2.50 bar. The flow rates of up to 2.59 and 2.77 l/min were achieved for O2 and N2 respectively. The ratio of O2/N2 flow rates were used to compute the O2/N2 selectivity. The experimental O2/N2 selectivity obtained for 15 nm was 1.05 while the 6000 nm indicated 0.95. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title="gas separation">gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/26529/experimental-study-inorganic-membranes-for-air-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Membranes for Direct Lithium Extraction (DLE)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Razmjou">Amir Razmjou</a>, <a href="https://publications.waset.org/abstracts/search?q=Elika%20Karbassi%20Yazdi"> Elika Karbassi Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several direct lithium extraction (DLE) technologies have been developed for Li extraction from different brines. Although laboratory studies showed that they can technically recover Li to 90%, challenges still remain in developing a sustainable process that can serve as a foundation for the lithium dependent low-carbon economy. There is a continuing quest for DLE technologies that do not need extensive pre-treatments, fewer materials, and have simplified extraction processes with high Li selectivity. Here, an overview of DLE technologies will be provided with an emphasis on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li ion selectivity. We have used a variety of building blocks such as nano-clay, organic frameworks, Graphene/oxide, MXene, etc., to fabricate the membranes. Molecular dynamic simulation (MD) and density functional theory (DFT) were used to reveal new mechanisms by which high Li selectivity was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20recovery" title="lithium recovery">lithium recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20selectivity" title=" lithium selectivity"> lithium selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonization" title=" decarbonization"> decarbonization</a> </p> <a href="https://publications.waset.org/abstracts/149229/membranes-for-direct-lithium-extraction-dle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Cracking of Tar Analogue in N₂ Carrier Gas Using Non-Thermal Plasma Dielectric Barrier Discharge Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Saleem">Faisal Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Kui%20Zhang"> Kui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Harvey"> Adam Harvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The role of N₂ carrier gas towards the conversion of tar analogue was studied in a non-thermal plasma dielectric barrier discharge (DBD) reactor. The important parameters such as power (5-40W), residence time (1.41-4.23 s), concentration (20-82 g/Nm³), and temperature (Ambient-400°C) were explored. The present study demonstrated that plasma power and residence time played a key role in the decomposition of toluene, and almost complete removal of toluene was observed at 40w and 4.23 s. H₂ is obtained as a major gaseous product with a maximum selectivity of 40% along with some lighter hydrocarbons (5.5%). The removal efficiency of toluene slightly decreases with increasing the concentration of toluene from 20 g/Nm³ to 82 g/Nm³. The solid residue formation takes place inside the plasma reactor. The selectivity of LHC (lower hydrocarbons) increased up to 15% by increasing the temperature to 400°C. Introducing H₂ to the gas at elevated temperature opens up new reaction routes to raise the selectivity to lower hydrocarbons. The selectivity to methane reaches to 42% using 35% H₂ at 400°C and total selectivity of LHC increases to 57%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20gasification%20tar" title="biomass gasification tar">biomass gasification tar</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge" title=" dielectric barrier discharge"> dielectric barrier discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/94699/cracking-of-tar-analogue-in-n2-carrier-gas-using-non-thermal-plasma-dielectric-barrier-discharge-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Effects of Residence Time on Selective Absorption of Hydrogen Suphide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dara%20Satyadileep">Dara Satyadileep</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20S.%20Berrouk"> Abdallah S. Berrouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective absorption of Hydrogen Sulphide (H2S) using methyldiethanol amine (MDEA) has become a point of interest as means of minimizing capital and operating costs of gas sweetening plants. This paper discusses the prominence of optimum design of column internals to best achieve H2S selectivity using MDEA. To this end, a kinetics-based process simulation model has been developed for a commercial gas sweetening unit. Trends of sweet gas H2S & CO2 contents as function of fraction active area (and hence residence time) have been explained through analysis of interdependent heat and mass transfer phenomena. Guidelines for column internals design in order to achieve desired degree of H2S selectivity are provided. Also the effectiveness of various operating conditions in achieving H2S selectivity for an industrial absorber with fixed internals is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sweetening" title="gas sweetening">gas sweetening</a>, <a href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity" title=" H2S selectivity"> H2S selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=methyldiethanol%20amine" title=" methyldiethanol amine"> methyldiethanol amine</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/21361/effects-of-residence-time-on-selective-absorption-of-hydrogen-suphide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Enhancement of CO2 Capture by Using Cu-Nano-Zeolite Synthesized</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pham-Thi%20Huong">Pham-Thi Huong</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitae%20Kim"> Jitae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study synthesized Cu-nano-zeolite was evaluated for its potential use in CO2 capture. The specific surface area of Cu-nano zeolite was measured as 869.32 m2/g with a pore size of 3.86 nm. The adsorption capacity of CO2 by Cu-nano zeolite was decreased with increasing temperature. The identified adsorption capacity of CO2 by Cu-nano zeolite was 7.16 mmol/g at a temperature of 20 oC and at pressure of 1 atm. The adoption selectivity of CO2 over N2 strongly depend on the temperature and the highest selectivity by Cu-nano zeolite was 50.71 at 20 oC. From analysis of regeneration characteristics of CO2 loaded adsorbent, the percentage removal of CO2 was maintained at more than 78.2 % even after 10 cycles of adsorption-desorption. Based on these result, the Cu-nano zeolite can be used as an effective and economical adsorbent for CO2 capture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title="CO2 capture">CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu-nano%20zeolite" title=" Cu-nano zeolite"> Cu-nano zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration." title=" regeneration. "> regeneration. </a> </p> <a href="https://publications.waset.org/abstracts/44457/enhancement-of-co2-capture-by-using-cu-nano-zeolite-synthesized" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Kinetic Study of 1-Butene Isomerization over Hydrotalcite Catalyst </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirada%20Sripinun">Sirada Sripinun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work studied the isomerization of 1-butene over hydrotalcite catalyst. The experiments were conducted at various gas hourly space velocity (GHSV), reaction temperature, and feed concentration. No catalyst deactivation was observed over the reaction time of 16 hours. Two major reaction products were trans-2-butene and cis-2-butene. The reaction temperature played an important role on the reaction selectivity. At high operating temperatures, the selectivity of trans-2-butene was higher than the selectivity of cis-2-butene while it was opposite at a lower reaction temperature. In the range of operating conditions, the maximum conversion of 1-butene was found at 74% when T = 673 K and GHSV = 4 m3/h/kg-cat with trans- and cis-2-butene selectivities of 54% and 46% respectively. Finally, the kinetic parameters of the reaction were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrotalcite" title="hydrotalcite">hydrotalcite</a>, <a href="https://publications.waset.org/abstracts/search?q=isomerization" title=" isomerization"> isomerization</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=1-butene" title=" 1-butene"> 1-butene</a> </p> <a href="https://publications.waset.org/abstracts/25496/kinetic-study-of-1-butene-isomerization-over-hydrotalcite-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou">Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N<sub>2</sub> adsorption/desorption, H<sub>2</sub>-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al<sub>2</sub>O<sub>3</sub> can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al<sub>2</sub>O<sub>3</sub> were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid" title="acetic acid">acetic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20condition" title=" operating condition"> operating condition</a>, <a href="https://publications.waset.org/abstracts/search?q=PtSn" title=" PtSn"> PtSn</a> </p> <a href="https://publications.waset.org/abstracts/46773/the-catalytic-properties-of-ptsnal2o3-for-acetic-acid-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> The Influence of Feedgas Ratio on the Ethene Hydroformylation using Rh-Co Bimetallic Catalyst Supported by Reduced Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianli%20Chang">Jianli Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusheng%20Zhang"> Yusheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yali%20Yao"> Yali Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Diane%20Hildebrandt"> Diane Hildebrandt</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinying%20Liu"> Xinying Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of feed-gas ratio on the ethene hydroformylation over an Rh-Co bimetallic catalyst supported by reduced graphene oxide (RGO) has been investigated in a tubular fixed bed reactor. Argon was used as balance gas when the feed-gas ratio was changed, which can keep the partial pressure of the other two kinds of gas constant while the ratio of one component in feed-gas was changed. First, the effect of single-component gas ratio on the performance of ethene hydroformylation was studied one by one (H₂, C₂H₄ and CO). Then an optimized ratio was found to obtain a high selectivity to C₃ oxygenates. The results showed that: (1) 0.5%Rh-20%Co/RGO is a promising heterogeneous catalyst for ethene hydroformylation. (2) H₂ and CO have a more significant influence than C₂H₄ on selectivity to oxygenates. (3) A lower H₂ ratio and a higher CO ratio in feed-gas can lead to a higher selectivity to oxygenates. (4) The highest selectivity to oxygenates, 61.70%, was obtained at the feed-gas ratio CO: C₂H₄: H₂ = 4: 2: 1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethene%20hydroformylation" title="ethene hydroformylation">ethene hydroformylation</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodium%20cobalt%20bimetallic%20catalyst" title=" rhodium cobalt bimetallic catalyst"> rhodium cobalt bimetallic catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20effect%20of%20feed-gas%20ratio" title=" the effect of feed-gas ratio"> the effect of feed-gas ratio</a> </p> <a href="https://publications.waset.org/abstracts/146368/the-influence-of-feedgas-ratio-on-the-ethene-hydroformylation-using-rh-co-bimetallic-catalyst-supported-by-reduced-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> The Effect of Arabic Gum on Polyethersulfone Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Manawi">Yehia Manawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Kochkodan"> Viktor Kochkodan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muataz%20Hussien"> Muataz Hussien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of adding Arabic Gum (AG) to the dope solutions of polyethersulfone (PES) was studied. The aim of adding AG is to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. several AG loading (0.1-3.0 wt.%) in PES/ N-Methyl-2-pyrrolidone (NMP) casting solutions were prepared to fabricate PES membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PES/AG membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of oil solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG to PES membranes was found to increase the permeate flux and porosity as well as reducing surface roughness and the contact angle of the membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifouling" title="antifouling">antifouling</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20gum" title=" Arabic gum"> Arabic gum</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethersulfone%20membrane" title=" polyethersulfone membrane"> polyethersulfone membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/69493/the-effect-of-arabic-gum-on-polyethersulfone-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> The Use of Arabic Gum Mixed with Carbon Nanotubes Functionalized with Dodecylamine to Fabricate Superior Ultrafiltration Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Manawi">Yehia Manawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Kochkodan"> Viktor Kochkodan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muataz%20Hussien"> Muataz Hussien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of adding Arabic Gum (AG) and carbon nanotubes functionalized with dodecylamine (CNT-DDA) to the casting solutions of polysulfone (PS) was investigated. The aim of adding AG and CNT-DDA was to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. Different CNT-DDA loadings (0.1-3.0 wt.%) in 2 wt.% AG were added to PS/dimethylacetamide (DMAc) casting solutions to prepare PS membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PS/AG/CNT-DDA membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of BSA solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG and CNT-DDA to PS membranes was found to increase the hydrophilicity, porosity and hence the permeate flux of the fabricated membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabic%20gum" title="Arabic gum">Arabic gum</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=polysulfone%20membrane" title=" polysulfone membrane"> polysulfone membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/69708/the-use-of-arabic-gum-mixed-with-carbon-nanotubes-functionalized-with-dodecylamine-to-fabricate-superior-ultrafiltration-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Inorganic Anion Removal from Water Using Natural Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ortuzar">A. Ortuzar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Escondrillas"> I. Escondrillas</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mijangos"> F. Mijangos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a need for new systems that can be attached to drinking water treatment plants and have the required treatment capacity as well as the selectivity regarding components derived from anthropogenic activities. In a context of high volumes of water and low concentration of contaminants, adsorption/interchange processes are appealing since they meet the required features. Iron oxides such as siderite and molysite, which are respectively based on FeCO<sub>3</sub> and FeCl<sub>3</sub>, can be found in nature. In this work, their observed performance, raw or roasted at different temperatures, as adsorbents of some inorganic anions is discussed. Roasted 1:1 FeCO<sub>3</sub>: FeCl<sub>3</sub> mixture was very selective for arsenic and allowed a 100% removal of As from a 10 mg L<sup>-1</sup> As solution. Besides, the 1:1 FeCO<sub>3</sub> and FeCl<sub>3 </sub>mixture roasted at 500 &ordm;C showed good selectivity for, in order of preference, arsenate, bromate, phosphate, fluoride and nitrate anions with distribution coefficients of, respectively, 4200, 2800, 2500 0.4 and 0.03 L g<sup>-1</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title="drinking water">drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20adsorbent%20materials" title=" natural adsorbent materials"> natural adsorbent materials</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/83059/inorganic-anion-removal-from-water-using-natural-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Mapping Protein Selectivity Landscapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niv%20Papo">Niv Papo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing the binding selectivity landscape of interacting proteins is crucial both for elucidating the underlying mechanisms of their interaction and for developing selective inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently comprehensive description of the landscape. Here, we introduce a distinct and efficient strategy for comprehensively mapping the binding landscape of proteins using a combination of experimental multi-target selective library screening and in silico next-generation sequencing analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid protein precursor inhibitor (APPI), to each of four human serine proteases (kallikrein-6, mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy can be used as a platform for the development of a new generation of target-selective probes and therapeutic agents based on selective protein–protein interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title="drug design">drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=directed%20evolution" title=" directed evolution"> directed evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20engineering" title=" protein engineering"> protein engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=protease%20inhibition." title=" protease inhibition."> protease inhibition.</a> </p> <a href="https://publications.waset.org/abstracts/191315/mapping-protein-selectivity-landscapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> The Sustainability of Eco–City Model: Green and Energy Efficiency Technology-Related Framing and Selectivity Issues in Eco–City Projects in Stockholm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20Elias%20Bibri">Simon Elias Bibri</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Minavere%20Bardici"> Vera Minavere Bardici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we investigate framing, discursive and material selectivity as important issues that need to be addressed in the planning of eco–city as a model of sustainable urban form. Focusing on the Stockholm region in Sweden, we discuss issues of the contribution of eco–city model to sustainability and examine key themes associated with the construction of the discourse on eco–city projects, namely the integration of environmental, economic, and social sustainability as well as design and technology as solutions in urban projects documents pertaining specifically to Hammarby Sjöstad and Stockholm Royal Seaport. The article is divided into four sections. First, we elucidate the concept and problem of framing and discursive and material selectivity. Second, we briefly discuss the discourse of sustainability, sustainable urban forms, and eco–city, pointing out some key issues that need to be addressed in sustainable urban planning. In the third and main section of the article, we investigate plans and projects for sustainable urban development, focusing on framing and discursive and material selectivity issues in the construction of the discourse on eco–city projects in Stockholm and discussing the findings in terms of the integration of sustainability dimensions, the economic benefits of and the negative environmental effects of energy efficiency and green technology, the shaping influence of cultural frames, the links of eco–city to macro–processes of regulation, the technological orientation of eco–city projects and the associated selectivity aspects. The article concludes with a call for further research for the possibilities for a more environmentally sound and holistic approach to sustainable urban forms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=framing" title="framing">framing</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=eco%E2%80%93city" title=" eco–city"> eco–city</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20form" title=" sustainable urban form"> sustainable urban form</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammarby%20Sj%C3%B6stad" title=" Hammarby Sjöstad"> Hammarby Sjöstad</a>, <a href="https://publications.waset.org/abstracts/search?q=Stockholm%20Royal%20Seaport" title=" Stockholm Royal Seaport"> Stockholm Royal Seaport</a> </p> <a href="https://publications.waset.org/abstracts/30637/the-sustainability-of-eco-city-model-green-and-energy-efficiency-technology-related-framing-and-selectivity-issues-in-eco-city-projects-in-stockholm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Protection Plan of Medium Voltage Distribution Network in Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chebbi">S. Chebbi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Meddeb"> A. Meddeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution networks are often exposed to harmful incidents which can halt the electricity supply of the customer. In this context, we studied a real case of a critical zone of the Tunisian network which is currently characterized by the dysfunction of its plan of protection. In this paper, we were interested in the harmonization of the protection plan settings in order to ensure a perfect selectivity and a better continuity of service on the whole of the network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20network%20Gabes-Tunisia" title="distribution network Gabes-Tunisia">distribution network Gabes-Tunisia</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity%20of%20service" title=" continuity of service"> continuity of service</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20plan%20settings" title=" protection plan settings"> protection plan settings</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/15428/protection-plan-of-medium-voltage-distribution-network-in-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Unsaturated Sites Constructed Grafted Polymer Nanoparticles to Promote CO₂ Separation in Mixed-Matrix Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boyu%20Li">Boyu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixed matrix membranes (MMMs), as a separation technology, can improve CO₂ recycling efficiency and reduce the environmental impacts associated with huge emissions. Nevertheless, many challenges must be overcome to design excellent selectivity and permeability performance MMMs. Herein, this work demonstrates the design of nano-scale GNPs (Cu-BDC@PEG) with strong compatibility and high free friction volume (FFV) is an effective way to construct non-interfacial voids MMMs with a desirable combination of selectivity and permeability. Notably, the FFV boosted thanks to the chain length and shape of the GNPs. With this, the permeability and selectivity of Cu-BDC@PEG/PVDF MMMs had also been significantly improved. As such, compatible Cu-BDC@PEG proves very efficient for resolving challenges of MMMs with poor compatibility on the basis of the interfacial defect. Poly (Ethylene Glycol) (PEG) with oxygen groups can be finely coordinated with Cu-MOFs to disperse Cu-BDC@PEG homogenously and form hydrogen bonds with matrix to achieve continuous phase. The resultant MMMs exhibited a simultaneous enhancement of gas permeability (853.1 Barrer) and ideal CO₂/N selectivity (41.7), which has surpassed Robenson's upper bound. Moreover, Cu-BDC@PEG/PVDF has a high-temperature resistance and a long time sustainably. This attractive separation performance of Cu-BDC@PEG/PVDF offered an exciting platform for the development of composite membranes for sustainable CO₂ separations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20framework" title="metal organic framework">metal organic framework</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20separation" title=" CO₂ separation"> CO₂ separation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membrane" title=" mixed matrix membrane"> mixed matrix membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a> </p> <a href="https://publications.waset.org/abstracts/165561/unsaturated-sites-constructed-grafted-polymer-nanoparticles-to-promote-co2-separation-in-mixed-matrix-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Selective Electrooxidation of Ammonia to Nitrogen Gas on the Crystalline Cu₂O/Ni Foam Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Han%20Tsai">Ming-Han Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihpin%20Huang"> Chihpin Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrochemical oxidation of ammonia (AEO) is one of the highly efficient and environmentally friendly methods for NH₃ removal from wastewater. Recently, researchers have focused on non-Pt-based electrodes (n-PtE) for AEO, aiming to evaluate the feasibility of these low-cost electrodes for future practical applications. However, for most n-PtE, NH₃ is oxidized mainly to nitrate ion NO₃⁻ instead of the desired nitrogen gas N₂, which requires further treatment to remove excess NO₃⁻. Therefore, developing a high N₂ conversion electrode for AEO is highly urgent. In this study, we fabricated various Cu₂O/Ni foam (NF) electrodes by electrodeposition of Cu on NF. The Cu plating bath contained different additives, including cetyltrimethylammonium chloride (CTAC), sodium dodecyl sulfate (SDS), polyamide acid (PAA), and sodium alginate (SA). All the prepared electrodes were physically and electrochemically investigated. Batch AEO experiments were conducted for 3 h to clarify the relation between electrode structures and N₂ selectivity. The SEM and XRD results showed that crystalline platelets-like Cu₂O, particles-like Cu₂O, cracks-like Cu₂O, and sheets-like Cu₂O were formed in the Cu plating bath by adding CTAC, SDS, PAA, and SA, respectively. For electrochemical analysis, all Cu₂O/NF electrodes revealed a higher current density (2.5-3.2 mA/cm²) compared to that without additives modification (1.6 mA/cm²). At a constant applied potential of 0.95 V (vs Hg/HgO), the Cu₂O sheet (51%) showed the highest N₂ selectivity, followed by Cu₂O cracks (38%), Cu₂O particles (30%), and Cu₂O platelet (18%) after 3 h reaction. Our result demonstrated that the selectivity of N₂ during AEO was surface structural dependent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia" title="ammonia">ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=electrooxidation" title=" electrooxidation"> electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cuprous%20oxide" title=" cuprous oxide"> cuprous oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20foam" title=" Ni foam"> Ni foam</a> </p> <a href="https://publications.waset.org/abstracts/155711/selective-electrooxidation-of-ammonia-to-nitrogen-gas-on-the-crystalline-cu2oni-foam-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Synthesis of Green Fuel Additive from Waste Bio-Glycerol </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ala%E2%80%99a%20H.%20Al-Muhtaseb">Ala’a H. Al-Muhtaseb</a>, <a href="https://publications.waset.org/abstracts/search?q=Farrukh%20Jamil"> Farrukh Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamya%20Al-Haj"> Lamya Al-Haj</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohab%20Al-Hinai"> Mohab Al-Hinai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-acetone" title="bio-acetone">bio-acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-glycerol" title=" bio-glycerol"> bio-glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylation" title=" acetylation"> acetylation</a>, <a href="https://publications.waset.org/abstracts/search?q=solketal" title=" solketal"> solketal</a> </p> <a href="https://publications.waset.org/abstracts/49053/synthesis-of-green-fuel-additive-from-waste-bio-glycerol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Synthesis of Oxygenated Fuel Additive from Bio-Glycerol </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farrukh%20Jamil">Farrukh Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ala%27a%20H.%20Al-Muhtaseb"> Ala&#039;a H. Al-Muhtaseb</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamya%20Al-Haj"> Lamya Al-Haj</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohab%20A.%20Al-Hinai"> Mohab A. Al-Hinai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-glycerol" title="bio-glycerol">bio-glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20additive" title=" green additive"> green additive</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/65166/synthesis-of-oxygenated-fuel-additive-from-bio-glycerol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> The Performance of PtSn/Al₂O₃ with Cylindrical Particles for Acetic Acid Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou">Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina supported PtSn catalysts with cylindrical particles were prepared and characterized by using low temperature N2 adsorption/desorption and X-ray diffraction. Low temperature N2 adsorption/desorption demonstrate that the tableting changed the texture properties of catalysts. XRD pattern indicate that the crystal structure of supports had no change after reaction. The performances over particles of PtSn/Al2O3 catalysts were investigated with regards to reaction temperature, pressure, and H2/AcOH mole ratio. After tableting, the conversion of acetic acid and selectivity of ethanol and acetyl acetate decreased. High reaction temperature and pressure can improve conversion of acetic acid. H2/AcOH mole ratio of 9.36 showed the best performance on acetic acid hydrogenation. High pressure had benefits for the selectivity of ethanol and other two parameters had no obvious effect on selectivity. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20hydrogenation" title="acetic acid hydrogenation">acetic acid hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20particles" title=" cylindrical particles"> cylindrical particles</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=PtSn" title=" PtSn"> PtSn</a> </p> <a href="https://publications.waset.org/abstracts/49368/the-performance-of-ptsnal2o3-with-cylindrical-particles-for-acetic-acid-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Korban%20Oosthuizen">Korban Oosthuizen</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20C.%20Luckay"> Robert C. Luckay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrometallurgy" title="hydrometallurgy">hydrometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title=" lithium-ion batteries"> lithium-ion batteries</a> </p> <a href="https://publications.waset.org/abstracts/178956/selective-solvent-extraction-of-co-from-ni-and-mn-through-outer-sphere-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> The Preparation of High Surface Area Ni/MgAl2O4 Catalysts for Syngas Methanation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingyu%20Zhou">Jingyu Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High surface area MgAl2O4 supported Nickel catalysts with PVA loadings varying from 0% to 15% were prepared by precipitation and impregnation method. The catalysts were characterized by low temperature N2 adsorption/desorption, X-ray diffraction and H2 temperature programmed reduction. Compared with Ni/γ-Al2O3 catalyst, Ni/MgAl2O4 catalysts exhibited higher activity and selectivity in high temperature. Among the catalysts, Ni/MgAl2O4-5P with 5 wt% PVA showed the best performance, and achieved 95% CO conversion and 96% CH4 selectivity at 600°C, 2.0 MPa, and a WHSV of 12,000 mL·g⁻¹.h⁻¹. It also maintained good stability in 50h life test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methanation" title="methanation">methanation</a>, <a href="https://publications.waset.org/abstracts/search?q=MgAl2O4%20support" title=" MgAl2O4 support"> MgAl2O4 support</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA" title=" PVA"> PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20surface%20area" title=" high surface area"> high surface area</a> </p> <a href="https://publications.waset.org/abstracts/60130/the-preparation-of-high-surface-area-nimgal2o4-catalysts-for-syngas-methanation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Fractionation of Biosynthetic Mixture of Gentamicins by Reactive Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Kloetzer">L. Kloetzer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Po%C5%9Ftaru"> M. Poştaru</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Galaction"> A. I. Galaction</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ca%C5%9Fcaval"> D. Caşcaval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gentamicin is an aminoglycoside antibiotic industrially obtained by biosynthesis of Micromonospora purpurea or echinospora, the product being a complex mixture of components with very similar structures. Among them, three exhibit the most important biological activity: gentamicins C1, C1a, C2, and C2a. The separation of gentamicin from the fermentation broths at industrial scale is rather difficult and it does not allow the fractionation of the complex mixture of gentamicins in order to increase the therapeutic activity of the product. The aim of our experiments is to analyze the possibility to selectively separate the less active gentamicin, namely gentamicin C1, from the biosynthetic mixture by reactive extraction with di-(2-ethylhexyl) phosphoric acid (D2EHPA) dissolved in dichloromethane, followed selective re-extraction of the most active gentamicins C1a, C2, and C2a. The experiments on the reactive extraction of gentamicins indicated the possibility to separate selectively the gentamicin C1 from the mixture obtained by biosynthesis. The extraction selectivity is positively influenced by increasing the pH-value of an aqueous solution and by using a D2EHPA concentration in organic phase closer to the value needed for an equimolecular ratio between the extractant and this gentamicin. For quantifying the selectivity of separation, the selectivity factor, calculated as the ratio between the degree of reactive extraction of gentamicin C1 and the overall extraction degree of gentamicins were used. The possibility to remove the gentamicin C1 at an extractant concentration of 10 g l-1 and pH = 8 is presented. In these conditions, it was obtained the maximum value of the selectivity factor of 2.14, which corresponds to the modification of the gentamicin C1 concentration from 31.92% in the biosynthetic mixture to 72% in the extract. The re-extraction of gentamicins C1, C1a, C2, and C2a with sulfuric acid from the extract previously obtained by reactive extraction (mixture A – extract obtained by non-selective reactive extraction; mixture B – extract obtained by selective reactive extraction) allows for separating selectively the most active gentamicins C1a, C2, and C2a. For recovering only the active gentamicins C1a, C2, and C2a, the re-extraction must be carried out at very low acid concentrations, far below those corresponding to the stoichiometry of its chemical reactions with these gentamicins. Therefore, the mixture resulted by re-extraction contained 92.6% gentamicins C1a, C2, and C2a. By bringing together the aqueous solutions obtained by reactive extraction and re-extraction, the overall content of the active gentamicins in the final product becomes 89%, their loss reaching 0.3% related to the initial biosynthetic product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=di-%282-ethylhexyl%29%20phosphoric%20acid" title="di-(2-ethylhexyl) phosphoric acid">di-(2-ethylhexyl) phosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=gentamicin" title=" gentamicin"> gentamicin</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20extraction" title=" reactive extraction"> reactive extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity%20factor" title=" selectivity factor"> selectivity factor</a> </p> <a href="https://publications.waset.org/abstracts/6005/fractionation-of-biosynthetic-mixture-of-gentamicins-by-reactive-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Methanation Catalyst for Low CO Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong-Fang%20Ma">Hong-Fang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Cong-yi%20He"> Cong-yi He</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai-Tao%20Zhang"> Hai-Tao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Yong%20Ying"> Wei-Yong Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding-Ye%20Fang"> Ding-Ye Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Ni-based catalyst supported by γ-Al2O3 was prepared by impregnation method, and the catalyst was used in a low CO and CO2 concentration methanation system. The effect of temperature, pressure and space velocity on the methanation reaction was investigated in an experimental fixed-bed reactor. The methanation reaction was operated at the conditions of 190-240°C, 3000-24000ml•g-1•h-1 and 1.5-3.5MPa. The results show that temperature and space velocity play important role on the reaction. With the increase of reaction temperature the CO and CO2 conversion increase and the selectivity of CH4 increase. And with the increase of the space velocity the conversion of CO and CO2 and the selectivity of CH4 decrease sharply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coke%20oven%20gas" title="coke oven gas">coke oven gas</a>, <a href="https://publications.waset.org/abstracts/search?q=methanntion" title=" methanntion"> methanntion</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed" title=" fixed bed"> fixed bed</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/7667/methanation-catalyst-for-low-co-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Selectivity Mechanism of Cobalt Precipitation by an Imidazole Linker From an Old Battery Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna-Caroline%20Lavergne-Bril">Anna-Caroline Lavergne-Bril</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Fran%C3%A7ois%20Colin"> Jean-François Colin</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Peralta"> David Peralta</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20Maldivi"> Pascale Maldivi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cobalt is a critical material, widely used in Li-ion batteries. Due to the planned electrification of European vehicles, cobalt needs are expending – and resources are limited. To meet the needs in cobalt to come, it is necessary to develop new efficient ways to recycle cobalt. One of the biggest sources comes from old electrical vehicles batteries (batteries sold in 2019: 500 000 tons of waste to be). A closed loop process of cobalt recycling has been developed and this presentation aims to present the selectivity mechanism of cobalt over manganese and nickel in solution. Cobalt precipitation as a ZIF material (Zeolitic Imidazolate framework) from a starting solution composed of equimolar nickel, manganese and cobalt is studied. A 2-MeIm (2-methylimidazole) linker is introduced in a multimetallic Ni, Mn, Co solution and the resulting ZIF-67 is 100% pure Co among its metallic centers. Selectivity of Co over Ni is experimentally studied and DFT modelisation calculation are conducted to understand the geometry of ligand-metal-solvent complexes in solution. Selectivity of Co over Mn is experimentally studied, and DFT modelisation calcucation are conducted to understand the link between pKa of the ligand and precipitration of Mn impurities within the final material. Those calculation open the way to other ligand being used in the same process, with more efficiency. Experimental material are synthetized from bimetallic (Ni²⁺/Co²⁺, Mn²⁺/Co²⁺, Mn²⁺/Ni²⁺) solutions. Their crystallographic structure is analysed by XRD diffraction (Brüker AXS D8 diffractometer, Cu anticathode). Morphology is studied by scanning electron microscopy, using a LEO 1530 FE-SEM microscope. The chemical analysis is performed by using ICP-OES (Agilent Technologies 700 series ICP-OES). Modelisation calculation are DFT calculation (density functional theory), using B3LYP, conducted with Orca 4.2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOFs" title="MOFs">MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIFs" title=" ZIFs"> ZIFs</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=closed-loop" title=" closed-loop"> closed-loop</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=li-ion%20batteries" title=" li-ion batteries"> li-ion batteries</a> </p> <a href="https://publications.waset.org/abstracts/154201/selectivity-mechanism-of-cobalt-precipitation-by-an-imidazole-linker-from-an-old-battery-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuxuan%20Huang">Yuxuan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrO<sub>x</sub> was prepared by co-precipitation method and (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub> was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrO<sub>x</sub> and SAPO-34. Catalytic reactions were carried out under H<sub>2</sub>/CO=2, 380 ℃, 1 MPa and 6000 mL&middot;g<sub>cat</sub><sup>-1</sup>&middot;h<sup>-1</sup> in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N<sub>2</sub> adsorption-desorption, NH<sub>3</sub>-TPD, H<sub>2</sub>-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C<sub>2-4</sub><sup>=</sup> distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20olefins" title="light olefins">light olefins</a>, <a href="https://publications.waset.org/abstracts/search?q=OX-ZEO" title=" OX-ZEO"> OX-ZEO</a>, <a href="https://publications.waset.org/abstracts/search?q=Syngas" title=" Syngas"> Syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnCrO%E2%82%93" title=" ZnCrOₓ"> ZnCrOₓ</a> </p> <a href="https://publications.waset.org/abstracts/93131/impact-of-zncr-ratio-on-zncrox-sapo-34-bifunctional-catalyst-for-direct-conversion-of-syngas-to-light-olefins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Separation Performance of CO₂ by Mixed Matrix Membrane Comprising Carbide-Derived Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20Najimu">Musa Najimu</a>, <a href="https://publications.waset.org/abstracts/search?q=Isam%20Aljundi"> Isam Aljundi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the development of mixed matrix membrane (MMM) containing carbide-derived carbon (CDC) for the separation of CO₂ was investigated. MMM with four different loadings (0.1 to 2 wt%) were prepared by the dry/wet phase inversion technique. Prior to this, the formula of the control polysulfone (PSF) membrane was optimized in terms of the PSF concentration in a mixture of NMP/THF solvents and ethanol. Prepared samples were characterized and tested for CO₂ and CH₄ gas permeation. The optimization of the control PSF membrane revealed that 30 wt% PSF is the critical polymer concentration in the formulation. Characterization results unveiled reinforcement of thermal stability and improved polarity imparted by CDC in the MMM, in addition to uniform dispersion of filler up to 1 wt% loading. Furthermore, the incorporation of CDC in PSF membrane formulation enhanced both the CO₂ permeance and ideal selectivity over the control membrane. A CDC loading of 0.5 wt% resulted in the highest CO₂ permeance of 5.5 GPU corresponding to 120% increase in permeance while a CDC loading of 1 wt% resulted in the highest selectivity (CO₂ /CH₄) of 27 corresponding to 29% increase in selectivity. Studies of operating temperature effect showed that an optimum operating temperature for M1.0 membrane is 20 ⁰C. In addition, the feed pressure studies showed that high pressure feeds will favor high performance of the membrane and a good CO₂ /CH₄ separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbide%20derived%20carbon" title="carbide derived carbon">carbide derived carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membrane" title=" mixed matrix membrane"> mixed matrix membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20separation" title=" CO₂ separation"> CO₂ separation</a>, <a href="https://publications.waset.org/abstracts/search?q=polysulfone" title=" polysulfone"> polysulfone</a> </p> <a href="https://publications.waset.org/abstracts/90131/separation-performance-of-co2-by-mixed-matrix-membrane-comprising-carbide-derived-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Chultheera">P. Chultheera</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Rirksomboon"> T. Rirksomboon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kulprathipanja"> S. Kulprathipanja</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Liu"> C. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Chinsirikul"> W. Chinsirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kerddonfag"> N. Kerddonfag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO<sub>2</sub>/CH<sub>4</sub> separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membrane" title="mixed matrix membrane">mixed matrix membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%2FCH%E2%82%84%20separation" title=" CO₂/CH₄ separation"> CO₂/CH₄ separation</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/66253/solid-liquid-polymer-mixed-matrix-membrane-using-liquid-additive-adsorbed-on-activated-carbon-dispersed-in-polymeric-membrane-for-co2ch4-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Modification of Carbon-Based Gas Sensors for Boosting Selectivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Zhao">D. Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang"> Y. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Chen"> G. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sensors" title="gas sensors">gas sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=CNT" title=" CNT"> CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%2FNEMS" title=" MEMS/NEMS"> MEMS/NEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=VOC" title=" VOC"> VOC</a>, <a href="https://publications.waset.org/abstracts/search?q=VIC" title=" VIC"> VIC</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20selectivity" title=" high selectivity"> high selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=modification%20of%20sensing%20materials" title=" modification of sensing materials"> modification of sensing materials</a> </p> <a href="https://publications.waset.org/abstracts/167468/modification-of-carbon-based-gas-sensors-for-boosting-selectivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianwen%20Li">Jianwen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N<sub>2</sub> adsorption, FE-SEM, TEM, and NH<sub>3</sub>-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20treatment" title="alkali treatment">alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=HZSM-5" title=" HZSM-5"> HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol-to-propylene" title=" methanol-to-propylene"> methanol-to-propylene</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20condition" title=" synthesis condition"> synthesis condition</a> </p> <a href="https://publications.waset.org/abstracts/86788/catalytic-study-of-methanol-to-propylene-conversion-over-nano-sized-hzsm-5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Butene Catalytic Cracking to Propylene over Iron and Phosphorus Modified HZSM-5</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianwen%20Li">Jianwen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HZSM-5 zeolites modified by iron and phosphorus were applied in catalytic cracking of butene. N2 adsorption and NH3-TPD were employed to measure the structure and acidity of catalysts. The results indicate that increasing phosphorus loading decreased surface area, pore volume and strong acidity of catalysts. The introduction of phosphorus significantly decreased butene conversion and promoted propylene selectivity. The catalytic performance of catalyst was strongly dependent on the reaction conditions. Appropriate reaction conditions could suppress side reactions and enhance propylene selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butene%20catalytic%20cracking" title="butene catalytic cracking">butene catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=HZSM-5" title=" HZSM-5"> HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20conditions" title=" reaction conditions"> reaction conditions</a> </p> <a href="https://publications.waset.org/abstracts/22176/butene-catalytic-cracking-to-propylene-over-iron-and-phosphorus-modified-hzsm-5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=H2S%20selectivity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10