CINXE.COM
Search results for: outage
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: outage</title> <meta name="description" content="Search results for: outage"> <meta name="keywords" content="outage"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="outage" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="outage"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 35</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: outage</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Cognitive Relaying in Interference Limited Spectrum Sharing Environment: Outage Probability and Outage Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Fazlul%20Kader">Md Fazlul Kader</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Young%20Shin"> Soo Young Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a cognitive relay network (CRN) in which the primary receiver (PR) is protected by peak transmit power $\bar{P}_{ST}$ and/or peak interference power Q constraints. In addition, the interference effect from the primary transmitter (PT) is considered to show its impact on the performance of the CRN. We investigate the outage probability (OP) and outage capacity (OC) of the CRN by deriving closed-form expressions over Rayleigh fading channel. Results show that both the OP and OC improve by increasing the cooperative relay nodes as well as when the PT is far away from the SR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20relay" title="cognitive relay">cognitive relay</a>, <a href="https://publications.waset.org/abstracts/search?q=outage" title=" outage"> outage</a>, <a href="https://publications.waset.org/abstracts/search?q=interference%20limited" title=" interference limited"> interference limited</a>, <a href="https://publications.waset.org/abstracts/search?q=decode-and-forward%20%28DF%29" title=" decode-and-forward (DF)"> decode-and-forward (DF)</a> </p> <a href="https://publications.waset.org/abstracts/26694/cognitive-relaying-in-interference-limited-spectrum-sharing-environment-outage-probability-and-outage-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Convex Restrictions for Outage Constrained MU-MISO Downlink under Imperfect Channel State Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Preetha%20Priyadharshini">A. Preetha Priyadharshini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20M.%20Priya"> S. B. M. Priya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the MU-MISO downlink scenario, under imperfect channel state information (CSI). The main issue in imperfect CSI is to keep the probability of each user achievable outage rate below the given threshold level. Such a rate outage constraints present significant and analytical challenges. There are many probabilistic methods are used to minimize the transmit optimization problem under imperfect CSI. Here, decomposition based large deviation inequality and Bernstein type inequality convex restriction methods are used to perform the optimization problem under imperfect CSI. These methods are used for achieving improved output quality and lower complexity. They provide a safe tractable approximation of the original rate outage constraints. Based on these method implementations, performance has been evaluated in the terms of feasible rate and average transmission power. The simulation results are shown that all the two methods offer significantly improved outage quality and lower computational complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imperfect%20channel%20state%20information" title="imperfect channel state information">imperfect channel state information</a>, <a href="https://publications.waset.org/abstracts/search?q=outage%20probability" title=" outage probability"> outage probability</a>, <a href="https://publications.waset.org/abstracts/search?q=multiuser-%20multi%20input%20single%20output" title=" multiuser- multi input single output"> multiuser- multi input single output</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20state%20information" title=" channel state information"> channel state information</a> </p> <a href="https://publications.waset.org/abstracts/48521/convex-restrictions-for-outage-constrained-mu-miso-downlink-under-imperfect-channel-state-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">813</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar's Harsh Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Touati">Abir Touati</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Jawad%20Hussain"> Syed Jawad Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Touati"> Farid Touati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Bouallegue"> Ammar Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20turbulence" title="atmospheric turbulence">atmospheric turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=haze" title=" haze"> haze</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20FSO%2FRF" title=" hybrid FSO/RF"> hybrid FSO/RF</a>, <a href="https://publications.waset.org/abstracts/search?q=outage%20probability" title=" outage probability"> outage probability</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index" title=" refractive index"> refractive index</a> </p> <a href="https://publications.waset.org/abstracts/32927/effect-of-atmospheric-turbulence-on-hybrid-fsorf-link-availability-under-qatars-harsh-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagham%20Ismail">Nagham Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Ouahrani"> Djamel Ouahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20resilience" title="thermal resilience">thermal resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20envelope" title=" thermal envelope"> thermal envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modeling" title=" energy modeling"> energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title=" building simulation"> building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20disruption" title=" power disruption"> power disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20weather" title=" extreme weather"> extreme weather</a> </p> <a href="https://publications.waset.org/abstracts/173363/simplified-linear-regression-model-to-quantify-the-thermal-resilience-of-office-buildings-in-three-different-power-outage-day-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Analytical Downlink Effective SINR Evaluation in LTE Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwane%20Ben%20Hcine">Marwane Ben Hcine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Bouallegue"> Ridha Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to provide an original analytical framework for downlink effective SINR evaluation in LTE networks. The classical single carrier SINR performance evaluation is extended to multi-carrier systems operating over frequency selective channels. Extension is achieved by expressing the link outage probability in terms of the statistics of the effective SINR. For effective SINR computation, the exponential effective SINR mapping (EESM) method is used on this work. Closed-form expression for the link outage probability is achieved assuming a log skew normal approximation for single carrier case. Then we rely on the lognormal approximation to express the exponential effective SINR distribution as a function of the mean and standard deviation of the SINR of a generic subcarrier. Achieved formulas is easily computable and can be obtained for a user equipment (UE) located at any distance from its serving eNodeB. Simulations show that the proposed framework provides results with accuracy within 0.5 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LTE" title="LTE">LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDMA" title=" OFDMA"> OFDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20SINR" title=" effective SINR"> effective SINR</a>, <a href="https://publications.waset.org/abstracts/search?q=log%20skew%20normal%20approximation" title=" log skew normal approximation"> log skew normal approximation</a> </p> <a href="https://publications.waset.org/abstracts/21658/analytical-downlink-effective-sinr-evaluation-in-lte-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Assessing the Cumulative Impact of PM₂.₅ Emissions from Power Plants by Using the Hybrid Air Quality Model and Evaluating the Contributing Salient Factor in South Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Simon%20Lusagalika">Jackson Simon Lusagalika</a>, <a href="https://publications.waset.org/abstracts/search?q=Lai%20Hsin-Chih"> Lai Hsin-Chih</a>, <a href="https://publications.waset.org/abstracts/search?q=Dai%20Yu-Tung"> Dai Yu-Tung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particles with an aerodynamic diameter of 2.5 meters or less are referred to as "fine particulate matter" (PM₂.₅) are easily inhaled and can go deeper into the lungs than other particles in the atmosphere, where it may have detrimental health consequences. In this study, we use a hybrid model that combined CMAQ and AERMOD as well as initial meteorological fields from the Weather Research and Forecasting (WRF) model to study the impact of power plant PM₂.₅ emissions in South Taiwan since it frequently experiences higher PM₂.₅ levels. A specific date of March 3, 2022, was chosen as a result of a power outage that prompted the bulk of power plants to shut down. In some way, it is not conceivable anywhere in the world to turn off the power for the sole purpose of doing research. Therefore, this catastrophe involving a power outage and the shutdown of power plants offers a great occasion to evaluate the impact of air pollution driven by this power sector. As a result, four numerical experiments were conducted in the study using the Continuous Emission Data System (CEMS), assuming that the power plants continued to function normally after the power outage. The hybrid model results revealed that power plants have a minor impact in the study region. However, we examined the accumulation of PM₂.₅ in the study and discovered that once the vortex at 925hPa was established and moved to the north of Taiwan's coast, the study region experienced higher observed PM₂.₅ concentrations influenced by meteorological factors. This study recommends that decision-makers take into account not only control techniques, specifically emission reductions, but also the atmospheric and meteorological implications for future investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PM%E2%82%82.%E2%82%85%20concentration" title="PM₂.₅ concentration">PM₂.₅ concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=powerplants" title=" powerplants"> powerplants</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20air%20quality%20model" title=" hybrid air quality model"> hybrid air quality model</a>, <a href="https://publications.waset.org/abstracts/search?q=CEMS" title=" CEMS"> CEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=Vorticity" title=" Vorticity"> Vorticity</a> </p> <a href="https://publications.waset.org/abstracts/161539/assessing-the-cumulative-impact-of-pm25-emissions-from-power-plants-by-using-the-hybrid-air-quality-model-and-evaluating-the-contributing-salient-factor-in-south-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongwoo%20Lee">Jongwoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Eun%20Kang"> Dae-Eun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Young%20Park"> Sang-Young Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20relative%20navigation" title="satellite relative navigation">satellite relative navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-based%20measurement" title=" laser-based measurement"> laser-based measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent%20measurement" title=" intermittent measurement"> intermittent measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/80146/relative-navigation-with-laser-based-intermittent-measurement-for-formation-flying-satellites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ugwu%20O.%20C.">Ugwu O. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamah%20R.%20O."> Mamah R. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Awudu%20W.%20S."> Awudu W. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beamforming%20algorithm" title="beamforming algorithm">beamforming algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20beamforming" title=" adaptive beamforming"> adaptive beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=simulink" title=" simulink"> simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=reception" title=" reception"> reception</a> </p> <a href="https://publications.waset.org/abstracts/187374/enhancing-signal-reception-in-a-mobile-radio-network-using-adaptive-beamforming-antenna-arrays-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfi%20Al%20Fahreizy">Alfi Al Fahreizy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEAP" title="LEAP">LEAP</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogyakarta" title=" Yogyakarta"> Yogyakarta</a>, <a href="https://publications.waset.org/abstracts/search?q=BAU" title=" BAU"> BAU</a> </p> <a href="https://publications.waset.org/abstracts/20956/mapping-of-electrical-energy-consumption-yogyakarta-province-in-2014-2025" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">598</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Rahimi">Mahdi Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Mojahedian"> Mohammad Mahdi Mojahedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Aref"> Mohammad Reza Aref</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20layer%20security" title="physical layer security">physical layer security</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20geometry" title=" stochastic geometry"> stochastic geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=device-to-device" title=" device-to-device"> device-to-device</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20impairment" title=" hardware impairment"> hardware impairment</a> </p> <a href="https://publications.waset.org/abstracts/148278/secrecy-analysis-in-downlink-cellular-networks-in-the-presence-of-d2d-pairs-and-hardware-impairment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Optimal Scheduling for Energy Storage System Considering Reliability Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim">Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Je-Seok%20Shin"> Je-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper propose the method for optimal scheduling for battery energy storage system with reliability constraint of energy storage system in reliability aspect. The optimal scheduling problem is solved by dynamic programming with proposed transition matrix. Proposed optimal scheduling method guarantees the minimum fuel cost within specific reliability constraint. For evaluating proposed method, the timely capacity outage probability table (COPT) is used that is calculated by convolution of probability mass function of each generator. This study shows the result of optimal schedule of energy storage system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system%20%28ESS%29" title="energy storage system (ESS)">energy storage system (ESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20scheduling" title=" optimal scheduling"> optimal scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming" title=" dynamic programming"> dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20constraints" title=" reliability constraints"> reliability constraints</a> </p> <a href="https://publications.waset.org/abstracts/39373/optimal-scheduling-for-energy-storage-system-considering-reliability-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Contingency Screening Using Risk Factor Considering Transmission Line Outage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Marsadek">M. Marsadek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohamed"> A. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power system security analysis is the most time demanding process due to large number of possible contingencies that need to be analyzed. In a power system, any contingency resulting in security violation such as line overload or low voltage may occur for a number of reasons at any time. To efficiently rank a contingency, both probability and the extent of security violation must be considered so as not to underestimate the risk associated with the contingency. This paper proposed a contingency ranking method that take into account the probabilistic nature of power system and the severity of contingency by using a newly developed method based on risk factor. The proposed technique is implemented on IEEE 24-bus system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=line%20overload" title="line overload">line overload</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage" title=" low voltage"> low voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor" title=" risk factor"> risk factor</a>, <a href="https://publications.waset.org/abstracts/search?q=severity" title=" severity"> severity</a> </p> <a href="https://publications.waset.org/abstracts/32664/contingency-screening-using-risk-factor-considering-transmission-line-outage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Algorithmic Fault Location in Complex Gas Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soban%20Najam">Soban Najam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Jahanzeb"> S. M. Jahanzeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Sohail"> Ahmed Sohail</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Idris%20Khan"> Faraz Idris Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the recent increase in reliance on Gas as the primary source of energy across the world, there has been a lot of research conducted on gas distribution networks. As the complexity and size of these networks grow, so does the leakage of gas in the distribution network. One of the most crucial factors in the production and distribution of gas is UFG or Unaccounted for Gas. The presence of UFG signifies that there is a difference between the amount of gas distributed, and the amount of gas billed. Our approach is to use information that we acquire from several specified points in the network. This information will be used to calculate the loss occurring in the network using the developed algorithm. The Algorithm can also identify the leakages at any point of the pipeline so we can easily detect faults and rectify them within minimal time, minimal efforts and minimal resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLA" title="FLA">FLA</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location%20analysis" title=" fault location analysis"> fault location analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GDN" title=" GDN"> GDN</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20distribution%20network" title=" gas distribution network"> gas distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=NMS" title=" NMS"> NMS</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20Management%20system" title=" network Management system"> network Management system</a>, <a href="https://publications.waset.org/abstracts/search?q=OMS" title=" OMS"> OMS</a>, <a href="https://publications.waset.org/abstracts/search?q=outage%20management%20system" title=" outage management system"> outage management system</a>, <a href="https://publications.waset.org/abstracts/search?q=SSGC" title=" SSGC"> SSGC</a>, <a href="https://publications.waset.org/abstracts/search?q=Sui%20Southern%20gas%20company" title=" Sui Southern gas company"> Sui Southern gas company</a>, <a href="https://publications.waset.org/abstracts/search?q=UFG" title=" UFG"> UFG</a>, <a href="https://publications.waset.org/abstracts/search?q=unaccounted%20for%20gas" title=" unaccounted for gas"> unaccounted for gas</a> </p> <a href="https://publications.waset.org/abstracts/34657/algorithmic-fault-location-in-complex-gas-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">626</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Proposed Fault Detection Scheme on Low Voltage Distribution Feeders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewusi%20Adeoluwawale">Adewusi Adeoluwawale</a>, <a href="https://publications.waset.org/abstracts/search?q=Oronti%20Iyabosola%20Busola"> Oronti Iyabosola Busola</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinola%20Iretiayo"> Akinola Iretiayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Komolafe%20Olusola%20Aderibigbe"> Komolafe Olusola Aderibigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage%20distribution%20feeders" title=" low voltage distribution feeders"> low voltage distribution feeders</a>, <a href="https://publications.waset.org/abstracts/search?q=outage%20times" title=" outage times"> outage times</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20faults" title=" sustained faults"> sustained faults</a> </p> <a href="https://publications.waset.org/abstracts/8097/proposed-fault-detection-scheme-on-low-voltage-distribution-feeders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Sustaining Efficiency in Electricity Distribution to Enhance Effective Human Security for the Vulnerable People in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Nyamekeh-Armah%20Adjei">Anthony Nyamekeh-Armah Adjei</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiaki%20Aoki"> Toshiaki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unreliable and poor efficiency of electricity distribution leading to frequent power outages and high losses are the major challenge facing the power distribution sector in Ghana. Distribution system routes electricity from the power generating station at a higher voltage through the transmission grid and steps it down through the low voltage lines to end users. Approximately all electricity problems and disturbances that have increased the call for renewable and sustainable energy in recent years have their roots in the distribution system. Therefore, sustaining electricity distribution efficiency can potentially contribute to the reserve of natural energy resources use in power generation, reducing greenhouse gas emission (GHG), decreasing tariffs for consumers and effective human security. Human Security is a people-centered approach where individual human being is the principal object of concern, focuses on protecting the vital core of all human lives in ways for meeting basic needs that enhance the safety and protection of individuals and communities. The vulnerability is the diminished capacity of an individual or group to anticipate, resist and recover from the effect of natural, human-induced disaster. The research objectives are to explore the causes of frequent power outages to consumers, high losses in the distribution network and the effect of poor electricity distribution efficiency on the vulnerable (poor and ordinary) people that mostly depend on electricity for their daily activities or life to survive. The importance of the study is that in a developing country like Ghana where raising a capital for new infrastructure project is difficult, it would be beneficial to enhance the efficiency that will significantly minimize the high energy losses, reduce power outage, to ensure safe and reliable delivery of electric power to consumers to secure the security of people’s livelihood. The methodology used in this study is both interview and questionnaire survey to analyze the response from the respondents on causes of power outages and high losses facing the electricity company of Ghana (ECG) and its effect on the livelihood on the vulnerable people. Among the outcome of both administered questionnaire and the interview survey from the field were; poor maintenance of existing sub-stations, use of aging equipment, use of poor distribution infrastructure and poor metering and billing system. The main observation of this paper is that the poor network efficiency (high losses and power outages) affects the livelihood of the vulnerable people. Therefore, the paper recommends that policymakers should insist on all regulation guiding electricity distribution to improve system efficiency. In conclusion, there should be decentralization of off-grid solar PV technologies to provide a sustainable and cost-effective, which can increase daily productivity and improve the quality of life of the vulnerable people in the rural communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity%20efficiency" title="electricity efficiency">electricity efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20losses" title=" high losses"> high losses</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20security" title=" human security"> human security</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20outage" title=" power outage"> power outage</a> </p> <a href="https://publications.waset.org/abstracts/90010/sustaining-efficiency-in-electricity-distribution-to-enhance-effective-human-security-for-the-vulnerable-people-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Advancing Power Network Maintenance: The Development and Implementation of a Robotic Cable Splicing Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Asmari">Ali Asmari</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Symington"> Alex Symington</a>, <a href="https://publications.waset.org/abstracts/search?q=Htaik%20Than"> Htaik Than</a>, <a href="https://publications.waset.org/abstracts/search?q=Austin%20Caradonna"> Austin Caradonna</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Senft"> John Senft</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the collaborative effort between ULC Technologies and Con Edison in developing a groundbreaking robotic cable splicing machine. The focus is on the machine's design, which integrates advanced robotics and automation to enhance safety and efficiency in power network maintenance. The paper details the operational steps of the machine, including cable grounding, cutting, and removal of different insulation layers, and discusses its novel technological approach. The significant benefits over traditional methods, such as improved worker safety and reduced outage times, are highlighted based on the field data collected during the validation phase of the project. The paper also explores the future potential and scalability of this technology, emphasizing its role in transforming the landscape of power network maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cable%20splicing%20machine" title="cable splicing machine">cable splicing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20network%20maintenance" title=" power network maintenance"> power network maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20distribution" title=" electric distribution"> electric distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20transmission" title=" electric transmission"> electric transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20voltage%20cable" title=" medium voltage cable"> medium voltage cable</a> </p> <a href="https://publications.waset.org/abstracts/182049/advancing-power-network-maintenance-the-development-and-implementation-of-a-robotic-cable-splicing-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> The Determination of Operating Reserve in Small Power Systems Based on Reliability Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Falsafi%20Falsafizadeh">H. Falsafi Falsafizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zeinali%20Zeinali"> R. Zeinali Zeinali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on determination of total Operating Reserve (OR) level, consisting of spinning and non-spinning reserves, in two small real power systems, in such a way that the system reliability indicator would comply with typical industry standards. For this purpose, the standard used by the North American Electric Reliability Corporation (NERC) – i.e., 1 day outage in 10 years or 0.1 days/year is relied. The simulation of system operation for these systems that was used for the determination of total operating reserve level was performed by industry standard production simulation software in this field, named PLEXOS. In this paper, the operating reserve which meets an annual Loss of Load Expectation (LOLE) of approximately 0.1 days per year is determined in the study year. This reserve is the minimum amount of reserve required in a power system and generally defined as a percentage of the annual peak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20control" title="frequency control">frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=LOLE" title=" LOLE"> LOLE</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20reserve" title=" operating reserve"> operating reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20reliability" title=" system reliability"> system reliability</a> </p> <a href="https://publications.waset.org/abstracts/67268/the-determination-of-operating-reserve-in-small-power-systems-based-on-reliability-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Comparative Study of Line Voltage Stability Indices for Voltage Collapse Forecasting in Power Transmission System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Goh">H. H. Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20S.%20Chua"> Q. S. Chua</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Lee"> S. W. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Kok"> B. C. Kok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Goh"> K. C. Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20K.%20Teo"> K. T. K. Teo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the evaluation of voltage stability assessment experiences sizeable anxiety in the safe operation of power systems. This is due to the complications of a strain power system. With the snowballing of power demand by the consumers and also the restricted amount of power sources, therefore, the system has to perform at its maximum proficiency. Consequently, the noteworthy to discover the maximum ability boundary prior to voltage collapse should be undertaken. A preliminary warning can be perceived to evade the interruption of power system’s capacity. The effectiveness of line voltage stability indices (LVSI) is differentiated in this paper. The main purpose of the indices is used to predict the proximity of voltage instability of the electric power system. On the other hand, the indices are also able to decide the weakest load buses which are close to voltage collapse in the power system. The line stability indices are assessed using the IEEE 14 bus test system to validate its practicability. Results demonstrated that the implemented indices are practically relevant in predicting the manifestation of voltage collapse in the system. Therefore, essential actions can be taken to dodge the incident from arising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20line" title="critical line">critical line</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20outage" title=" line outage"> line outage</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20voltage%20stability%20indices%20%28LVSI%29" title=" line voltage stability indices (LVSI)"> line voltage stability indices (LVSI)</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20loadability" title=" maximum loadability"> maximum loadability</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20collapse" title=" voltage collapse"> voltage collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20instability" title=" voltage instability"> voltage instability</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20stability%20analysis" title=" voltage stability analysis"> voltage stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/15431/comparative-study-of-line-voltage-stability-indices-for-voltage-collapse-forecasting-in-power-transmission-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirav%20J.%20Patel">Nirav J. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpesh%20K.%20Dudani"> Kalpesh K. Dudani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic" title="acoustic">acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title=" partial discharge"> partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=perfectly%20matched%20layer" title=" perfectly matched layer"> perfectly matched layer</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor "> sensor </a> </p> <a href="https://publications.waset.org/abstracts/28299/acoustic-partial-discharge-propagation-and-perfectly-matched-layer-in-acoustic-detection-transformer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Chemical Hazards Impact on Efficiency of Energy Storage Battery and its Possible Mitigation's</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abirham%20Simeneh%20Ayalew">Abirham Simeneh Ayalew</a>, <a href="https://publications.waset.org/abstracts/search?q=Seada%20Hussen%20Adem"> Seada Hussen Adem</a>, <a href="https://publications.waset.org/abstracts/search?q=Frie%20Ayalew%20Yimam"> Frie Ayalew Yimam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Battery energy storage has a great role on storing energy harnessed from different alternative resources and greatly benefit the power sector by supply energy back to the system during outage and regular operation in power sectors. Most of the study shows that there is an exponential increase in the quantity of lithium - ion battery energy storage system due to their power density, economical aspects and its performance. But this lithium ion battery failures resulted in fire and explosion due to its having flammable electrolytes (chemicals) which can create those hazards. Hazards happen in these energy storage system lead to minimize battery life spans or efficiency. Identifying the real cause of these hazards and its mitigation techniques can be the solution to improve the efficiency of battery technologies and the electrode materials should have high electrical conductivity, large surface area, stable structure and low resistance. This paper asses the real causes of chemical hazards, its impact on efficiency, proposed solution for mitigating those hazards associated with efficiency improvement and summery of researchers new finding related to the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20energy%20storage" title="battery energy storage">battery energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20energy%20storage%20efficiency" title=" battery energy storage efficiency"> battery energy storage efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20hazards" title=" chemical hazards"> chemical hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a> </p> <a href="https://publications.waset.org/abstracts/178880/chemical-hazards-impact-on-efficiency-of-energy-storage-battery-and-its-possible-mitigations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> A Study on Solutions to Connect Distribution Power Grid up to Renewable Energy Sources at KEPCO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Yoon%20Hyun">Seung Yoon Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeong%20Seung%20An"> Hyeong Seung An</a>, <a href="https://publications.waset.org/abstracts/search?q=Myeong%20Ho%20Choi"> Myeong Ho Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hwan%20Bae"> Sung Hwan Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Jong%20Sim"> Yu Jong Sim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2015, the southern part of the Korean Peninsula has 8.6 million poles, 1.25 million km power lines, and 2 million transformers, etc. It is the massive amount of distribution equipments which could cover a round-trip distance from the earth to the moon and 11 turns around the earth. These distribution equipments are spread out like capillaries and supplying power to every corner of the Korean Peninsula. In order to manage these huge power facility efficiently, KEPCO use DAS (Distribution Automation System) to operate distribution power system since 1997. DAS is integrated system that enables to remotely supervise and control breakers and switches on distribution network. Using DAS, we can reduce outage time and power loss. KEPCO has about 160,000 switches, 50%(about 80,000) of switches are automated, and 41 distribution center monitoring&control these switches 24-hour 365 days to get the best efficiency of distribution networks. However, the rapid increasing renewable energy sources become the problem in the efficient operation of distributed power system. (currently 2,400 MW, 75,000 generators operate in distribution power system). In this paper, it suggests the way to interconnect between renewable energy source and distribution power system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution" title="distribution">distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable" title=" renewable"> renewable</a>, <a href="https://publications.waset.org/abstracts/search?q=connect" title=" connect"> connect</a>, <a href="https://publications.waset.org/abstracts/search?q=DAS%20%28Distribution%20Automation%20System%29" title=" DAS (Distribution Automation System)"> DAS (Distribution Automation System)</a> </p> <a href="https://publications.waset.org/abstracts/45103/a-study-on-solutions-to-connect-distribution-power-grid-up-to-renewable-energy-sources-at-kepco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">621</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Multi Cloud Storage Systems for Resource Constrained Mobile Devices: Comparison and Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Bedi">Rajeev Kumar Bedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaswinder%20Singh"> Jaswinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Gupta"> Sunil Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud storage is a model of online data storage where data is stored in virtualized pool of servers hosted by third parties (CSPs) and located in different geographical locations. Cloud storage revolutionized the way how users access their data online anywhere, anytime and using any device as a tablet, mobile, laptop, etc. A lot of issues as vendor lock-in, frequent service outage, data loss and performance related issues exist in single cloud storage systems. So to evade these issues, the concept of multi cloud storage introduced. There are a lot of multi cloud storage systems exists in the market for mobile devices. In this article, we are providing comparison of four multi cloud storage systems for mobile devices Otixo, Unclouded, Cloud Fuze, and Clouds and evaluate their performance on the basis of CPU usage, battery consumption, time consumption and data usage parameters on three mobile phones Nexus 5, Moto G and Nexus 7 tablet and using Wi-Fi network. Finally, open research challenges and future scope are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20storage" title="cloud storage">cloud storage</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20cloud%20storage" title=" multi cloud storage"> multi cloud storage</a>, <a href="https://publications.waset.org/abstracts/search?q=vendor%20lock-in" title=" vendor lock-in"> vendor lock-in</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20devices" title=" mobile devices"> mobile devices</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20cloud%20computing" title=" mobile cloud computing"> mobile cloud computing</a> </p> <a href="https://publications.waset.org/abstracts/68075/multi-cloud-storage-systems-for-resource-constrained-mobile-devices-comparison-and-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Rai">Ajit Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Deroui"> Hamza Deroui</a>, <a href="https://publications.waset.org/abstracts/search?q=Blandine%20Vacher"> Blandine Vacher</a>, <a href="https://publications.waset.org/abstracts/search?q=Khwansiri%20Ninpan"> Khwansiri Ninpan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Aumont"> Arthur Aumont</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Vitillo"> Francesco Vitillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Plana"> Robert Plana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterministic%20scheduling" title="deterministic scheduling">deterministic scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20coupling" title=" optimization coupling"> optimization coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20scheduling" title=" modular scheduling"> modular scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=RCPSP" title=" RCPSP"> RCPSP</a> </p> <a href="https://publications.waset.org/abstracts/146139/a-modular-solution-for-large-scale-critical-industrial-scheduling-problems-with-coupling-of-other-optimization-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Analysing Maximum Power Point Tracking in a Stand Alone Photovoltaic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osamede%20Asowata">Osamede Asowata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident in its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector; these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with maximum power point tracking (MPPT) from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0°N, with a corresponding tilt angle of 36°, 26°, and 16°. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly-crystalline%20PV%20panels" title="poly-crystalline PV panels">poly-crystalline PV panels</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20chargers" title=" solar chargers"> solar chargers</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20and%20orientation%20angles" title=" tilt and orientation angles"> tilt and orientation angles</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulse%20Width%20Modulation%20%28PWM%29." title=" Pulse Width Modulation (PWM)."> Pulse Width Modulation (PWM).</a> </p> <a href="https://publications.waset.org/abstracts/98767/analysing-maximum-power-point-tracking-in-a-stand-alone-photovoltaic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Evaluating Reliability Indices in 3 Critical Feeders at Lorestan Electric Power Distribution Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Pourshafie">Atefeh Pourshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=Homayoun%20Bakhtiari"> Homayoun Bakhtiari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main task of power distribution companies is to supply the power required by customers in an acceptable level of quality and reliability. Some key performance indicators for electric power distribution companies are those evaluating the continuity of supply within the network. More than other problems, power outages (due to lightning, flood, fire, earthquake, etc.) challenge economy and business. In addition, end users expect a reliable power supply. Reliability indices are evaluated on an annual basis by the specialized holding company of Tavanir (Power Produce, Transmission& distribution company of Iran) . Evaluation of reliability indices is essential for distribution companies, and with regard to the privatization of distribution companies, it will be of particular importance to evaluate these indices and to plan for their improvement in a not too distant future. According to IEEE-1366 standard, there are too many indices; however, the most common reliability indices include SAIFI, SAIDI and CAIDI. These indices describe the period and frequency of blackouts in the reporting period (annual or any desired timeframe). This paper calculates reliability indices for three sample feeders in Lorestan Electric Power Distribution Company and defines the threshold values in a ten-month period. At the end, strategies are introduced to reach the threshold values in order to increase customers' satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power" title="power">power</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title=" distribution network"> distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=outage" title=" outage"> outage</a> </p> <a href="https://publications.waset.org/abstracts/50893/evaluating-reliability-indices-in-3-critical-feeders-at-lorestan-electric-power-distribution-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Impact Study on a Load Rich Island and Development of Frequency Based Auto-Load Shedding Scheme to Improve Service Reliability of the Island</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shafiullah">Md. Shafiullah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shafiul%20Alam"> M. Shafiul Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Bandar%20Suliman%20Alsharif"> Bandar Suliman Alsharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical quantities such as frequency, voltage, current are being fluctuated due to abnormalities in power system. Most of the abnormalities cause fluctuation in system frequency and sometimes extreme abnormalities lead to system blackout. To protect the system from complete blackout planned and proper islanding plays a very important role even in case of extreme abnormalities. Islanding operation not only helps stabilizing a faulted system but also supports power supplies to critical and important loads, in extreme emergency. But the islanding systems are weaker than integrated system so the stability of islands is the prime concern when an integrated system is disintegrated. In this paper, different impacts on a load rich island have been studied and a frequency based auto-load shedding scheme has been developed for sudden load addition, generation outage and combined effect of both to the island. The developed scheme has been applied to Khulna-Barisal Island to validate the effectiveness of the developed technique. Various types of abnormalities to the test system have been simulated and for the simulation purpose CYME PSAF (Power System Analysis Framework) has been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20load%20shedding" title="auto load shedding">auto load shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=FS%26FD%20relay" title=" FS&FD relay"> FS&FD relay</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20study" title=" impact study"> impact study</a>, <a href="https://publications.waset.org/abstracts/search?q=island" title=" island"> island</a>, <a href="https://publications.waset.org/abstracts/search?q=PSAF" title=" PSAF"> PSAF</a>, <a href="https://publications.waset.org/abstracts/search?q=ROCOF" title=" ROCOF"> ROCOF</a> </p> <a href="https://publications.waset.org/abstracts/7890/impact-study-on-a-load-rich-island-and-development-of-frequency-based-auto-load-shedding-scheme-to-improve-service-reliability-of-the-island" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enemeri%20George%20Uweiyohowo">Enemeri George Uweiyohowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly-crystalline%20PV%20panels" title="poly-crystalline PV panels">poly-crystalline PV panels</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology%20%28IT%29" title=" information technology (IT)"> information technology (IT)</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking%20%28MPPT%29" title=" maximum power point tracking (MPPT)"> maximum power point tracking (MPPT)</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation%20%28PWM%29" title=" pulse width modulation (PWM)"> pulse width modulation (PWM)</a> </p> <a href="https://publications.waset.org/abstracts/89070/high-tech-based-simulation-and-analysis-of-maximum-power-point-in-energy-system-a-case-study-using-it-based-software-involving-regression-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Chedid">R. Chedid</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghajar"> R. Ghajar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decentralized%20systems" title="decentralized systems">decentralized systems</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title=" distributed generation"> distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrids" title=" microgrids"> microgrids</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/96327/the-potential-of-hybrid-microgrids-for-mitigating-power-outage-in-lebanon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> FSO Performance under High Solar Irradiation: Case Study Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Jawad%20Hussain">Syed Jawad Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Abir%20Touati"> Abir Touati</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Touati"> Farid Touati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free-Space Optics (FSO) is a wireless technology that enables the optical transmission of data though the air. FSO is emerging as a promising alternative or complementary technology to fiber optic and wireless radio-frequency (RF) links due to its high-bandwidth, robustness to EMI, and operation in unregulated spectrum. These systems are envisioned to be an essential part of future generation heterogeneous communication networks. Despite the vibrant advantages of FSO technology and the variety of its applications, its widespread adoption has been hampered by rather disappointing link reliability for long-range links due to atmospheric turbulence-induced fading and sensitivity to detrimental climate conditions. Qatar, with modest cloud coverage, high concentrations of airborne dust and high relative humidity particularly lies in virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2 and 80-90% clear skies throughout the year. The specific objective of this work is to study for the first time in Qatar the effect of solar irradiation on the deliverability of the FSO Link. In order to analyze the transport media, we have ported Embedded Linux kernel on Field Programmable Gate Array (FPGA) and designed a network sniffer application that can run into FPGA. We installed new FSO terminals and configure and align them successively. In the reporting period, we carry out measurement and relate them to weather conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20space%20optics" title="free space optics">free space optics</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20irradiation" title=" solar irradiation"> solar irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20programmable%20gate%20array" title=" field programmable gate array"> field programmable gate array</a>, <a href="https://publications.waset.org/abstracts/search?q=FSO%20outage" title=" FSO outage"> FSO outage</a> </p> <a href="https://publications.waset.org/abstracts/39197/fso-performance-under-high-solar-irradiation-case-study-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Microgrid: An Alternative of Electricity Supply to an Island in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawitchaya%20Srijaiwong">Pawitchaya Srijaiwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Surin%20Khomfoi"> Surin Khomfoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=islanding" title=" islanding"> islanding</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/70040/microgrid-an-alternative-of-electricity-supply-to-an-island-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outage&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=outage&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>