CINXE.COM
Search results for: ginger
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ginger</title> <meta name="description" content="Search results for: ginger"> <meta name="keywords" content="ginger"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ginger" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ginger"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 58</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ginger</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Ginger Washer Tool Using Pedal to Increase the Quality of Herbal Medicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Finda%20A.%20Mahardika">Finda A. Mahardika</a>, <a href="https://publications.waset.org/abstracts/search?q=Niken%20Aristyawati"> Niken Aristyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Retno%20W.%20Damayanti"> Retno W. Damayanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improvement technology needed to increase productivity of home industry that make herbal medicine is ginger washer tool. To solve this case, the writers develop existing technologies to create a tool that serves as a wash of ginger. This washer uses pedal tools to help the brush washer move. This tool is expected to produce ginger with good quality. In addition, this tool is also expected to be able to save time as well as water used when conducting the process of leaching. This tool is based on the size of the anthropometri people of Indonesia for the results of an ergonomic. The activities carried out by conducting a study of theory, experiment based on existing theories and make modifications based on the results obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ginger" title="ginger">ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20washer" title=" ginger washer"> ginger washer</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=pedal" title=" pedal"> pedal</a> </p> <a href="https://publications.waset.org/abstracts/44972/ginger-washer-tool-using-pedal-to-increase-the-quality-of-herbal-medicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Critical Success Factor of Exporting Thailand’s Ginger to Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phutthiwat%20Waiyawuththanapoom">Phutthiwat Waiyawuththanapoom</a>, <a href="https://publications.waset.org/abstracts/search?q=Pimploi%20Tirastittam"> Pimploi Tirastittam</a>, <a href="https://publications.waset.org/abstracts/search?q=Manop%20Tirastittam"> Manop Tirastittam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thailand is the agriculture country which mainly exports the agriculture product to the other countries in so many ways which are fresh vegetable, chilled vegetable or frozen vegetable. The gross export for Thailand’s vegetable is 30-40 billion baht per year, and the growth rate is about 15-20 percent per year. Ginger is one of the main vegetable product that Thailand export to Japan because Thailand’s Ginger has a good quality and be able to supply Japan’s demand with a reasonable price. This research paper is aimed to study the factors which affect the efficiency of the supply chain process of Thailand’s ginger to Japan. There are 5 factors which related to the exporting Thailand’s ginger to Japan which are quality, price, equipment and supply standard, custom process and distribution pattern. The result of the research showed that the factor which reached the 'very good' significant level is quality of Thailand’s ginger with the score of 4.86. The other 5 factors are in the 'good' significant level. So the most important factor for Thai ginger farmer to concern is the quality of the product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20success%20factor" title="critical success factor">critical success factor</a>, <a href="https://publications.waset.org/abstracts/search?q=export" title=" export"> export</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/90143/critical-success-factor-of-exporting-thailands-ginger-to-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Zingiberofficinale Potential Effect on Nephrin mRNA Expression in Cisplatin Induced Nephrotoxicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Mohamed">Nadia A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrevan%20M.%20Abdel-Moniem"> Mehrevan M. Abdel-Moniem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zingiber officinale (ginger) has been cultivated for medicinal purposes due to their various proprieties both in vitro and in vivo, so we designed to evaluate the ginger’s potential effect on nephrin m RNA expression in cisplatin-induced nephrotoxic rats. Method: Forty male albino rats were divided into group I was injected (IP) with one ml saline, group II(cisplatin) injected (IP) with a single dose of 12 mg/kg cisplatin, group III (ginger) received (PO) 310 mg/kg for 30 successive days, and group IV(cisplatin and ginger) rats received ginger extract (310 mg/kg) daily for 20 successive days (PO), and then on day 20 of ginger extract administration each rat was injected(IP) with a single dose of 12 mg/kg cisplatin. The blood was sampled to assess urea, creatinine (SC), while the levels of malondialdehyde (MDA), nitric oxide (NO) and paraoxonase (PON1) were measured in kidney tissue homogenate. Expression of urinary nephrin gene (nephrin mRNA) was detected using qRT-PCR. Results: Treatment with ginger significantly decreased the levels of kidney function parameters as well as MDA and NO elevated by cisplatin injection, while PON1 was significantly reduced in the cisplatin group. However, the protection of male rats with ginger significantly increased the levels of nephrin gene expression and PON1 compared with the cisplatin-treated group. Our results generated a proposal on the ameliorating effect of ginger on nephrin mRNA gene expression reduction in cisplatin-induced nephrotoxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nephrin%20mRNA" title="nephrin mRNA">nephrin mRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=cisplatin" title=" cisplatin"> cisplatin</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrotoxicity" title=" nephrotoxicity"> nephrotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/144041/zingiberofficinale-potential-effect-on-nephrin-mrna-expression-in-cisplatin-induced-nephrotoxicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Effect of Ginger (Zingiber Officinal) Root Extract on Blood Glucose Level and Lipid Profile in Normal and Alloxan-Diabetic Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Abdullah%20Ahmed%20Khalil">Khalil Abdullah Ahmed Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsadig%20Mohamed%20Ahmed"> Elsadig Mohamed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ginger is one of the most important medicinal plants, which is widely used in folk medicine. This study was designed to go further step and evaluate the hypoglycemic and hypolipidaemic effects of the aqueous ginger root extract in normal and alloxan diabetic rabbits. Results revealed that the aqueous ginger has a significant hypoglycemic effect (P<0.05) in diabetic rabbits but a non-significant hypoglycemic effect (P>0.05) in normal rabbits. There were also significant decreases in the concentrations (P<0.05) in serum cholesterol, triglycerides and LDL – cholesterol in both normal and diabetic rabbits. Although there was an elevation in serum HDL- cholesterol in both normal and diabetic rabbits, these elevations were non-significant (P>0.05). Our data suggest the aqueous ginger has a hypoglycemic effect in diabetic rabbits and lipid-lowering properties in both normal and diabetic rabbits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract%20of%20ginger%20root%20%28AEGR%29" title="aqueous extract of ginger root (AEGR)">aqueous extract of ginger root (AEGR)</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoglycemic" title=" hypoglycemic"> hypoglycemic</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=triglyceride" title=" triglyceride"> triglyceride</a> </p> <a href="https://publications.waset.org/abstracts/142726/effect-of-ginger-zingiber-officinal-root-extract-on-blood-glucose-level-and-lipid-profile-in-normal-and-alloxan-diabetic-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Effect of Ethanol Concentration and Enzyme Pre-Treatment on Bioactive Compounds from Ginger Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lekhavat">S. Lekhavat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kajsongkram"> T. Kajsongkram</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sang-han"> S. Sang-han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dried ginger was extracted and investigated the effect of ethanol concentration and enzyme pre-treatment on its bioactive compounds in solvent extraction process. Sliced fresh gingers were dried by oven dryer at 70 °C for 24 hours and ground to powder using grinder which their size were controlled by passing through a 20-mesh sieve. In enzyme pre-treatment process, ginger powder was sprayed with 1 % (w/w) cellulase and then was incubated at 45 °C for 2 hours following by extraction process using ethanol at concentration of 0, 20, 40, 60 and 80 % (v/v), respectively. The ratio of ginger powder and ethanol are 1:9 and extracting conditions were controlled at 80 °C for 2 hours. Bioactive compounds extracted from ginger, either enzyme-treated or non enzyme-treated samples, such as total phenolic content (TPC), 6-Gingerol (6 G), 6-Shogaols (6 S) and antioxidant activity (IC50 using DPPH assay), were examined. Regardless of enzyme treatment, the results showed that 60 % ethanol provided the highest TPC (20.36 GAE mg /g. dried ginger), 6G (0.77%), 6S (0.036 %) and the lowest IC50 (625 μg/ml) compared to other ratios of ethanol. Considering the effect of enzyme on bioactive compounds and antioxidant activity, it was found that enzyme-treated sample has more 6G (0.17-0.77 %) and 6S (0.020-0.036 %) than non enzyme-treated samples (0.13-0.77 % 6G, 0.015-0.036 % 6S). However, the results showed that non enzyme-treated extracts provided higher TPC (6.76-20.36 GAE mg /g. dried ginger) and Lowest IC50 (625-1494 μg/ml ) than enzyme-treated extracts (TPC 5.36-17.50 GAE mg /g. dried ginger, IC50 793-2146 μg/ml). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a> </p> <a href="https://publications.waset.org/abstracts/53148/effect-of-ethanol-concentration-and-enzyme-pre-treatment-on-bioactive-compounds-from-ginger-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Efficacy of Ginger (Zingiber officinale) and a Zeolite (Hydrated Sodium Calcium Aluminosilicate) in the Amelioration of Aflatoxicosis in Broilers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Stevens">Ryan Stevens</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20L.%20Bryden"> Wayne L. Bryden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on the effects of ginger and a zeolite (toxin binder) in reducing the toxic effects of aflatoxin B1 (AFB1) in broiler chickens 7 to 49 days of age. The chicks were maintained normally until experimental diets were introduced on day 7 post-hatching. Nine hundred and thirty six, 7-d-old broiler chickens were randomly assigned to 18 treatment groups; each group had four replicates, each with 13 chickens. The experimental groups or diets had factorial combinations of the following; AFB1 0, 1 and 2 mg/kg diet, ginger 0 and 5g/kg diet, and zeolite 0, 15 and 30 g/kg diet. Diets were based on corn and soybean meal and a starter diet was fed from 1 to 14 days, a grower diet from15 to 28 days and a finisher diet was provided from day 29 until the end of the experiment. Both dietary levels of AFB1 decreased (P<0.05) body weight and feed conversion, and increased relative liver weights. Independent dietary inclusion of ginger or zeolite restored chick performance when diets contained 1mg/kg but not at 2mg/kg. Supplementation of zeolite together with ginger improved performance of birds fed contaminated diets. Interestingly, adding ginger to the control diet that was not contaminated with AFB1 improved (P<0.05) performance. Our results suggest that toxin binders and ginger can provide protection against the negative effects of AFB1 on performance of broiler chicks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/107285/efficacy-of-ginger-zingiber-officinale-and-a-zeolite-hydrated-sodium-calcium-aluminosilicate-in-the-amelioration-of-aflatoxicosis-in-broilers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> In vivo Protective Effects of Ginger Extract on Cyclophosphamide Induced Chromosomal Aberrations in Bone Marrow Cells of Swiss Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Yadamma">K. Yadamma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rudrama%20Devi"> K. Rudrama Devi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protective effect of Ginger Extract against cyclophosphamide induced cytotoxicity was evaluated in in vivo animal model using analysis of chromosomal aberrations in somatic cells of mice. Three doses of Ginger Extract (150mg/kg, 200mg/kg, and 250mg/kg body weight) were selected for modulation and given to animals after priming. The animals were sacrificed 24, 48, 72 hrs after the treatment and slides were prepared for the incidence of chromosomal aberrations in bone marrow cells of mice. When animals were treated with cyclophosphamide 50mg/kg, showed cytogenetic damage in somatic cells. However, a significant decrease was observed in the percentage of chromosomal aberrations when animals were primed with various doses of Ginger Extract. The present results clearly indicate the protective nature of Ginger Extract against cyclophosphamide induced genetic damage in mouse bone marrow cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ginger%20extract" title="ginger extract">ginger extract</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow%20cells" title=" bone marrow cells"> bone marrow cells</a>, <a href="https://publications.waset.org/abstracts/search?q=swiss%20albino%20mice" title=" swiss albino mice"> swiss albino mice</a> </p> <a href="https://publications.waset.org/abstracts/11921/in-vivo-protective-effects-of-ginger-extract-on-cyclophosphamide-induced-chromosomal-aberrations-in-bone-marrow-cells-of-swiss-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austin%20Ikechukwu%20Gbasouzor">Austin Ikechukwu Gbasouzor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Nna%20Omenyi"> Sam Nna Omenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabuj%20Malli"> Sabuj Malli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy where determined. For this purpose, the experiments were done at six levels of varied temperature ranging from (10, 20, 30, 40, 50, 60°C). The average effective diffusion coefficient for their studies samples for temperature range of 40°C to 70°C was 4.48 x10-10m²/s, 4.96 x10-10m²/s, and 5.31 x10-10m²/s for 0.8, 1.5 and 3m/s drying air velocity respectively. These values closely agreed with the values of effective diffusion coefficients obtained in these studies for the variously treated ginger rhizomes and test conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title="activation energy">activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20coefficients" title=" diffusion coefficients"> diffusion coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20model" title=" drying model"> drying model</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20time" title=" drying time"> drying time</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20rhizomes" title=" ginger rhizomes"> ginger rhizomes</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20ratio" title=" moisture ratio"> moisture ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20layer" title=" thin layer"> thin layer</a> </p> <a href="https://publications.waset.org/abstracts/120153/determination-of-natural-logarithm-of-diffusion-coefficient-and-activation-energy-of-thin-layer-drying-process-of-ginger-rhizome-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Effect of Ginger, Red Pepper, and Their Mixture in Diet on Growth Performance and Body Composition of Oscar, Astronotus ocellatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Jorjani">Sarah Jorjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Ghelichi"> Afshin Ghelichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazyar%20Kamali"> Mazyar Kamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to estimate the effect of addition of ginger and red pepper and their mixture in diet on growth performance, survival rate and body composition of Astronotus ocellatus (Oscar fish). This study had been carried out for 8 weeks. For this reason 132 oscar fishes with intial weight of 2.44±0.26 (gr) were divided into 4 treatments with three replicate as compeletly randomize design test and fed by 100% Biomar diet (T1), Biomar + red pepper (55 mg/kg) (T2), Biomar + ginger (1%) (T3) and Biomar + mixture of red pepper and ginger (T4).The fish were fed in 5% of their body weight. The results showed T2 have significant differences in most of growth parameters in compare with other treatments, such as PBWI, SGR, PER and SR (P < 0.05), but there were no significant differences between treatments in FCR and FE (P > 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20pepper" title="red pepper">red pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=oscar%20fish" title=" oscar fish"> oscar fish</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a> </p> <a href="https://publications.waset.org/abstracts/37622/effect-of-ginger-red-pepper-and-their-mixture-in-diet-on-growth-performance-and-body-composition-of-oscar-astronotus-ocellatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Effect of Omeprazole on the Renal Cortex of Adult Male Albino Rats and the Possible Protective Role of Ginger: Histological and Immunohistochemical study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nashwa%20A.%20Mohamed">Nashwa A. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Omeprazole is a proton pump inhibitor used commonly in the treatment of acid-peptic disorders. Although omeprazole is generally well tolerated, serious adverse effects such as renal failure have been reported. Ginger is an antioxidant that could play a protective role in models of experimentally induced nephropathies. Aim of the work: The aim of this work was to study the possible histological changes induced by omeprazole on renal cortex and evaluate the possible protective effect of ginger on omeprazole-induced renal damage in adult male albino rats. Materials and methods: Twenty-four adult male albino rats divided into four groups (six rats each) were used in this study. Group I served as the control group. Rats of group II received only an aqueous extract of ginger daily for 3 months through a gastric tube. Rats of group III were received omeprazole orally through a gastric tube for 3 months. Rats of group IV were given both ginger and omeprazole at the same doses and through the same routes as the previous two groups. At the end of the experiment, the rats were sacrificed. Renal tissue samples were processed for light, immunohistochemical and electron microscopic examination. The obtained results were analysed morphometrically and statistically. Results: Omeprazole caused several histological changes in the form of loss of normal appearance of renal cortex with degenerative changes in the renal corpuscle and tubules. Cellular infilteration was also observed. The filteration barrier was markedly affected. Ginger ameliorated the omeprazole-induced histological changes. Conclusion: Omeprazole induced injurious effects on renal cortex. Coadministration of ginger can ameliorate the histological changes induced by omeprazole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ginger" title="ginger">ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=omeprazole" title=" omeprazole"> omeprazole</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/29467/effect-of-omeprazole-on-the-renal-cortex-of-adult-male-albino-rats-and-the-possible-protective-role-of-ginger-histological-and-immunohistochemical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Superoxide Dismutase Activity of Male Rats after Administration of Extract and Nanoparticle of Ginger Torch Flower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tresna%20Lestari">Tresna Lestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Tita%20Nofianti"> Tita Nofianti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ade%20Yeni%20Aprilia"> Ade Yeni Aprilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilis%20Tuslinah"> Lilis Tuslinah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruswanto%20Ruswanto"> Ruswanto Ruswanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticle formulation is often used to improve drug absorptivity, thus increasing the sharpness of the action. Ginger torch flower extract was formulated into nanoparticle form using poloxamer 1, 3 and 5%. The nanoparticle was then characterized by its particle size, polydispersity index, zeta potential, entrapment efficiency and morphological form by SEM. The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index less than 0.5 for all formulations, zeta potential -41.0 - (-24.3) mV and entrapment efficiency 89.93-97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of the drug to enhance superoxide dismutase activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superoxide%20dismutase" title="superoxide dismutase">superoxide dismutase</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20torch%20flower" title=" ginger torch flower"> ginger torch flower</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=poloxamer" title=" poloxamer"> poloxamer</a> </p> <a href="https://publications.waset.org/abstracts/91992/superoxide-dismutase-activity-of-male-rats-after-administration-of-extract-and-nanoparticle-of-ginger-torch-flower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Antioxidant Activity of Nanoparticle of Etlingera elatior (Jack) R.M.Sm Flower Extract on Liver and Kidney of Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tita%20Nofianti">Tita Nofianti</a>, <a href="https://publications.waset.org/abstracts/search?q=Tresna%20Lestari"> Tresna Lestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ade%20Y.%20Aprillia"> Ade Y. Aprillia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilis%20Tuslinah"> Lilis Tuslinah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruswanto%20Ruswanto"> Ruswanto Ruswanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticle technology gives a chance for drugs, especially natural based product, to give better activities than in its macromolecule form. The ginger torch is known to have activities as an antioxidant, antimicrobial, anticancer, etc. In this research, ginger torch flower extract was nanoparticlized using poloxamer 1, 3, and 5%. Nanoparticle was charaterized for its particle size, polydispersity index, zeta potential, entrapment efficiency, and morphological form by SEM (scanning electron microscope). The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index is less than 0.5 for all formulations, zeta potential is -41.0 to (-24.3) mV, and entrapment efficiency is 89.93 to 97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of drug to enhance superoxide dismutase activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superoxide%20dismutase" title="superoxide dismutase">superoxide dismutase</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20torch%20flower" title=" ginger torch flower"> ginger torch flower</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=poloxamer" title=" poloxamer "> poloxamer </a> </p> <a href="https://publications.waset.org/abstracts/92307/antioxidant-activity-of-nanoparticle-of-etlingera-elatior-jack-rmsm-flower-extract-on-liver-and-kidney-of-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Reducing the Cooking Time of Bambara Groundnut (BGN)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auswell%20Amfo-Antiri">Auswell Amfo-Antiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Eshun"> Esther Eshun</a>, <a href="https://publications.waset.org/abstracts/search?q=Theresa%20A.%20Amu"> Theresa A. Amu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooking Bambara groundnut (Bambara beans) is time and energy-consuming. Over time, some substances have been used to help reduce cooking time and save energy. This experimental study was carried out to find ways of reducing the cooking time of Bambara groundnut using selected organic substances. Twenty grams (20g) each of fresh pawpaw leaves, guava leaves, ginger, onion, and palm kernel were cooked with five samples of 200g of the creamy variety of raw Bambara groundnut. A control was cooked without any organic substance added. All six samples were cooked with equal quantities of water (4L); the gas mark used for cooking the samples was marked 5, the highest for the largest burner, using the same cooking pot. Gas matter. The control sample used 192 minutes to cook thoroughly. The ginger-treated sample (AET02) had the shortest cooking time of 145 minutes, followed by the onion-treated sample (AET05), with a cooking time of 157 minutes. The sample cooked with Palm kernel (AET06) and Pawpaw (AET04) used 172 minutes and 174 minutes, respectively, while sample AET03, cooked with Guava, used 185 minutes for cooking. The difference in cooking time for the sample treated with ginger (AET02) and onion (AET05) was 47 minutes and 35 minutes, respectively, as compared with the control. The comparison between Control and Pawpaw produced [p=0.163>0.05]; Control and Ginger yielded [p=0.006<0.05]; Control and Kernel resulted in [p=0.128>0.05]; Control and Guava resulted in [p=0.560>0.05]. The study concluded that ginger and onions comparatively reduced the cooking time for Bambara ground nut appreciably. The study recommended that ginger and onions could be used to reduce the cooking time of Bambara groundnut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooking%20time" title="cooking time">cooking time</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20substances" title=" organic substances"> organic substances</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=onions" title=" onions"> onions</a>, <a href="https://publications.waset.org/abstracts/search?q=pawpaw%20leaves" title=" pawpaw leaves"> pawpaw leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20leaves" title=" guava leaves"> guava leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bambara%20groundnut" title=" bambara groundnut"> bambara groundnut</a> </p> <a href="https://publications.waset.org/abstracts/164850/reducing-the-cooking-time-of-bambara-groundnut-bgn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Zainuddin">N. A. Zainuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Norhuda"> I. Norhuda</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Adeib"> I. S. Adeib</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Mustapa"> A. N. Mustapa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Sarijo"> S. H. Sarijo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO<sub>2</sub> process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title="particle size">particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=RESS" title=" RESS"> RESS</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20oil%20particle" title=" solid oil particle"> solid oil particle</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/37671/rapid-expansion-supercritical-solution-ress-carbon-dioxide-as-an-environmental-friendly-method-for-ginger-rhizome-solid-oil-particles-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Syafiq%20Hakimi%20Kamaruddin">Muhamad Syafiq Hakimi Kamaruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhidayah%20Suleiman"> Norhidayah Suleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional" title="conventional">conventional</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=non-environmentally" title=" non-environmentally"> non-environmentally</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/148373/the-effect-of-supercritical-carbon-dioxide-process-variables-on-the-recovery-of-extracts-from-bentong-ginger-study-on-process-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Protective Effect of Ginger Root Extract on Dioxin-Induced Testicular Damage in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Abdulroof%20Saleh">Hamid Abdulroof Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Dioxins are one of the most widely distributed environmental pollutants. Dioxins consist of feedstock during the preparation of some industries, such as the paper industry as they can be produced in the atmosphere during the process of burning garbage and waste, especially medical waste. Dioxins can be found in the adipose tissues of animals in the food chain as well as in human breast milk. 2,3,7,8-Tetrachlorodibenzo-pdioxin (TCDD) is the most toxic component of a large group of dioxins. Humans are exposed to TCDD through contaminated food items like meat, fish, milk products, eggs etc. Recently, natural formulations relating to reducing or eliminating TCDD toxicity have been in focus. Ginger rhizome (Zingiber officinale R., family: Zingiberaceae), is used worldwide as a spice. Both antioxidative and androgenic activity of Z. officinale was reported in animal models. Researchers showed that ginger oil has dominative protective effect on DNA damage and might act as a scavenger of oxygen radical and might be used as an antioxidant. Aim of the work: The present study was undertaken to evaluate the toxic effect of TCDD on the structure and histoarchitecture of the testis and the protective role of co-administration of ginger root extract to prevent this toxicity. Materials & Methods: Male adult rats of Sprague-Dawley strain were assigned to four groups, eight rats in each; control group, dioxin treated group (given TCDD at the dose of 100 ng/kg Bwt/day by gavage), ginger treated group (given 50 mg/kg Bwt/day of ginger root extract by gavage), dioxin and ginger treated group (given TCDD at the dose of 100 ng/kg Bwt/day and 50 mg/kg Bwt/day of ginger root extract by gavages). After three weeks, rats were weighed and sacrificed where testis were removed and weighted. The testes were processed for routine paraffin embedding and staining. Tissue sections were examined for different morphometric and histopathological changes. Results: Dioxin administration showed a harmful effects in the body, testis weight and other morphometric parameters of the testis. In addition, it produced varying degrees of damage to the seminiferous tubules, which were shrunken and devoid of mature spermatids. The basement membrane was disorganized with vacuolization and loss of germinal cells. The co-administration of ginger root extract showed obvious improvement in the above changes and showed reversible morphometric and histopathological changes of the seminiferous tubules. Conclusion: Ginger root extract treatment in this study was successful in reversing all morphometric and histological changes of dioxin testicular damage. Therefore, it showed a protective effect on testis against dioxin toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dioxin" title="dioxin">dioxin</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=testis" title=" testis"> testis</a> </p> <a href="https://publications.waset.org/abstracts/28135/protective-effect-of-ginger-root-extract-on-dioxin-induced-testicular-damage-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Libido and Semen Quality Characteristics of Post-Pubertal Rabbit Bucks Fed Ginger Rhizome Meal Based Diets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20P.%20Ogbuewu">I. P. Ogbuewu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20F.%20Etuk"> I. F. Etuk</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20U.%20Odoemelam"> V. U. Odoemelam</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20C.%20Okoli"> I. C. Okoli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20U.%20Iloeje"> M. U. Iloeje </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of dietary ginger rhizome meal on libido and semen characteristics of post-pubertal rabbit bucks was investigated in an experiment that lasted for 12 weeks. Thirty-six post-pubertal bucks were randomly assigned to 4 dietary groups of 9 rabbits each in a completely randomized design. Four experimental diets were formulated to contain ginger rhizome meal at 0 g/kg feed (BT0), 5g/kg feed (BT5), 10 g/kg feed (BT10), and 15g/kg feed (BT15) were fed ad libitum to the experimental animals. Results revealed that semen colour changed from cream milky to milky. Data on semen pH and sperm concentration were similar (p>0.05) among the dietary groups. Semen volume for the bucks in BT0 (0.64 mL) and BT5 (0.60 mL) groups were significantly (p<0.05) higher than those in BT10 (0.44 mL) and BT15 (0.46 mL) groups. Total spermatozoa concentration value was significantly (p<0.05) higher in BT0 and BT5 groups than those in BT10 and BT15 groups. Sperm motility and percent live sperm declined (p<0.05) progressively among the treatment groups. Percent dead sperm were significantly (p<0.05) lower for bucks in BT0 group than in BT10 and BT15 groups. Reaction time had a dose-dependent increase; however, the observed difference was not significant (p>0.05). These results indicate that the inclusion of ginger rhizome meal at 5-15g per kg feed in ration for post-pubertal rabbit bucks could cause mild depressive effect on semen production and quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rabbits" title="rabbits">rabbits</a>, <a href="https://publications.waset.org/abstracts/search?q=semen" title=" semen"> semen</a>, <a href="https://publications.waset.org/abstracts/search?q=libido" title=" libido"> libido</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a> </p> <a href="https://publications.waset.org/abstracts/17679/libido-and-semen-quality-characteristics-of-post-pubertal-rabbit-bucks-fed-ginger-rhizome-meal-based-diets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Study on the Effect Cabbage (Brassica oleracea) and Ginger (Zingiber officinale) Extracts on Rat Liver Injuries Induced by Carbon tetrachloride (CCl4)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20F.%20Hamouda">Asmaa F. Hamouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Randa%20M%20Shrourou"> Randa M Shrourou </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cabbage (Brassica oleracea) and Ginger (Zingiber officinale) constitute apportion of regular human diet. The effect of Cabbage(CE) and Ginger extracts(GE) separately on liver nitric oxide (NO), malondialdehyde (MDA), as well as serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, total cholesterol(TC), triglyceride(T.G), high density lipoprotein(HDL cholesterol), low density lipoprotein (LDL cholesterol), thyroid-stimulating hormone (TSH), Triiodothyronine (T3), Thyroxine (T4) in rats treated and untreated with carbon tetrachloride (CCl4) was studied. The levels of NO, MDA, as well as serum AST, ALT, total bilirubin, TC, T.G, LDLand TSH showed an elevation and decline in HDL, T3, and T4 in rats treated with CCl4 as compared to control. Treatment of rats with GE pre, during, and post CCl4 administration improved NO, MDA, as well as serum AST, ALT, total bilirubin, TC, T.G, HDL, LDL, TSH, T3, T4 as compared to CCl4, indicates that GE improve thyroid function and reduced oxidative stress as well as injuries induced by CCl4. Treatment of rats with CE pre, during, and post CCl4 administration did not improved in the thyroid hormones and lipid profile levels as compared to CCl4. These findings suggest that ginger treatment exerts a protective effect on metabolic disorders by decreasing oxidative stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20injuries" title="liver injuries">liver injuries</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20tetrachloride%20%28CCl4%29" title=" carbon tetrachloride (CCl4)"> carbon tetrachloride (CCl4)</a>, <a href="https://publications.waset.org/abstracts/search?q=cabbage%20%28Brassica%20oleracea%29" title=" cabbage (Brassica oleracea)"> cabbage (Brassica oleracea)</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20%28Zingiber%20officinale%29" title=" ginger (Zingiber officinale)"> ginger (Zingiber officinale)</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20function" title=" thyroid function"> thyroid function</a> </p> <a href="https://publications.waset.org/abstracts/37629/study-on-the-effect-cabbage-brassica-oleracea-and-ginger-zingiber-officinale-extracts-on-rat-liver-injuries-induced-by-carbon-tetrachloride-ccl4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Effect of Ginger Diets on in vitro Fermentation Characteristics, Enteric Methane Production and Performance of West African Dwarf Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dupe%20Olufunke%20Ogunbosoye">Dupe Olufunke Ogunbosoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Thaofik%20Badmos%20Mustapha"> Thaofik Badmos Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Lanre%20Shaffihy%20Adeaga"> Lanre Shaffihy Adeaga</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20O.%20Imam"> R. O. Imam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efforts have been made to reduce ruminants' methane emissions while improving animal productivity. Hence, an experiment was conducted to investigate the in vitro fermentation pattern, methane production, and performance of West African dwarf (WAD) rams-fed diets at graded levels of ginger. Sixteen (16) rams were randomly allocated into four dietary treatments with four animals per treatment in a completely randomized design for 84 days. Ginger powder was added at 0.00%, 0.25%, 0.50% and 0.75% as T1, T2, T3 and T4 respectively. The results indicated that at the 24-hour diet incubation, gas production, methane, metabolizable energy (ME), organic matter digestibility (OMD), and short-chain fatty acids (SCFA) concentrations decreased with the increasing level of ginger. Conversely, the sheep-fed T4 recorded the highest daily weight gain (47.61g/day), while the least daily weight gain (17.86g/day) was recorded in ram-fed T1. The daily weight gain of the rams fed T3 and T4 was similar but significantly different from the daily weight gain in T1 (17.86g/day) and T2 (29.76g/day). Daily feed intake was not significantly different across the treatments. T4 recorded the best response regarding feed conversion ratio (18.59) compared with other treatments. Based on the results obtained, rams fed T4 perform best in terms of growth and methane production. It is therefore concluded that the addition of ginger powder into the diet of sheep up to 0.75% enhances the growth rate of WAD sheep and reduces enteric methane production to create a smart nutrition system in ruminant animal production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enteric%20methane" title="enteric methane">enteric methane</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep" title=" sheep"> sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition%20system" title=" nutrition system"> nutrition system</a> </p> <a href="https://publications.waset.org/abstracts/171151/effect-of-ginger-diets-on-in-vitro-fermentation-characteristics-enteric-methane-production-and-performance-of-west-african-dwarf-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Study on Preparation and Storage of Composite Vegetable Squash of Tomato, Pumpkin and Ginger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Premakumar">K. Premakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Lakmali"> R. G. Lakmali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20C.%20U.%20Senarathna"> S. M. A. C. U. Senarathna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present world, production and consumption of fruit and vegetable beverages have increased owing to the healthy life style of the people. Therefore, a study was conducted to develop composite vegetable squash by incorporating nutritional, medicinal and organoleptic properties of tomato, pumpkin and ginger. Considering the finding of several preliminary studies, five formulations in different combinations tomato pumpkin were taken and their physico-chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content and total sugar and organoleptic parameters such as colour, aroma, taste, nature, overall acceptability were analyzed. Then the best sample was improved by using 1 % ginger (50% tomato+ 50% pumpkin+ 1% ginger). Best three formulations were selected for storage studied. The formulations were stored at 30 °C room temperature and 70-75% of RH for 12 weeks. Physicochemical parameters , organoleptic and microbial activity (total plate count, yeast and mold, E-coil) were analyzed during storage periods and protein content, fat content, ash were also analysed%.The study on the comparison of physico-chemical and sensory qualities of stored Squashes was done up to 12 weeks storage periods. The nutritional analysis of freshly prepared tomato pumpkin vegetable squash formulations showed increasing trend in titratable acidity, pH, total sugar, non -reducing sugar, total soluble solids and decreasing trend in ascorbic acid and reducing sugar with storage periods. The results of chemical analysis showed that, there were the significant different difference (p < 0.05) between tested formulations. Also, sensory analysis also showed that there were significant differences (p < 0.05) for organoleptic character characters between squash formulations. The highest overall acceptability was observed in formulation with 50% tomato+ 50% pumpkin+1% ginger and all the all the formulations were microbiologically safe for consumption. Based on the result of physico-chemical characteristics, sensory attributes and microbial test, the Composite Vegetable squash with 50% tomato+50% pumpkin+1% ginger was selected as best formulation and could be stored for 12 weeks without any significant changes in quality characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutritional%20analysis" title="nutritional analysis">nutritional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=formulations" title=" formulations"> formulations</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20attributes" title=" sensory attributes"> sensory attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=squash" title=" squash"> squash</a> </p> <a href="https://publications.waset.org/abstracts/59602/study-on-preparation-and-storage-of-composite-vegetable-squash-of-tomato-pumpkin-and-ginger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Resistance Training and Ginger Consumption on Cytokines Levels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Barari">Alireza Barari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Abdi"> Ahmad Abdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regular body trainings cause adaption in various system in body. One of the important effect of body training is its effect on immune system. It seems that cytokines usually release after long period exercises or some exercises which cause skeletal muscular damages. If some of the cytokines which cause responses such as inflammation of cells in skeletal muscles, with manipulating of training program, it can be avoided or limited from those exercises which induct cytokines release. Ginger plant is a kind of medicinal plants which is known as a anti inflammation plant. This plant is as most precedence medicinal plants in medicine science especially in inflammation cure. The aim of the present study was the effect of selected resistance training and consumption of ginger extract on IL-1α and TNFα untrained young women. The population includes young women interested in participating in the study with the average of 30±2 years old from Abbas Abad city among which 32 participants were chosen randomly and divided into 4 four groups, resistance training (R), resistance training and ginger consumption(RG), Ginger consumption(G)and Control group(C). The training groups performed circuit resistance training at the intensity of 65-75% one repeat maximum, 3 days a week for 6 weeks. Besides resistance training, subjects were given either ginseng (5 mg/kg per day) or placebo. Prior to and 48 hours after interventions body composition was measured and blood samples were taken in order to assess serum levels of IL-1α and TNFα. Plasma levels of cytokines were measured with commercially available ELISA Kits.IL-1α kit and TNFα kit were used in this research. To demonstrate the effectiveness of the independent variable and the comparison between groups, t-test and ANOVA were used. To determine differences between the groups, the Scheffe test was used that showed significant changes in any of the variables. we observed that circuit resistance training in R and RG groups can significant decreased in weight and body mass index in untrained females (p<0.05). The results showed a significant decreased in the mean level of IL-1α levels before and after the training period in G group (p=0.046) and RG group (p=0.022). Comparison between groups also showed there was significant difference between groups R-RG and RG-C. Intergroup comparison results showed that the mean levels of TNFα before and after the training in group G (p=0.044) and RG (p=0.037), significantly decreased. Comparison between groups also showed there was significant difference between groups R–RG , R-G ,RG-C and G-C. The research shows that circuit resistance training with reducing overload method results in systemic inflammation had significant effect on IL-1α levels and TNFα. Of course, Ginger can counteract the negative effects of resistance training exercise on immune function and stability of the mast cell membrane. Considerable evidence supported the anti-inflammatory properties of ginger for several constituents, especially gingerols, shogaols, paradols, and zingerones, through decreased cytokine gene TNF α and IL-1Α expression and inhibition of cyclooxygenase 1 and 2. These established biological actions suggest that ingested ginger could block the increase in IL-1α. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance%20training" title="resistance training">resistance training</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-1%CE%B1" title=" IL-1α "> IL-1α </a>, <a href="https://publications.waset.org/abstracts/search?q=TNF%CE%B1" title=" TNFα"> TNFα</a> </p> <a href="https://publications.waset.org/abstracts/34938/resistance-training-and-ginger-consumption-on-cytokines-levels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Cytotoxicity thiamethoxam Study on the Hepatopancreas and Its Reversibility under the Effect of Ginger in Helix aspersa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Bensoltane">Samira Bensoltane</a>, <a href="https://publications.waset.org/abstracts/search?q=Smina%20Ait%20Hamlet"> Smina Ait Hamlet</a>, <a href="https://publications.waset.org/abstracts/search?q=Samti%20Meriem"> Samti Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Semmasel%20Asma"> Semmasel Asma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Living organisms in the soil are subject to regular fluctuations of abiotic parameters, as well as a chemical contamination of the environment due to human activities. They are subject to multiple stressors they face. The aim of our work was to study the effects of insecticide: thiamethoxam (neonicotinoid), and the potential reversibility of the effects by an antioxidant: ginger on a bioindicator species in ecotoxicology, the land snail Helix aspersa. The effects were studied by a targeted cell approach of evaluating the effect of these molecules on tissue and cellular aspect of hepatopancreas through histological study. Treatment with thiamethoxam concentrations 10, 20, and 40 mg/l shows signs of inflammation even at low concentrations and from the 5th day of treatment. Histological examination of the hepatopancreas of snails treated with thiamethoxam showed significant changes from the lowest concentrations tested , note intertubular connective tissue enlargement, necrosis deferent types of cells (cells with calcium , digestive, excretory) , also damage acini, alteration of the apical membrane and lysis of the basement membrane in a dose- dependent manner. After 10 days of treatment and with 40 mg/l, the same changes were observed with a very advanced degeneration of the wall of the member that could be confused with the cell debris. For cons, the histological study of the hepatopancreas in Helix aspersa treated with ginger for a period of 15 days after stopping treatment with thiamethoxam has shown a partial regeneration of hepatopancreatic tissue snails treated with all concentrations of thiamethoxam and especially in the intertubular connective tissue of the wall and hepatopancreatic digestive tubules. Finally, we can conclude that monitoring the effect of the insecticide thiamethoxam showed significant alterations, however, treatment with ginger shows regeneration of damaged cells themselves much sharper at low concentration (10 mg/L). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helix%20aspersa" title="Helix aspersa">Helix aspersa</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticides" title=" insecticides"> insecticides</a>, <a href="https://publications.waset.org/abstracts/search?q=thiamethoxam" title=" thiamethoxam"> thiamethoxam</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatopancreas" title=" hepatopancreas"> hepatopancreas</a> </p> <a href="https://publications.waset.org/abstracts/13125/cytotoxicity-thiamethoxam-study-on-the-hepatopancreas-and-its-reversibility-under-the-effect-of-ginger-in-helix-aspersa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Azian">M. N. Azian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ilia%20Anisa"> A. N. Ilia Anisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Iwai"> Y. Iwai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20bioactive%20compounds" title=" ginger bioactive compounds"> ginger bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=soxhlet%20extraction" title=" soxhlet extraction"> soxhlet extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20water%20extraction" title=" accelerated water extraction"> accelerated water extraction</a> </p> <a href="https://publications.waset.org/abstracts/9278/mechanisms-of-ginger-bioactive-compounds-extract-using-soxhlet-and-accelerated-water-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> The Study of Natural Synthetic Linalool Isolated from Ginger (Zingiber officinale) Using Photochemical Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elgendy%20M.%20Eman">Elgendy M. Eman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameeh%20Y.%20Manal"> Sameeh Y. Manal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ginger (Zingiber officinale) is so important plant for its medicinal properties from ancient time and used as a spicy herb all over the world. This study was designed to examine the chemical composition of the essential oil and various crude extracts (n-hexane, chloroform and ethanol) of Zingiber officinale as well. GC–MS analyses of the essential oil resulted in the identification of 68 compounds,; 1,8-cineole (8.9%) and linalool (15.1%) were the main components in the essential oil .The crude extracts were analyzed with TLC plates and revealed several spots under UV light; however the hexane extract exhibited the highest number of spots compared to the other extracts. Hexane extract was selected for GC-MS profile, and the results revealed the presence of several volatile compounds and linalool was the major component with high percentage (11.4 %). Further investigation on the structure elucidation of the bioactive compound (linalool) using IR, GC-MS and NMR techniques compared to authenticated linalool then subjected to purification using preparative and column chromatography. Linalool has been epoxidized using m-chloroperbenzoicacid (mcpba) at room temperature in the presence of florescent lamps to give two cyclic oxygenated products (furan epoxide & pyran epoxide) as a stereospecific product.it is concluded that, oxidation process is enhanced by irradiation to form epoxide derivative, which acts as the precursor of important products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxide" title="epoxide">epoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=linalool" title=" linalool"> linalool</a> </p> <a href="https://publications.waset.org/abstracts/38434/the-study-of-natural-synthetic-linalool-isolated-from-ginger-zingiber-officinale-using-photochemical-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanwarat%20Kajsongkram">Tanwarat Kajsongkram</a>, <a href="https://publications.waset.org/abstracts/search?q=Saowalux%20Rotamporn"> Saowalux Rotamporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirinat%20Limbunruang"> Sirinat Limbunruang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirinan%20Thubthimthed."> Sirinan Thubthimthed.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20-60 and 6-18 µg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 µg/ml and for 6S were 0.3672 and 1.2238 µg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ginger" title="ginger">ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=6-gingerol" title=" 6-gingerol"> 6-gingerol</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=6-shogaol" title=" 6-shogaol"> 6-shogaol</a> </p> <a href="https://publications.waset.org/abstracts/33281/development-and-validation-of-a-hplc-method-for-6-gingerol-and-6-shogaol-in-joint-pain-relief-gel-containing-ginger-zingiber-officinale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Intercropping Immature Oil Palm (Elaeisguineensis) with Banana, Ginger and Turmeric in Galle District, Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Dissanayake">S. M. Dissanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20R.%20Palihakkara"> I. R. Palihakkara </a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Premathilaka"> K. G. Premathilaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil palm (Elaeisguineensis) is the world’s leading vegetable oil-producing plant and is well established as a perennial plantation crop in tropical countries. Oil palm in Sri Lanka has spread over 10,000 hectares in the wet zone of the Island. In immature plantations, land productivity can be increased with some selected intercrops. At the immature stage of the plantations (age up to 3-5 years), there is a large amount of free space available inside the plantations. This study attempts to determine the suitability of different intercrops during the immature phase of the oil palm. A field experiment is being conducted at Thalgaswella estate (WL2a) in Galle district, Sri Lanka. The objectives of the study are to evaluate and recommend a suitable immature oil palm-based intercropping system/s. This experiment was established with randomized complete block design (RCBD) with four treatments, including control in three replicates. Banana, ginger, and turmeric were selected as intercrops. Growth parameters of intercrops (plant height, length, width of D-leaf, and yield of intercrops) and girth, length, and number of leaflets of 17th frond in oil palms were taken at two months intervals. In addition to this, chlorophyll content was also measured in both intercrops and oil palm trees. Soil chemical parameters were measured annually. Results were statistically analyzed with SAS software. Results revealed that intercropped banana, turmeric, and ginger had given yields of 7.61Mt/ha, 4.92Mt/ha, and 4.53Mt/ha, respectively. When comparing these yields with mono-crop, banana, turmeric, and ginger intercrop yields as percentages of 16.9%, 24.6%, and 30.2%, respectively. The results of this study could be used to make appropriate policies to increase the unit land productivity in oil palm plantations in a low country wet zone (WL2a) of Sri Lanka. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inter-cropping" title="inter-cropping">inter-cropping</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=policies" title=" policies"> policies</a>, <a href="https://publications.waset.org/abstracts/search?q=mono-crop" title=" mono-crop"> mono-crop</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20productivity" title=" land productivity"> land productivity</a> </p> <a href="https://publications.waset.org/abstracts/141821/intercropping-immature-oil-palm-elaeisguineensis-with-banana-ginger-and-turmeric-in-galle-district-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Potential Impact of Sodium Salicylate Nanoemulsion on Expression of Nephrin in Nephrotoxic Experimental Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Mohamed">Nadia A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20El-Khayat"> Zakaria El-Khayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Wagdy%20K.%20B.%20Khalil"> Wagdy K. B. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20E.%20El-Naggar">Mehrez E. El-Naggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug nephrotoxicity is still a problem for patients who have taken drugs for elongated periods or permanently. Ultrasound-assisted sol−gel method was used to prepare hollow structured poroussilica nanoemulsion loaded with sodium salicylate as a model drug. The work was extended to achieve the target of the current work via investigating the protective role of this nanoemulsion model as anti-inflammatory drug or ginger for its antioxidant effect against cisplatin-induced nephrotoxicity in male albino rats. The results clarify that the nanoemulsion model was synthesized using ultrasonic assisted with small size and well stabilization as proved by TEM and DLS analysis. Additionally, blood urea nitrogen (BUN), Serum creatinine (SC) and Urinary total protein (UTP) were increased, and the level of creatinine clearance (Crcl) was decreased. All those were met with disorders in oxidative stress and downregulation in the expression of the nephrin gene. Also, histopathological changes of the kidney tissue were observed. These changes back to normal by treatment with silica nanoparticles loaded sodium salicylate (Si-Sc-NPs), ginger or both. Conclusions oil/water nanoemulsion of (Si-Sc NPs) and ginger showed a protective and promising preventive strategy against nephrotoxicity due to their antioxidant and anti-inflammatory effects, and that offers a new approach in attenuating drug induced nephrotoxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20salicylate%20nanoencapsulation" title="sodium salicylate nanoencapsulation">sodium salicylate nanoencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nephrin%20mRNA" title=" nephrin mRNA"> nephrin mRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20nephrotoxicity" title=" drug nephrotoxicity"> drug nephrotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cisplatin" title=" cisplatin"> cisplatin</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20rats" title=" experimental rats"> experimental rats</a> </p> <a href="https://publications.waset.org/abstracts/139252/potential-impact-of-sodium-salicylate-nanoemulsion-on-expression-of-nephrin-in-nephrotoxic-experimental-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Effect of Ginger (Zingiber Officinale) And Garlic (Allium Sativum) Mixture on Growth Performance, Feed Utilization and Survival of Clarias Gariepinus Fingerlings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20I.%20Abdullahi">Maryam I. Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleiman%20Aliyu"> Suleiman Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Armaya%27u%20Hamisu%20Bichi"> Armaya'u Hamisu Bichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted at the University Fish Farm, Federal University Dutsinma. The aim of the study was to determine the effects of dietary supplementation of Allium sativum and Zingiber officinale mixture on growth performance, feed utilization and survival of C. gariepinus fingerling reared in tank system. The experimental setup comprised of four treatment (4) groups labeled as T1, T2, T3 and T4, each treatment replicated 3 times with ten (10) fingerlings in each replicate respectively. Treatment 1 contained 0.5% of Zingiber officinale and 0.5% of Allium sativum (ZO-AS: 1.0%), Treatment 2 contained 0.75% Zingiber officinale, and 0.75% garlic (ZO-AS: 1.5%) while T3 contained 1% ginger and 1% Allium sativum (ZO-AS: 2.0%) respectively. The experiment lasted for twelve (12) weeks (84 days). The survival rate ranges from 90% - 100%. With a higher Final Mean Weight (893.10) and Percentage Mean Weight (942.65) as compared to the control group and others. There was no significant difference (p > 0.05) in the FMW (893.10) of the fish fed 1.5g/kg of Garlic and Ginger diets than the control (687.00). The SGR (1.20) of fish-fed Zingiber officinale and Allium sativum fortified diets shows that there is no significant difference between treatments fed 1.5g/kg Zingiber officinale and Allium sativum and the control group. Generally, there was an increased survival rate in the experimental fish-fed Zingiber officinale and Allium sativum-supplemented diets as compared to the control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clarias%20gariepinus" title="clarias gariepinus">clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=zingiber%20officinale" title=" zingiber officinale"> zingiber officinale</a>, <a href="https://publications.waset.org/abstracts/search?q=allium%20sativum" title=" allium sativum"> allium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerlings" title=" fingerlings"> fingerlings</a> </p> <a href="https://publications.waset.org/abstracts/174235/effect-of-ginger-zingiber-officinale-and-garlic-allium-sativum-mixture-on-growth-performance-feed-utilization-and-survival-of-clarias-gariepinus-fingerlings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Assessment of Cell-Rebuilding Efficacy of Selected Food Plants in the Lungs of Wild Rats Living in a Polluted Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahaya%20Tajudeen">Yahaya Tajudeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Joy%20Okpuzor"> Joy Okpuzor</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolu%20Ajayi"> Tolu Ajayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cell-rebuilding efficacy of four food plants eating as vegetables and spices in Nigeria was assessed in the lungs of wild rats (Rattus rattus) living in a polluted environment. The plants are roselle (Hibiscus sabdarrifa), moringa (Moringa oleifera), ginger (Zingiber officinale) and ugwu (Telfairia occidentalis). Sixty rats were caught from the vicinity of a cement factory in Sagamu, Southwestern-Nigeria and grouped into 6. The control group was administered distilled water, while the test groups were given ethanolic extracts of roselle, moringa, ginger, ugwu and the mixture of the extracts for 180 days. The histopathology of the rats was conducted before and at the end of 180 days extracts administration. Before administering the extracts, the lungs of the rats showed vascular congestion, severe fibrosis and congested alveolus; all which were also observed in the lungs of control rats at the end of the treatment. However, the lungs of rats that were treated with the extracts of the plants showed moderate, mild or no histological damage compared to the control rats. The extract of the mixture of the plants performed best, followed by ginger, ugwu and roselle, respectively. These findings suggest that the food plants contain phytonutrients and phytochemicals, which repaired damaged cells and tissues in the exposed rats. Consequently, the plants could play a role in ameliorating health effects of environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20plants" title="food plants">food plants</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20rats" title=" wild rats"> wild rats</a>, <a href="https://publications.waset.org/abstracts/search?q=lung" title=" lung"> lung</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathology" title=" histopathology"> histopathology</a>, <a href="https://publications.waset.org/abstracts/search?q=fibrosis" title=" fibrosis"> fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-rebuilding" title=" cell-rebuilding"> cell-rebuilding</a> </p> <a href="https://publications.waset.org/abstracts/28191/assessment-of-cell-rebuilding-efficacy-of-selected-food-plants-in-the-lungs-of-wild-rats-living-in-a-polluted-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misha%20Ali">Misha Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Qayyum%20Husain"> Qayyum Husain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nida%20Alam"> Nida Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Masood%20%20Ahmad"> Masood Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20yellow%2042" title="acid yellow 42">acid yellow 42</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20peroxidase" title=" ginger peroxidase"> ginger peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a> </p> <a href="https://publications.waset.org/abstracts/57680/high-catalytic-activity-and-stability-of-ginger-peroxidase-immobilized-on-amino-functionalized-silica-coated-titanium-dioxide-nanocomposite-a-promising-tool-for-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ginger&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ginger&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>