CINXE.COM

Search results for: Suriya Gharib

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Suriya Gharib</title> <meta name="description" content="Search results for: Suriya Gharib"> <meta name="keywords" content="Suriya Gharib"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Suriya Gharib" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Suriya Gharib"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Suriya Gharib</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Benthic Foraminiferal Responses to Coastal Pollution for Some Selected Sites along Red Sea, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramadan%20M.%20El-Kahawy">Ramadan M. El-Kahawy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Shafeiy"> M. A. El-Shafeiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abd%20El-Wahab"> Mohamed Abd El-Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Helal"> S. A. Helal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Aboul-Ela"> Nabil Aboul-Ela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the economic importance of Safaga Bay, Quseir harbor and Ras Gharib harbor , a multidisciplinary approach was adopted to invistigate 27 surfecial sediment samples from the three sites and 9 samples for each in order to use the benthic foraminifera as bio-indicators for characterization of the environmental variations. Grain size analyses indicate that the bottom facies in the inner part of quseir is muddy while the inner part of Ras Gharib and Safaga is silty sand and those close to the entrance of Safaga bay and Ras Gharib is sandy facies while quseir still also muddy facies. geochemical data show high concentration of heavy-metals mainly in Ras Gharib due to oil leakage from the hydrocarbon oil field and Safaga bay due to the phosphate mining while quseir is medium concentration due to anthropocentric effect.micropaelontological analyses indicate the boundaries of the highest concentration of heavy metals and those of low concentration as well.the dominant benthic foraminifera in these three sites are Ammonia beccarii, Amphistigina and sorites. the study highlights the worsening of environmental conditions and also show that the areas in need of a priority recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benthic%20foraminifera" title="benthic foraminifera">benthic foraminifera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ras%20Gharib" title=" Ras Gharib"> Ras Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaga" title=" Safaga"> Safaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Quseir" title=" Quseir"> Quseir</a>, <a href="https://publications.waset.org/abstracts/search?q=Red%20Sea" title=" Red Sea"> Red Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a> </p> <a href="https://publications.waset.org/abstracts/14580/benthic-foraminiferal-responses-to-coastal-pollution-for-some-selected-sites-along-red-sea-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> System of Linear Equations, Gaussian Elimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Khan">Rabia Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nargis%20Munir"> Nargis Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Suriya%20Gharib"> Suriya Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Roshana%20Ali"> Syeda Roshana Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct" title="direct">direct</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect" title=" indirect"> indirect</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20stage" title=" backward stage"> backward stage</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20stage" title=" forward stage"> forward stage</a> </p> <a href="https://publications.waset.org/abstracts/33569/system-of-linear-equations-gaussian-elimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Catalytic Performance of Fe3O4 Nanoparticles (Fe3O4 NPs) in the Synthesis of Pyrazolines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Gharib">Ali Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Vojdanifard"> Leila Vojdanifard</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Noroozi%20Pesyan"> Nader Noroozi Pesyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different Pyrazoline derivatives were synthesized by cyclization of substituted chalcone derivatives in presence of hydrazine hydrate. A series of novel 1,3,5-triaryl pyrazoline derivatives has been synthesized by the reaction of chalcone and phenylhydrazine in the presence of the Fe3O4 NPs, in high yields. The structures of compounds obtained were determined by IR and 1H NMR spectra. Fe3O4 NPs was recycled and no appreciable change in activity was noticed after three cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrazoline" title="pyrazoline">pyrazoline</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcone" title=" chalcone"> chalcone</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe3O4" title=" Fe3O4"> Fe3O4</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/22630/catalytic-performance-of-fe3o4-nanoparticles-fe3o4-nps-in-the-synthesis-of-pyrazolines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Technical and Economical Feasibility Analysis of Solar Water Pumping System - Case Study in Iran </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Gharib">A. Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moradi"> M. Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate. Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with a storage battery, AC solar water pumping with a storage tank, and DC direct solar water pumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technical%20and%20economic%20feasibility" title="technical and economic feasibility">technical and economic feasibility</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20pumping%20system" title=" solar water pumping system"> solar water pumping system</a> </p> <a href="https://publications.waset.org/abstracts/34030/technical-and-economical-feasibility-analysis-of-solar-water-pumping-system-case-study-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Vertical Distribution of Heavy Metals and Enrichment in Core Marine Sediments of East Malaysia by INAA and ICP-MS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadreza%20Ashraf">Ahmadreza Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Saion"> Elias Saion</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Gharib%20Shahi"> Elham Gharib Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Kong%20Yap"> Chee Kong Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Suhaimi%20Hamzah"> Mohd Suhaimi Hamzah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia was analyzed for heavy metals using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectroscopy. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42 to 4.26, 0.50 to 2.34, 0.31 to 0.82, 0.20 to 0.61, 0.91 to 1.92, 0.23 to 1.52, and 0.90 to 1.28 respectively, with the modified degree of contamination values below 0.6. Comparative data show that coastal East Malaysia is of low levels of contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20East%20Malaysia" title="coastal East Malaysia">coastal East Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20marine%20sediments" title=" core marine sediments"> core marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=INAA%20and%20ICP%20method" title=" INAA and ICP method"> INAA and ICP method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20degree%20of%20contamination" title=" modified degree of contamination"> modified degree of contamination</a> </p> <a href="https://publications.waset.org/abstracts/44263/vertical-distribution-of-heavy-metals-and-enrichment-in-core-marine-sediments-of-east-malaysia-by-inaa-and-icp-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Problems and Challenges Facing Refugees and Internally Displaced Persons In Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebin%20Kamal%20Hama%20Gharib">Rebin Kamal Hama Gharib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper aims to identify the common and current problems and challenges faced by refugees and internally displaced persons (IDPs) in Iraq. The objective of this research is to highlight the urgent need for policy measures and support to address these issues. The research methodology includes a review of academic literature, government reports, and data collected by international organizations such as the United Nations High Commissioner for Refugees (UNHCR) and the International Organization for Migration (IOM). The main contribution of this research is to provide a comprehensive overview of the challenges faced by refugees and IDPs in Iraq, including their legal status, access to basic services, economic opportunities, and social integration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efugees" title="efugees">efugees</a>, <a href="https://publications.waset.org/abstracts/search?q=internally%20displaced%20persons" title=" internally displaced persons"> internally displaced persons</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraq" title=" Iraq"> Iraq</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20measures" title=" policy measures"> policy measures</a> </p> <a href="https://publications.waset.org/abstracts/165271/problems-and-challenges-facing-refugees-and-internally-displaced-persons-in-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Oxidation of Alcohols Types Using Nano-Graphene Oxide (NGO) as Heterogeneous Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Gharib">Ali Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Vojdanifard"> Leila Vojdanifard</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Noroozi%20Pesyan"> Nader Noroozi Pesyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Roshani"> Mina Roshani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We describe an efficient method for oxidation of alcohols to related aldehydes and ketones by hydrogen peroxide as oxidizing agent, under reflux conditions. Nano-graphene oxide (NGO) as a heterogeneous catalyst was used and had their activity compared with other various catalysts. This catalyst was found to be an excellent catalyst for oxidation of alcohols. The effects of various parameters, including catalyst type, nature of the substituent in the alcohols and temperature, on the yield of the carboxylic acids were studied. Nano-graphene oxide was synthesized by the oxidation of graphite powders. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nano-catalyst was successfully reused for several runs without significant loss in its catalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-graphene%20oxide" title="nano-graphene oxide">nano-graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=aldehyde" title=" aldehyde"> aldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=ketone" title=" ketone"> ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/40536/oxidation-of-alcohols-types-using-nano-graphene-oxide-ngo-as-heterogeneous-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Flushing Model for Artificial Islands in the Persian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Eissa">Sawsan Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Momen%20Gharib"> Momen Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20Kabbany"> Omnia Kabbany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flushing numerical study has been performed for intended artificial islands on the Persian Gulf coast in Abu Dhabi, UAE. The island masterplan was tested for flushing using the DELFT 3D hydrodynamic model, and it was found that its residence time exceeds the acceptable PIANC flushing Criteria. Therefore, a number of mitigation measures were applied and tested one by one using the flushing model. Namely, changing the location of the entrance opening, dredging, removing part of the mangrove existing in the near vicinity to create a channel, removing the mangrove altogether, using culverts of different numbers and locations, and pumping at selected points. The pumping option gave the best solution, but it was disregarded due to high capital and running costs. Therefore, it opted for a combination of other solutions, including removing mangroves, introducing culverts, and adjusting island boundaries and types of protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title="hydrodynamics">hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing" title=" flushing"> flushing</a>, <a href="https://publications.waset.org/abstracts/search?q=delft%203d" title=" delft 3d"> delft 3d</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20Gulf" title=" Persian Gulf"> Persian Gulf</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20islands." title=" artificial islands."> artificial islands.</a> </p> <a href="https://publications.waset.org/abstracts/182437/flushing-model-for-artificial-islands-in-the-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suriya">Suriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=AOD" title=" AOD"> AOD</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulaanbaatar" title=" Ulaanbaatar"> Ulaanbaatar</a> </p> <a href="https://publications.waset.org/abstracts/185289/prediction-of-pm25-concentration-in-ulaanbaatar-with-deep-learning-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Goodarzi">M. Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadi"> M. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gharib"> A. Gharib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is a renewable energy which has attracted special attention in many countries. Solar cathodic protectionsystems harness the sun’senergy to protect underground pipelinesand tanks from galvanic corrosion. The object of this study is to design and the economic analysis a cathodic protection system by impressed current supplied with solar energy panels applied to underground pipelines. In the present study, the technical and economic analysis of using solar energy for cathodic protection system in southwestern of Iran (Khuzestan province) is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The economic analyses were done using computer code to investigate the feasibility analysis from the using of various energy sources in order to cathodic protection system. The overall research methodology is divided into four components: Data collection, design of elements, techno economical evaluation, and output analysis. According to the results, solar renewable energy systems can supply adequate power for cathodic protection system purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cathodic%20protection%20station" title=" solar cathodic protection station"> solar cathodic protection station</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20cost%20method" title=" lifecycle cost method"> lifecycle cost method</a> </p> <a href="https://publications.waset.org/abstracts/33008/techno-economic-analysis-of-solar-energy-for-cathodic-protection-of-oil-and-gas-buried-pipelines-in-southwestern-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Abd%20El-Sadek">M. S. Abd El-Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Omar"> Mahmoud A. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharib%20M.%20Taha"> Gharib M. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SnO%E2%82%82%20nanoparticles" title="SnO₂ nanoparticles">SnO₂ nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue%20degradation" title=" methylene blue degradation"> methylene blue degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20doped-SnO%E2%82%82" title=" silver doped-SnO₂"> silver doped-SnO₂</a> </p> <a href="https://publications.waset.org/abstracts/108988/photocatalytic-degradation-of-methylene-blue-dye-using-pure-and-ag-doped-sno2-nanoparticles-as-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Effectiveness of Guest Lecturers with Disabilities in the Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Gharib">Afshin Gharib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Often, instructors prefer to bring into class a guest lecturer who can provide an “experiential” perspective on a particular topic. The assumption is that the personal experience brought into the classroom makes the material resonate more with students and that students would have a preference for material being taught from an experiential perspective. The question we asked in the present study was whether a guest lecture from an “experiential” expert with a disability (e.g. a guest suffering from cone-rod dystrophy lecturing on vision, or a dyslexic lecturing on the psychology of reading) would be more effective than the course instructor in capturing students attention and conveying information in an Introduction to Psychology class. Students in two sections of Introduction to Psychology (N = 25 in each section) listened to guest lecturers with disabilities lecturing on a topic related to their disability, one in the area of Sensation and Perception (the guest lecturer is vision impaired) and one in the area of Language Development (the guest lecturer is dyslexic). The Guest lecturers lectured on the same topic in both sections, however, each lecturer used their own experiences to highlight the topics they cover in one section but not the other (counterbalanced between sections), providing students in one section with experiential testimony. Following each of the 4 lectures (two experiential, two non-experiential) students rated the lecture on several dimensions including overall quality, level of engagement, and performance. In addition, students in both sections were tested on the same test items from the lecture material to ascertain degree of learning, and given identical “pop” quizzes two weeks after the exam to measure retention. It was hypothesized that students would find the experiential lectures from lecturers talking about their disabilities more engaging, learn more from them, and retain the material for longer. We found that students in fact preferred the course instructor to the guests, regardless of whether the guests included a discussion of their own disability in their lectures. Performance on the exam questions and the pop quiz items were not different between “experiential” and “non-experiential” lectures, suggesting that guest lecturers who discuss their own disabilities in lecture are not more effective in conveying material and students are not more likely to retain material delivered by “experiential” guests. In future research we hope to explore the reasons for students preference for their regular instructor over guest lecturers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guest%20lecturer" title="guest lecturer">guest lecturer</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20perception" title=" student perception"> student perception</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a>, <a href="https://publications.waset.org/abstracts/search?q=experiential" title=" experiential"> experiential</a> </p> <a href="https://publications.waset.org/abstracts/191937/the-effectiveness-of-guest-lecturers-with-disabilities-in-the-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Abd%20El-Sadek">M. S. Abd El-Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Omar"> M. A. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharib%20M.%20Taha"> Gharib M. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SnO%E2%82%82%20nanoparticles" title="SnO₂ nanoparticles">SnO₂ nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20sol-gel%20method" title=" a sol-gel method"> a sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20applications" title=" photocatalytic applications"> photocatalytic applications</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20efficiency" title=" degradation efficiency "> degradation efficiency </a> </p> <a href="https://publications.waset.org/abstracts/96830/synthesis-characterization-and-photocatalytic-applications-of-ag-doped-sno2-nanoparticles-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10