CINXE.COM

Search results for: atterberg limits

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: atterberg limits</title> <meta name="description" content="Search results for: atterberg limits"> <meta name="keywords" content="atterberg limits"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="atterberg limits" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="atterberg limits"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1180</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: atterberg limits</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1180</span> Experimental Investigation on Utility and Suitability of Lateritic Soil as a Pavement Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hemanth">J. Hemanth</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Shivaprakash"> B. G. Shivaprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Dinesh"> S. V. Dinesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The locally available Lateritic soil in Dakshina Kanadda and Udupi districts are traditionally being used as building blocks for construction purpose but they do not meet the conventional requirements (L L ≤ 25% & P I ≤6%) and desired four days soaked CBR value to be used as a sub-base course material in pavements. In order to improve its properties to satisfy the Atterberg’s Limits, the soil is blended with sand, cement and quarry dust at various percentages and also to meet the CBR strength requirements, individual and combined gradation of various sized aggregates along with Laterite soil and other filler materials has been done for coarse graded granular sub-base materials (Grading II and Grading III). The effect of additives blended with lateritic soil and aggregates are studied in terms of Atterberg’s limits, compaction, California Bearing Ratio (CBR), and permeability. It has been observed that the addition of sand, cement and quarry dust are found to be effective in improving Atterberg’s limits, CBR values, and permeability values. The obtained CBR and permeability values of Grading III, and Grading II materials found to be sufficient to be used as sub-base course for low volume roads and high volume roads respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateritic%20soil" title="lateritic soil">lateritic soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=quarry%20dust" title=" quarry dust"> quarry dust</a>, <a href="https://publications.waset.org/abstracts/search?q=gradation" title=" gradation"> gradation</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-base%20course" title=" sub-base course"> sub-base course</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/2466/experimental-investigation-on-utility-and-suitability-of-lateritic-soil-as-a-pavement-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1179</span> Characterisation of the Physical Properties of Debris and Residual Soils Implications for the Possible Landslides Occurrence on Cililin West Java</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikah%20Ning%20Prasetiowati%20Permanasari">Ikah Ning Prasetiowati Permanasari</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunawan%20Handayani"> Gunawan Handayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilik%20Hendrajaya"> Lilik Hendrajaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landslide occurence at Mukapayung, Cililin West Java with material movement downward slope as far as 500m and hit residential areas of the village Nagrog cause eighteen people died and ten homes were destroyed and twenty-three heads of families evacuated. In order to test the hypothesis that soil at the landslides area is prone to landslides, we do drilling and the following tests were taken: particle size distribution, atterberg limits, shear strength, density, shringkage limits and triaxial unconsolidated and consolidated undrained test. Factor of safety was calculated to find out the possibility of subsequent landslides. The value of FOS of three layers is 1,05 which means that the soil in a critical condition and would be imminent to slide if there is disruption from the outside. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title="atterberg limits">atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength%20parameters" title=" shear strength parameters"> shear strength parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20geometry" title=" slope geometry"> slope geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title=" factor of safety"> factor of safety</a> </p> <a href="https://publications.waset.org/abstracts/81593/characterisation-of-the-physical-properties-of-debris-and-residual-soils-implications-for-the-possible-landslides-occurrence-on-cililin-west-java" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1178</span> Consolidation Behavior of Lebanese Soil and Its Correlation with the Soil Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20G.%20Nini">Robert G. Nini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil consolidation is one of the biggest problem facing engineers. The consolidation process has an important role in settlement analysis for the embankments and footings resting on clayey soils. The settlement amount is related to the compression and the swelling indexes of the soil. Because the predominant upper soil layer in Lebanon is consisting mainly of clay, this layer is a real challenge for structural and highway engineering. To determine the effect of load and drainage on the engineering consolidation characteristics of Lebanese soil, a full experimental and synthesis study was conducted on different soil samples collected from many locations. This study consists of two parts. During the first part which is an experimental one, the Proctor test and the consolidation test were performed on the collected soil samples. After it, the identifications soil tests as hydrometer, specific gravity and Atterberg limits are done. The consolidation test which is the main test in this research is done by loading the soil for some days then an unloading cycle was applied. It takes two weeks to complete a typical consolidation test. Because of these reasons, during the second part of our research which is based on the analysis of the experiments results, some correlations were found between the main consolidation parameters as compression and swelling indexes with the other soil parameters easy to calculate. The results show that the compression and swelling indexes of Lebanese clays may be roughly estimated using a model involving one or two variables in the form of the natural void ratio and the Atterberg limits. These correlations have increasing importance for site engineers, and the proposed model also seems to be applicable to a wide range of clays worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title="atterberg limits">atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20and%20swelling%20indexes" title=" compression and swelling indexes"> compression and swelling indexes</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20consolidation" title=" soil consolidation"> soil consolidation</a> </p> <a href="https://publications.waset.org/abstracts/108799/consolidation-behavior-of-lebanese-soil-and-its-correlation-with-the-soil-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1177</span> Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemipanah">A. Ghasemipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Niroumand"> H. Niroumand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobentonite%20particles" title="nanobentonite particles">nanobentonite particles</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title=" clayey soil"> clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20stress" title=" unconfined compression stress"> unconfined compression stress</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement." title=" soil improvement."> soil improvement.</a> </p> <a href="https://publications.waset.org/abstracts/111617/effect-of-nanobentonite-particles-on-geotechnical-properties-of-kerman-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1176</span> Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chlef</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Messaoudi%20Mohammed%20Amin">Messaoudi Mohammed Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of available land resources and the increased cout associated with the use of hight quality materials have led to the need for local soils to be used in geotecgnical construction however, poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in oyher works unsuitable soils with low bearing capacity, high plasticity coupled with high insatbility are frequently encountered hense, there is a need to improve the physical and mechanical charateristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for quite sometime bu mixing additives, such us cement, lime and fly ash to the soil to increase its strength. The aim of this project is to study the effect of using lime, natural pozzolana or combination of both on the geotecgnical cherateristics of clayey soil. Test specimen were subjected to atterberg limits test, compaction test, box shear test and uncomfined compression test Lime or natural pozzolana was added to clayey soil at rangs of 0-8% and 0-20% respectively. In addition combinations of lime –natural pozzolana were added to clayey soil at the same ranges specimen were cured for 1-7, and 28 days after which they were tested for uncofined compression tests. Based on the experimental results, it was concluded that an important decrease of plasticity index was observed for thr samples stabilized with the combinition lime-natural pozzolana in addition, the use of the combination lime-natural pozzolana modifies the clayey soil classification according to casagrand plasiticity chart. Moreover, based on the favourable results of shear and compression strength obtained, it can be concluded that clayey soil can be successfuly stabilized by combined action of lime and natural pozzolana also this combination showed an appreciable improvement of the shear parameters. Finally, since natural pozzolana is much cheaper than lime ,the addition of natural pozzolana in lime soil mix may particulary become attractive and can result in cost reduction of construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20pozzolana" title=" natural pozzolana"> natural pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title="atterberg limits">atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20shear%20strength" title=" compressive strength shear strength"> compressive strength shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a> </p> <a href="https://publications.waset.org/abstracts/28332/effect-of-mineral-additives-on-improving-the-geotechnical-properties-of-soils-in-chlef" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1175</span> Geotechnical Characteristics of Miocenemarl in the Region of Medea North-South Highway, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yongli">Y. Yongli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Aissa"> M. H. Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper aims for a geotechnical analysis based on experimental physical and mechanical characteristics of Miocene marl situated at Medea region in Algeria. More than 150 soil samples were taken in the investigation part of the North-South Highway which extends over than 53 km from Chiffa in the North to Berrouaghia in the South of Algeria. The analysis of data in terms of Atterberg limits, plasticity index, and clay content reflects an acceptable correlation justified by a high coefficient of regression which was compared with the previous works in the region. Finally, approximated equations that serve as a guideline for geotechnical design locally have been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20properties" title=" geotechnical properties"> geotechnical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=miocene%20marl" title=" miocene marl"> miocene marl</a>, <a href="https://publications.waset.org/abstracts/search?q=north-south%20highway" title=" north-south highway"> north-south highway</a> </p> <a href="https://publications.waset.org/abstracts/48442/geotechnical-characteristics-of-miocenemarl-in-the-region-of-medea-north-south-highway-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1174</span> Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chief</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Younes">Rabah Younes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of available land resources and the increased cout associated with the use of high quality materials have led to the need for local soils to be used in geotechnical construction, however; poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in other works unsuitable soils with low bearing capacity , high plasticity coupled with high instability are frequently encountered hence, there is a need to improve the physical and mechanical characteristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for sometime but mixing additives, such us cement, lime and fly ash to the soil to increase its strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=naturaln%20pozzolana" title=" naturaln pozzolana"> naturaln pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title=" atterberg limits"> atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20shear%20strength" title="compressive strength shear strength">compressive strength shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a> </p> <a href="https://publications.waset.org/abstracts/28009/effect-of-mineral-additives-on-improving-the-geotechnical-properties-of-soils-in-chief" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1173</span> Laboratory Study on Behavior of Compacted Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Mekkakia">M. M. Mekkakia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P%20Luong"> M. P Luong</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Arab"> A. Arab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These controlling the water content of compaction are a major concern of fundamental civil engineers. Also, the knowledge of the fundamentals of the behaviour of compacted clay soils is essential to predict and quantify the effects of a change in water content. The study of unsaturated soils is a very complex area which several studies are directed to in recent years. Our job work is to perform tests of Proctor, Oedometer and shear, on samples of unsaturated clay in order to see the influence of water content on the compressibility and the shear strength. The samples were prepared at different amounts of water from water content to optimum water contents close to saturation. This study thus allowed us to measure and monitor the parameters of compressibility and shear strength as a function of water content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laboratory%20tests" title="laboratory tests">laboratory tests</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=atterberg%20limits" title=" atterberg limits"> atterberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=compressibility" title=" compressibility"> compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=shear" title=" shear"> shear</a> </p> <a href="https://publications.waset.org/abstracts/3580/laboratory-study-on-behavior-of-compacted-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1172</span> Setting Control Limits For Inaccurate Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ran%20Etgar">Ran Etgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title="quality control">quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20control" title=" process control"> process control</a>, <a href="https://publications.waset.org/abstracts/search?q=round-off" title=" round-off"> round-off</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=rounding%20error" title=" rounding error"> rounding error</a> </p> <a href="https://publications.waset.org/abstracts/166517/setting-control-limits-for-inaccurate-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1171</span> Establishing Control Chart Limits for Rounded Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ran%20Etgar">Ran Etgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X̄ chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter ȳ is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPC" title="SPC">SPC</a>, <a href="https://publications.waset.org/abstracts/search?q=round-off%20data" title=" round-off data"> round-off data</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20limit" title=" control limit"> control limit</a>, <a href="https://publications.waset.org/abstracts/search?q=rounding%20error" title=" rounding error"> rounding error</a> </p> <a href="https://publications.waset.org/abstracts/162235/establishing-control-chart-limits-for-rounded-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1170</span> Investigation of Slope Stability in Gravel Soils in Unsaturated State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Abolhasan%20Naeini">Seyyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Azini"> Ehsan Azini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software. &nbsp;we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg&rsquo;s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground. &nbsp;Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope%20stability%20analysis" title="slope stability analysis">slope stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title=" factor of safety"> factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=matric%20suction" title=" matric suction"> matric suction</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20silty%20gravel%20soil" title=" unsaturated silty gravel soil"> unsaturated silty gravel soil</a> </p> <a href="https://publications.waset.org/abstracts/107320/investigation-of-slope-stability-in-gravel-soils-in-unsaturated-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1169</span> Engineering Parameters and Classification of Marly Soils of Tabriz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirali%20Mahouti">Amirali Mahouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hooshang%20Katebi"> Hooshang Katebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enlargement of Tabriz metropolis to the east and north-east caused urban construction to be built on Marl layers and because of increase in excavations depth, further information of this layer is inescapable. Looking at geotechnical investigation shows there is not enough information about Tabriz Marl and this soil has been classified only by color. Tabriz Marl is lacustrine carbonate sediment outcrops, surrounds eastern, northern and southern region of city in the East Azerbaijan Province of Iran and is known as bed rock of city under alluvium sediments. This investigation aims to characterize geotechnical parameters of this soil to identify and set it in classification system of carbonated soils. For this purpose, specimens obtained from 80 locations over the city and subjected to physical and mechanical tests, such as Atterberg limits, density, moisture content, unconfined compression, direct shear and consolidation. CaCO3 content, organic content, PH, XRD, XRF, TGA and geophysical downhole tests also have been done on some of them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonated%20soils" title="carbonated soils">carbonated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20of%20soils" title=" classification of soils"> classification of soils</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20and%20mechanical%20tests%20for%20Marls" title=" physical and mechanical tests for Marls"> physical and mechanical tests for Marls</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabriz%20Marl" title=" Tabriz Marl"> Tabriz Marl</a> </p> <a href="https://publications.waset.org/abstracts/49510/engineering-parameters-and-classification-of-marly-soils-of-tabriz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1168</span> Characteristics of Clayey Subgrade Soil Mixed with Cement Stabilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manju">Manju</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Aggarwal"> Praveen Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clayey soil is considered weakest subgrade soil from civil engineering point of view under moist condition. These swelling soils attract and absorb water and losses their strength. Certain inherent properties of these clayey soils need modification for their bulk use in the construction of highways/runways pavements and embankments, etc. In this paper, results of clayey subgrade modified with cement stabilizer is presented. Investigation includes evaluation of specific gravity, Atterberg’s limits, grain size distribution, maximum dry density, optimum moisture content and CBR value of the clayey soil and cement treated clayey soil. A series of proctor compaction and CBR tests (un-soaked and soaked) are carried out on clayey soil and clayey soil mixed with cement stabilizer in 2%, 4% & 6% percentages to the dry weight of soil. In CBR test, under soaked condition best results are obtained with 6% of cement. However, the difference between the CBR value by addition of 4% and 6% cement is not much. Therefore from economical consideration addition of 4% cement gives the best result after soaking period of 90 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title="clayey soil">clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20dry%20density" title=" maximum dry density"> maximum dry density</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20moisture%20content" title=" optimum moisture content"> optimum moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=California%20bearing%20ratio" title=" California bearing ratio"> California bearing ratio</a> </p> <a href="https://publications.waset.org/abstracts/6142/characteristics-of-clayey-subgrade-soil-mixed-with-cement-stabilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1167</span> Influence of Nanozeolite Particles on Improvement of Clayey Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Goodarzian">A. Goodarzian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemipanah"> A. Ghasemipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Niroumand"> H. Niroumand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement" title=" soil improvement"> soil improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title=" clayey soil"> clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20stress" title=" unconfined compression stress"> unconfined compression stress</a> </p> <a href="https://publications.waset.org/abstracts/111618/influence-of-nanozeolite-particles-on-improvement-of-clayey-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1166</span> Improvement of Oran Sebkha Soil by Dredged Sediments from Chorfa Dam in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aloui-Labiod">Z. Aloui-Labiod</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Trouzine"> H. Trouzine</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ghembaza"> M. S. Ghembaza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical properties of dredged sediment from Chorfa dam in Algeria and their mixtures (5%, 10%, 15%, 20%, and 25%)with bentonite were investigated through with bentonite were investigated through a series of laboratory experimental tests in order to investigate possibilities of their usage as a barrier against the spread out of the Sebkha of Oran in the northwest of Algeria. Grain size and Atterberg limits tests, chemical and mineral analyses, and compaction, vertical swelling, and horizontal and vertical permeability tests were performed on the soils and their mixtures using tap water and the salty Sebkha water. The results indicate that the bentonite specimens remolded and inundated with Sebkha salty water have less swell potential than those prepared with tap water. The addition of bentonite to Chorfa sediment increases the density, limit liquid, specific surface, and swell potential of the mixtures. Compaction tests show a decrease in the optimum moisture and an increase in maximum dry densities as the bentonite content increases. The horizontal and vertical permeabilities decrease relatively with the addition of bentonite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dredged%20sediment" title="dredged sediment">dredged sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=salty%20water" title=" salty water"> salty water</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier" title=" barrier"> barrier</a> </p> <a href="https://publications.waset.org/abstracts/19219/improvement-of-oran-sebkha-soil-by-dredged-sediments-from-chorfa-dam-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1165</span> The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Akinyele">J. O. Akinyele</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20W.%20Salim"> R. W. Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20O.%20Oikelome"> K. O. Oikelome</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20T.%20Olateju"> O. T. Olateju </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolans" title=" pozzolans"> pozzolans</a>, <a href="https://publications.waset.org/abstracts/search?q=paddy%20rice" title=" paddy rice"> paddy rice</a>, <a href="https://publications.waset.org/abstracts/search?q=lateritic%20clay" title=" lateritic clay"> lateritic clay</a> </p> <a href="https://publications.waset.org/abstracts/30765/the-use-of-rice-husk-ash-as-a-stabilizing-agent-in-lateritic-clay-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1164</span> Geotechnical Characterization of Landslide in Dounia Park, Algiers, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mira%20Filali">Mira Filali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Nechnech"> Amar Nechnech</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most landslides in Algiers take place in Piacenzian marls of the Sahel (port in Arabic) and cause severe damage to properties and infrastructures. The aim of this paper is to describe the results of experimental as well as theoretical analysis of landslides. In order to understand the process which caused this slope instabilities, the results of geotechnical investigation carried out by the laboratory of construction (LNHC) laboratory in the area of Dounia park were analyzed, including particle size distribution, Atterberg limits, shear strength, odometer and pressuremeter tests. The study shows that the soils exhibited a high capacity to swelling according to index plasticity and clay content. Highs limit liquidity (LL) (53.45%) means that the soils are susceptible to landslides. The stability analysis carried out using finite element method, shows that the slope is stable (Fs > 1) in dry condition and in static state. Despite this results, the stable site could be described as only conditionally stable because slope failure can occur under combined effect of different factors. In fact the safety factor obtained by applying load when the phreatic surface is at ground, less than 1.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=index%20properties" title="index properties">index properties</a>, <a href="https://publications.waset.org/abstracts/search?q=landslides" title=" landslides"> landslides</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/73166/geotechnical-characterization-of-landslide-in-dounia-park-algiers-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1163</span> Rounded-off Measurements and Their Implication on Control Charts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ran%20Etgar">Ran Etgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inaccurate%20measurement" title="inaccurate measurement">inaccurate measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=SPC" title=" SPC"> SPC</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=rounded-off" title=" rounded-off"> rounded-off</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20chart" title=" control chart"> control chart</a> </p> <a href="https://publications.waset.org/abstracts/188545/rounded-off-measurements-and-their-implication-on-control-charts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1162</span> Laboratory Studies to Assess the Effect of Recron Fiber on Soil Subgrade Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lokesh%20Gupta">Lokesh Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar"> Rakesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stabilization of weak subgrade soil is mainly aimed for the improvement of soil strength and its durability. Highway engineers are concerned to get the soil material or system that will hold under the design use conditions and for the designed life of the engineering project. The present study envisages the effect of Recron fibres mixed in different proportion (up to 1% by weight of dry soil) on Atterberg limits, Compaction of the soil, California bearing ratio (CBR) values and unconfined compressive strength (UCS) of the soil. The present study deals with the influence of varying in length (20 mm, 30mm, 40mm and 50mm) and percentage (0.25 %, 0.50 %, 0.75 % and 1.0 %) of fibre added to the soil samples. The aim of study is to determine the reinforcing effect of randomly distributed fibres on the Compaction characteristics, penetration resistance and unconfined compressive strength of soils. The addition of fibres leads to an increase in the optimum moisture content and decrease in maximum dry density. With the addition of the fibres, the increases in CBR and UCS values are observed. The test result shows higher CBR and unconfined compressive strength value for the soil reinforced with 0.5% Recron fibre, once keeping aspect ratio as 160. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=recron%20fiber" title=" recron fiber"> recron fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength%20%28UCS%29" title=" unconfined compressive strength (UCS)"> unconfined compressive strength (UCS)</a>, <a href="https://publications.waset.org/abstracts/search?q=California%20bearing%20ratio%20%28CBR%29" title=" California bearing ratio (CBR)"> California bearing ratio (CBR)</a> </p> <a href="https://publications.waset.org/abstracts/98907/laboratory-studies-to-assess-the-effect-of-recron-fiber-on-soil-subgrade-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1161</span> Reliability of Using Standard Penetration Test (SPT) in Evaluation of Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Alimohammadi">Hossein Alimohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Amirmojahedi"> Mohsen Amirmojahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20%20Rowhani"> Mehrdad Rowhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil properties are used by geotechnical engineers to evaluate and analyze site conditions for designing purposes. Although basic soil classification tests are easy to perform and provide useful information to determine the properties of soils, it may take time to get the result and add some costs to the projects. Standard Penetration Test (SPT) provides an opportunity to evaluate soil parameters without performing laboratory tests. In addition to its simplicity and cheapness, the results become available immediately. This research provides a guideline on the application of the SPT test method, reliability of adapting the SPT test results in evaluating soil physical and mechanical properties such as Atterberg limits, shear strength, and compressive strength compressibility parameters. A total of 70 boreholes were investigated in this study by taking soil samples between depths of 1.2 to 15.25 meters. The project site was located in Morrow County, Ohio. A regression-based formula was proposed based on Tobit regression with a stepwise variable selection analysis conducted between SPT and other typical soil properties obtained from soil tests. The results of the research illustrated that the shear strength and physical properties of the soil affect the SPT number. The proposed correlation can help engineers to use SPT test results in their design with higher accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title="standard penetration test">standard penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20classification" title=" soil classification"> soil classification</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20method" title=" regression method"> regression method</a> </p> <a href="https://publications.waset.org/abstracts/137933/reliability-of-using-standard-penetration-test-spt-in-evaluation-of-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1160</span> Effect of Inclusion of Rubber on the Compaction Characteristics of Cement - MSWIFA- Clayey Soil Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20Aouf">Gehan Aouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Diala%20Tabbal"> Diala Tabbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El%20Rahim%20Sabsabi"> Abd El Rahim Sabsabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Aouf"> Rashad Aouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to show the effect of adding cement municipal solid incineration fly ash and rubber as stabilizer materials on weak soil. A detailed experimental study was conducted in order to show the viability of using these admixtures in improving the maximum dry density and optimum moisture content of the composite soil. Soil samples were prepared by adding Rubber and Cement to municipal solid waste incineration fly-ash - oil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. Three different percentages of fly ash (10%, 20%, and 30%) MSWFA by total dry weight of soil and three different percentages of Portland cement (10%, 15%, and 20%) by total dry weight of the mix and 0%, 5%, 10% for Rubber by total dry weight of the mix were used to find the optimum value. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeded 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that adding Rubber to the mix Soil-MSWIFA-Cement decreases its MDD due to the low specific gravity of rubber and it affects a slight decrease in OMC because the rubber has low absorption of water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title="clayey soil">clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=MSWIFA" title=" MSWIFA"> MSWIFA</a>, <a href="https://publications.waset.org/abstracts/search?q=proctor%20test" title=" proctor test"> proctor test</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a> </p> <a href="https://publications.waset.org/abstracts/148133/effect-of-inclusion-of-rubber-on-the-compaction-characteristics-of-cement-mswifa-clayey-soil-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1159</span> In-situ and Laboratory Characterization of Fiji Lateritic Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faijal%20Ali">Faijal Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Darga%20Kumar%20N."> Darga Kumar N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravikant%20Singh"> Ravikant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajnil%20Lal"> Rajnil Lal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=California%20bearing%20ratio" title="California bearing ratio">California bearing ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20cone%20penetrometer%20test" title=" dynamic cone penetrometer test"> dynamic cone penetrometer test</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20vane%20shear" title=" field vane shear"> field vane shear</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20stress." title=" unconfined compression stress. "> unconfined compression stress. </a> </p> <a href="https://publications.waset.org/abstracts/79086/in-situ-and-laboratory-characterization-of-fiji-lateritic-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1158</span> Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20Aouf">Gehan Aouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Diala%20Tabbal"> Diala Tabbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El%20Rahim%20Sabsabi"> Abd El Rahim Sabsabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Aouf"> Rashad Aouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title="clayey soil">clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=MSWIFA" title=" MSWIFA"> MSWIFA</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/148067/experimental-investigation-of-the-influence-of-cement-on-soil-municipal-solid-waste-incineration-fly-ash-mix-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1157</span> Effects of Rockdust as a Soil Stabilizing Agent on Poor Subgrade Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Munawar">Muhammad Munawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement destruction is normally associated with the horizontal relocation of subgrade because of pavement engrossing water and inordinate avoidance and differential settlement of material underneath the pavement. The aim of the research is to study the effect of the additives (rockdust) on the stability and the increase of bearing capacity of selected soils in Mardan City. The physical, chemical and designing properties of soil were contemplated, and the soil was treated with added admixture rockdust with the goal of stabilizing the local soil. The stabilization or modification of soil is done by blending of rock dust to soils in the scope of 0 to 85% by the rate increment of 5%, 10%, and 15% individually. The following test was done for treated sample: Atterberg limits (liquid limit, plasticity index, plastic limit), standard compaction test, the California bearing test and the direct shear test. The results demonstrated that the gradation of soil is narrow from the particle size analysis. Plasticity index (P.I), Liquid limit (L.L) and plastic limit (P.L) were shown reduction with the addition of Rock dust. It was concluded that the maximum dry density is increasing with the addition of rockdust up to 10%, beyond 10%, it shows reduction in their content. It was discovered that the Cohesion C diminished, the angle of internal friction and the California bearing ratio (C.B.R) was improved with the addition of Rock dust. The investigation demonstrated that the best stabilizer for the contextual investigation (Toru road Mardan) is the rock dust and the ideal dosage is 10 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rockdust" title="rockdust">rockdust</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=CBR" title=" CBR"> CBR</a> </p> <a href="https://publications.waset.org/abstracts/84247/effects-of-rockdust-as-a-soil-stabilizing-agent-on-poor-subgrade-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1156</span> Identifying Knowledge Gaps in Incorporating Toxicity of Particulate Matter Constituents for Developing Regulatory Limits on Particulate Matter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Das">Ananya Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gazala%20Habib"> Gazala Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivekanandan%20Perumal"> Vivekanandan Perumal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regulatory bodies has proposed limits on Particulate Matter (PM) concentration in air; however, it does not explicitly indicate the incorporation of effects of toxicities of constituents of PM in developing regulatory limits. This study aimed to provide a structured approach to incorporate toxic effects of components in developing regulatory limits on PM. A four-step human health risk assessment framework consists of - (1) hazard identification (parameters: PM and its constituents and their associated toxic effects on health), (2) exposure assessment (parameters: concentrations of PM and constituents, information on size and shape of PM; fate and transport of PM and constituents in respiratory system), (3) dose-response assessment (parameters: reference dose or target toxicity dose of PM and its constituents), and (4) risk estimation (metric: hazard quotient and/or lifetime incremental risk of cancer as applicable). Then parameters required at every step were obtained from literature. Using this information, an attempt has been made to determine limits on PM using component-specific information. An example calculation was conducted for exposures of PM<sub>2.5</sub> and its metal constituents from Indian ambient environment to determine limit on PM values. Identified data gaps were: (1) concentrations of PM and its constituents and their relationship with sampling regions, (2) relationship of toxicity of PM with its components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air" title="air">air</a>, <a href="https://publications.waset.org/abstracts/search?q=component-specific%20toxicity" title=" component-specific toxicity"> component-specific toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health%20risks" title=" human health risks"> human health risks</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/51442/identifying-knowledge-gaps-in-incorporating-toxicity-of-particulate-matter-constituents-for-developing-regulatory-limits-on-particulate-matter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1155</span> Effect of Soaking Period of Clay on Its California Bearing Ratio Value</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20G.%20Nini">Robert G. Nini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of road pavement is affected mostly by the type of sub-grade which is acting as road foundation. The roads degradation is related to many factors especially the climatic conditions, the quality, and the thickness of the base materials. The thickness of this layer depends on its California Bearing Ratio (CBR) test value which by its turn is highly affected by the quantity of water infiltrated under the road after heavy rain. The capacity of the base material to drain out its water is predominant factor because any change in moisture content causes change in sub-grade strength. This paper studies the effect of the soaking period of soil especially clay on its CBR value. For this reason, we collected many clayey samples in order to study the effect of the soaking period on its CBR value. On each soil, two groups of experiments were performed: main tests consisting of Proctor and CBR test from one side and from other side identification tests consisting of other tests such as Atterberg limits tests. Each soil sample was first subjected to Proctor test in order to find its optimum moisture content which will be used to perform the CBR test. Four CBR tests were performed on each soil with different soaking period. The first CBR was done without soaking the soil sample; the second one with two days soaking, the third one with four days soaking period and the last one was done under eight days soaking. By comparing the results of CBR tests performed with different soaking time, a more detailed understanding was given to the role of the water in reducing the CBR of soil. In fact, by extending the soaking period, the CBR was found to be reduced quickly the first two days and slower after. A precise reduction factor of the CBR in relation with soaking period was found at the end of this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=California%20Bearing%20Ratio" title="California Bearing Ratio">California Bearing Ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=proctor%20test" title=" proctor test"> proctor test</a>, <a href="https://publications.waset.org/abstracts/search?q=soaking%20period" title=" soaking period"> soaking period</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-grade" title=" sub-grade"> sub-grade</a> </p> <a href="https://publications.waset.org/abstracts/98889/effect-of-soaking-period-of-clay-on-its-california-bearing-ratio-value" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1154</span> Mechanical Activation of a Waste Material Used as Cement Replacement in Soft Soil Stabilisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassnen%20M.%20Jafer">Hassnen M. Jafer</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Atherton"> W. Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ruddock"> F. Ruddock</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Loffil"> E. Loffil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste materials or sometimes called by-product materials have been increasingly used as construction material to reduce the usage of cement in different construction projects. In the field of soil stabilisation, waste materials such as pulverised fuel ash (PFA), biomass fly ash (BFA), sewage sludge ash (SSA), etc., have been used since 1960s in last century. In this study, a particular type of a waste material (WM) was used in soft soil stabilisation as a cement replacement, as well as, the effect of mechanical activation, using grinding, on the performance of this WM was also investigated. The WM used in this study is a by-product resulted from the incineration processes between 1000 and 1200oc in domestic power generation plant using a fluidized bed combustion system. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were conducted first to find the optimum content of WM by carrying out Atterberg limits and unconfined compressive strength (UCS) tests on soil samples contained (0, 3, 6, 9, 12, and 15%) of WM by the dry weight of soil. The UCS test was carried out on specimens provided to different curing periods (zero, 7, 14, and 28 days). Moreover, the optimum percentage of the WM was subject to different periods of grinding (10, 20, 30, 40mins) using mortar and pestle grinder to find the effect of grinding and its optimum time by conducting UCS test. The results indicated that the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.10 with 15% of WM. Meanwhile, the results of UCS test indicated that 12% of WM was the optimum and this percentage developed the UCS value from 202kPa to 700kPa for 28 days cured samples. Along with the time of grinding, the results revealed that 10 minutes of grinding was the best for mechanical activation for the WM used in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20soil%20stabilisation" title="soft soil stabilisation">soft soil stabilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20materials" title=" waste materials"> waste materials</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20unconfined%20compressive%20strength" title=" and unconfined compressive strength"> and unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/40050/mechanical-activation-of-a-waste-material-used-as-cement-replacement-in-soft-soil-stabilisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1153</span> Enhancing Self-Assessment and Management Potentials by Modifying Option Selections on Hartman’s Personality Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20L.%20Clinciu">Daniel L. Clinciu</a>, <a href="https://publications.waset.org/abstracts/search?q=IkromAbdulaev"> IkromAbdulaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20D.%20Oscar"> Brian D. Oscar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various personality profile tests are used to identify personality strengths and limits in individuals, helping both individuals and managers to optimize work and team effort in organizations. One such test, Hartman’s personality profile emphasizes four driving "core motives" influenced or affected by both strengths and limitations. The driving core motives are classified into four colors: Red-motivated by power; Blue-discipline and loyalty; White-peace; and Yellow–fun loving. Two shortcomings of Hartman’s personality test are noted; 1) only one choice for every item/situation allowed and 2) selection of a choice even if not applicable. A test taker may be as much nurturing as he is opinionated but since “opinionated” seems less attractive the individual would likely select nurturing, causing a misidentification in personality strengths and limits. Since few individuals have a "strong" personality, it is difficult to assess their true personality strengths and limits allowing either only one choice or requiring unwanted choices, undermining the potential of the test. We modified Hartman’s personality profile allowing test takers to make either multiple choices for any item/situation or leave them blank when not applying. Sixty-eight participants (38 males and 30 females), 17-49 years old, from countries in Asia, Europe, N. America, CIS, Africa, Latin America, and Oceania were included. 58 participants (85.3%) reported the modified test, allowing either multiple or no choices better identified their personality strengths and limits, while 10 participants (14.7%) expressed the original (one choice version) is sufficient. The overall results show our modified test enhanced the identification and balance of personality strengths and limits, aiding test takers, managers, and firms to better understand personality strengths and limits, particularly useful in making task-related, teamwork, and management decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organizational%20behavior" title="organizational behavior">organizational behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=personality%20tests" title=" personality tests"> personality tests</a>, <a href="https://publications.waset.org/abstracts/search?q=personality%20limitations" title=" personality limitations"> personality limitations</a>, <a href="https://publications.waset.org/abstracts/search?q=personality%20strengths" title=" personality strengths"> personality strengths</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20management" title=" task management"> task management</a>, <a href="https://publications.waset.org/abstracts/search?q=team%20work" title=" team work"> team work</a> </p> <a href="https://publications.waset.org/abstracts/16178/enhancing-self-assessment-and-management-potentials-by-modifying-option-selections-on-hartmans-personality-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Assessing Knowledge Management Impacts: Challenges, Limits and Base for a New Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Mbassegue">Patrick Mbassegue</a>, <a href="https://publications.waset.org/abstracts/search?q=Mickael%20Gardoni"> Mickael Gardoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a market environment centered more and more on services and the digital economy, knowledge management becomes a framework that can help organizations to create value and to improve their overall performance. Based on an optimal allocation of scarce resources, managers are interested in demonstrating the added value generated by knowledge management projects. One of the challenges faced by organizations is the difficulty in measuring impacts and concrete results of knowledge management initiatives. The present article concerns the measure of concrete results coming from knowledge management projects based on balance scorecard model. One of the goals is to underline what can be done based on this model but also to highlight the limits associated. The present article is structured in five parts; 1-knowledge management projects and organizational impacts; 2- a framework and a methodology to measure organizational impacts; 3- application illustrated in two case studies; 4- limits concerning the proposed framework; 5- the proposal of a new framework to measure organizational impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title="knowledge management">knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=project" title=" project"> project</a>, <a href="https://publications.waset.org/abstracts/search?q=balance%20scorecard" title=" balance scorecard"> balance scorecard</a>, <a href="https://publications.waset.org/abstracts/search?q=impacts" title=" impacts"> impacts</a> </p> <a href="https://publications.waset.org/abstracts/54657/assessing-knowledge-management-impacts-challenges-limits-and-base-for-a-new-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Effect of Temperature on Investigation of Index Properties of Red Clay Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birhanu%20Kassa">Birhanu Kassa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of temperature effect on index properties and, thus, the understanding of its behavior may be essential for a complete understanding of the various cases of Geotechnical Engineering problems and for conducting meaningful practical research, analysis, and design in tropical regions, such as the Ethiopian environment. The scarcity of the proper geotechnical information on the subsoil makes foundation and engineering works risk able, difficult, and sometimes hazardous. Seasonal variations, environmental effects, terrain challenges, and temperature effects all affect the quality of soil. Simada is a city which is found in south Gondar and it is developing rapidly both in horizontal and vertical construction. Rapid urbanization in the city area has led to an increased interest in the basic properties of soils that are present within the city area. There has been no previous research that looks into the effect of temperature on the investigation of clay soil index qualities in Simada. This work focuses mainly on investigating the Index and some other properties of soil in Simada Town with varying temperatures. To explore the influence of temperature change, samples were collected from various regions of the city, and routine laboratory tests were performed on the collected samples at various temperatures. Disturbed samples were taken at intervals where an average depth of 1.5-2m depths below natural ground level. The standard laboratory tests performed on all twenty-four soil samples were the water content, gradation analysis, Atterberg limits, specific gravity, and compaction test. All specimens were tested at different temperatures (25°C, 35 °C, 45 °C, 65 °C,75 and 105 °C). The variation of the plasticity characteristics of the soils has been determined based on the temperature variation. From the test result, we can conclude that temperature has a significant effect on the index properties of clay soil, in our case, red clay soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airdried" title="airdried">airdried</a>, <a href="https://publications.waset.org/abstracts/search?q=oven%20dried" title=" oven dried"> oven dried</a>, <a href="https://publications.waset.org/abstracts/search?q=soils%20index%20properties" title=" soils index properties"> soils index properties</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction%20test" title=" compaction test"> compaction test</a> </p> <a href="https://publications.waset.org/abstracts/191946/effect-of-temperature-on-investigation-of-index-properties-of-red-clay-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=atterberg%20limits&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10