CINXE.COM

Search results for: Atlantic Ocean

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Atlantic Ocean</title> <meta name="description" content="Search results for: Atlantic Ocean"> <meta name="keywords" content="Atlantic Ocean"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Atlantic Ocean" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Atlantic Ocean"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 384</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Atlantic Ocean</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Heavy Metal Contamination and Its Ecological Risks in the Beach Sediments along the Atlantic Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armel%20Zacharie%20Ekoa%20Bessa">Armel Zacharie Ekoa Bessa</a>, <a href="https://publications.waset.org/abstracts/search?q=Annick%20Kwewouo%20Janpou"> Annick Kwewouo Janpou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediments collected along the beaches of the Atlantic Ocean in Africa were analyzed by geochemical proxies such as the ICP-MS technique to determine their heavy metal contamination and related ecological risks. Several metals were selected and show a decreasing trend: Fe > Mn > Ni > Cu > Co > Zn > Cr > Cd. Several pollution indices have been calculated, including the enrichment factor (EF), whose values are generally higher than 1. 5; the geo-accumulation index (I-geo), with values of some elements (Co, Ni and Cu) in the sediments of the study area being higher than 0, and other metals (Zn, Cr, Fe and Mn) being lower than 0; the contamination factor (CF), where the values of all the selected elements are between 1 and 3; and the pollution load index (PLI), where the values in almost all the study sites are higher than 1. These results show moderate contamination of the investigated sediments with heavy metals. The potential ecological risk assessment (Eri and RI) suggests that this part of the African coast is a low to a slight risk area. Statistical analyses indicate that heavy metals have shown fairly similar trends with anthropogenic and natural sources. This study shows that this coastal area is not highly concentrated in heavy metals and reveals that the Atlantic coast of Africa would be moderately polluted by the metals studied, with a low to moderate ecological risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20ocean" title=" atlantic ocean"> atlantic ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/165141/heavy-metal-contamination-and-its-ecological-risks-in-the-beach-sediments-along-the-atlantic-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Atlantic Sailfish (Istiophorus albicans) Distribution off the East Coast of Florida from 2003 to 2018 in Response to Sea Surface Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meredith%20M.%20Pratt">Meredith M. Pratt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Atlantic sailfish (Istiophorus albicans) ranges from 40°N to 40°S in the Western Atlantic Ocean and has great economic and recreational value for sport fishers. Off the eastern coast of Florida, charter boats often target this species. Stuart, Florida, bills itself as the sailfish capital of the world. Sailfish tag data from The Billfish Foundation and NOAA was used to determine the relationship between sea surface temperature (SST) and the distribution of Atlantic sailfish caught and released over a fifteen-year period (2003 to 2018). Tagging information was collected from local sports fishermen in Florida. Using the time and location of each landed sailfish, a satellite-derived SST value was obtained for each point. The purpose of this study was to determine if sea surface warming was associated with changes in sailfish distribution. On average, sailfish were caught at 26.16 ± 1.70°C (x̄ ± s.d.) over the fifteen-year period. The most sailfish catches occurred at temperatures ranging from 25.2°C to 25.5°C. Over the fifteen-year period, sailfish catches decreased at lower temperatures (~23°C and ~24°C) and at 31°C. At ~25°C and ~30°C there was no change in catch numbers of sailfish. From 26°C to 29°C, there was an increase in the number of sailfish. Based on these results, increasing ocean temperatures will have an impact on the distribution and habitat utilization of sailfish. Warming sea surface temperatures create a need for more policy and regulation to protect the Atlantic sailfish and related highly migratory billfish species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atlantic%20sailfish" title="atlantic sailfish">atlantic sailfish</a>, <a href="https://publications.waset.org/abstracts/search?q=Billfish" title=" Billfish"> Billfish</a>, <a href="https://publications.waset.org/abstracts/search?q=istiophorus%20albicans" title=" istiophorus albicans"> istiophorus albicans</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20surface%20temperature" title=" sea surface temperature"> sea surface temperature</a> </p> <a href="https://publications.waset.org/abstracts/122272/atlantic-sailfish-istiophorus-albicans-distribution-off-the-east-coast-of-florida-from-2003-to-2018-in-response-to-sea-surface-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Phylogeographic Reconstruction of the Tiger Shrimp (Penaeus monodon) Invasion in the Atlantic Ocean: The Role of the Farming Systems in the Marine Biological Invasions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Aguirre%20Pabon">Juan Carlos Aguirre Pabon</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Sabatino"> Stephen Sabatino</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Morris"> James Morris</a>, <a href="https://publications.waset.org/abstracts/search?q=Khor%20Waiho"> Khor Waiho</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Murias"> Antonio Murias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tiger shrimp Penaeus monodon is one of the most important species in aquaculture and is native to the Indo-Pacific Ocean. During its greatest success in world production (70s and 80s) was introduced in many Atlantic Ocean countries for cultivation purposes and is currently reported as established in several countries of this area. Because there are no studies to understand the magnitude of the invasion process, this is an exciting opportunity to test evolutionary hypotheses in the context of marine invasions mediated by culture systems; therefore, the purpose of this study was to reconstruct the scenario of invasion of P. monodon in the Atlantic Ocean, by using mitochondrial DNA and eight loci microsatellites. In addition, samples of the invasion area in the Atlantic Ocean (US, Colombia, Venezuela, Brazil, Guienne Bissau, Senegal), the Indo-Pacific Ocean (Indonesia, India, Mozambique), and some cultivation systems (India, Bangladesh, Madagascar) were collected; and analysis of phylogenetic relationships (using some species of the family), genetic diversity, structure population, and demographic changes were performed. High intraspecific divergence in P. semisulcatus and P. monodon were found, high genetic variability in all sites (especially with microsatellites) and the presence of three clusters or populations. In addition, signs of demographic expansion in the culture population and bottlenecks in the invasive and native populations were found, as well as evidence of gene mixtures from all of the populations studied, implying that cropping systems play an essential role in mitigating the negative effects of the founder effect and providing a source of genetic variability that can ensure the success of the invasion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=species%20introduction" title="species introduction">species introduction</a>, <a href="https://publications.waset.org/abstracts/search?q=increased%20variability" title=" increased variability"> increased variability</a>, <a href="https://publications.waset.org/abstracts/search?q=demographic%20changes" title=" demographic changes"> demographic changes</a>, <a href="https://publications.waset.org/abstracts/search?q=promoting%20invasion." title=" promoting invasion."> promoting invasion.</a> </p> <a href="https://publications.waset.org/abstracts/186582/phylogeographic-reconstruction-of-the-tiger-shrimp-penaeus-monodon-invasion-in-the-atlantic-ocean-the-role-of-the-farming-systems-in-the-marine-biological-invasions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> A Study on Genus Carolia Cantraine, 1838: A Case Study in Egypt with Special Emphasis on Paleobiogeographic, and Biometric Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheir%20El-Shazly">Soheir El-Shazly</a>, <a href="https://publications.waset.org/abstracts/search?q=Gouda%20Abdel-Gawad"> Gouda Abdel-Gawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Salama"> Yasser Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Sayed"> Dina Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twelve species belonging to genus Carolia Cantraine, 1838 were recorded from nine localities in the Tertiary rocks of the Tethys, Atlantic and Eastern Pacific Provinces. During The Eocene two species were collected from Indian-Pakistani region, two from North Africa (Libya, Tunis and Algeria), one from Jamaica and two from Peru. The Oligocene shows its appearance in North America (Florida) and Argentina. The genus showed its last occurrence in the Miocene rocks of North America (Florida) before its extinction. In Egypt, the genus was diversified in the Eocene rocks and was represented by four species and two subspecies. The paleobiogeographic distribution of Genus Carolia Cantraine, 1838 indicates that it appeared in the Lower Eocene of West Indian Ocean and migrated westward flowing circumtropical Tethys Current to the central Tethyan province, where it appeared in North Africa and continued its dispersal westward to the Atlantic Ocean and arrived Jamaica in the Middle Eocene. It persisted in the Caribbean Sea and appeared later in the Oligocene and Miocene rocks of North America (Florida). Crossing Panama corridor, the genus migrated to the south Eastern Pacific Ocean and was collected from the Middle Eocene of Peru. The appearance of the genus in the Oligocene of the South Atlantic Coast of Argentina may be via South America Seaway or its southward migration from Central America to Austral Basin. The thickening of the upper valve of the genus, after the loss of its byssus to withstand the current action, caused inability of the animal to carry on its vital activity and caused its extinction. The biometric study of Carolia placunoides Cantraine, 1938 from thhe Eocene of Egypt, indicates that the distance between the muscle scars in the upper valve increases with the closure of the byssal notch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atlantic" title="Atlantic">Atlantic</a>, <a href="https://publications.waset.org/abstracts/search?q=carolia" title=" carolia"> carolia</a>, <a href="https://publications.waset.org/abstracts/search?q=paleobiogeography" title=" paleobiogeography"> paleobiogeography</a>, <a href="https://publications.waset.org/abstracts/search?q=tethys" title=" tethys"> tethys</a> </p> <a href="https://publications.waset.org/abstracts/41732/a-study-on-genus-carolia-cantraine-1838-a-case-study-in-egypt-with-special-emphasis-on-paleobiogeographic-and-biometric-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Assessment of the Impact of Trawling Activities on Marine Bottoms of Moroccan Atlantic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Houssa">Rachida Houssa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Rhinane"> Hassan Rhinane</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadoumo%20Ali%20Malouw"> Fadoumo Ali Malouw</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Oulmaalem"> Amina Oulmaalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the early 70s, the Moroccan Atlantic sea was subjected to the pressure of the bottom trawling, one of the most destructive techniques seabed that cause havoc on fishing catch, nonselective, and responsible for more than half of all releases of fish around the world. The present paper aims to map and assess the impact of the activity of the bottom trawling of the Moroccan Atlantic coast. For this purpose, a dataset of thirty years, between 1962 and 1999, from foreign fishing vessels using bottom trawling, has been used and integrated in a GIS. To estimate the extent and the importance of the geographical distribution of the trawling effort, the Moroccan Atlantic area was divided into a grid of cells of 25 km2 (5x5 km). This grid was joined to the effort trawling data, creating a new entity with a table containing spatial overlay grid with the polygon of swept surfaces. This mapping model allowed to quantify the used fishing effort versus time and to generate the trace indicative of trawling efforts on the seabed. Indeed, for a given year, a grid cell may have a swept area equal to 0 (never been touched by the trawl) or 25 km2 (the trawled area is similar to the cell size) or may be 100 km2 indicating that for this year, the scanned surface is four times the cell area. The results show that the total cumulative sum of trawled area is approximately 28,738,326 km2, scattered throughout the Atlantic coast. 95% of the overall trawling effort is located in the southern zone, between 29°N and 20°30'N. Nearly 5% of the trawling effort is located in the northern coastal region, north of 33°N. The center area between 33°N and 29°N is the least swept by Russian commercial vessels because in this region the majority of the area is rocky, and non trawlable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Moroccan%20Atlantic%20Ocean" title=" Moroccan Atlantic Ocean"> Moroccan Atlantic Ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed" title=" seabed"> seabed</a>, <a href="https://publications.waset.org/abstracts/search?q=trawling" title=" trawling"> trawling</a> </p> <a href="https://publications.waset.org/abstracts/45380/assessment-of-the-impact-of-trawling-activities-on-marine-bottoms-of-moroccan-atlantic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Phytoplankton of the Atlantic Ocean, off Lagos, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikenna%20Charles%20Onyema">Ikenna Charles Onyema</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolut%20Prince%20Bako"> Tolut Prince Bako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was carried out in the Atlantic Ocean off the Lighthouse Beach, Lagos. There were monthly and spatial variations in physical and chemical characteristics of the neritic ocean (August - December, 2014). Mean and standard deviation values for air temperature were 27. 67, ± 2.98 °C, water temperature (28.37 ± 1.88), pH (7.85 ± 0.17), conductivity (44738.75 ± 6262.76 µS/cm), total dissolved solids (29236.71 ± 4273.30 mg/L), salinity (27.11 ± 3.91 ‰), alkalinity (126.99 ± 42.81 mg/L) and chloride (15056. 67 ± 2165.78 mg/L). Higher estimates were recorded in the dry than wet months for these characteristics. On the other hand, reducing values were recorded for acidity (2.34 ± 0.63 mg/L), total hardness (4711.98 ± 691.50 mg/L), phosphate (1.1 ± 0.78 mg/L), sulphate (2601.99 ± 447.04 mg/L) and nitrate (0.12 ± 0.06 mg/L). Values for total suspended solids and biological oxygen demand values were low (<1mg/L). Twenty-one species of phytoplankton were recorded. Diatoms recorded 80.92% and were the dominant group. Hemidiscus cuneiformis, Coscinodiscus centralis, Coscinodiscus lineatus, Coscinodiscus radiatus and Oscillatoria limosa were more frequently occurring species. Biddulphia sinensis and four species of Ceratium, were representatives of the dry season. The dry season also recorded comparatively higher individuals of phytoplankton than the wet season. Spirogyra sp. (green algae) appeared only in the wet season. Species abundance (N) was highest in December at Station 1 (13.15%) (dry season) and lowest in August (wet season) at Station 3 (2.96%). The physico-chemical factors and phytoplankton reflected a tropical unpolluted neritic oceanic environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sea" title="sea">sea</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemistry" title=" physico-chemistry"> physico-chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=lighthouse%20beach" title=" lighthouse beach"> lighthouse beach</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/52455/phytoplankton-of-the-atlantic-ocean-off-lagos-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Phytoplankton of the Atlantic Ocean off Lagos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikenna%20Charles%20Onyema">Ikenna Charles Onyema</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20Tolut%20Bako"> Prince Tolut Bako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was carried out in the Atlantic Ocean off the Lighthouse Beach, Lagos. There were monthly and spatial variations in physical and chemical characteristics of the neritic ocean (August-December, 2014). Mean and standard deviation values for air temperature were 27. 67, ± 2.98 oC, water temperature (28.37 ± 1.88), pH (7.85 ± 0.17), Conductivity (44738.75 ± 6262.76 µS/cm), Total dissolved solids (29236.71 ± 4273.30 mg/L), Salinity (27.11 ± 3.91 ‰), Alkalinity (126.99 ± 42.81 mg/L) and Chloride (15056. 67 ± 2165.78 mg/L). Higher estimates were recorded in the dry than wet months for these characteristics. On the other hand, reducing values were recorded for Acidity (2.34 ± 0.63 mg/L), Total hardness (4711.98 ± 691.50 mg/L), Phosphate (1.1 ± 0.78 mg/L), Sulphate (2601.99 ± 447.04 mg/L) and Nitrate (0.12 ± 0.06 mg/L). Values for Total suspended solids and Biological oxygen demand values were low ( < 1mg/L). Twenty-one species of phytoplankton were recorded. Diatoms recorded 80.92% and were the dominant group. Hemidiscus cuneiformis, Coscinodiscus centralis, Coscinodiscus lineatus, Coscinodiscus radiatus and Oscillatoria limosa were more frequently occurring species. Biddulphia sinensis and four species of Ceratium, were representatives of the dry season. The dry season also recorded comparatively higher individuals of phytoplankton than the wet season. Spirogyra sp. (green algae) appeared only in the wet season. Species abundance (N) was highest in December at Station 1 (13.15%) (dry season) and lowest in August (wet season) at Station 3 (2.96%). The physico-chemical factors and phytoplankton reflected a tropical unpolluted neritic oceanic environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sea" title="sea">sea</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemistry" title=" physico-chemistry"> physico-chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-algae" title=" micro-algae"> micro-algae</a>, <a href="https://publications.waset.org/abstracts/search?q=lighthouse%20beach" title=" lighthouse beach"> lighthouse beach</a> </p> <a href="https://publications.waset.org/abstracts/59093/phytoplankton-of-the-atlantic-ocean-off-lagos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> A Multi-Model Approach to Assess Atlantic Bonito (Sarda Sarda, Bloch 1793) in the Eastern Atlantic Ocean: A Case Study of the Senegalese Exclusive Economic Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ousmane%20Sarr">Ousmane Sarr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-model%20approach" title="multi-model approach">multi-model approach</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20assessment" title=" stock assessment"> stock assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20bonito" title=" atlantic bonito"> atlantic bonito</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20stock" title=" healthy stock"> healthy stock</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=SEEZ" title=" SEEZ"> SEEZ</a>, <a href="https://publications.waset.org/abstracts/search?q=temporary%20management%20measures" title=" temporary management measures"> temporary management measures</a> </p> <a href="https://publications.waset.org/abstracts/173366/a-multi-model-approach-to-assess-atlantic-bonito-sarda-sarda-bloch-1793-in-the-eastern-atlantic-ocean-a-case-study-of-the-senegalese-exclusive-economic-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> A Qualitative Study of the Psychologically Challenging Aspects of Taking Part in an Ultra-Endurance Atlantic Rowing Event</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Allbutt">John Allbutt</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Murray"> Andrew Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Ling"> Jonathan Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20M.%20Heffernan"> Thomas M. Heffernan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultra-endurance events place unique physical and psychological pressures on participants. In this study, we examined the psychologically challenging aspects of taking part in a 3000 mile transatlantic rowing race using a qualitative approach. To date, more people have been into space than have rowed an ocean and only one psychological study has been conducted on this experience which had a specific research focus. The current study was a qualitative study using semi-structured interviews. Participants were an opportunity sample of seven competitors from a recent ocean rowing race. Participants were asked about the psychological aspects of the event after it had finished. The data were analysed using thematic analysis. Several themes emerged from the analysis. These related to: 1) preparation; 2) bodily aches/pains, 3) race setbacks; 4) boat conditions; 5) interpersonal factors and communication; 6) strategies for managing stress and interpersonal tensions. While participants were generally very positive about the event, the analysis showed that they experienced significant psychological challenges during their voyage. Competitors paid considerable attention to preparing for the physical challenges of the event. However, not all prospective competitors gave the same time to preparing for psychological factors or were aware how they might play out during their voyage. All Atlantic rowing crews should be aware of the psychological challenges they face, and have strategies in place to help cope with the psychological strain of taking part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=confinement%20experiences" title="confinement experiences">confinement experiences</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20rowing" title=" ocean rowing"> ocean rowing</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-endurance%20sport" title=" ultra-endurance sport"> ultra-endurance sport</a> </p> <a href="https://publications.waset.org/abstracts/48810/a-qualitative-study-of-the-psychologically-challenging-aspects-of-taking-part-in-an-ultra-endurance-atlantic-rowing-event" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afiq%20Mohd%20Fahmi">Afiq Mohd Fahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Gutierrez"> Tony Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Hennige"> Sebastian Hennige</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoplankton" title="phytoplankton">phytoplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20acidification" title=" ocean acidification"> ocean acidification</a> </p> <a href="https://publications.waset.org/abstracts/140551/a-microcosm-study-on-the-response-of-phytoplankton-and-bacterial-community-of-the-subarctic-northeast-atlantic-ocean-to-oil-pollution-under-projected-atmospheric-co2-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Exploitation Pattern of Atlantic Bonito in West African Waters: Case Study of the Bonito Stock in Senegalese Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ousmane%20Sarr">Ousmane Sarr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-model%20approach" title="multi-model approach">multi-model approach</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20assessment" title=" stock assessment"> stock assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20bonito" title=" atlantic bonito"> atlantic bonito</a>, <a href="https://publications.waset.org/abstracts/search?q=SEEZ" title=" SEEZ"> SEEZ</a> </p> <a href="https://publications.waset.org/abstracts/174192/exploitation-pattern-of-atlantic-bonito-in-west-african-waters-case-study-of-the-bonito-stock-in-senegalese-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Positioning Analysis of Atlantic Canadian Provinces as Travel Destinations by Americans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongkoo%20Yun">Dongkoo Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20James-MacEachern"> Melissa James-MacEachern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzes Americans&rsquo; views of four Atlantic Canadian provinces as travel destinations regarding specific destination attributes for a pleasure trip, awareness (heard) of the destinations, past visit to the destinations during the prior two years, and intention to visit in the next two years. Results indicate that American travellers perceived the four Atlantic Canadian provinces as separate and distinct when rating best-fit destination attributes to each destination. The results suggest that travel destinations, specifically the four selected destinations, must be prepared to differentiate their destination&rsquo;s image and the range of experiences and services to appeal and attract more American travellers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=American%20perceptions" title="American perceptions">American perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=Atlantic%20Canadian%20provinces" title=" Atlantic Canadian provinces"> Atlantic Canadian provinces</a>, <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title=" competitiveness"> competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=positioning%20analysis" title=" positioning analysis"> positioning analysis</a> </p> <a href="https://publications.waset.org/abstracts/47247/positioning-analysis-of-atlantic-canadian-provinces-as-travel-destinations-by-americans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> An Empirical Analysis of the Freight Forwarders’ Buying Behaviour: Implications for the Ocean Container Carriers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Dzakah%20Fanam">Peter Dzakah Fanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20O.%20Nguyen"> Hong O. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Cahoon"> Stephen Cahoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to explore the buying behavior of the freight forwarders and to evaluate how their buying decision affects the ocean container carriers’ market share. This study analysed the buying decisions of the freight forwarders and validated the process of stages that the freight forwarders’ pass through before choosing an ocean container carrier. Factor analysis was applied to data collected from 105 freight forwarding companies to unveil the influential factors the freight forwarders’ consider important when selecting an ocean container carrier. This study did not only analysed the buying behaviour of the freight forwarders but also unveiled the influential factors affecting the competitiveness of the ocean container carriers in their market share maximisation. Furthermore, the study have made a methodological contribution that helps in better understanding of the critical factors influencing the selection of the ocean container carriers from the freight forwarders’ perspective. The implications of the freight forwarders’ buying behaviour is important to the ocean container carriers because it have severe effect on the market share of the ocean container carriers and the percentage of customers they control within the liner shipping sector. The findings of this study will help the ocean container carriers to formulate relevant marketing strategies in attracting the freight forwarders in purchasing the liner shipping service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ocean%20carrier" title="ocean carrier">ocean carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20forwarder" title=" freight forwarder"> freight forwarder</a>, <a href="https://publications.waset.org/abstracts/search?q=buying%20behaviour" title=" buying behaviour"> buying behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=influential%20factors" title=" influential factors"> influential factors</a> </p> <a href="https://publications.waset.org/abstracts/53684/an-empirical-analysis-of-the-freight-forwarders-buying-behaviour-implications-for-the-ocean-container-carriers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kibrom%20Hadush">Kibrom Hadush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dekadal" title="dekadal">dekadal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiremt%20rainfall" title=" Kiremt rainfall"> Kiremt rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=monthly" title=" monthly"> monthly</a>, <a href="https://publications.waset.org/abstracts/search?q=Northern%20Ethiopia" title=" Northern Ethiopia"> Northern Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20surface%20temperature" title=" sea surface temperature"> sea surface temperature</a> </p> <a href="https://publications.waset.org/abstracts/111579/predictability-of-kiremt-rainfall-variability-over-the-northern-highlands-of-ethiopia-on-dekadal-and-monthly-time-scales-using-global-sea-surface-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Variability of Physico-Chemical and Carbonate Chemistry of Seawater in Selected Portions of the Central Atlantic Coastline of Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Kwame%20Kpaliba">Robert Kwame Kpaliba</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20Kpakpor%20Adotey"> Dennis Kpakpor Adotey</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaw%20Serfor-Armah"> Yaw Serfor-Armah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase in the oceanic carbon dioxide absorbance from the atmosphere due to climate change has led to appreciable change in the chemistry of the oceans. The change in oceanic pH referred to as ocean acidification poses multiple threats and stresses on marine species, biodiversity, goods and services, and livelihoods. Marine ecosystems are continuously threatened by plethora of natural and anthropogenic stressors including carbon dioxide (CO₂) emissions causing a lot of changes which has not been experienced for approximately 60 years. Little has been done in Africa as a whole and Ghana in particular to improve the understanding of the variations of the carbonate chemistry of seawater and the biophysical impacts of ocean acidification on security of seafood, nutrition, climate and environmental change. There is, therefore, the need for regular monitoring of carbonate chemistry of seawater along Ghana’s coastline to generate reliable data to aid marine policy formulation. Samples of seawater were collected thrice every month for a one-year period from five study sites for the various parameters to be analyzed. Analysis of the measured physico-chemical and the carbonate chemistry parameters was done using simple statistics. Correlation test and ANOVA were run on both of the physico-chemical and carbonate chemistry parameters. The carbonate chemistry parameters were measured using computer software programme (CO₂cal v4.0.9) except total alkalinity and pH. The study assessed the variability of seawater carbonate chemistry in selected portions of the Central Atlantic Coastline of Ghana (Tsokomey/Bortianor, Kokrobitey, Gomoa Nyanyanor, Gomoa Fetteh, and Senya Breku landing beaches) over a 1-year period (June 2016–May 2017). For physico-chemical parameters, there was insignificant variation in nitrate (NO₃⁻) (1.62 - 2.3 mg/L), ammonia (NH₃) (1.52 - 2.05 mg/L), and salinity (sal) (34.50 - 34.74 ppt). Carbonate chemistry parameters for all the five study sites showed significant variation: partial pressure of carbon dioxide (pCO₂) (414.08-715.5 µmol/kg), carbonate ion (CO₃²⁻) (115-157.92 µmol/kg), pH (7.9-8.12), total alkalinity (TA) (1711.8-1986 µmol/kg), total carbon dioxide (TCO₂) (1512.1 - 1792 µmol/kg), dissolved carbon dioxide (CO₂aq) (10.97-18.92 µmol/kg), Revelle Factor (RF) (9.62-11.84), aragonite (ΩAr) (0.75-1.48) and calcite (ΩCa) (1.08-2.14). The study revealed that the partial pressure of carbon dioxide and temperature did not have a significant effect on each other (r² = 0.31) (p-value = 0.0717). There was an appreciable effect of pH on dissolved carbon dioxide (r² = 0.921) (p-value = 0.0000). The variation between total alkalinity and dissolved carbon dioxide was appreciable (r² = 0.731) (p-value = 0.0008). There was a significant correlation between total carbon dioxide and dissolved carbon dioxide (r² = 0.852) (p-value = 0.0000). Revelle factor correlated strongly with dissolved carbon dioxide (r² = 0.982) (p-value = 0.0000). Partial pressure of carbon dioxide corresponds strongly with atmospheric carbon dioxide (r² = 0.9999) (p-value = 0.00000). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonate%20chemistry" title="carbonate chemistry">carbonate chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater" title=" seawater"> seawater</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20atlantic%20coastline" title=" central atlantic coastline"> central atlantic coastline</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20acidification" title=" ocean acidification"> ocean acidification</a> </p> <a href="https://publications.waset.org/abstracts/83286/variability-of-physico-chemical-and-carbonate-chemistry-of-seawater-in-selected-portions-of-the-central-atlantic-coastline-of-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Genomic Evidence for Ancient Human Migrations Along South America&#039;s East Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andre%20Luiz%20Campelo%20dos%20Santos">Andre Luiz Campelo dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Owings"> Amanda Owings</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Socrates%20Lavalle%20Sullasi"> Henry Socrates Lavalle Sullasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Gokcumen"> Omer Gokcumen</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20DeGiorgio"> Michael DeGiorgio</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Lindo"> John Lindo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increasing body of archaeological and genomic evidence have indicated a complex settlement process of the Americas. Here, four newly sequenced ancient genomes from Northeast Brazil and Uruguay are reported to share strong relationships with previously published samples from Panama and Southeast Brazil. Moreover, an unexpected high genomic affinity with present-day Onge is found in ancient individuals unearthed along the northern portion of South America’s Atlantic coast. These results provide genomic evidence for ancient migrations along South America’s Atlantic coast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeogenomics" title="archaeogenomics">archaeogenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20coast" title=" atlantic coast"> atlantic coast</a>, <a href="https://publications.waset.org/abstracts/search?q=paleomigrations" title=" paleomigrations"> paleomigrations</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20America" title=" South America"> South America</a> </p> <a href="https://publications.waset.org/abstracts/148451/genomic-evidence-for-ancient-human-migrations-along-south-americas-east-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> i-Plastic: Surface and Water Column Microplastics From the Coastal North Eastern Atlantic (Portugal)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Rebocho">Beatriz Rebocho</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabete%20Valente"> Elisabete Valente</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Palma"> Carla Palma</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreia%20Guilherme"> Andreia Guilherme</a>, <a href="https://publications.waset.org/abstracts/search?q=Filipa%20Bessa"> Filipa Bessa</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Sobral"> Paula Sobral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global accumulation of plastic in the oceans is a growing problem. Plastic is transported from its source to the oceans via rivers, which are considered the main route for plastic particles from land-based sources to the ocean. These plastics undergo physical and chemical degradation resulting in microplastics. The i-Plastic project aims to understand and predict the dispersion, accumulation and impacts of microplastics (5 mm to 1 µm) and nano plastics (below 1 µm) in marine environments from the tropical and temperate land-ocean interface to the open ocean under distinct flow and climate regimes. Seasonal monitoring of the fluxes of microplastics was carried out in (three) coastal areas in Brazil, Portugal and Spain. The present work shows the first results of in-situ seasonal monitoring and mapping of microplastics in ocean waters between Ovar and Vieira de Leiria (Portugal), in which 43 surface water samples and 43 water column samples were collected in contrasting seasons (spring and autumn). The spring and autumn surface water samples were collected with a 300 µm and 150 µm pore neuston net, respectively. In both campaigns, water column samples were collected using a conical mesh with a 150 µm pore. The experimental procedure comprises the following steps: i) sieving by a metal sieve; ii) digestion with potassium hydroxide to remove the organic matter original from the sample matrix. After a filtration step, the content is retained on a membrane and observed under a stereomicroscope, and physical and chemical characterization (type, color, size, and polymer composition) of the microparticles is performed. Results showed that 84% and 88% of the surface water and water column samples were contaminated with microplastics, respectively. Surface water samples collected during the spring campaign averaged 0.35 MP.m-3, while surface water samples collected during autumn recorded 0.39 MP.m-3. Water column samples from the spring campaign had an average of 1.46 MP.m-3, while those from the autumn recorded 2.54 MP.m-3. In the spring, all microplastics found were fibers, predominantly black and blue. In autumn, the dominant particles found in the surface waters were fibers, while in the water column, fragments were dominant. In spring, the average size of surface water particles was 888 μm, while in the water column was 1063 μm. In autumn, the average size of surface and water column microplastics was 1333 μm and 1393 μm, respectively. The main polymers identified by Attenuated Total Reflectance (ATR) and micro-ATR Fourier Transform Infrared (FTIR) spectroscopy from all samples were low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The significant difference between the microplastic concentration in the water column between the two campaigns could be due to the remixing of the water masses that occurred that week due to the occurrence of a storm. This work presents preliminary results since the i-Plastic project is still in progress. These results will contribute to the understanding of the spatial and temporal dispersion and accumulation of microplastics in this marine environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=Portugal" title=" Portugal"> Portugal</a>, <a href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean" title=" Atlantic Ocean"> Atlantic Ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20column" title=" water column"> water column</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water" title=" surface water"> surface water</a> </p> <a href="https://publications.waset.org/abstracts/162471/i-plastic-surface-and-water-column-microplastics-from-the-coastal-north-eastern-atlantic-portugal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luther%20Ollier">Luther Ollier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvie%20Thiria"> Sylvie Thiria</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastase%20Charantonis"> Anastase Charantonis</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20E.%20Mejia"> Carlos E. Mejia</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Cr%C3%A9pon"> Michel Crépon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep-learning" title="deep-learning">deep-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=altimetry" title=" altimetry"> altimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20surface%20temperature" title=" sea surface temperature"> sea surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a> </p> <a href="https://publications.waset.org/abstracts/170355/neural-network-approaches-for-sea-surface-height-predictability-using-sea-surface-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chisomo%20Patrick%20Kumbuyo">Chisomo Patrick Kumbuyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuyuki%20Shimizu"> Katsuyuki Shimizu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Yasuda"> Hiroshi Yasuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshinobu%20Kitamura"> Yoshinobu Kitamura </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malawi%20rainfall" title="Malawi rainfall">Malawi rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast%20model" title=" forecast model"> forecast model</a>, <a href="https://publications.waset.org/abstracts/search?q=predictors" title=" predictors"> predictors</a>, <a href="https://publications.waset.org/abstracts/search?q=SST" title=" SST"> SST</a> </p> <a href="https://publications.waset.org/abstracts/15289/prediction-of-malawi-rainfall-from-global-sea-surface-temperature-using-a-simple-multiple-regression-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Evolving Maritime Geopolitics of the Indo-Pacific</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pragya%20Pandey">Pragya Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major discussion in the 21st -century international affairs has been around the shifting economic and political center of gravity to Asia. In the maritime realm, it translates into a shift in focus from the Atlantic to the Pacific-Indian Ocean region or what is now popularly called the Indo-Pacific region. The Indo-Pacific is rapidly eclipsing once dominant Asia-Pacific as center of trade, investment, competition and cooperation. The growing inter-connectivity between the Indian Ocean and the Pacific Ocean is bringing forth the ‘confluence of the two seas’. Therefore, the Indo-Pacific strategic arc is acquiring greater salience in consonance with the changing realities of the time. The region is undergoing unprecedented transformation in its security outlook. At present, the region is at an interesting historic epoch- witnessing the simultaneous rise India and China, their economic growth, naval modernization and power projection capabilities, alongside the continued presence of the United States, particularly with its rebalancing strategy. Besides the interplay among the three major stakeholders, other regional players like Japan, Australia, and Indonesia, would play a crucial role in the geopolitical re-arrangement of the Indo-Pacific region. The region will be the future theater of activities to determine the shifts and distribution of sea power, by the virtue of its strategic location, intrinsic value of the energy resources and significant maritime trade routes of the region. Therefore, the central theme of the paper would be to scrutinize the maritime security environment of the region against the backdrop of the tricky geopolitical landscape, contributing to the change in the regional and global balance of power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=China" title="China">China</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolitics" title=" geopolitics"> geopolitics</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=United%20States" title=" United States"> United States</a> </p> <a href="https://publications.waset.org/abstracts/44555/evolving-maritime-geopolitics-of-the-indo-pacific" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongjian%20Gu">Yongjian Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ocean%20thermal%20energy" title="ocean thermal energy">ocean thermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20thermal%20energy%20conversion%20%28OTEC%29" title=" ocean thermal energy conversion (OTEC)"> ocean thermal energy conversion (OTEC)</a>, <a href="https://publications.waset.org/abstracts/search?q=OTEC%20plant" title=" OTEC plant"> OTEC plant</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20back%20work%20ratio%20%CF%95" title=" plant back work ratio ϕ"> plant back work ratio ϕ</a> </p> <a href="https://publications.waset.org/abstracts/141985/a-key-parameter-in-ocean-thermal-energy-conversion-plant-design-and-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Interlinkages and Impacts of the Indian Ocean on the Nile River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeleke%20Ayalew%20Alemu">Zeleke Ayalew Alemu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indian Ocean and the Nile River play significant roles in shaping the hydrological and ecological systems of the regions they traverse. This study explores the interlinkages and impacts of the Indian Ocean on the Nile River, highlighting key factors such as water flow, nutrient distribution, climate patterns, and biodiversity. The Indian Ocean serves as a major source of moisture for the Nile River, contributing to its annual flood cycle and sustaining the river's ecosystem. The Indian Ocean's monsoon winds influence the amount of rainfall received in East Africa, which directly impacts the Nile's water levels. These monsoonal patterns create a vital connection between the Indian Ocean and the Nile, affecting agricultural productivity, freshwater availability, and overall river health. The Indian Ocean also influences the nutrient levels in the Nile River. Coastal upwelling driven by oceanic currents brings nutrient-rich waters from the depths of the ocean to the surface. These nutrients are transported by ocean currents towards the Red Sea and subsequently enter the Nile. This influx of nutrients supports the growth of plankton, which forms the basis of the river's food web and sustains various aquatic species. Additionally, the Indian Ocean's climate patterns, such as El Niño and Indian Ocean Dipole events, exert influence on the Nile River basin. El Niño, for example, can result in drought conditions, reduced precipitation, and altered river flows, impacting agricultural activities and water resource management along the Nile. The Indian Ocean Dipole events can influence the rainfall distribution in East Africa, further impacting the Nile's water levels and ecosystem dynamics. The Indian Ocean's biodiversity is interconnected with the Nile River's ecological system. Many species that inhabit the Indian Ocean, such as migratory birds and marine mammals, migrate along the Nile River basin, utilizing its resources for feeding and breeding purposes. The health of the Indian Ocean's ecosystem thus indirectly affects the biodiversity and ecological balance of the Nile River. Indian Ocean plays a crucial role in shaping the dynamics of the Nile River. Its influence on water flow, nutrient distribution, climate patterns, and biodiversity highlights the complex interdependencies between these two important water bodies. Understanding the interconnectedness and impacts of the Indian Ocean on the Nile is essential for effective water resource management and conservation efforts in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=planning" title=" planning"> planning</a> </p> <a href="https://publications.waset.org/abstracts/172825/interlinkages-and-impacts-of-the-indian-ocean-on-the-nile-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Shark Fishing in Iceland: Ocean Oral History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalr%C3%BAn%20Kaldakv%C3%ADsl%20Eyger%C3%B0ard%C3%B3ttir">Dalrún Kaldakvísl Eygerðardóttir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shark fishing has been practiced for centuries in Iceland. The broad objective of this ongoing research is to study the history of shark fishing in Iceland from the high days of Icelandic shark fishing in the latter half of the 19th century to recent days. The main focus is on shark fishing in the 20th and 21st century. The research sheds light on how sharks have shaped the Icelandic society and how Icelandic society has shaped the lives of sharks, by providing historical context to the relationship between Icelanders and one of the top predators in the North Atlantic Ocean, the Greenland shark. It is important to explore this aspect of Icelandic history further, to enhance people´s understanding of the marine ecosystem from the context of the past and the current increasing concerns about the status of sharks worldwide. Next to nothing has been written about shark fishing in the 20th and 21st Iceland, which shows the importance of interviewing shark fishermen – most of whom are at an old age today. The main methodology used in the research is oral history. Oral history is a large and growing field of research within history, which is based on obtaining oral sources through interviews, analyzing them, and presenting them. The video-poster sheds light on how oral history provides useful historical information on shark fishing and shark conservation in Iceland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20history" title="oral history">oral history</a>, <a href="https://publications.waset.org/abstracts/search?q=shark%20fishing%20in%20Iceland" title=" shark fishing in Iceland"> shark fishing in Iceland</a>, <a href="https://publications.waset.org/abstracts/search?q=19.%20and%2021.%20century" title=" 19. and 21. century"> 19. and 21. century</a>, <a href="https://publications.waset.org/abstracts/search?q=shark%20conservation" title=" shark conservation"> shark conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20environmental%20history" title=" marine environmental history"> marine environmental history</a> </p> <a href="https://publications.waset.org/abstracts/164109/shark-fishing-in-iceland-ocean-oral-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Toxin-Producing Algae of Nigerian Coast, Gulf of Guinea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medina%20O.%20Kadiri">Medina O. Kadiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20U.%20Ogbebor"> Jeffrey U. Ogbebor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toxin-producing algae are algal species that produce potent toxins, which accumulate in food chains and cause various gastrointestinal and neurological illnesses in humans and other animals. They result in shellfish toxicity, ecosystem alteration, cause fish kills and mortality of other animals and humans, in addition to compromised product quality as well as decreased consumer confidence. Animals, including man, are directly exposed to toxins by absorbing toxins from the water via swimming, drinking water with toxins, or ingestion of algal species via feeding on contaminated seafood. These toxins, algal toxins, undergo bioaccumulation, biotransformation, biotransferrence, and biomagnification through the natural food chains and food webs, thereby endangering animals and humans. The Nigerian coast is situated on the Atlantic Ocean, the Gulf of Guinea, one of Africa’s five large marine ecosystems (LME), and studies on toxic algae in this ecosystem are generally lacking. Algal samples were collected from eight coastal states and ten locations spanning the Bight of Bonny and the Bight of Benin. A total of 70 species of toxin-producing algae were found in the coastal waters of Nigeria. There was a great variety of toxin-producing algae in the coastal waters of Nigeria. They were Domoic acid-producing forms (DSP), Saxitoxin-producing, Gonyautoxin-producing, and Yessotoxin-producing (all PSP). Others were Okadaic acid-producing, Dinophysistoxin-producing, and Palytoxin-producing, which are representatives of DSP; CFP was represented by Ciguatoxin-producing forms and NSP by Brevitoxin-producing species. Emerging or new toxins are comprising of Gymnodimines, Spirolides, Palytoxins, and Prorocentrolidess-producing algae. The CyanoToxin Poisoning (CTP) was represented by Anatoxin-, Microcystin-, Cylindrospermopsis-Lyngbyatoxin-, Nordularin-Applyssiatoxin and Debromoapplatoxin-producing species. The highest group was the Saxitoxin-producing species, followed by Microcystin-producing species, then Anatoxin-producing species. Gonyautoxin (PSP), Palytoxin (DSP), Emerging toxins, and Cylindrospermopsin -producing species had a very substantial representation. Only Ciguatoxin-producing species, Lyngbyatoxin-Nordularin, Applyssiatoxin, and Debromoapplatoxin-producing species were represented by one taxon each. The presence of such overwhelming diversity of toxin-producing algae on the Nigerian coast is a source of concern for fisheries, aquaculture, human health, and ecosystem services. Therefore routine monitoring of toxic and harmful algae is greatly recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algal%20syndromes" title="algal syndromes">algal syndromes</a>, <a href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean" title=" Atlantic Ocean"> Atlantic Ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=harmful%20algae" title=" harmful algae"> harmful algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/139706/toxin-producing-algae-of-nigerian-coast-gulf-of-guinea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Phylogeography and Evolutionary History of Whiting (Merlangius merlangus) along the Turkish Coastal Waters with Comparisons to the Atlantic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asl%C4%B1%20%C5%9Ealc%C4%B1o%C4%9Flu">Aslı Şalcıoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Grigorous%20Krey"> Grigorous Krey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C5%9Fit%20Bilgin"> Raşit Bilgin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of the Turkish Straits System (TSS), comprising a biogeographical boundary that forms the connection between the Mediterranean and the Black Sea, on the evolutionary history, phylogeography and intraspecific gene flow of the whiting (Merlangius merlangus) a demersal fish species, was investigated. For these purposes, the mitochondrial DNA (CO1, cyt-b) genes were used. In addition, genetic comparisons samples from other regions (Greece, France, Atlantic) obtained from GenBank and Barcode of Life Database were made to better understand the phylogeographic history of the species at a larger geographic scale. Within this study, high level of genetic differentiation was observed along the Turkish coastal waters based on cyt-b gene, suggesting that TSS is a barrier to dispersal. Two different sub-species were also observed based on mitochondrial DNA, one found in Turkish coastal waters and Greece (M.m euxinus) and other (M.m. merlangus) in Atlantic, France. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic" title="genetic">genetic</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeography" title=" phylogeography"> phylogeography</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS" title=" TSS"> TSS</a>, <a href="https://publications.waset.org/abstracts/search?q=whiting" title=" whiting"> whiting</a> </p> <a href="https://publications.waset.org/abstracts/66884/phylogeography-and-evolutionary-history-of-whiting-merlangius-merlangus-along-the-turkish-coastal-waters-with-comparisons-to-the-atlantic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> A World Map of Seabed Sediment Based on 50 Years of Knowledge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Garlan">T. Garlan</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Gabelotaud"> I. Gabelotaud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lucas"> S. Lucas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20March%C3%A8s"> E. Marchès</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO&#39;s general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20sedimentology" title="marine sedimentology">marine sedimentology</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed%20map" title=" seabed map"> seabed map</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20classification" title=" sediment classification"> sediment classification</a>, <a href="https://publications.waset.org/abstracts/search?q=world%20ocean" title=" world ocean"> world ocean</a> </p> <a href="https://publications.waset.org/abstracts/78461/a-world-map-of-seabed-sediment-based-on-50-years-of-knowledge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Bosporus Evolution: Its Role in the Black Sea Forming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Kuzminov">I. V. Kuzminov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research is dedicated to the issue of Bosporus evolution and its key role in the Black Sea forming. Up till nowadays, there is no distinct picture of the historical and geographical events of the last 10 thousand years on the territory from Altai up to the Alps. The present article is an attempt to clarify and, moreover, link the presented version to the historical and climatic events of this period. The paper is a development of the basic idea stated in "Hypothesis on the Black Sea origin". The succession of events in dynamics is offered in this article. In the article, it is shown that fluctuation of the level of the World Ocean is a mirror of the basic events connected with the climate on the Earth on the one hand and hydraulic processes on the other hand. In the present article, it is come out with the assumption that at the formation of passage, there were some cycles of change in a level of the World ocean. The phase of the beginning of climate warming is characterized by an increase in the level of inland water bodies on the way of meltwater runoff and an increase in the World ocean level. The end of the warming phase is characterized by the continuation of a rise in the level of the World ocean and the drying up of inland water bodies deprived of meltwater replenishment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bosporus" title="Bosporus">Bosporus</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan-Pitman%20hypothesis" title=" Ryan-Pitman hypothesis"> Ryan-Pitman hypothesis</a>, <a href="https://publications.waset.org/abstracts/search?q=fluctuations%20of%20the%20World%20Ocean%20level" title=" fluctuations of the World Ocean level"> fluctuations of the World Ocean level</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Paratethys%20Sea" title=" the Paratethys Sea"> the Paratethys Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=catastrophic%20breakthrough" title=" catastrophic breakthrough"> catastrophic breakthrough</a> </p> <a href="https://publications.waset.org/abstracts/152551/bosporus-evolution-its-role-in-the-black-sea-forming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> The Ocean at the Center of Geopolitics: Between an Overflowing Land and an Under-Exploited Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20De%20Azevedo">Ana Maria De Azevedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are living a remarkable period, responsible for the thriving of the human population to unprecedented levels. Still, it is empirically obvious that sustaining such a huge population puts a tremendous pressure on our planet. Once Land resources grow scarcer, there is a mounting pressure to find alternatives to support basic human needs elsewhere. Occupying most of our planet, it’s therefore natural that, is not a so distant future, humankind look for such basic subsistence means at the Ocean. Thus, once the Ocean becomes essential to Human subsistence, it is predictable it's moving to the foreground of Geopolitics. Both future technologies and uses of the Ocean, as bidding for the exploration of its resources away from the natural territory of influence of a Country, are susceptible of raising the risk of conflict between traditional political adversaries and/or the dilemma of having to balance economic interests, with various security and defense concerns. Those empirical observations suggest the need to further research on this perspective shift of the main Geopolitical axis to the Ocean, the new sources of conflict that can result thereon, and how to address them. The author suggests a systematic analysis of this problematic, to attain a political and legal international consensus, namely on what concerns updating of the 'United Nations Convention on the Law of the Sea' of 10 December 1982, and/or its annexes. To proceed with the present research, the primary analysis was based on a quantitative observation, but reasoning thereon relied essentially on a qualitative process of prospective scenarios assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20resources" title="marine resources">marine resources</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20geopolitics" title=" ocean geopolitics"> ocean geopolitics</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20and%20defense" title=" security and defense"> security and defense</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/96659/the-ocean-at-the-center-of-geopolitics-between-an-overflowing-land-and-an-under-exploited-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Blue Economy and Marine Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fani%20Sakellariadou">Fani Sakellariadou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20economy" title="blue economy">blue economy</a>, <a href="https://publications.waset.org/abstracts/search?q=deep-sea%20mining" title=" deep-sea mining"> deep-sea mining</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a> </p> <a href="https://publications.waset.org/abstracts/137319/blue-economy-and-marine-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Ecopath Analysis of Trophic Structure in Moroccan Mediterranean Sea and Atlantic Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Aboussalam">Salma Aboussalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Khalil"> Karima Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Elkalay"> Khalid Elkalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ecopath model was utilized to evaluate the trophic structure, function, and current status of the Moroccan Mediterranean Sea ecosystem. The model incorporated 31 functional groups, including fish species, invertebrates, primary producers, and detritus. Through the analysis of trophic interactions among these groups, an average trophic transfer efficiency of 23% was found. The findings revealed that the ecosystem produced more energy than it consumed, with high respiration and consumption rates. Indicators of stability and development were low, indicating that the ecosystem is disturbed by a linear trophic structure. Additionally, keystone species were identified through the use of the keystone index and mixed trophic impact analysis, with demersal invertebrates, zooplankton, and cephalopods found to have a significant impact on other groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecopath" title="ecopath">ecopath</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20web" title=" food web"> food web</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20flux" title=" trophic flux"> trophic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Moroccan%20Mediterranean%20Sea" title=" Moroccan Mediterranean Sea"> Moroccan Mediterranean Sea</a> </p> <a href="https://publications.waset.org/abstracts/161771/ecopath-analysis-of-trophic-structure-in-moroccan-mediterranean-sea-and-atlantic-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Atlantic%20Ocean&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10