CINXE.COM
Search results for: one and two-dimensional Schrodinger equation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: one and two-dimensional Schrodinger equation</title> <meta name="description" content="Search results for: one and two-dimensional Schrodinger equation"> <meta name="keywords" content="one and two-dimensional Schrodinger equation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="one and two-dimensional Schrodinger equation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="one and two-dimensional Schrodinger equation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1997</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: one and two-dimensional Schrodinger equation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1997</span> Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20K.%20Jaradat">Emad K. Jaradat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ala%E2%80%99a%20Al-Faqih"> Ala’a Al-Faqih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20Schrodinger%20equation" title="non-linear Schrodinger equation">non-linear Schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Elzaki%20decomposition%20method" title=" Elzaki decomposition method"> Elzaki decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20oscillator" title=" harmonic oscillator"> harmonic oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation" title=" one and two-dimensional Schrodinger equation"> one and two-dimensional Schrodinger equation</a> </p> <a href="https://publications.waset.org/abstracts/102537/approximate-solution-to-non-linear-schrodinger-equation-with-harmonic-oscillator-by-elzaki-decomposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1996</span> Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mishu%20Gupta">Mishu Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20Gupta"> Rama Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-E-Bose-Einstein" title="B-E-Bose-Einstein">B-E-Bose-Einstein</a>, <a href="https://publications.waset.org/abstracts/search?q=DNLSE-Discrete%20non%20linear%20schrodinger%20equation" title=" DNLSE-Discrete non linear schrodinger equation"> DNLSE-Discrete non linear schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=NLSE-non%20linear%20schrodinger%20equation" title=" NLSE-non linear schrodinger equation"> NLSE-non linear schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=SDNLSE%20-%20saturable%20discrete%20non%20linear%20Schrodinger%20equation" title=" SDNLSE - saturable discrete non linear Schrodinger equation"> SDNLSE - saturable discrete non linear Schrodinger equation</a> </p> <a href="https://publications.waset.org/abstracts/121074/analytical-solution-of-non-autonomous-discrete-non-linear-schrodinger-equation-with-saturable-non-linearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1995</span> The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Uma"> R. Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Sharma"> R. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20waves" title="water waves">water waves</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20instability" title=" modulation instability"> modulation instability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schr%C3%B6dinger%27s%20equation" title=" nonlinear Schrödinger's equation"> nonlinear Schrödinger's equation</a> </p> <a href="https://publications.waset.org/abstracts/179074/the-physics-of-turbulence-generation-in-a-fluid-numerical-investigation-using-a-1d-damped-mnls-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1994</span> Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Alghabshi">Muna Alghabshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Edmana%20Krishnan"> Edmana Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacobi%20elliptic%20function" title="Jacobi elliptic function">Jacobi elliptic function</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20methods" title=" mapping methods"> mapping methods</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schrodinger%20Equation" title=" nonlinear Schrodinger Equation"> nonlinear Schrodinger Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=tanh%20method" title=" tanh method"> tanh method</a> </p> <a href="https://publications.waset.org/abstracts/55053/exact-solutions-of-a-nonlinear-schrodinger-equation-with-kerr-law-nonlinearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1993</span> A Trapezoidal-Like Integrator for the Numerical Solution of One-Dimensional Time Dependent Schrödinger Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnson%20Oladele%20Fatokun">Johnson Oladele Fatokun</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20P.%20Akpan"> I. P. Akpan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the one-dimensional time dependent Schrödinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff ordinary differential equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10-4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schrodinger%E2%80%99s%20equation" title="Schrodinger’s equation">Schrodinger’s equation</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20lines%20%28MOL%29" title=" method of lines (MOL)"> method of lines (MOL)</a>, <a href="https://publications.waset.org/abstracts/search?q=stiff%20ODE" title=" stiff ODE"> stiff ODE</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal-like%20integrator" title=" trapezoidal-like integrator "> trapezoidal-like integrator </a> </p> <a href="https://publications.waset.org/abstracts/11665/a-trapezoidal-like-integrator-for-the-numerical-solution-of-one-dimensional-time-dependent-schrodinger-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1992</span> On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20A.%20Farinola">Lawrence A. Farinola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximation%20of%20derivatives" title="approximation of derivatives">approximation of derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=Schr%C3%B6dinger%20equation" title=" Schrödinger equation"> Schrödinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20error" title=" uniform error"> uniform error</a> </p> <a href="https://publications.waset.org/abstracts/99442/on-the-grid-technique-by-approximating-the-derivatives-of-the-solution-of-the-dirichlet-problems-for-11-dimensional-linear-schrodinger-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1991</span> Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Triki">H. Triki</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hamaizi"> Y. Hamaizi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El-Akrmi"> A. El-Akrmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schr%C3%B6dinger%20equation" title="nonlinear Schrödinger equation">nonlinear Schrödinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=high-order%20effects" title=" high-order effects"> high-order effects</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20solution" title=" soliton solution"> soliton solution</a> </p> <a href="https://publications.waset.org/abstracts/11564/soliton-solutions-of-the-higher-order-nonlinear-schrodinger-equation-with-dispersion-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1990</span> The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarun%20Phibanchon">Sarun Phibanchon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuttakarn%20Rattanachai"> Yuttakarn Rattanachai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soliton" title="soliton">soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-acoustic%20waves" title=" ion-acoustic waves"> ion-acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a> </p> <a href="https://publications.waset.org/abstracts/32663/the-soliton-solution-of-the-quadratic-cubic-nonlinear-schrodinger-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1989</span> Relativistic Energy Analysis for Some q Deformed Shape Invariant Potentials in D Dimensions Using SUSYQM Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Suparmi">A. Suparmi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Cari"> C. Cari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yunianto"> M. Yunianto</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Pratiwi"> B. N. Pratiwi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> D-dimensional Dirac equations of q-deformed shape invariant potentials were solved using supersymmetric quantum mechanics (SUSY QM) in the case of exact spin symmetry. The D dimensional radial Dirac equation for shape invariant potential reduces to one-dimensional Schrodinger type equation by an appropriate variable and parameter change. The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial D dimensional Dirac equation that have reduced to one dimensional Schrodinger type equation. The SUSY operator was used to generate the D dimensional relativistic radial wave functions, the relativistic energy equation reduced to the non-relativistic energy in the non-relativistic limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D-dimensional%20dirac%20equation" title="D-dimensional dirac equation">D-dimensional dirac equation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-central%20potential" title=" non-central potential"> non-central potential</a>, <a href="https://publications.waset.org/abstracts/search?q=SUSY%20QM" title=" SUSY QM"> SUSY QM</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20wave%20function" title=" radial wave function"> radial wave function</a> </p> <a href="https://publications.waset.org/abstracts/43601/relativistic-energy-analysis-for-some-q-deformed-shape-invariant-potentials-in-d-dimensions-using-susyqm-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1988</span> Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=BenedictI%20Ita">BenedictI Ita</a>, <a href="https://publications.waset.org/abstracts/search?q=Etido%20P.%20Inyang"> Etido P. Inyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schr%C3%B6dinger%20equation" title="Schrödinger equation">Schrödinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikiforov-Uvarov%20method" title=" Nikiforov-Uvarov method"> Nikiforov-Uvarov method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20screened%20Kratzer" title=" modified screened Kratzer"> modified screened Kratzer</a>, <a href="https://publications.waset.org/abstracts/search?q=inversely%20quadratic%20Yukawa%20potential" title=" inversely quadratic Yukawa potential"> inversely quadratic Yukawa potential</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomic%20molecules" title=" diatomic molecules"> diatomic molecules</a> </p> <a href="https://publications.waset.org/abstracts/152962/analytical-solutions-to-the-n-dimensional-schrodinger-equation-with-a-collective-potential-model-to-study-energy-spectra-andthermodynamic-properties-of-selected-diatomic-molecules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1987</span> Propagation of W Shaped of Solitons in Fiber Bragg Gratings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mezghiche%20Kamel">Mezghiche Kamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present solitary wave solutions for the perturbed nonlinear Schrodinger (PNLS) equation describing propagation of femtosecond light pulses through the fiber Bragg grating structure where the pulse dynamics is governed by the nonlinear-coupled mode (NLCM) equations. Using the multiple scale analysis, we reduce the NLCM equations into the perturbed nonlinear Schrodinger (PNLS) type equation. Unlike the reported solitary wave solutions of the PNLS equation, the novel ones can describe W shaped of solitons and their properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81ber%20bragg%20grating" title="fiber bragg grating">fiber bragg grating</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear-coupled%20mode%20equations" title=" nonlinear-coupled mode equations"> nonlinear-coupled mode equations</a>, <a href="https://publications.waset.org/abstracts/search?q=w%20shaped%20of%20solitons" title=" w shaped of solitons"> w shaped of solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=PNLS" title=" PNLS"> PNLS</a> </p> <a href="https://publications.waset.org/abstracts/12669/propagation-of-w-shaped-of-solitons-in-fiber-bragg-gratings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">769</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1986</span> Energy States of Some Diatomic Molecules: Exact Quantization Rule Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20J.%20Falaye">Babatunde J. Falaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we obtain the approximate analytical solutions of the radial Schrödinger equation for the Deng-Fan diatomic molecular potential by using exact quantization rule approach. The wave functions have been expressed by hypergeometric functions via the functional analysis approach. An extension to rotational-vibrational energy eigenvalues of some diatomic molecules are also presented. It is shown that the calculated energy levels are in good agreement with the ones obtained previously E_nl-D (shifted Deng-Fan). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schr%C3%B6dinger%20equation" title="Schrödinger equation">Schrödinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20quantization%20rule" title=" exact quantization rule"> exact quantization rule</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20analysis" title=" functional analysis"> functional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Deng-Fan%20potential" title=" Deng-Fan potential"> Deng-Fan potential</a> </p> <a href="https://publications.waset.org/abstracts/17622/energy-states-of-some-diatomic-molecules-exact-quantization-rule-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1985</span> Dynamics of Light Induced Current in 1D Coupled Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokuei%20Sako">Tokuei Sako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser-induced current in a quasi-one-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to a pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation directly by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the lifetime of the quasi-bound states formed when the static bias voltage is applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20field" title="pulsed laser field">pulsed laser field</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20wave%20packet" title=" electron wave packet"> electron wave packet</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20Schr%C3%B6dinger%20equation" title=" time-dependent Schrödinger equation"> time-dependent Schrödinger equation</a> </p> <a href="https://publications.waset.org/abstracts/22996/dynamics-of-light-induced-current-in-1d-coupled-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1984</span> Closed Form Exact Solution for Second Order Linear Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Otarod">Saeed Otarod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a different simple and straight forward analysis a closed-form integral solution is found for nonhomogeneous second order linear ordinary differential equations, in terms of a particular solution of their corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is transformed into a simple Riccati equation from which the general solution of non-homogeneouecond order differential equation, in the form of a closed integral equation is inferred. The method works well in manyimportant cases, such as Schrödinger equation for hydrogen-like atoms. A non-homogenous second order linear differential equation has been solved as an extra example <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit" title="explicit">explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=linear" title=" linear"> linear</a>, <a href="https://publications.waset.org/abstracts/search?q=differential" title=" differential"> differential</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20form" title=" closed form"> closed form</a> </p> <a href="https://publications.waset.org/abstracts/185365/closed-form-exact-solution-for-second-order-linear-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1983</span> Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20U.%20Rahman">F. U. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Zhang"> R. Q. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title="Green’s function">Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20atom" title=" hydrogen atom"> hydrogen atom</a>, <a href="https://publications.waset.org/abstracts/search?q=Lippmann%20Schwinger%20equation" title=" Lippmann Schwinger equation"> Lippmann Schwinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20wave" title=" radial wave"> radial wave</a> </p> <a href="https://publications.waset.org/abstracts/42682/solution-of-the-nonrelativistic-radial-wave-equation-of-hydrogen-atom-using-the-greens-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1982</span> A Study of Non Linear Partial Differential Equation with Random Initial Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayaz%20Ahmad">Ayaz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drift%20term" title="drift term">drift term</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20time%20blow%20up" title=" finite time blow up"> finite time blow up</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20solution" title=" soliton solution"> soliton solution</a> </p> <a href="https://publications.waset.org/abstracts/77445/a-study-of-non-linear-partial-differential-equation-with-random-initial-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1981</span> Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Pe%C3%B1a">J. J. Peña</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Morales"> J. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Garc%C3%ADa-Ravelo"> J. García-Ravelo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Arcos-D%C3%ADaz"> L. Arcos-Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20particle" title="free particle">free particle</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20canonical%20transformation%20method" title=" point canonical transformation method"> point canonical transformation method</a>, <a href="https://publications.waset.org/abstracts/search?q=position-dependent%20mass" title=" position-dependent mass"> position-dependent mass</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20mass%20distribution" title=" staggered mass distribution"> staggered mass distribution</a> </p> <a href="https://publications.waset.org/abstracts/71082/schrodinger-equation-with-position-dependent-mass-staggered-mass-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1980</span> Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto">Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20systems" title=" quantum systems"> quantum systems</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/62500/stability-of-stochastic-model-predictive-control-for-schrodinger-equation-with-finite-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1979</span> Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanpei%20Zhen">Yanpei Zhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darboux%20transformation" title="Darboux transformation">Darboux transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20wave" title=" periodic wave"> periodic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Rogue%20wave" title=" Rogue wave"> Rogue wave</a>, <a href="https://publications.waset.org/abstracts/search?q=separating%20the%20variables" title=" separating the variables"> separating the variables</a> </p> <a href="https://publications.waset.org/abstracts/174512/rogue-waves-arising-on-the-standing-periodic-wave-in-the-high-order-ablowitz-ladik-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1978</span> 1D Klein-Gordon Equation in an Infinite Square Well with PT Symmetry Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suleiman%20Bashir%20Adamu">Suleiman Bashir Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Sani%20Taura"> Lawan Sani Taura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the role of boundary conditions via -symmetric quantum mechanics, where denotes parity operator and denotes time reversal operator. Using the one-dimensional Schrödinger Hamiltonian for a free particle in an infinite square well, we introduce symmetric boundary conditions. We find solutions of the 1D Klein-Gordon equation for a free particle in an infinite square well with Hermitian boundary and symmetry boundary conditions, where in both cases the energy eigenvalues and eigenfunction, respectively, are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eigenvalues" title="Eigenvalues">Eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Eigenfunction" title=" Eigenfunction"> Eigenfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian" title=" Hamiltonian"> Hamiltonian</a>, <a href="https://publications.waset.org/abstracts/search?q=Klein-%20Gordon%20equation" title=" Klein- Gordon equation"> Klein- Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=PT-symmetric%20quantum%20mechanics" title=" PT-symmetric quantum mechanics"> PT-symmetric quantum mechanics</a> </p> <a href="https://publications.waset.org/abstracts/50876/1d-klein-gordon-equation-in-an-infinite-square-well-with-pt-symmetry-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1977</span> Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Eric">Deborah Eric</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Ahmad%20Khan"> Abbas Ahmad Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perovskite" title="perovskite">perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20bandgap" title=" intermediate bandgap"> intermediate bandgap</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=miniband%20formation" title=" miniband formation"> miniband formation</a> </p> <a href="https://publications.waset.org/abstracts/142302/bandgap-engineering-of-csmapbi3-xbrx-quantum-dots-for-intermediate-band-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1976</span> Stern-Gerlach Force in Quantum Magnetic Field and Schrodinger's Cat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandip%20Singh">Mandip Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum entanglement plays a fundamental role in our understanding of counter-intuitive aspects of quantum reality. If classical physics is an approximation of quantum physics, then quantum entanglement should persist at a macroscopic scale. In this paper, a thought experiment is presented where a free falling spin polarized Bose-Einstein condensate interacts with a quantum superimposed magnetic field of nonzero gradient. In contrast to the semiclassical Stern-Gerlach experiment, the magnetic field and the spin degrees of freedom both are considered to be quantum mechanical in a generalized scenario. As a consequence, a Bose-Einstein condensate can be prepared at distinct locations in space in a sense of quantum superposition. In addition, the generation of Schrodinger-cat like quantum states shall be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schrodinger-cat%20quantum%20states" title="Schrodinger-cat quantum states">Schrodinger-cat quantum states</a>, <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20entanglement" title=" macroscopic entanglement"> macroscopic entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20quantum%20fields" title=" macroscopic quantum fields"> macroscopic quantum fields</a>, <a href="https://publications.waset.org/abstracts/search?q=foundations%20of%20quantum%20physics" title=" foundations of quantum physics"> foundations of quantum physics</a> </p> <a href="https://publications.waset.org/abstracts/74746/stern-gerlach-force-in-quantum-magnetic-field-and-schrodingers-cat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1975</span> Mapping Method to Solve a Nonlinear Schrodinger Type Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edamana%20Vasudevan%20Krishnan">Edamana Vasudevan Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies solitons in optical materials with the help of Mapping Method. Two types of nonlinear media have been investigated, namely, the cubic nonlinearity and the quintic nonlinearity. The soliton solutions, shock wave solutions and singular solutions have been derives with certain constraint conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solitons" title="solitons">solitons</a>, <a href="https://publications.waset.org/abstracts/search?q=integrability" title=" integrability"> integrability</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20method" title=" mapping method"> mapping method</a> </p> <a href="https://publications.waset.org/abstracts/32851/mapping-method-to-solve-a-nonlinear-schrodinger-type-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1974</span> Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debajyoti%20Choudhuri">Debajyoti Choudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratan%20Kumar%20Giri"> Ratan Kumar Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shesadev%20Pradhan"> Shesadev Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=p-Laplacian" title="p-Laplacian">p-Laplacian</a>, <a href="https://publications.waset.org/abstracts/search?q=p-biharmonic" title=" p-biharmonic"> p-biharmonic</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20PDEs" title=" elliptic PDEs"> elliptic PDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=Concentration%20lemma" title=" Concentration lemma"> Concentration lemma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sobolev%20space" title=" Sobolev space"> Sobolev space</a> </p> <a href="https://publications.waset.org/abstracts/58393/existence-and-concentration-of-solutions-for-a-class-of-elliptic-partial-differential-equations-involving-p-biharmonic-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1973</span> Fast-Forward Problem in Asymmetric Double-Well Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iwan%20Setiawan">Iwan Setiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bobby%20Eka%20Gunara"> Bobby Eka Gunara</a>, <a href="https://publications.waset.org/abstracts/search?q=Katshuhiro%20Nakamura"> Katshuhiro Nakamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The theory to accelerate system on quantum dynamics has been constructed to get the desired wave function on shorter time. This theory is developed on adiabatic quantum dynamics which any regulation is done on wave function that satisfies Schrödinger equation. We show accelerated manipulation of WFs with the use of a parameter-dependent in asymmetric double-well potential and also when it’s influenced by electromagnetic fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driving%20potential" title="driving potential">driving potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Adiabatic%20Quantum%20Dynamics" title=" Adiabatic Quantum Dynamics"> Adiabatic Quantum Dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20field" title=" electromagnetic field"> electromagnetic field</a> </p> <a href="https://publications.waset.org/abstracts/46220/fast-forward-problem-in-asymmetric-double-well-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1972</span> Static Properties of Ge and Sr Isotopes in the Cluster Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Shojaei">Mohammad Reza Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdeih%20Mirzaeinia"> Mahdeih Mirzaeinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the cluster structure of even-even stable isotopes of Ge and Sr. The Schrodinger equation has been solved using the generalized parametric Nikiforov-Uvarov method with a phenomenological potential. This potential is the sum of the attractive Yukawa-like potential, a Manning-Rosen-type potential, and the repulsive Yukawa potential for interaction between the cluster and the core. We have shown that the available experimental data of the first rotational band energies can be well described by assuming a binary system of the α cluster and the core and using an analytical solution. Our results were consistent with experimental values. Hence, this model can be applied to study the other even-even isotopes <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluser%20model" title="cluser model">cluser model</a>, <a href="https://publications.waset.org/abstracts/search?q=NU%20method" title=" NU method"> NU method</a>, <a href="https://publications.waset.org/abstracts/search?q=ge%20and%20Sr" title=" ge and Sr"> ge and Sr</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20central" title=" potential central"> potential central</a> </p> <a href="https://publications.waset.org/abstracts/156406/static-properties-of-ge-and-sr-isotopes-in-the-cluster-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1971</span> Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedict%20Ita">Benedict Ita</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Okoi"> Peter Okoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schrodinger%20equation" title="Schrodinger equation">Schrodinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikoforov-Uvarov%20method" title=" Nikoforov-Uvarov method"> Nikoforov-Uvarov method</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20square%20root%20potential" title=" inverse square root potential"> inverse square root potential</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomic%20molecules" title=" diatomic molecules"> diatomic molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=Python%20programming" title=" Python programming"> Python programming</a>, <a href="https://publications.waset.org/abstracts/search?q=Hellmann-Feynman%20theorem" title=" Hellmann-Feynman theorem"> Hellmann-Feynman theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20differential%20equation" title=" second order differential equation"> second order differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20algebra" title=" matrix algebra"> matrix algebra</a> </p> <a href="https://publications.waset.org/abstracts/192989/exact-energy-spectrum-and-expectation-values-of-the-inverse-square-root-potential-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1970</span> Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchi%20Barua">Suchi Barua</a>, <a href="https://publications.waset.org/abstracts/search?q=Narottam%20Das"> Narottam Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Sven%20Nordholm"> Sven Nordholm</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Razaghi"> Mohammad Razaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite-difference%20beam%20propagation%20method" title="finite-difference beam propagation method">finite-difference beam propagation method</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20shape" title=" pulse shape"> pulse shape</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20propagation" title=" pulse propagation"> pulse propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20optical%20amplifier" title=" semiconductor optical amplifier"> semiconductor optical amplifier</a> </p> <a href="https://publications.waset.org/abstracts/20730/analysis-of-nonlinear-pulse-propagation-characteristics-in-semiconductor-optical-amplifier-for-different-input-pulse-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1969</span> Fokas-Lenells Equation Conserved Quantities and Landau-Lifshitz System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riki%20Dutta">Riki Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagardeep%20Talukdar"> Sagardeep Talukdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautam%20Kumar%20Saharia"> Gautam Kumar Saharia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudipta%20Nandy"> Sudipta Nandy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fokas-Lenells equation (FLE) is one of the integrable nonlinear equations use to describe the propagation of ultrashort optical pulses in an optical medium. A 2x2 Lax pair has been introduced for the FLE and from that solving the Riccati equation yields infinitely many conserved quantities. Thereafter for a new field function (S) of the Landau-Lifshitz (LL) system, a gauge equivalence of the FLE with the generalised LL equation has been derived. We hope our findings are useful for the application purpose of FLE in optics and other branches of physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conserved%20quantities" title="conserved quantities">conserved quantities</a>, <a href="https://publications.waset.org/abstracts/search?q=fokas-lenells%20equation" title=" fokas-lenells equation"> fokas-lenells equation</a>, <a href="https://publications.waset.org/abstracts/search?q=landau-lifshitz%20equation" title=" landau-lifshitz equation"> landau-lifshitz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=lax%20pair" title=" lax pair"> lax pair</a> </p> <a href="https://publications.waset.org/abstracts/165239/fokas-lenells-equation-conserved-quantities-and-landau-lifshitz-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1968</span> Asymptotic Expansion of the Korteweg-de Vries-Burgers Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian-Jun%20Shu">Jian-Jun Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is common knowledge that many physical problems (such as non-linear shallow-water waves and wave motion in plasmas) can be described by the Korteweg-de Vries (KdV) equation, which possesses certain special solutions, known as solitary waves or solitons. As a marriage of the KdV equation and the classical Burgers (KdVB) equation, the Korteweg-de Vries-Burgers (KdVB) equation is a mathematical model of waves on shallow water surfaces in the presence of viscous dissipation. Asymptotic analysis is a method of describing limiting behavior and is a key tool for exploring the differential equations which arise in the mathematical modeling of real-world phenomena. By using variable transformations, the asymptotic expansion of the KdVB equation is presented in this paper. The asymptotic expansion may provide a good gauge on the validation of the corresponding numerical scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20expansion" title="asymptotic expansion">asymptotic expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Korteweg-de%20Vries-Burgers%20%28KdVB%29%20equation" title=" Korteweg-de Vries-Burgers (KdVB) equation"> Korteweg-de Vries-Burgers (KdVB) equation</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a> </p> <a href="https://publications.waset.org/abstracts/78883/asymptotic-expansion-of-the-korteweg-de-vries-burgers-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=66">66</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=67">67</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=one%20and%20two-dimensional%20Schrodinger%20equation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>