CINXE.COM

Search results for: hierarchical temporal memory

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hierarchical temporal memory</title> <meta name="description" content="Search results for: hierarchical temporal memory"> <meta name="keywords" content="hierarchical temporal memory"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hierarchical temporal memory" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hierarchical temporal memory"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2740</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hierarchical temporal memory</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2740</span> A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mackenzie%20Leake">Mackenzie Leake</a>, <a href="https://publications.waset.org/abstracts/search?q=Liyu%20Xia"> Liyu Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Rocki"> Kamil Rocki</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20Imaino"> Wayne Imaino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory" title="hierarchical temporal memory">hierarchical temporal memory</a>, <a href="https://publications.waset.org/abstracts/search?q=HTM" title=" HTM"> HTM</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20algorithms" title=" learning algorithms"> learning algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20pooler" title=" spatial pooler"> spatial pooler</a> </p> <a href="https://publications.waset.org/abstracts/29210/a-probabilistic-view-of-the-spatial-pooler-in-hierarchical-temporal-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2739</span> Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tesnim%20Charrad">Tesnim Charrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaouther%20Nouira"> Kaouther Nouira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ferchichi"> Ahmed Ferchichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20anomalies" title="cardiac anomalies">cardiac anomalies</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=HTM" title=" HTM"> HTM</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20anomaly%20detection" title=" real time anomaly detection"> real time anomaly detection</a> </p> <a href="https://publications.waset.org/abstracts/104419/use-of-hierarchical-temporal-memory-algorithm-in-heart-attack-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2738</span> Dual-Network Memory Model for Temporal Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motonobu%20Hattori">Motonobu Hattori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catastrophic%20forgetting" title="catastrophic forgetting">catastrophic forgetting</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-network" title=" dual-network"> dual-network</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20sequences" title=" temporal sequences"> temporal sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=hippocampal" title=" hippocampal "> hippocampal </a> </p> <a href="https://publications.waset.org/abstracts/2908/dual-network-memory-model-for-temporal-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2737</span> Protective Effect of Levetiracetam on Aggravation of Memory Impairment in Temporal Lobe Epilepsy by Phenytoin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asher%20John%20Mohan">Asher John Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20K.%20L."> Krishna K. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: (1) To assess the extent of memory impairment induced by Phenytoin (PHT) at normal and reduced dose on temporal lobe epileptic mice. (2) To evaluate the protective effect of Levetiracetam (LEV) on aggravation of memory impairment in temporal lobe epileptic mice by PHT. Materials and Methods: Albino mice of either sex (n=36) were used for the study for a period of 64 days. Convulsions were induced by intraperitoneal administration of pilocarpine 280 mg/kg on every 6th day. Radial arm maze (RAM) was employed to evaluate the memory impairment activity on every 7th day. The anticonvulsant and memory impairment activity were assessed in PHT normal and reduced doses both alone and in combination with LEV. RAM error scores and convulsive scores were the parameters considered for this study. Brain acetylcholine esterase and glutamate were determined along with histopathological studies of frontal cortex. Results: Administration of PHT for 64 days on mice has shown aggravation of memory impairment activity on temporal lobe epileptic mice. Although the reduction in PHT dose was found to decrease the degree of memory impairment the same decreased the anticonvulsant potency. The combination with LEV not only brought about the correction of impaired memory but also replaced the loss of potency due to the reduction of the dose of the antiepileptic drug employed. These findings were confirmed with enzyme and neurotransmitter levels in addition to histopathological studies. Conclusion: This study thus builds a foundation in combining a nootropic anticonvulsant with an antiepileptic drug to curb the adverse effect of memory impairment associated with temporal lobe epilepsy. However further extensive research is a must for the practical incorporation of this approach into disease therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-epileptic%20drug" title="anti-epileptic drug">anti-epileptic drug</a>, <a href="https://publications.waset.org/abstracts/search?q=Phenytoin" title=" Phenytoin"> Phenytoin</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20impairment" title=" memory impairment"> memory impairment</a>, <a href="https://publications.waset.org/abstracts/search?q=Pilocarpine" title=" Pilocarpine"> Pilocarpine</a> </p> <a href="https://publications.waset.org/abstracts/46226/protective-effect-of-levetiracetam-on-aggravation-of-memory-impairment-in-temporal-lobe-epilepsy-by-phenytoin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2736</span> Hierarchical Tree Long Short-Term Memory for Sentence Representations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiuying%20Wang">Xiuying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Changliang%20Li"> Changliang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Xu"> Bo Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20tree%20long%20short-term%20memory" title=" hierarchical tree long short-term memory"> hierarchical tree long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=sentence%20representation" title=" sentence representation"> sentence representation</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a> </p> <a href="https://publications.waset.org/abstracts/83787/hierarchical-tree-long-short-term-memory-for-sentence-representations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2735</span> Temporal Progression of Episodic Memory as Function of Encoding Condition and Age: Further Investigation of Action Memory in School-Aged Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Badinlou">Farzaneh Badinlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Kormi-Nouri"> Reza Kormi-Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Knopf"> Monika Knopf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies of adults' episodic memory have found that enacted encoding not only improve recall performance but also retrieve faster during the recall period. The current study focused on exploring the temporal progression of different encoding conditions in younger and older school children. 204 students from two age group of 8 and 14 participated in this study. During the study phase, we studied action encoding in two forms; participants performed the phrases by themselves (SPT), and observed the performance of the experimenter (EPT), which were compared with verbal encoding; participants listened to verbal action phrases (VT). At test phase, we used immediate and delayed free recall tests. We observed significant differences in memory performance as function of age group, and encoding conditions in both immediate and delayed free recall tests. Moreover, temporal progression of recall was faster in older children when compared with younger ones. The interaction of age-group and encoding condition was only significant in delayed recall displaying that younger children performed better in EPT whereas older children outperformed in SPT. It was proposed that enactment effect in form of SPT enhances item-specific processing, whereas EPT improves relational information processing and this differential processes are responsible for the results achieved in younger and older children. The role of memory strategies and information processing methods in younger and older children were considered in this study. Moreover, the temporal progression of recall was faster in action encoding in the form of SPT and EPT compared with verbal encoding in both immediate and delayed free recall and size of enactment effect was constantly increased throughout the recall period. The results of the present study provide further evidence that the action memory is explained with an emphasis on the notion of information processing and strategic views. These results also reveal the temporal progression of recall as a new dimension of episodic memory in children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action%20memory" title="action memory">action memory</a>, <a href="https://publications.waset.org/abstracts/search?q=enactment%20effect" title=" enactment effect"> enactment effect</a>, <a href="https://publications.waset.org/abstracts/search?q=episodic%20memory" title=" episodic memory"> episodic memory</a>, <a href="https://publications.waset.org/abstracts/search?q=school-aged%20children" title=" school-aged children"> school-aged children</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20progression" title=" temporal progression"> temporal progression</a> </p> <a href="https://publications.waset.org/abstracts/71738/temporal-progression-of-episodic-memory-as-function-of-encoding-condition-and-age-further-investigation-of-action-memory-in-school-aged-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2734</span> Serial Position Curves under Compressively Expanding and Contracting Schedules of Presentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Varma">Priya Varma</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20John%20McKeown"> Denis John McKeown</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Psychological time, unlike physical time, is believed to be ‘compressive’ in the sense that the mental representations of a series of events may be internally arranged with ever decreasing inter-event spacing (looking back from the most recently encoded event). If this is true, the record within immediate memory of recent events is severely temporally distorted. Although this notion of temporal distortion of the memory record is captured within some theoretical accounts of human forgetting, notably temporal distinctiveness accounts, the way in which the fundamental nature of the distortion underpins memory and forgetting broadly is barely recognised or at least directly investigated. Our intention here was to manipulate the spacing of items for recall in order to ‘reverse’ this supposed natural compression within the encoding of the items. In Experiment 1 three schedules of presentation (expanding, contracting and fixed irregular temporal spacing) were created using logarithmic spacing of the words for both free and serial recall conditions. The results of recall of lists of 7 words showed statistically significant benefits of temporal isolation, and more excitingly the contracting word series (which we may think of as reversing the natural compression within the mental representation of the word list) showed best performance. Experiment 2 tested for effects of active verbal rehearsal in the recall task; this reduced but did not remove the benefits of our temporal scheduling manipulation. Finally, a third experiment used the same design but with Chinese characters as memoranda, in a further attempt to subvert possible verbal maintenance of items. One change to the design here was to introduce a probe item following the sequence of items and record response times to this probe. Together the outcomes of the experiments broadly support the notion of temporal compression within immediate memory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=memory" title="memory">memory</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20position%20curves" title=" serial position curves"> serial position curves</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20isolation" title=" temporal isolation"> temporal isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20schedules" title=" temporal schedules"> temporal schedules</a> </p> <a href="https://publications.waset.org/abstracts/90260/serial-position-curves-under-compressively-expanding-and-contracting-schedules-of-presentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2733</span> Digital Geography and Geographic Information System in Schools: Towards a Hierarchical Geospatial Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Fargher">Mary Fargher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the opportunities of using a more hierarchical approach to geospatial enquiry in using GIS in school geography. A case is made that it is not just the lack of teacher technological knowledge that is stopping some teachers from using GIS in the classroom but that there is a gap in their understanding of how to link GIS use more specifically to the pedagogy of teaching geography with GIS. Using a hierarchical approach to geospatial enquiry as a theoretical framework, the analysis shows clearly how concepts of spatial distribution, interaction, relation, comparison, and temporal relationships can be used by teachers more explicitly to capitalise on the analytical power of GIS and to construct what can be interpreted as powerful geographical knowledge. An exemplar illustrating this approach on the topic of geo-hazards is then presented for critical analysis and discussion. Recommendations are then made for a model of progression for geography teacher education with GIS through hierarchical geospatial enquiry that takes into account beginner, intermediate, and more advanced users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20geography" title="digital geography">digital geography</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20geospatial%20enquiry" title=" hierarchical geospatial enquiry"> hierarchical geospatial enquiry</a>, <a href="https://publications.waset.org/abstracts/search?q=powerful%20geographical%20knowledge" title=" powerful geographical knowledge"> powerful geographical knowledge</a> </p> <a href="https://publications.waset.org/abstracts/125215/digital-geography-and-geographic-information-system-in-schools-towards-a-hierarchical-geospatial-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2732</span> Combined Use of FMRI and Voxel-Based Morphometry in Assessment of Memory Impairment in Alzheimer&#039;s Disease Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Sokolov">A. V. Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Vorobyev"> S. V. Vorobyev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yu.%20Efimtcev"> A. Yu. Efimtcev</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Yu.%20Lobzin"> V. Yu. Lobzin</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Lupanov"> I. A. Lupanov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Cherdakov"> O. A. Cherdakov</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Fokin"> V. A. Fokin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is the most common form of dementia. Different brain regions are involved to the pathological process of AD. The purpose of this study was to evaluate brain activation by visual memory task in patients with Alzheimer's disease and determine correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. To investigate the organization of memory and localize cortical areas activated by visual memory task we used functional magnetic resonance imaging and to evaluate brain atrophy of patients with Alzheimer's disease we used voxel-based morphometry. FMRI was performed on 1.5 T MR-scanner Siemens Magnetom Symphony with BOLD (Blood Oxygenation Level Dependent) technique, based on distinctions of magnetic properties of hemoglobin. For test stimuli we used series of 12 not related images for "Baseline" and 12 images with 6 presented before for "Active". Stimuli were presented 3 times with reduction of repeated images to 4 and 2. Patients with Alzheimer's disease showed less activation in hippocampal formation (HF) region and parahippocampal gyrus then healthy persons of control group (p<0.05). The study also showed reduced activation in posterior cingulate cortex (p<0.001). Voxel-based morphometry showed significant atrophy of grey matter in Alzheimer’s disease patients, especially of both temporal lobes (fusiform and parahippocampal gyri); frontal lobes (posterior cingulate and superior frontal gyri). The study showed correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. Thus, reduced activation in hippocampal formation and parahippocampal gyri, in posterior cingulate gyrus in patients with Alzheimer's disease correlates to significant atrophy of these regions, detected by voxel-based morphometry, and to deterioration of specific cognitive functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20MRI" title=" functional MRI"> functional MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=voxel-based%20morphometry" title=" voxel-based morphometry"> voxel-based morphometry</a> </p> <a href="https://publications.waset.org/abstracts/18475/combined-use-of-fmri-and-voxel-based-morphometry-in-assessment-of-memory-impairment-in-alzheimers-disease-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2731</span> Meta-Learning for Hierarchical Classification and Applications in Bioinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Fabris">Fabio Fabris</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Freitas"> Alex A. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work&rsquo;s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20recommendation" title="algorithm recommendation">algorithm recommendation</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20classification" title=" hierarchical classification"> hierarchical classification</a> </p> <a href="https://publications.waset.org/abstracts/81005/meta-learning-for-hierarchical-classification-and-applications-in-bioinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2730</span> Perceptual Organization within Temporal Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michele%20Sinico">Michele Sinico</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The psychological present has an actual extension. When a sequence of instantaneous stimuli falls in this short interval of time, observers perceive a compresence of events in succession and the temporal order depends on the qualitative relationships between the perceptual properties of the events. Two experiments were carried out to study the influence of perceptual grouping, with and without temporal displacement, on the duration of auditory sequences. The psychophysical method of adjustment was adopted. The first experiment investigated the effect of temporal displacement of a white noise on sequence duration. The second experiment investigated the effect of temporal displacement, along the pitch dimension, on temporal shortening of sequence. The results suggest that the temporal order of sounds, in the case of temporal displacement, is organized along the pitch dimension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title="time perception">time perception</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20present" title=" perceptual present"> perceptual present</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20displacement" title=" temporal displacement"> temporal displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=Gestalt%20laws%20of%20perceptual%20organization" title=" Gestalt laws of perceptual organization"> Gestalt laws of perceptual organization</a> </p> <a href="https://publications.waset.org/abstracts/76211/perceptual-organization-within-temporal-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2729</span> Spatio-temporal Distribution of Surface Water Quality in the Kebir Rhumel Basin, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lazhar%20Belkhiri">Lazhar Belkhiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Tiri"> Ammar Tiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Mouni"> Lotfi Mouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Elhadj%20Lakouas"> Fatma Elhadj Lakouas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to present a surface water quality assessment of hydrochemical parameters in the Kebir Rhumel Basin, Algeria. The water quality index (WQI), Mann–Kendall (MK) test, and hierarchical cluster analysis (HCA) were used in oder to understand the spatio-temporal distribution of the surface water quality in the study area. Eleven hydrochemical parameters were measured monthly at eight stations from January 2016 to December 2020. The dominant cation in the surface water was found to be calcium, followed by sodium, and the dominant anion was sulfate, followed by chloride. In terms of WQI, a significant percentage of surface water samples at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khlifa (SK) exhibited poor water quality, with approximately 89.5%, 90.6%, 78.2%, and 62.7%, respectively, falling into this category. Mann–Kendall trend analysis revealed a significantly increasing trend in WQI values at stations Oued Boumerzoug (ON) and SK, indicating that the temporal variation of WQI in these stations is significant. Hierarchical clustering analysis classified the data into three clusters. The first cluster contained approximately 22% of the total number of months, the second cluster included about 30%, and the third cluster had the highest representation, approximately 48% of the total number of months. Within these clusters, certain stations exhibited higher WQI values. In the first cluster, stations GR and ON had the highest WQI values. In the second cluster, stations Oued Boumerzoug (OB) and SK showed the highest WQI values, while in the last cluster, stations AS, BH, El Milia (EM), and Hammam Grouz (HG) had the highest mean WQI values. Also, approximately 38%, 41%, and 38% of the total water samples in the first, second, and third clusters, respectively, were classified as having poor water quality. The findings of this study can serve as a scientific basis for decision-makers to formulate strategies for surface water quality restoration and management in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20water" title="surface water">surface water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index%20%28WQI%29" title=" water quality index (WQI)"> water quality index (WQI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Mann%20Kendall%20%28MK%29%20test" title=" Mann Kendall (MK) test"> Mann Kendall (MK) test</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20cluster%20analysis%20%28HCA%29" title=" hierarchical cluster analysis (HCA)"> hierarchical cluster analysis (HCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal%20distribution" title=" spatial-temporal distribution"> spatial-temporal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebir%20Rhumel%20Basin" title=" Kebir Rhumel Basin"> Kebir Rhumel Basin</a> </p> <a href="https://publications.waset.org/abstracts/189669/spatio-temporal-distribution-of-surface-water-quality-in-the-kebir-rhumel-basin-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2728</span> Assessing Functional Structure in European Marine Ecosystems Using a Vector-Autoregressive Spatio-Temporal Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katyana%20A.%20Vert-Pre">Katyana A. Vert-Pre</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20T.%20Thorson"> James T. Thorson</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Trancart"> Thomas Trancart</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Feunteun"> Eric Feunteun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In marine ecosystems, spatial and temporal species structure is an important component of ecosystems’ response to anthropological and environmental factors. Although spatial distribution patterns and fish temporal series of abundance have been studied in the past, little research has been allocated to the joint dynamic spatio-temporal functional patterns in marine ecosystems and their use in multispecies management and conservation. Each species represents a function to the ecosystem, and the distribution of these species might not be random. A heterogeneous functional distribution will lead to a more resilient ecosystem to external factors. Applying a Vector-Autoregressive Spatio-Temporal (VAST) model for count data, we estimate the spatio-temporal distribution, shift in time, and abundance of 140 species of the Eastern English Chanel, Bay of Biscay and Mediterranean Sea. From the model outputs, we determined spatio-temporal clusters, calculating p-values for hierarchical clustering via multiscale bootstrap resampling. Then, we designed a functional map given the defined cluster. We found that the species distribution within the ecosystem was not random. Indeed, species evolved in space and time in clusters. Moreover, these clusters remained similar over time deriving from the fact that species of a same cluster often shifted in sync, keeping the overall structure of the ecosystem similar overtime. Knowing the co-existing species within these clusters could help with predicting data-poor species distribution and abundance. Further analysis is being performed to assess the ecological functions represented in each cluster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20distribution%20shift" title="cluster distribution shift">cluster distribution shift</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20marine%20ecosystems" title=" European marine ecosystems"> European marine ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20distribution" title=" functional distribution"> functional distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20model" title=" spatio-temporal model"> spatio-temporal model</a> </p> <a href="https://publications.waset.org/abstracts/87029/assessing-functional-structure-in-european-marine-ecosystems-using-a-vector-autoregressive-spatio-temporal-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2727</span> Hybrid Hierarchical Clustering Approach for Community Detection in Social Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhia%20Toujani">Radhia Toujani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Akaichi"> Jalel Akaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomerative%20hierarchical%20clustering" title="agglomerative hierarchical clustering">agglomerative hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20structure" title=" community structure"> community structure</a>, <a href="https://publications.waset.org/abstracts/search?q=divisive%20hierarchical%20clustering" title=" divisive hierarchical clustering"> divisive hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20hierarchical%20clustering" title=" hybrid hierarchical clustering"> hybrid hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=opinion%20mining" title=" opinion mining"> opinion mining</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network" title=" social network"> social network</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a> </p> <a href="https://publications.waset.org/abstracts/63702/hybrid-hierarchical-clustering-approach-for-community-detection-in-social-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2726</span> Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirvat%20Shamseddine">Mirvat Shamseddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20Lakkis"> Issam Lakkis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSMC" title="DSMC">DSMC</a>, <a href="https://publications.waset.org/abstracts/search?q=oct-tree%20hierarchical%20grid" title=" oct-tree hierarchical grid"> oct-tree hierarchical grid</a>, <a href="https://publications.waset.org/abstracts/search?q=ray%20tracing" title=" ray tracing"> ray tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal%20adaptivity%20scheme" title=" spatial-temporal adaptivity scheme"> spatial-temporal adaptivity scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20rarefied%20gas%20flows" title=" unsteady rarefied gas flows"> unsteady rarefied gas flows</a> </p> <a href="https://publications.waset.org/abstracts/96192/unsteady-three-dimensional-adaptive-spatial-temporal-multi-scale-direct-simulation-monte-carlo-solver-to-simulate-rarefied-gas-flows-in-micronano-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2725</span> Evaluating Surface Water Quality Using WQI, Trend Analysis, and Cluster Classification in Kebir Rhumel Basin, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lazhar%20Belkhiri">Lazhar Belkhiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Tiri"> Ammar Tiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Mouni"> Lotfi Mouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Elhadj%20Lakouas"> Fatma Elhadj Lakouas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluates the surface water quality in the Kebir Rhumel Basin by analyzing hydrochemical parameters. To assess spatial and temporal variations in water quality, we applied the Water Quality Index (WQI), Mann-Kendall (MK) trend analysis, and hierarchical cluster analysis (HCA). Monthly measurements of eleven hydrochemical parameters were collected across eight stations from January 2016 to December 2020. Calcium and sulfate emerged as the dominant cation and anion, respectively. WQI analysis indicated a high incidence of poor water quality at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khalifa (SK), where 89.5%, 90.6%, 78.2%, and 62.7% of samples, respectively, fell into this category. The MK trend analysis revealed a significant upward trend in WQI at Oued Boumerzoug (ON) and SK stations, signaling temporal deterioration in these areas. HCA grouped the dataset into three clusters, covering approximately 22%, 30%, and 48% of the months, respectively. Within these clusters, specific stations exhibited elevated WQI values: GR and ON in the first cluster, OB and SK in the second, and AS, BH, El Milia (EM), and Hammam Grouz (HG) in the third. Furthermore, approximately 38%, 41%, and 38% of samples in clusters one, two, and three, respectively, were classified as having poor water quality. These findings provide essential insights for policymakers in formulating strategies to restore and manage surface water quality in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20quality" title="surface water quality">surface water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index%20%28WQI%29" title=" water quality index (WQI)"> water quality index (WQI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Mann-Kendall%20Trend%20Analysis" title=" Mann-Kendall Trend Analysis"> Mann-Kendall Trend Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20cluster%20analysis%20%28HCA%29" title=" hierarchical cluster analysis (HCA)"> hierarchical cluster analysis (HCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal%20distribution" title=" spatial-temporal distribution"> spatial-temporal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebir%20Rhumel%20Basin" title=" Kebir Rhumel Basin"> Kebir Rhumel Basin</a> </p> <a href="https://publications.waset.org/abstracts/193200/evaluating-surface-water-quality-using-wqi-trend-analysis-and-cluster-classification-in-kebir-rhumel-basin-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2724</span> Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofia%20M.%20Karadimitriou">Sofia M. Karadimitriou</a>, <a href="https://publications.waset.org/abstracts/search?q=Kostas%20Triantafyllopoulos"> Kostas Triantafyllopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Heaton"> Timothy Heaton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20Laplace%20prior" title="multidimensional Laplace prior">multidimensional Laplace prior</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filtering" title=" particle filtering"> particle filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20modelling" title=" spatio-temporal modelling"> spatio-temporal modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/43799/bayesian-inference-for-high-dimensional-dynamic-spatio-temporal-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2723</span> Hierarchical Clustering Algorithms in Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdullah">Z. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Hamdan"> A. R. Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20learning" title=" unsupervised learning"> unsupervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical" title=" hierarchical"> hierarchical</a> </p> <a href="https://publications.waset.org/abstracts/31217/hierarchical-clustering-algorithms-in-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">885</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2722</span> Time-dependent Association between Recreational Cannabinoid Use and Memory Performance in Healthy Adults: A Neuroimaging Study of Human Connectome Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Moradi">Kamyar Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: There is mixed evidence regarding the association between recreational cannabinoid use and memory performance. One of the major reasons for the present controversy is different cannabinoid use-related covariates that influence the cognitive status of an individual. Adjustment of these confounding variables provides accurate insight into the real effects of cannabinoid use on memory status. In this study, we sought to investigate the association between recent recreational cannabinoid use and memory performance while correcting the model for other possible covariates such as demographic characteristics and duration, and amount of cannabinoid use. Methods: Cannabinoid users were assigned to two groups based on the results of THC urine drug screen test (THC+ group: n = 110, THC- group: n = 410). THC urine drug screen test has a high sensitivity and specificity in detecting cannabinoid use in the last 3-4 weeks. The memory domain of NIH Toolbox battery and brain MRI volumetric measures were compared between the groups while adjusting for confounding variables. Results: After Benjamini-Hochberg p-value correction, the performance in all of the measured memory outcomes, including vocabulary comprehension, episodic memory, executive function/cognitive flexibility, processing speed, reading skill, working memory, and fluid cognition, were significantly weaker in THC+ group (p values less than 0.05). Also, volume of gray matter, left supramarginal, right precuneus, right inferior/middle temporal, right hippocampus, left entorhinal, and right pars orbitalis regions were significantly smaller in THC+ group. Conclusions: this study provides evidence regarding the acute effect of recreational cannabis use on memory performance. Further studies are warranted to confirm the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20MRI" title="brain MRI">brain MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=cannabis" title=" cannabis"> cannabis</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=recreational%20use" title=" recreational use"> recreational use</a>, <a href="https://publications.waset.org/abstracts/search?q=THC%20urine%20test" title=" THC urine test"> THC urine test</a> </p> <a href="https://publications.waset.org/abstracts/146562/time-dependent-association-between-recreational-cannabinoid-use-and-memory-performance-in-healthy-adults-a-neuroimaging-study-of-human-connectome-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2721</span> Factors Influencing Resolution of Anaphora with Collective Nominals in Russian</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Moskaleva">Anna Moskaleva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A prolific body of research in theoretical and experimental linguistics claims that a preference for conceptual or grammatical information in the process of agreement greatly depends on the type of agreement dependency. According to the agreement hierarchy, an anaphoric agreement is more sensitive to semantic or conceptual rather than grammatical information of an antecedent. Furthermore, a higher linear distance between a pronoun and its antecedent is assumed to trigger semantic agreement, yet the hierarchical distance is hardly examined in the research field, and the contribution of each distance factor is unclear. Apart from that, working memory volume is deemed to play a role in maintaining grammatical information during language comprehension. The aim of this study is to observe distance and working memory effects in resolution of anaphora with collective nominals (e.g., team) and to have a closer look at the interaction of the factors. Collective nominals in many languages can have a holistic or distributive meaning and can be addressed by a singular or a plural pronoun, respectively. We investigated linguistic factors of linear and rhetorical (hierarchical) distance and a more general factor of working memory volume in their ability to facilitate the interpretation of the number feature of a collective noun in Russian. An eye-tracking reading experiment on comprehension has been conducted where university students were presented with composed texts, including collective nouns and personal pronouns alluding to them. Different eye-tracking measures were calculated using statistical methods. The results have shown that a significant increase in reading time in the case of a singular pronoun was demonstrated when both distances were high, and no such effect was observed when just one of the distances was high. A decrease in reading time has been obtained with distance in the case of a plural pronoun. The working memory effect was not revealed in the experiment. The resonance of distance factors indicates that not only the linear distance but also the hierarchical distance is of great importance in interpreting pronouns. The experimental findings also suggest that, apart from the agreement hierarchy, the preference for conceptual or grammatical information correlates with the distance between a pronoun and its antecedent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collective%20nouns" title="collective nouns">collective nouns</a>, <a href="https://publications.waset.org/abstracts/search?q=agreement%20hierarchy" title=" agreement hierarchy"> agreement hierarchy</a>, <a href="https://publications.waset.org/abstracts/search?q=anaphora%20resolution" title=" anaphora resolution"> anaphora resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=eye-tracking" title=" eye-tracking"> eye-tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20comprehension" title=" language comprehension"> language comprehension</a> </p> <a href="https://publications.waset.org/abstracts/188970/factors-influencing-resolution-of-anaphora-with-collective-nominals-in-russian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2720</span> Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivas%20Peri">Srinivas Peri</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Abhishek%20Sirivella"> Siva Abhishek Sirivella</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejaswini%20Kallakuri"> Tejaswini Kallakuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzair%20Ahmad"> Uzair Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GAN" title="GAN">GAN</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data%20generation" title=" synthetic data generation"> synthetic data generation</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a> </p> <a href="https://publications.waset.org/abstracts/191235/statistically-accurate-synthetic-data-generation-for-enhanced-traffic-predictive-modeling-using-generative-adversarial-networks-and-long-short-term-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2719</span> Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deon%20de%20Jager">Deon de Jager</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Zweiri"> Yahya Zweiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Makris"> Dimitrios Makris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20robotics" title="cognitive robotics">cognitive robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20memory" title=" semantic memory"> semantic memory</a>, <a href="https://publications.waset.org/abstracts/search?q=episodic%20memory" title=" episodic memory"> episodic memory</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20entropy%20principle" title=" maximum entropy principle"> maximum entropy principle</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/114710/real-time-episodic-memory-construction-for-optimal-action-selection-in-cognitive-robotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2718</span> Knowledge Discovery from Production Databases for Hierarchical Process Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavol%20Tanuska">Pavol Tanuska</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Vazan"> Pavel Vazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Kebisek"> Michal Kebisek</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Jurovata"> Dominika Jurovata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20process%20control" title="hierarchical process control">hierarchical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery%20from%20databases" title=" knowledge discovery from databases"> knowledge discovery from databases</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20control" title=" process control"> process control</a> </p> <a href="https://publications.waset.org/abstracts/2816/knowledge-discovery-from-production-databases-for-hierarchical-process-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2717</span> Retrieval-Induced Forgetting Effects in Retrospective and Prospective Memory in Normal Aging: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Akca">Merve Akca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retrieval-induced forgetting (RIF) refers to the phenomenon that selective retrieval of some information impairs memory for related, but not previously retrieved information. Despite age differences in retrieval-induced forgetting regarding retrospective memory being documented, this research aimed to highlight age differences in RIF of the prospective memory tasks for the first time. By using retrieval-practice paradigm, this study comparatively examined RIF effects in retrospective memory and event-based prospective memory in young and old adults. In this experimental study, a mixed factorial design with age group (Young, Old) as a between-subject variable, and memory type (Prospective, Retrospective) and item type (Practiced, Non-practiced) as within-subject variables was employed. Retrieval-induced forgetting was observed in the retrospective but not in the prospective memory task. Therefore, the results indicated that selective retrieval of past events led to suppression of other related past events in both age groups but not the suppression of memory for future intentions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prospective%20memory" title="prospective memory">prospective memory</a>, <a href="https://publications.waset.org/abstracts/search?q=retrieval-induced%20forgetting" title=" retrieval-induced forgetting"> retrieval-induced forgetting</a>, <a href="https://publications.waset.org/abstracts/search?q=retrieval%20inhibition" title=" retrieval inhibition"> retrieval inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=retrospective%20memory" title=" retrospective memory"> retrospective memory</a> </p> <a href="https://publications.waset.org/abstracts/57915/retrieval-induced-forgetting-effects-in-retrospective-and-prospective-memory-in-normal-aging-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2716</span> Why Do We Need Hierachical Linear Models?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Ayd%C4%B1n">Mustafa Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Murat%20Sunbul"> Ali Murat Sunbul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20linear%20modeling" title="hierarchical linear modeling">hierarchical linear modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nested%20data" title=" nested data"> nested data</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure" title="hierarchical structure">hierarchical structure</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20structure" title=" data structure "> data structure </a> </p> <a href="https://publications.waset.org/abstracts/2470/why-do-we-need-hierachical-linear-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">652</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2715</span> The Characterisation of TLC NAND Flash Memory, Leading to a Definable Endurance/Retention Trade-Off</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sorcha%20Bennett">Sorcha Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Joe%20Sullivan"> Joe Sullivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Triple-Level Cell (TLC) NAND Flash memory at, and below, 20nm (nanometer) is still largely unexplored by researchers, and with the ever more commonplace existence of Flash in consumer and enterprise applications there is a need for such gaps in knowledge to be filled. At the time of writing, there was little published data or literature on TLC, and more specifically reliability testing, with a further emphasis on both endurance and retention. This paper will give an introduction to NAND Flash memory, followed by an overview of the relevant current research on the reliability of Flash memory, along with the planned future work which will provide results to help characterise the reliability of TLC memory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endurance" title="endurance">endurance</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20flash" title=" raw flash"> raw flash</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC%20NAND%20flash%20memory" title=" TLC NAND flash memory"> TLC NAND flash memory</a>, <a href="https://publications.waset.org/abstracts/search?q=trade-off" title=" trade-off"> trade-off</a> </p> <a href="https://publications.waset.org/abstracts/45350/the-characterisation-of-tlc-nand-flash-memory-leading-to-a-definable-enduranceretention-trade-off" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2714</span> Hydrothermally Fabricated 3-D Nanostructure Metal Oxide Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alenezi">Mohammad Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hierarchical nanostructures with higher dimensionality, consisting of nanostructure building blocks such as nanowires, nanotubes, or nanosheets are very attractive. They hold great properties like the high surface-to-volume ratio and well-ordered porous structures, which can be very challenging to attain for other mono-morphological nanostructures. Well-ordered hierarchical nanostructures with high surface-to-volume ratios facilitate gas diffusion into their surfaces as well as scattering of light. Therefore, hierarchical nanostructures are expected to perform highly as gas sensors. A multistage controlled hydrothermal synthesis method to fabricate high-performance single ZnO brushlike hierarchical nanostructure gas sensor from initial nanowires is reported. The performance of the sensor based on brush-like hierarchical nanostructure is analyzed and compared to that of a nanowire gas sensor. The hierarchical gas sensor demonstrated high sensitivity toward low concentration of acetone at high speed of response. The enhancement in the hierarchical sensor performance is attributed to the increased surface to volume ratio, reduction in dimensionality of the nanowire building blocks, formation of junctions between the initial nanowire and the secondary nanowires, and enhanced gas diffusion into the surfaces of the hierarchical nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/50686/hydrothermally-fabricated-3-d-nanostructure-metal-oxide-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2713</span> A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhia%20Toujani">Radhia Toujani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Akaichi"> Jalel Akaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20network" title="social network">social network</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20detection" title=" community detection"> community detection</a>, <a href="https://publications.waset.org/abstracts/search?q=agglomerative%20hierarchical%20clustering" title=" agglomerative hierarchical clustering"> agglomerative hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=divisive%20hierarchical%20clustering" title=" divisive hierarchical clustering"> divisive hierarchical clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity" title=" similarity"> similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=modularity" title=" modularity"> modularity</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a>, <a href="https://publications.waset.org/abstracts/search?q=bee%20colony" title=" bee colony"> bee colony</a> </p> <a href="https://publications.waset.org/abstracts/64745/a-model-based-metaheuristic-for-hybrid-hierarchical-community-structure-in-social-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2712</span> An E-Assessment Website to Implement Hierarchical Aggregate Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Lesage">M. Lesage</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ra%C3%AEche"> G. Raîche</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Riopel"> M. Riopel</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Fortin"> F. Fortin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sebkhi"> D. Sebkhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a Web server implementation of the hierarchical aggregate assessment process in the field of education. This process describes itself as a field of teamwork assessment where teams can have multiple levels of hierarchy and supervision. This process is applied everywhere and is part of the management, education, assessment and computer science fields. The E-Assessment website named “Cluster” records in its database the students, the course material, the teams and the hierarchical relationships between the students. For the present research, the hierarchical relationships are team member, team leader and group administrator appointments. The group administrators have the responsibility to supervise team leaders. The experimentation of the application has been performed by high school students in geology courses and Canadian army cadets for navigation patrols in teams. This research extends the work of Nance that uses a hierarchical aggregation process similar as the one implemented in the “Cluster” application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-learning" title="e-learning">e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=e-assessment" title=" e-assessment"> e-assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=teamwork%20assessment" title=" teamwork assessment"> teamwork assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20aggregate%20assessment" title=" hierarchical aggregate assessment"> hierarchical aggregate assessment</a> </p> <a href="https://publications.waset.org/abstracts/2666/an-e-assessment-website-to-implement-hierarchical-aggregate-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2711</span> Subjective Time as a Marker of the Present Consciousness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasiya%20Paltarzhitskaya">Anastasiya Paltarzhitskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Subjective time plays an important role in consciousness processes and self-awareness at the moment. The concept of intrinsic neural timescales (INT) explains the difference in perceiving various time intervals. The capacity to experience the present builds on the fundamental properties of temporal cognition. The challenge that both philosophy and neuroscience try to answer is how the brain differentiates the present from the past and future. In our work, we analyze papers which describe mechanisms involved in the perception of ‘present’ and ‘non-present’, i.e., future and past moments. Taking into account that we perceive time intervals even during rest or relaxation, we suppose that the default-mode network activity can code time features, including the present moment. We can compare some results of time perceptual studies, where brain activity was shown in states with different flows of time, including resting states and during “mental time travel”. According to the concept of mental traveling, we employ a range of scenarios which demand episodic memory. However, some papers show that the hippocampal region does not activate during time traveling. It is a controversial result that is further complicated by the phenomenological aspect that includes a holistic set of information about the individual’s past and future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporal%20consciousness" title="temporal consciousness">temporal consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title=" time perception"> time perception</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=present" title=" present"> present</a> </p> <a href="https://publications.waset.org/abstracts/144726/subjective-time-as-a-marker-of-the-present-consciousness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=92">92</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hierarchical%20temporal%20memory&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10