CINXE.COM
Search results for: Data analysis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Data analysis</title> <meta name="description" content="Search results for: Data analysis"> <meta name="keywords" content="Data analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Data analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Data analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13521</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Data analysis</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13521</span> Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reza%20Nadimi">Reza Nadimi</a>, <a href="https://publications.waset.org/search?q=Fariborz%20Jolai"> Fariborz Jolai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysis techniques, have been proposed as data reduction and classification technique, which can be applied in data envelopment analysis (DEA) technique for reduction input – output data. Numerical results reveal that the new approach shows a good consistency in ranking with DEA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Effectiveness" title="Effectiveness">Effectiveness</a>, <a href="https://publications.waset.org/search?q=Decision%20Making" title=" Decision Making"> Decision Making</a>, <a href="https://publications.waset.org/search?q=Data%20EnvelopmentAnalysis" title=" Data EnvelopmentAnalysis"> Data EnvelopmentAnalysis</a>, <a href="https://publications.waset.org/search?q=Factor%20Analysis" title=" Factor Analysis"> Factor Analysis</a> </p> <a href="https://publications.waset.org/13961/joint-use-of-factor-analysis-fa-and-data-envelopment-analysis-dea-for-ranking-of-data-envelopment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13961/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13961/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13961/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13961/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13961/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13961/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13961/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13961/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13961/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13961/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2425</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13520</span> Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Cristina%20G.%20Dasc%C3%A2lu">Cristina G. Dascâlu</a>, <a href="https://publications.waset.org/search?q=Corina%20Dima%20Cozma"> Corina Dima Cozma</a>, <a href="https://publications.waset.org/search?q=Elena%20Carmen%20Cotrutz"> Elena Carmen Cotrutz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20clustering" title="Data clustering">Data clustering</a>, <a href="https://publications.waset.org/search?q=medical%20data" title=" medical data"> medical data</a>, <a href="https://publications.waset.org/search?q=principal%20components%0Aanalysis." title=" principal components analysis."> principal components analysis.</a> </p> <a href="https://publications.waset.org/15595/observations-about-the-principal-components-analysis-and-data-clustering-techniques-in-the-study-of-medical-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15595/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15595/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15595/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15595/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15595/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15595/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15595/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15595/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15595/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15595/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1502</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13519</span> The Application of Data Mining Technology in Building Energy Consumption Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liang%20Zhao">Liang Zhao</a>, <a href="https://publications.waset.org/search?q=Jili%20Zhang"> Jili Zhang</a>, <a href="https://publications.waset.org/search?q=Chongquan%20Zhong"> Chongquan Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20mining" title="Data mining">Data mining</a>, <a href="https://publications.waset.org/search?q=data%20analysis" title=" data analysis"> data analysis</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/search?q=building%20operational%20performance." title=" building operational performance."> building operational performance.</a> </p> <a href="https://publications.waset.org/10003363/the-application-of-data-mining-technology-in-building-energy-consumption-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003363/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003363/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003363/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003363/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003363/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003363/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003363/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003363/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003363/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003363/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3709</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13518</span> Principal Component Analysis using Singular Value Decomposition of Microarray Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dong%20Hoon%20Lim">Dong Hoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A series of microarray experiments produces observations of differential expression for thousands of genes across multiple conditions. Principal component analysis(PCA) has been widely used in multivariate data analysis to reduce the dimensionality of the data in order to simplify subsequent analysis and allow for summarization of the data in a parsimonious manner. PCA, which can be implemented via a singular value decomposition(SVD), is useful for analysis of microarray data. For application of PCA using SVD we use the DNA microarray data for the small round blue cell tumors(SRBCT) of childhood by Khan et al.(2001). To decide the number of components which account for sufficient amount of information we draw scree plot. Biplot, a graphic display associated with PCA, reveals important features that exhibit relationship between variables and also the relationship of variables with observations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Principal%20component%20analysis" title="Principal component analysis">Principal component analysis</a>, <a href="https://publications.waset.org/search?q=singular%20value%20decomposition" title=" singular value decomposition"> singular value decomposition</a>, <a href="https://publications.waset.org/search?q=microarray%20data" title=" microarray data"> microarray data</a>, <a href="https://publications.waset.org/search?q=SRBCT" title=" SRBCT"> SRBCT</a> </p> <a href="https://publications.waset.org/16593/principal-component-analysis-using-singular-value-decomposition-of-microarray-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16593/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16593/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16593/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16593/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16593/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16593/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16593/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16593/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16593/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16593/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3250</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13517</span> Implementation of an IoT Sensor Data Collection and Analysis Library</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jihyun%20Song">Jihyun Song</a>, <a href="https://publications.waset.org/search?q=Kyeongjoo%20Kim"> Kyeongjoo Kim</a>, <a href="https://publications.waset.org/search?q=Minsoo%20Lee"> Minsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clustering" title="Clustering">Clustering</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=DBSCAN" title=" DBSCAN"> DBSCAN</a>, <a href="https://publications.waset.org/search?q=k-means" title=" k-means"> k-means</a>, <a href="https://publications.waset.org/search?q=k-medoids" title=" k-medoids"> k-medoids</a>, <a href="https://publications.waset.org/search?q=sensor%20data." title=" sensor data."> sensor data.</a> </p> <a href="https://publications.waset.org/10008434/implementation-of-an-iot-sensor-data-collection-and-analysis-library" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008434/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008434/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008434/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008434/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008434/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008434/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008434/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008434/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008434/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008434/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2010</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13516</span> Towards Development of Solution for Business Process-Oriented Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Klimavicius">M. Klimavicius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a modeling methodology for the development of data analysis solution. The Author introduce the approach to address data warehousing issues at the at enterprise level. The methodology covers the process of the requirements eliciting and analysis stage as well as initial design of data warehouse. The paper reviews extended business process model, which satisfy the needs of data warehouse development. The Author considers that the use of business process models is necessary, as it reflects both enterprise information systems and business functions, which are important for data analysis. The Described approach divides development into three steps with different detailed elaboration of models. The Described approach gives possibility to gather requirements and display them to business users in easy manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20warehouse" title="Data warehouse">Data warehouse</a>, <a href="https://publications.waset.org/search?q=data%20analysis" title=" data analysis"> data analysis</a>, <a href="https://publications.waset.org/search?q=business%20processmanagement." title=" business processmanagement."> business processmanagement.</a> </p> <a href="https://publications.waset.org/7332/towards-development-of-solution-for-business-process-oriented-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7332/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7332/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7332/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7332/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7332/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7332/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7332/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7332/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7332/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7332/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1393</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13515</span> Development of Greenhouse Analysis Tools for Home Agriculture Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Amir%20Abas">M. Amir Abas</a>, <a href="https://publications.waset.org/search?q=M.%20Dahlui"> M. Dahlui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of analysis tools for Home Agriculture project. The tools are required for monitoring the condition of greenhouse which involves two components: measurement hardware and data analysis engine. Measurement hardware is functioned to measure environment parameters such as temperature, humidity, air quality, dust and etc while analysis tool is used to analyse and interpret the integrated data against the condition of weather, quality of health, irradiance, quality of soil and etc. The current development of the tools is completed for off-line data recorded technique. The data is saved in MMC and transferred via ZigBee to Environment Data Manager (EDM) for data analysis. EDM converts the raw data and plot three combination graphs. It has been applied in monitoring three months data measurement for irradiance, temperature and humidity of the greenhouse.. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Monitoring" title="Monitoring">Monitoring</a>, <a href="https://publications.waset.org/search?q=Environment" title=" Environment"> Environment</a>, <a href="https://publications.waset.org/search?q=Greenhouse" title=" Greenhouse"> Greenhouse</a>, <a href="https://publications.waset.org/search?q=Analysis%0Atools" title=" Analysis tools"> Analysis tools</a> </p> <a href="https://publications.waset.org/3870/development-of-greenhouse-analysis-tools-for-home-agriculture-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3870/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3870/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3870/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3870/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3870/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3870/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3870/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3870/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3870/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3870/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2018</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13514</span> Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ameur%20Abdelkader">Ameur Abdelkader</a>, <a href="https://publications.waset.org/search?q=Abed%20Bouarfa%20Hafida"> Abed Bouarfa Hafida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Predictive%20analysis" title="Predictive analysis">Predictive analysis</a>, <a href="https://publications.waset.org/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/search?q=predictive%20analysis%20algorithms.%20CART%20algorithm." title=" predictive analysis algorithms. CART algorithm."> predictive analysis algorithms. CART algorithm.</a> </p> <a href="https://publications.waset.org/10010699/predictive-analysis-for-big-data-extension-of-classification-and-regression-trees-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010699/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010699/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010699/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010699/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010699/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010699/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010699/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010699/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010699/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010699/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1076</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13513</span> Comparative Analysis of Diverse Collection of Big Data Analytics Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Vidhya">S. Vidhya</a>, <a href="https://publications.waset.org/search?q=S.%20Sarumathi"> S. Sarumathi</a>, <a href="https://publications.waset.org/search?q=N.%20Shanthi"> N. Shanthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Over the past era, there have been a lot of efforts and studies are carried out in growing proficient tools for performing various tasks in big data. Recently big data have gotten a lot of publicity for their good reasons. Due to the large and complex collection of datasets it is difficult to process on traditional data processing applications. This concern turns to be further mandatory for producing various tools in big data. Moreover, the main aim of big data analytics is to utilize the advanced analytic techniques besides very huge, different datasets which contain diverse sizes from terabytes to zettabytes and diverse types such as structured or unstructured and batch or streaming. Big data is useful for data sets where their size or type is away from the capability of traditional relational databases for capturing, managing and processing the data with low-latency. Thus the out coming challenges tend to the occurrence of powerful big data tools. In this survey, a various collection of big data tools are illustrated and also compared with the salient features.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Big%20data" title="Big data">Big data</a>, <a href="https://publications.waset.org/search?q=Big%20data%20analytics" title=" Big data analytics"> Big data analytics</a>, <a href="https://publications.waset.org/search?q=Business%20analytics" title=" Business analytics"> Business analytics</a>, <a href="https://publications.waset.org/search?q=Data%0D%0Aanalysis" title=" Data analysis"> Data analysis</a>, <a href="https://publications.waset.org/search?q=Data%20visualization" title=" Data visualization"> Data visualization</a>, <a href="https://publications.waset.org/search?q=Data%20discovery." title=" Data discovery."> Data discovery.</a> </p> <a href="https://publications.waset.org/9999590/comparative-analysis-of-diverse-collection-of-big-data-analytics-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999590/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999590/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999590/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999590/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999590/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999590/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999590/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999590/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999590/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999590/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3775</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13512</span> Analysis of Medical Data using Data Mining and Formal Concept Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anamika%20Gupta">Anamika Gupta</a>, <a href="https://publications.waset.org/search?q=Naveen%20Kumar"> Naveen Kumar</a>, <a href="https://publications.waset.org/search?q=Vasudha%20Bhatnagar"> Vasudha Bhatnagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper focuses on analyzing medical diagnostic data using classification rules in data mining and context reduction in formal concept analysis. It helps in finding redundancies among the various medical examination tests used in diagnosis of a disease. Classification rules have been derived from positive and negative association rules using the Concept lattice structure of the Formal Concept Analysis. Context reduction technique given in Formal Concept Analysis along with classification rules has been used to find redundancies among the various medical examination tests. Also it finds out whether expensive medical tests can be replaced by some cheaper tests.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20Mining" title="Data Mining">Data Mining</a>, <a href="https://publications.waset.org/search?q=Formal%20Concept%20Analysis" title=" Formal Concept Analysis"> Formal Concept Analysis</a>, <a href="https://publications.waset.org/search?q=Medical%0D%0AData" title=" Medical Data"> Medical Data</a>, <a href="https://publications.waset.org/search?q=Negative%20Classification%20Rules." title=" Negative Classification Rules."> Negative Classification Rules.</a> </p> <a href="https://publications.waset.org/9755/analysis-of-medical-data-using-data-mining-and-formal-concept-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9755/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9755/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9755/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9755/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9755/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9755/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9755/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9755/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9755/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9755/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1739</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13511</span> Incremental Learning of Independent Topic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Takahiro%20Nishigaki">Takahiro Nishigaki</a>, <a href="https://publications.waset.org/search?q=Katsumi%20Nitta"> Katsumi Nitta</a>, <a href="https://publications.waset.org/search?q=Takashi%20Onoda"> Takashi Onoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Text%20mining" title="Text mining">Text mining</a>, <a href="https://publications.waset.org/search?q=topic%20extraction" title=" topic extraction"> topic extraction</a>, <a href="https://publications.waset.org/search?q=independent" title=" independent"> independent</a>, <a href="https://publications.waset.org/search?q=incremental" title=" incremental"> incremental</a>, <a href="https://publications.waset.org/search?q=independent%20component%20analysis." title=" independent component analysis."> independent component analysis.</a> </p> <a href="https://publications.waset.org/10006461/incremental-learning-of-independent-topic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006461/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006461/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006461/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006461/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006461/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006461/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006461/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006461/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006461/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006461/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1059</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13510</span> IoT Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Femi%20Elegbeleye">Femi Elegbeleye</a>, <a href="https://publications.waset.org/search?q=Seani%20Rananga"> Seani Rananga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper focused on cost effective storage architecture using fog and cloud data storage gateway, and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. Several results obtained from this study on data privacy models show that when two or more data privacy models are integrated via a fog storage gateway, we often have more secure data. Our main focus in the study is to design a framework for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, including its structure, and its interrelationships.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/search?q=fog%20storage" title=" fog storage"> fog storage</a>, <a href="https://publications.waset.org/search?q=cloud%20storage" title=" cloud storage"> cloud storage</a>, <a href="https://publications.waset.org/search?q=data%20analysis" title=" data analysis"> data analysis</a>, <a href="https://publications.waset.org/search?q=data%20privacy." title=" data privacy."> data privacy.</a> </p> <a href="https://publications.waset.org/10013174/iot-device-cost-effective-storage-architecture-and-real-time-data-analysisdata-privacy-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013174/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013174/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013174/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013174/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013174/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013174/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013174/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013174/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013174/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013174/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13509</span> ATM Service Analysis Using Predictive Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Madhavi">S. Madhavi</a>, <a href="https://publications.waset.org/search?q=S.%20Abirami"> S. Abirami</a>, <a href="https://publications.waset.org/search?q=C.%20Bharathi"> C. Bharathi</a>, <a href="https://publications.waset.org/search?q=B.%20Ekambaram"> B. Ekambaram</a>, <a href="https://publications.waset.org/search?q=T.%20Krishna%20Sankar"> T. Krishna Sankar</a>, <a href="https://publications.waset.org/search?q=A.%20Nattudurai"> A. Nattudurai</a>, <a href="https://publications.waset.org/search?q=N.%20Vijayarangan"> N. Vijayarangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The high utilization rate of Automated Teller Machine (ATM) has inevitably caused the phenomena of waiting for a long time in the queue. This in turn has increased the out of stock situations. The ATM utilization helps to determine the usage level and states the necessity of the ATM based on the utilization of the ATM system. The time in which the ATM used more frequently (peak time) and based on the predicted solution the necessary actions are taken by the bank management. The analysis can be done by using the concept of Data Mining and the major part are analyzed based on the predictive data mining. The results are predicted from the historical data (past data) and track the relevant solution which is required. Weka tool is used for the analysis of data based on predictive data mining.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ATM" title="ATM">ATM</a>, <a href="https://publications.waset.org/search?q=Bank%20Management" title=" Bank Management"> Bank Management</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Historical%20data" title=" Historical data"> Historical data</a>, <a href="https://publications.waset.org/search?q=Predictive%20Data%20Mining" title=" Predictive Data Mining"> Predictive Data Mining</a>, <a href="https://publications.waset.org/search?q=Weka%20tool." title=" Weka tool. "> Weka tool. </a> </p> <a href="https://publications.waset.org/9997660/atm-service-analysis-using-predictive-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997660/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997660/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997660/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997660/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997660/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997660/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997660/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997660/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997660/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997660/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5613</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13508</span> Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Masahiro%20Kuzunishi">Masahiro Kuzunishi</a>, <a href="https://publications.waset.org/search?q=Tetsuya%20Furukawa"> Tetsuya Furukawa</a>, <a href="https://publications.waset.org/search?q=Ke%20Lu"> Ke Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification%20Hierarchies" title="Classification Hierarchies">Classification Hierarchies</a>, <a href="https://publications.waset.org/search?q=Data%20Analysis" title=" Data Analysis"> Data Analysis</a>, <a href="https://publications.waset.org/search?q=Multilabeled%20Data" title=" Multilabeled Data"> Multilabeled Data</a>, <a href="https://publications.waset.org/search?q=Orders%20of%20Sets%20of%20Labels" title=" Orders of Sets of Labels"> Orders of Sets of Labels</a> </p> <a href="https://publications.waset.org/9683/analyzing-multi-labeled-data-based-on-the-roll-of-a-concept-against-a-semantic-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9683/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9683/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9683/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9683/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9683/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9683/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9683/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9683/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9683/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9683/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1208</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13507</span> On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20R.%20N.%20Idris">N. R. N. Idris</a>, <a href="https://publications.waset.org/search?q=S.%20Baharom"> S. Baharom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aggregate%20data" title="Aggregate data">Aggregate data</a>, <a href="https://publications.waset.org/search?q=combined-level%20data" title=" combined-level data"> combined-level data</a>, <a href="https://publications.waset.org/search?q=Individual%20patient%20data" title=" Individual patient data"> Individual patient data</a>, <a href="https://publications.waset.org/search?q=meta%20analysis." title=" meta analysis. "> meta analysis. </a> </p> <a href="https://publications.waset.org/9998971/on-pooling-different-levels-of-data-in-estimating-parameters-of-continuous-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998971/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998971/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998971/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998971/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998971/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998971/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998971/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998971/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998971/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998971/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1740</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13506</span> Comprehensive Analysis of Data Mining Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Sarumathi">S. Sarumathi</a>, <a href="https://publications.waset.org/search?q=N.%20Shanthi"> N. Shanthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=Clustering" title=" Clustering"> Clustering</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Machine%0D%0Alearning" title=" Machine learning"> Machine learning</a>, <a href="https://publications.waset.org/search?q=Visualization." title=" Visualization."> Visualization.</a> </p> <a href="https://publications.waset.org/10002609/comprehensive-analysis-of-data-mining-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002609/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002609/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002609/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002609/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002609/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002609/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002609/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002609/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002609/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002609/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2439</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13505</span> Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yu-Mi%20Song">Yu-Mi Song</a>, <a href="https://publications.waset.org/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a>, <a href="https://publications.waset.org/search?q=Dongyoun%20Shin"> Dongyoun Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Big%20data" title="Big data">Big data</a>, <a href="https://publications.waset.org/search?q=correlation%20analysis" title=" correlation analysis"> correlation analysis</a>, <a href="https://publications.waset.org/search?q=data%20recommendation%20system" title=" data recommendation system"> data recommendation system</a>, <a href="https://publications.waset.org/search?q=urban%20data%20network." title=" urban data network."> urban data network.</a> </p> <a href="https://publications.waset.org/10007124/forthcoming-big-data-on-smart-buildings-and-cities-an-experimental-study-on-correlations-among-urban-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007124/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007124/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007124/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007124/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007124/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007124/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007124/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007124/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007124/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007124/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1105</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13504</span> Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20S.%20Myers">T. S. Myers</a>, <a href="https://publications.waset.org/search?q=J.%20Trevathan"> J. Trevathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Information%20architecture" title="Information architecture">Information architecture</a>, <a href="https://publications.waset.org/search?q=Semantic%20technologies%20Sensor%20networks" title=" Semantic technologies Sensor networks"> Semantic technologies Sensor networks</a>, <a href="https://publications.waset.org/search?q=Ontologies." title=" Ontologies. "> Ontologies. </a> </p> <a href="https://publications.waset.org/16837/semantic-support-for-hypothesis-based-research-from-smart-environment-monitoring-and-analysis-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16837/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16837/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16837/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16837/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16837/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16837/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16837/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16837/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16837/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16837/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1715</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13503</span> An In-Depth Analysis of Open Data Portals as an Emerging Public E-Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Martin%20Lnenicka">Martin Lnenicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Governments collect and produce large amounts of data. Increasingly, governments worldwide have started to implement open data initiatives and also launch open data portals to enable the release of these data in open and reusable formats. Therefore, a large number of open data repositories, catalogues and portals have been emerging in the world. The greater availability of interoperable and linkable open government data catalyzes secondary use of such data, so they can be used for building useful applications which leverage their value, allow insight, provide access to government services, and support transparency. The efficient development of successful open data portals makes it necessary to evaluate them systematic, in order to understand them better and assess the various types of value they generate, and identify the required improvements for increasing this value. Thus, the attention of this paper is directed particularly to the field of open data portals. The main aim of this paper is to compare the selected open data portals on the national level using content analysis and propose a new evaluation framework, which further improves the quality of these portals. It also establishes a set of considerations for involving businesses and citizens to create eservices and applications that leverage on the datasets available from these portals.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Big%20data" title="Big data">Big data</a>, <a href="https://publications.waset.org/search?q=content%20analysis" title=" content analysis"> content analysis</a>, <a href="https://publications.waset.org/search?q=criteria%20comparison" title=" criteria comparison"> criteria comparison</a>, <a href="https://publications.waset.org/search?q=data%0D%0Aquality" title=" data quality"> data quality</a>, <a href="https://publications.waset.org/search?q=open%20data" title=" open data"> open data</a>, <a href="https://publications.waset.org/search?q=open%20data%20portals" title=" open data portals"> open data portals</a>, <a href="https://publications.waset.org/search?q=public%20sector." title=" public sector."> public sector.</a> </p> <a href="https://publications.waset.org/10000736/an-in-depth-analysis-of-open-data-portals-as-an-emerging-public-e-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000736/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000736/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000736/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000736/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000736/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000736/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000736/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000736/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000736/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000736/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3082</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13502</span> Role of Association Rule Mining in Numerical Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sudhir%20Jagtap">Sudhir Jagtap</a>, <a href="https://publications.waset.org/search?q=Kodge%20B.%20G."> Kodge B. G.</a>, <a href="https://publications.waset.org/search?q=Shinde%20G.%20N."> Shinde G. N.</a>, <a href="https://publications.waset.org/search?q=Devshette%20P.%20M"> Devshette P. M</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. The numerical data analysis became key process in research and development of all the fields [6]. In this paper we have made an attempt to analyze the specified numerical patterns with reference to the association rule mining techniques with minimum confidence and minimum support mining criteria. The extracted rules and analyzed results are graphically demonstrated. Association rules are a simple but very useful form of data mining that describe the probabilistic co-occurrence of certain events within a database [7]. They were originally designed to analyze market-basket data, in which the likelihood of items being purchased together within the same transactions are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20data%20analysis" title="Numerical data analysis">Numerical data analysis</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Association%0ARule%20Mining" title=" Association Rule Mining"> Association Rule Mining</a> </p> <a href="https://publications.waset.org/9376/role-of-association-rule-mining-in-numerical-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9376/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9376/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9376/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9376/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9376/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9376/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9376/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9376/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9376/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9376/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2861</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13501</span> Analysis of Diverse Clustering Tools in Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Sarumathi">S. Sarumathi</a>, <a href="https://publications.waset.org/search?q=N.%20Shanthi"> N. Shanthi</a>, <a href="https://publications.waset.org/search?q=M.%20Sharmila"> M. Sharmila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cluster%20Analysis" title="Cluster Analysis">Cluster Analysis</a>, <a href="https://publications.waset.org/search?q=Clustering%20Algorithms" title=" Clustering Algorithms"> Clustering Algorithms</a>, <a href="https://publications.waset.org/search?q=Clustering%20Techniques" title=" Clustering Techniques"> Clustering Techniques</a>, <a href="https://publications.waset.org/search?q=Association" title=" Association"> Association</a>, <a href="https://publications.waset.org/search?q=Visualization." title=" Visualization."> Visualization.</a> </p> <a href="https://publications.waset.org/9997173/analysis-of-diverse-clustering-tools-in-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997173/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997173/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997173/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997173/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997173/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997173/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997173/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997173/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997173/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997173/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2202</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13500</span> Application of Multi-Dimensional Principal Component Analysis to Medical Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Naoki%20Yamamoto">Naoki Yamamoto</a>, <a href="https://publications.waset.org/search?q=Jun%20Murakami"> Jun Murakami</a>, <a href="https://publications.waset.org/search?q=Chiharu%20Okuma"> Chiharu Okuma</a>, <a href="https://publications.waset.org/search?q=Yutaro%20Shigeto"> Yutaro Shigeto</a>, <a href="https://publications.waset.org/search?q=Satoko%20Saito"> Satoko Saito</a>, <a href="https://publications.waset.org/search?q=Takashi%20Izumi"> Takashi Izumi</a>, <a href="https://publications.waset.org/search?q=Nozomi%20Hayashida"> Nozomi Hayashida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=multi-dimensional%20principal%20component%20analysis" title="multi-dimensional principal component analysis">multi-dimensional principal component analysis</a>, <a href="https://publications.waset.org/search?q=higher-order%20SVD%20%28HOSVD%29" title=" higher-order SVD (HOSVD)"> higher-order SVD (HOSVD)</a>, <a href="https://publications.waset.org/search?q=functional%20independence%20measure%20%28FIM%29" title=" functional independence measure (FIM)"> functional independence measure (FIM)</a>, <a href="https://publications.waset.org/search?q=medical%20data" title=" medical data"> medical data</a>, <a href="https://publications.waset.org/search?q=tensor%20decomposition" title=" tensor decomposition"> tensor decomposition</a> </p> <a href="https://publications.waset.org/5605/application-of-multi-dimensional-principal-component-analysis-to-medical-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5605/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5605/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5605/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5605/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5605/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5605/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5605/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5605/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5605/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5605/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2502</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13499</span> Non-negative Principal Component Analysis for Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zhang%20Yan">Zhang Yan</a>, <a href="https://publications.waset.org/search?q=Yu%20Bin"> Yu Bin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/search?q=non-negativeprinciple%20component%20analysis%20%28NPCA%29" title=" non-negativeprinciple component analysis (NPCA)"> non-negativeprinciple component analysis (NPCA)</a> </p> <a href="https://publications.waset.org/14158/non-negative-principal-component-analysis-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14158/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14158/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14158/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14158/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14158/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14158/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14158/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14158/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14158/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14158/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1695</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13498</span> Coalescing Data Marts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Parimala">N. Parimala</a>, <a href="https://publications.waset.org/search?q=P.%20Pahwa"> P. Pahwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> OLAP uses multidimensional structures, to provide access to data for analysis. Traditionally, OLAP operations are more focused on retrieving data from a single data mart. An exception is the drill across operator. This, however, is restricted to retrieving facts on common dimensions of the multiple data marts. Our concern is to define further operations while retrieving data from multiple data marts. Towards this, we have defined six operations which coalesce data marts. While doing so we consider the common as well as the non-common dimensions of the data marts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20warehouse" title="Data warehouse">Data warehouse</a>, <a href="https://publications.waset.org/search?q=Dimension" title=" Dimension"> Dimension</a>, <a href="https://publications.waset.org/search?q=OLAP" title=" OLAP"> OLAP</a>, <a href="https://publications.waset.org/search?q=Star%20Schema." title=" Star Schema."> Star Schema.</a> </p> <a href="https://publications.waset.org/15559/coalescing-data-marts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15559/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15559/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15559/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15559/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15559/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15559/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15559/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15559/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15559/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15559/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1559</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13497</span> Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alexiou%20Dimitra">Alexiou Dimitra</a>, <a href="https://publications.waset.org/search?q=Fragkaki%20Maria"> Fragkaki Maria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multiple%20factorial%20correspondence%20analysis" title="Multiple factorial correspondence analysis">Multiple factorial correspondence analysis</a>, <a href="https://publications.waset.org/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/search?q=E.U.-28%20countries" title=" E.U.-28 countries"> E.U.-28 countries</a>, <a href="https://publications.waset.org/search?q=statistical%20package%20IBM%20SPSS%2020" title=" statistical package IBM SPSS 20"> statistical package IBM SPSS 20</a>, <a href="https://publications.waset.org/search?q=CHIC%20Analysis%20V%201.1%20Software" title=" CHIC Analysis V 1.1 Software"> CHIC Analysis V 1.1 Software</a>, <a href="https://publications.waset.org/search?q=Eurostat.eu%20statistics." title=" Eurostat.eu statistics."> Eurostat.eu statistics.</a> </p> <a href="https://publications.waset.org/10005816/data-and-spatial-analysis-for-economy-and-education-of-28-eu-member-states-for-2014" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005816/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005816/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005816/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005816/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005816/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005816/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005816/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005816/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005816/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005816/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1085</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13496</span> Robust Regression and its Application in Financial Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mansoor%20Momeni">Mansoor Momeni</a>, <a href="https://publications.waset.org/search?q=Mahmoud%20Dehghan%20Nayeri"> Mahmoud Dehghan Nayeri</a>, <a href="https://publications.waset.org/search?q=Ali%20Faal%20Ghayoumi"> Ali Faal Ghayoumi</a>, <a href="https://publications.waset.org/search?q=Hoda%20Ghorbani"> Hoda Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Financial%20data%20analysis" title="Financial data analysis">Financial data analysis</a>, <a href="https://publications.waset.org/search?q=Influential%20data" title=" Influential data"> Influential data</a>, <a href="https://publications.waset.org/search?q=Outliers" title=" Outliers"> Outliers</a>, <a href="https://publications.waset.org/search?q=Robust%20regression." title=" Robust regression."> Robust regression.</a> </p> <a href="https://publications.waset.org/15069/robust-regression-and-its-application-in-financial-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15069/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15069/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15069/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15069/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15069/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15069/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15069/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15069/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15069/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15069/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1932</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13495</span> Multidimensional and Data Mining Analysis for Property Investment Risk Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nur%20Atiqah%20Rochin%20Demong">Nur Atiqah Rochin Demong</a>, <a href="https://publications.waset.org/search?q=Jie%20Lu"> Jie Lu</a>, <a href="https://publications.waset.org/search?q=Farookh%20Khadeer%20Hussain"> Farookh Khadeer Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Uncertainty%20factors" title="Uncertainty factors">Uncertainty factors</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=multidimensional%0Adata%20model" title=" multidimensional data model"> multidimensional data model</a>, <a href="https://publications.waset.org/search?q=risk%20analysis." title=" risk analysis."> risk analysis.</a> </p> <a href="https://publications.waset.org/653/multidimensional-and-data-mining-analysis-for-property-investment-risk-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/653/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/653/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/653/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/653/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/653/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/653/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/653/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/653/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/653/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/653/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2922</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13494</span> Cluster Analysis for the Statistical Modeling of Aesthetic Judgment Data Related to Comics Artists</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=George%20E.%20Tsekouras">George E. Tsekouras</a>, <a href="https://publications.waset.org/search?q=Evi%20Sampanikou"> Evi Sampanikou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We compare three categorical data clustering algorithms with respect to the problem of classifying cultural data related to the aesthetic judgment of comics artists. Such a classification is very important in Comics Art theory since the determination of any classes of similarities in such kind of data will provide to art-historians very fruitful information of Comics Art-s evolution. To establish this, we use a categorical data set and we study it by employing three categorical data clustering algorithms. The performances of these algorithms are compared each other, while interpretations of the clustering results are also given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aesthetic%20judgment" title="Aesthetic judgment">Aesthetic judgment</a>, <a href="https://publications.waset.org/search?q=comics%20artists" title=" comics artists"> comics artists</a>, <a href="https://publications.waset.org/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/search?q=categorical%20data." title="categorical data.">categorical data.</a> </p> <a href="https://publications.waset.org/15253/cluster-analysis-for-the-statistical-modeling-of-aesthetic-judgment-data-related-to-comics-artists" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15253/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15253/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15253/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15253/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15253/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15253/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15253/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15253/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15253/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15253/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1635</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13493</span> Survey on Arabic Sentiment Analysis in Twitter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sarah%20O.%20Alhumoud">Sarah O. Alhumoud</a>, <a href="https://publications.waset.org/search?q=Mawaheb%20I.%20Altuwaijri"> Mawaheb I. Altuwaijri</a>, <a href="https://publications.waset.org/search?q=Tarfa%20M.%20Albuhairi"> Tarfa M. Albuhairi</a>, <a href="https://publications.waset.org/search?q=Wejdan%20M.%20Alohaideb"> Wejdan M. Alohaideb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Big%20Data" title="Big Data">Big Data</a>, <a href="https://publications.waset.org/search?q=Social%20Networks" title=" Social Networks"> Social Networks</a>, <a href="https://publications.waset.org/search?q=Sentiment%20Analysis." title=" Sentiment Analysis."> Sentiment Analysis.</a> </p> <a href="https://publications.waset.org/10000687/survey-on-arabic-sentiment-analysis-in-twitter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000687/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000687/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000687/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000687/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000687/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000687/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000687/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000687/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000687/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000687/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4349</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13492</span> A Monte Carlo Method to Data Stream Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kittisak%20Kerdprasop">Kittisak Kerdprasop</a>, <a href="https://publications.waset.org/search?q=Nittaya%20Kerdprasop"> Nittaya Kerdprasop</a>, <a href="https://publications.waset.org/search?q=Pairote%20Sattayatham"> Pairote Sattayatham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20Stream" title="Data Stream">Data Stream</a>, <a href="https://publications.waset.org/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/search?q=Sampling" title=" Sampling"> Sampling</a>, <a href="https://publications.waset.org/search?q=DensityEstimation." title=" DensityEstimation."> DensityEstimation.</a> </p> <a href="https://publications.waset.org/4653/a-monte-carlo-method-to-data-stream-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4653/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4653/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4653/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4653/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4653/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4653/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4653/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4653/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4653/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4653/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1417</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=450">450</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=451">451</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Data%20analysis&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>