CINXE.COM

Search results for: land degradation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: land degradation</title> <meta name="description" content="Search results for: land degradation"> <meta name="keywords" content="land degradation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="land degradation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="land degradation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3812</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: land degradation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3812</span> A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Kumi-Boateng">Bernard Kumi-Boateng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kofi%20Bonsu"> Kofi Bonsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=land" title=" land"> land</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a> </p> <a href="https://publications.waset.org/abstracts/53904/a-gis-based-composite-land-degradation-assessment-and-mapping-of-tarkwa-mining-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3811</span> Drivers of Land Degradation in Trays Ecosystem as Modulated under a Changing Climate: Case Study of Côte d&#039;Ivoire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadio%20Valere%20R.%20Angaman">Kadio Valere R. Angaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Birahim%20Bouna%20Niang"> Birahim Bouna Niang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land degradation is a serious problem in developing countries, including Cote d’Ivoire, which has its economy focused on agriculture. It occurs in all kinds of ecosystems over the world. However, the drivers of land degradation vary from one region to another and from one ecosystem to another. Thus, identifying these drivers is an essential prerequisite to developing and implementing appropriate policies to reverse the trend of land degradation in the country, especially in the trays ecosystem. Using the binary logistic model with primary data obtained through 780 farmers surveyed, we analyze and identify the drivers of land degradation in the trays ecosystem. The descriptive statistics show that 52% of farmers interviewed have stated facing land degradation in their farmland. This high rate shows the extent of land degradation in this ecosystem. Also, the results obtained from the binary logit regression reveal that land degradation is significantly influenced by a set of variables such as sex, education, slope, erosion, pesticide, agricultural activity, deforestation, and temperature. The drivers identified are mostly local; as a result, the government must implement some policies and strategies that facilitate and incentive the adoption of sustainable land management practices by farmers to reverse the negative trend of land degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drivers" title="drivers">drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title=" land degradation"> land degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=trays%20ecosystem" title=" trays ecosystem"> trays ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20land%20management" title=" sustainable land management"> sustainable land management</a> </p> <a href="https://publications.waset.org/abstracts/148461/drivers-of-land-degradation-in-trays-ecosystem-as-modulated-under-a-changing-climate-case-study-of-cote-divoire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3810</span> Land Use Planning Tool to Achieve Land Degradation Neutrality: Tunisia Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafla%20Attia">Rafla Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Zucca"> Claudio Zucca</a>, <a href="https://publications.waset.org/abstracts/search?q=Bao%20Quang%20Le"> Bao Quang Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Dridi"> Sana Dridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Thouraya%20Sahli"> Thouraya Sahli</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Hermassi"> Taoufik Hermassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Tunisia, landscape change and land degradation are critical issues for landscape conservation, management, and planning. Landscapes are undergoing crucial environmental problems made evident by soil degradation and desertification. Human improper uses of land resources (e.g., unsuitable land uses, unsustainable crop intensification, and poor rangeland management) and climate change are the main factors leading to the landscape transformation and desertification affecting high proportions of the Tunisian lands. Land use planning (LUP) to achieve Land Degradation Neutrality (LDN) must be supported by methodologies and technologies that help identify best solutions and practices and design context-specific sustainable land management (SLM) strategies. Such strategies must include restoration or rehabilitation efforts in areas with high land degradation, as well as prevention of degradation that could be caused by improper land use (LU) and land management (LM). The geoinformatics Land Use Planning for LDN (LUP4LDN) tool has been designed for this purpose. Its aim is to support national and sub-national planners in i) mapping geographic patterns of current land degradation; ii) anticipating further future land degradation expected in areas that are unsustainably managed; and iii) providing an interactive procedure for developing participatory LU-LM transitional scenarios over selected regions of interest and timeframes, visualizing the related expected levels of impacts on ecosystem services via maps and graphs. The tool has been co-developed and piloted with national stakeholders in Tunisia. The piloting implementation assessed how the LUP4LDN tool fits with existing LUP processes and the benefits achieved by using the tool to support land use planning for LDN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%20system" title="land use system">land use system</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20land%20management" title=" sustainable land management"> sustainable land management</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20planning%20for%20land%20degradation%20neutrality" title=" land use planning for land degradation neutrality"> land use planning for land degradation neutrality</a> </p> <a href="https://publications.waset.org/abstracts/162442/land-use-planning-tool-to-achieve-land-degradation-neutrality-tunisia-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3809</span> Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amritee%20Bora">Amritee Bora</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Mipun"> B. S. Mipun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=population%20pressure" title="population pressure">population pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20utilization" title=" land utilization"> land utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation%20vulnerability" title=" land degradation vulnerability"> land degradation vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/144126/land-degradation-vulnerability-modeling-a-study-on-selected-micro-watersheds-of-west-khasi-hills-meghalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3808</span> The Climate Change and Soil Degradation in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Dumbrovsky">Miroslav Dumbrovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with impacts of climate change with the main emphasis on land degradation, agriculture and forestry management in the landscape. Land degradation, due to adverse effect of farmers activities, as a result of inappropriate conventional technologies, was a major issue in the Czech Republic during the 20th century and will remain for solving in the 21st century. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Land degradation through soil degradation is causing losses on crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water-holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Water erosion occurs on fields with row crops (maize, sunflower), especially during the rainfall period from April to October. Recently there is a serious problem of greatly expanded production of biofuels and bioenergy from field crops. The result is accelerated soil degradation. The damages (on and off- site) are greater than the benefits. An effective soil conservation requires an appropriate complex system of measures in the landscape. They are also important to continue to develop new sophisticated methods and technologies for decreasing land degradation. The system of soil conservation solving land degradation depend on the ability and the willingness of land users to apply them. When we talk about land degradation, it is not just a technical issue but also an economic and political issue. From a technical point of view, we have already made many positive steps, but for successful solving the problem of land degradation is necessary to develop suitable economic and political tools to increase the willingness and ability of land users to adopt conservation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title="land degradation">land degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conservation" title=" soil conservation"> soil conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/57706/the-climate-change-and-soil-degradation-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3807</span> Remote Sensing and GIS for Land Use Change Assessment: Case Study of Oued Bou Hamed Watershed, Southern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouerchefani%20Dalel">Ouerchefani Dalel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdhaoui%20Basma"> Mahdhaoui Basma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land use change is one of the important factors needed to evaluate later on the impact of human actions on land degradation. This work present the application of a methodology based on remote sensing for evaluation land use change in an arid region of Tunisia. This methodology uses Landsat TM and ETM+ images to produce land use maps by supervised classification based on ground truth region of interests. This study showed that it was possible to rely on radiometric values of the pixels to define each land use class in the field. It was also possible to generate 3 land use classes of the same study area between 1988 and 2011. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=change" title=" change"> change</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/31556/remote-sensing-and-gis-for-land-use-change-assessment-case-study-of-oued-bou-hamed-watershed-southern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3806</span> Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eliza.%20E.%20Camaso">Eliza. E. Camaso</a>, <a href="https://publications.waset.org/abstracts/search?q=Guiller.%20B.%20Damian"> Guiller. B. Damian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguelito.%20F.%20Isip"> Miguelito. F. Isip</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20T.%20Alberto"> Ronaldo T. Alberto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure&nbsp;&nbsp; accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20image" title="aerial image">aerial image</a>, <a href="https://publications.waset.org/abstracts/search?q=landcover" title=" landcover"> landcover</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR"> LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility%20degradation" title=" soil fertility degradation"> soil fertility degradation</a> </p> <a href="https://publications.waset.org/abstracts/71996/landcover-mapping-using-lidar-data-and-aerial-image-and-soil-fertility-degradation-assessment-for-rice-production-area-in-quezon-nueva-ecija-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3805</span> The Influence of Conservation Measures, Limiting Soil Degradation, on the Quality of Surface Water Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Sobotkov%C3%A1">V. Sobotková</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20%C5%A0arapatka"> B. Šarapatka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dumbrovsk%C3%BD"> M. Dumbrovský</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Uhrov%C3%A1"> J. Uhrová</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bedn%C3%A1%C5%99"> M. Bednář</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the influence of implemented conservation measures on the quality of surface water resources. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity to improve the quality of the environment and sustainability of crop production by means of better soil and water conservation. The most important degradation factor in our study area in the Hubenov drinking water reservoir catchment basin was water erosion together with loss of organic matter. Hubenov Reservoir water resources were monitored for twenty years (1990–2010) to collect water quality data for nitrate nitrogen (N-NO3-), total P, and undissolved substances. Results obtained from measurements taken before and after land consolidation indicated a decrease in the linear trend of N-NO3- and total P concentrations, this was achieved through implementation of conservation measures limiting soil degradation in the Hubenov reservoir catchment area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20land%20consolidation" title="complex land consolidation">complex land consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20water%20conservation" title=" soil and water conservation"> soil and water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water%20resources" title=" surface water resources"> surface water resources</a> </p> <a href="https://publications.waset.org/abstracts/9590/the-influence-of-conservation-measures-limiting-soil-degradation-on-the-quality-of-surface-water-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3804</span> Land Degradation Assessment through Spatial Data Integration in Eastern Chotanagpur Plateau, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avijit%20Mahala">Avijit Mahala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study is primarily concerned with the physical processes and status of land degradation in a tropical plateau fringe. Chotanagpur plateau is one of the most water erosion related degraded areas of India. The granite gneiss geological formation, low to medium developed soil cover, undulating lateritic uplands, high drainage density, low to medium rainfall (100-140cm), dry tropical deciduous forest cover makes the Silabati River basin a truly representative of the tropical environment. The different physical factors have been taken for land degradation study includes- physiographic formations, hydrologic characteristics, and vegetation cover. Water erosion, vegetal degradation, soil quality decline are the major processes of land degradation in study area. Granite-gneiss geological formation is responsible for developing undulating landforms. Less developed soil profile, low organic matter, poor structure of soil causes high soil erosion. High relief and sloppy areas cause unstable environment. The dissected highland causes topographic hindrance in productivity. High drainage density and frequency in rugged upland and intense erosion in sloppy areas causes high soil erosion of the basin. Decreasing rainfall and increasing aridity (low P/PET) threats water stress condition. Green biomass cover area is also continuously declining. Through overlaying the different physical factors (geological formation, soil characteristics, geomorphological characteristics, etc.) of considerable importance in GIS environment the varying intensities of land degradation areas has been identified. Middle reaches of Silabati basin with highly eroded laterite soil cover areas are more prone to land degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title="land degradation">land degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20environment" title=" tropical environment"> tropical environment</a>, <a href="https://publications.waset.org/abstracts/search?q=lateritic%20upland" title=" lateritic upland"> lateritic upland</a>, <a href="https://publications.waset.org/abstracts/search?q=undulating%20landform" title=" undulating landform"> undulating landform</a>, <a href="https://publications.waset.org/abstracts/search?q=aridity" title=" aridity"> aridity</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20environment" title=" GIS environment"> GIS environment</a> </p> <a href="https://publications.waset.org/abstracts/98922/land-degradation-assessment-through-spatial-data-integration-in-eastern-chotanagpur-plateau-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3803</span> Environmental Impact of Trade Sector Growth: Evidence from Tanzania </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosses%20E.%20Lufuke">Mosses E. Lufuke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempted to investigate whether there is Granger-causality running from trade to environment as evidenced in the changing climatic condition and land degradation. Using Tanzania as the reference, VAR-Granger-causality test was employed to rationalize the conundrum of causal-effect relationship between trade and environment. The changing climatic condition, as the proxy of both nitrous oxide emissions (in thousand metric tons of CO<sub>2</sub> equivalent) and land degradation measured by the size of arable land were tested against trade using both exports and imports variables. The result indicated that neither of the trade variables Granger-cause the variability on gas emissions and arable land size. This suggests the possibility that all trade concerns in relation to environment to have been internalized in domestic policies to offset any likely negative consequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=trade" title=" trade"> trade</a> </p> <a href="https://publications.waset.org/abstracts/68901/environmental-impact-of-trade-sector-growth-evidence-from-tanzania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3802</span> The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Dumbrovsky">Miroslav Dumbrovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20degradation" title="soil degradation">soil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20consolidation" title=" land consolidation"> land consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conservation" title=" soil conservation"> soil conservation</a> </p> <a href="https://publications.waset.org/abstracts/67572/the-role-of-land-consolidation-to-reduce-soil-degradation-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3801</span> Evaluating the Effects of Rainfall and Agricultural Practices on Soil Erosion (Palapye Case Study)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mpaphi%20Major">Mpaphi Major</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is becoming an important aspect of land degradation. Therefore it is of great consideration to note any factor that may escalate the rate of soil erosion in our arable land. There exist 3 main driving forces in soil erosion which are rainfall, wind and land use of which in this project only rainfall and land use will be looked at. With the increase in world population at an alarming rate, the demand for food production is expected to increase which will in turn lead to more land being converted from forests to agricultural use of which very few of it are now fertile. In our country Botswana, the rate of crop production is decreasing due to the wearing away of the fertile top soil and poor arable land management. As a result, some studies on the rate of soil loss and farm management practices should be conducted so that best soil and water conservation practices should be employed and hence reduce the risk of soil loss and increase the rate of crop production and yield. The Soil loss estimation model for Southern Africa (SLEMSA) will be used to estimate the rate of soil loss in some selected arable farms within the Palapye watershed and some field observations will be made to determine the management practices used and their impact on the arable land. Upon observations it have been found that many arable fields have been exposed to soil erosion, of which the affected parts are no longer suitable for any crop production unless the land areas are modified. Improper land practices such as ploughing along the slope and land cultivation practices were observed. As a result farmers need to be educated on best conservation practices that can be used to manage their arable land hence reduced risk of soil erosion and improved crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20water%20conservation" title="soil and water conservation">soil and water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=SLEMSA" title=" SLEMSA"> SLEMSA</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title=" land degradation"> land degradation</a> </p> <a href="https://publications.waset.org/abstracts/35597/evaluating-the-effects-of-rainfall-and-agricultural-practices-on-soil-erosion-palapye-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3800</span> Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zegrar%20Ahmed">Zegrar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghabi%20Mohamed"> Ghabi Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=SIG" title=" SIG"> SIG</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=desertification" title=" desertification"> desertification</a> </p> <a href="https://publications.waset.org/abstracts/30955/change-detection-and-analysis-of-desertification-processes-in-semi-arid-land-in-algeria-using-landsat-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3799</span> Challenges of Peri-Urban Agriculture in Cities of Developing Countries: A Case Study of Nairobi City Peri-Urban Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aggrey%20Daniel%20Maina%20Thuo">Aggrey Daniel Maina Thuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urban population growth means an increasing demand for urban land, particularly for housing, and also for various other urban uses. This land is not available within cities but in peri-urban areas. The expansion of the cities into the peri-urban areas is creating direct and indirect impacts with those living there facing new challenges and opportunities in meeting their life needs and accommodating the by-products of urbanization. Although urbanization of these areas provides opportunities for employment, better housing, education, knowledge and technology transfer, and ready markets for the agricultural products, increase in population places enormous stress on natural resources and existing social services and infrastructure, therefore causing environmental degradation. This environmental degradation is affecting agriculture for those still holding onto their farms for agricultural purposes. This paper, using a multiple theoretical framework and qualitative research approach, attempts to describe the positive and adverse effects of urbanization on peri-urban agriculture, using the Town Council of Karuri within Nairobi peri-urban areas as a case study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peri-urban%20agriculture" title="peri-urban agriculture">peri-urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20degradation" title=" environmental degradation"> environmental degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=planning" title=" planning"> planning</a> </p> <a href="https://publications.waset.org/abstracts/2043/challenges-of-peri-urban-agriculture-in-cities-of-developing-countries-a-case-study-of-nairobi-city-peri-urban-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3798</span> Analysis of Erosion Quantity on Application of Conservation Techniques in Ci Liwung Hulu Watershed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaenal%20Mutaqin">Zaenal Mutaqin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The level of erosion that occurs in the upsteam watersheed will lead to limited infiltrattion, land degradation and river trivialisation and estuaries in the body. One of the watesheed that has been degraded caused by using land is the DA Ci Liwung Upstream. The high degradation that occurs in the DA Ci Liwung upstream is indicated by the hugher rate of erosion on the region, especially in the area of agriculture. In this case, agriculture cultivation intent to the agricultural land that has been applied conservation techniques. This study is applied to determine the quantity of erosion by reviewing Hidrologic Response Unit (HRU) in agricuktural cultivation land which is contained in DA Ci Liwung upstream by using the Soil and Water Assessmen Tool (SWAT). Conservation techniques applied are terracing, agroforestry and gulud terrace. It was concluded that agroforestry conservation techniques show the best value of erosion (lowest) compared with other conservation techniques with the contribution of erosion of 25.22 tonnes/ha/year. The results of the calibration between the discharge flow models with the observation that R²=0.9014 and NS=0.79 indicates that this model is acceptable and feasible applied to the Ci Liwung Hulu watershed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT%20analysis" title=" SWAT analysis"> SWAT analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=watersheed" title=" watersheed"> watersheed</a> </p> <a href="https://publications.waset.org/abstracts/59021/analysis-of-erosion-quantity-on-application-of-conservation-techniques-in-ci-liwung-hulu-watershed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3797</span> The Effects of Land Use Types to Determine the Status of Sustainable River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Louis%20Sunaris">Michael Louis Sunaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Robby%20Yussac%20Tallar"> Robby Yussac Tallar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of sustainable river is evolving in Indonesia today. Many rivers condition in Indonesia have decreased by quality and quantity. The degradation of this condition is caused by rapid land use change as a result of increased population growth and human activity. It brings the degradation of the existing watersheds including some types of land use that an important factor in determining the status of river sustainability. Therefore, an evaluation method is required to determine the sustainability status of waterbody within watershed. The purpose of this study is to analyze various types of land use in determining the status of river sustainability. This study takes the watersheds of Citarum Upstream as a study area. The results of the analysis prove the index of sustainability status of the river that changes from good to bad or average in the rivers in the study area. The rapid and uncontrolled changes of land use especially in the upper watersheds area are the main causes that happened over time. It was indicated that the cumulative runoff coefficients were increased significantly. These situations indicated that the damage of watersheds has an impact on the water surplus or deficit problem yearly. Therefore, the rivers in Indonesia should be protected and conserved. The sustainability index of the rivers is an index to indicate the condition of watersheds by defining status of rivers in order to achieve sustainable water resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%20change" title="land use change">land use change</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20coefficient" title=" runoff coefficient"> runoff coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20simple%20index" title=" a simple index"> a simple index</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20river" title=" sustainable river"> sustainable river</a> </p> <a href="https://publications.waset.org/abstracts/96805/the-effects-of-land-use-types-to-determine-the-status-of-sustainable-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3796</span> Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouzekri">A. Bouzekri</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benmassaud"> H. Benmassaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aurès region is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal" title=" spatiotemporal"> spatiotemporal</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=Aur%C3%A8s" title=" Aurès"> Aurès</a> </p> <a href="https://publications.waset.org/abstracts/35587/use-of-data-of-the-remote-sensing-for-spatiotemporal-analysis-land-use-changes-in-the-eastern-aures-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3795</span> Spatial Analysis of the Impact of City Developments Degradation of Green Space in Urban Fringe Eastern City of Yogyakarta Year 2005-2010</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pebri%20Nurhayati">Pebri Nurhayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozanah%20Ahlam%20Fadiyah"> Rozanah Ahlam Fadiyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the development of the city often use rural areas that can not be separated from the change in land use that lead to the degradation of urban green space in the city fringe. In the long run, the degradation of green open space this can impact on the decline of ecological, psychological and public health. Therefore, this research aims to (1) determine the relationship between the parameters of the degradation rate of urban development with green space, (2) develop a spatial model of the impact of urban development on the degradation of green open space with remote sensing techniques and Geographical Information Systems in an integrated manner. This research is a descriptive research with data collection techniques of observation and secondary data . In the data analysis, to interpret the direction of urban development and degradation of green open space is required in 2005-2010 ASTER image with NDVI. Of interpretation will generate two maps, namely maps and map development built land degradation green open space. Secondary data related to the rate of population growth, the level of accessibility, and the main activities of each city map is processed into a population growth rate, the level of accessibility maps, and map the main activities of the town. Each map is used as a parameter to map the degradation of green space and analyzed by non-parametric statistical analysis using Crosstab thus obtained value of C (coefficient contingency). C values were then compared with the Cmaximum to determine the relationship. From this research will be obtained in the form of modeling spatial map of the City Development Impact Degradation Green Space in Urban Fringe eastern city of Yogyakarta 2005-2010. In addition, this research also generate statistical analysis of the test results of each parameter to the degradation of green open space in the Urban Fringe eastern city of Yogyakarta 2005-2010. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title="spatial analysis">spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20of%20green%20space" title=" degradation of green space"> degradation of green space</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20fringe" title=" urban fringe"> urban fringe</a> </p> <a href="https://publications.waset.org/abstracts/5862/spatial-analysis-of-the-impact-of-city-developments-degradation-of-green-space-in-urban-fringe-eastern-city-of-yogyakarta-year-2005-2010" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3794</span> Land Use Change Detection Using Remote Sensing and GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naser%20Ahmadi%20Sani">Naser Ahmadi Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Solaimani"> Karim Solaimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lida%20Razaghnia"> Lida Razaghnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Zandi"> Jalal Zandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haraz%20basin" title="Haraz basin">Haraz basin</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title=" change detection"> change detection</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use" title=" land-use"> land-use</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20data" title=" satellite data"> satellite data</a> </p> <a href="https://publications.waset.org/abstracts/43014/land-use-change-detection-using-remote-sensing-and-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3793</span> Community Perception of Dynamics and Drivers of Land Cover Change around Pendjari Biosphere Reserve in Northern Benin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesugnon%20E.%20A.%20Kpodo">Jesugnon E. A. Kpodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurlus%20D.%20Ouindeyama"> Aurlus D. Ouindeyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20H.%20Sommer"> Jan H. Sommer</a>, <a href="https://publications.waset.org/abstracts/search?q=Fifanou%20G.%20Vodouhe"> Fifanou G. Vodouhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolo%20Yeo"> Kolo Yeo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local communities are recognized as key actors for sustainable land use and to some extent actors driving land use land cover (LULC) change around protected areas. Understanding drivers responsible for these changes are very crucial for better policy decisions making. This study analyzed perception of 425 local people in 28 villages towards land cover change around Pendjari Biosphere Reserve using semi-structured questionnaire. 72.9% of local communities perceive land cover as degrading while 24.5% as improving and only 2.6% as stable during the five last years. Women perceived more land cover degradation than men do (84.1 vs. 67.1%). Local communities identified cultivated land expansion, logging, firewood collection, charcoal production, population growth, and poverty as the key drivers of declined LULC in the study area. Education has emerged as a significant factor influencing respondents’ perceptions of these drivers of LULC changes. Appropriate management measures and government policies should be implemented around Pendjari Biosphere Reserve to control drivers of LULC change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20perceptions" title="local perceptions">local perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC%20drivers" title=" LULC drivers"> LULC drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC%20dynamics" title=" LULC dynamics"> LULC dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Pendjari%20Biosphere%20Reserve" title=" Pendjari Biosphere Reserve"> Pendjari Biosphere Reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20livelihoods" title=" rural livelihoods"> rural livelihoods</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20resource%20management" title=" sustainable resource management"> sustainable resource management</a> </p> <a href="https://publications.waset.org/abstracts/123858/community-perception-of-dynamics-and-drivers-of-land-cover-change-around-pendjari-biosphere-reserve-in-northern-benin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3792</span> Urban Land Expansion Impact Assessment on Agriculture Land in Kabul City, Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Sharif%20Ahmadi">Ahmad Sharif Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshitaka%20Kajita"> Yoshitaka Kajita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kabul city is experiencing urban land expansion in an unprecedented scale, especially since the last decade. With massive population expansion and fast economic development, urban land has increasingly expanded and encroached upon agriculture land during the urbanization history of the city. This paper evaluates the integrated urban land expansion impact on agriculture land in Kabul city since the formation of the basic structure of the city between 1962-1964. The paper studies the temporal and spatial characteristic of agriculture land and agriculture land loss in Kabul city using geographic information system (GIS) and remote sensing till 2008. Many temporal Landsat Thematic Mapper (TM) imageries were interpreted to detect the temporal and spatial characteristics of agriculture land loss. Different interval study periods, however, had vast difference in the agriculture land loss which is due to the urban land expansion trends in the city. the high number of Agriculture land adjacent to the city center and urban fringe have been converted into urban land during the study period in the city, as the agriculture land is highly correlated with the urban land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land" title="agriculture land">agriculture land</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land%20loss" title=" agriculture land loss"> agriculture land loss</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul%20city" title=" Kabul city"> Kabul city</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20land%20expansion" title=" urban land expansion"> urban land expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/63212/urban-land-expansion-impact-assessment-on-agriculture-land-in-kabul-city-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3791</span> Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddique%20Ullah%20Baig">Siddique Ullah Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Alisha%20Manzoor"> Alisha Manzoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Broghil%20National%20Park" title="Broghil National Park">Broghil National Park</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resources" title=" natural resources"> natural resources</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20degradation" title=" environmental degradation"> environmental degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a> </p> <a href="https://publications.waset.org/abstracts/178610/environmental-degradation-of-natural-resources-in-broghil-national-park-in-the-high-mountains-of-pakistan-empirical-evidence-from-local-community-and-geoinformatics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3790</span> Multi-Temporal Remote Sensing of landscape Dynamics and Pattern Changes in Dire District, Southern Oromia, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Berhanu">K. Berhanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improper land use results in land degradation and decline in agricultural productivity. Hence, in order to get maximum benefits out of land, proper utilization of its resources is inevitable. The present study was aimed at identifying the landcover changes in the study area in the last 25 years and determines the extent and direction of change that has occurred. The study made use of Landsat TM 1986 and 2011 Remote Sensing Satellite Image for analysis to determine the extent and pattern of rangeland change. The results of the landuse/landcover change detection showed that in the last 25 years, 3 major changes were observed, grassland and open shrub-land resource significantly decreased at a rate of 17.1km2/year and 12 km2/year/, respectively. On the other hand in 25 years dense bushland, open bush land, dense shrubland and cultivated land has shown increment in size at a rate of 0.23km2/year,13.5 km2/year, 6.3 km2/year and 0.2 km2/year, respectively within 25 years. The expansion of unpalatable woody species significantly reduced the rangeland size and availability of grasses. The consequence of the decrease in herbaceous biomass production might result in high risk of food insecurity in the area unless proper interventions are made in time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS%20and%20remote%20sensing" title="GIS and remote sensing">GIS and remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Dire%20District" title=" Dire District"> Dire District</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title=" land use/land cover"> land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20sat%20TM" title=" land sat TM "> land sat TM </a> </p> <a href="https://publications.waset.org/abstracts/12049/multi-temporal-remote-sensing-of-landscape-dynamics-and-pattern-changes-in-dire-district-southern-oromia-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3789</span> Mapping Man-Induced Soil Degradation in Armenia&#039;s High Mountain Pastures through Remote Sensing Methods: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Saghatelyan">A. Saghatelyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Asmaryan"> Sh. Asmaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tepanosyan"> G. Tepanosyan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Muradyan"> V. Muradyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of major concern to Armenia has been soil degradation emerged as a result of unsustainable management and use of grasslands, this in turn largely impacting environment, agriculture and finally human health. Hence, assessment of soil degradation is an essential and urgent objective set out to measure its possible consequences and develop a potential management strategy. Since recently, an essential tool for assessing pasture degradation has been remote sensing (RS) technologies. This research was done with an intention to measure preciseness of Linear spectral unmixing (LSU) and NDVI-SMA methods to estimate soil surface components related to degradation (fractional vegetation cover-FVC, bare soils fractions, surface rock cover) and determine appropriateness of these methods for mapping man-induced soil degradation in high mountain pastures. Taking into consideration a spatially complex and heterogeneous biogeophysical structure of the studied site, we used high resolution multispectral QuickBird imagery of a pasture site in one of Armenia’s rural communities - Nerkin Sasoonashen. The accuracy assessment was done by comparing between the land cover abundance data derived through RS methods and the ground truth land cover abundance data. A significant regression was established between ground truth FVC estimate and both NDVI-LSU and LSU - produced vegetation abundance data (R2=0.636, R2=0.625, respectively). For bare soil fractions linear regression produced a general coefficient of determination R2=0.708. Because of poor spectral resolution of the QuickBird imagery LSU failed with assessment of surface rock abundance (R2=0.015). It has been well documented by this particular research, that reduction in vegetation cover runs in parallel with increase in man-induced soil degradation, whereas in the absence of man-induced soil degradation a bare soil fraction does not exceed a certain level. The outcomes show that the proposed method of man-induced soil degradation assessment through FVC, bare soil fractions and field data adequately reflects the current status of soil degradation throughout the studied pasture site and may be employed as an alternate of more complicated models for soil degradation assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20spectral%20unmixing" title=" linear spectral unmixing"> linear spectral unmixing</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20degradation" title=" soil degradation"> soil degradation</a> </p> <a href="https://publications.waset.org/abstracts/51775/mapping-man-induced-soil-degradation-in-armenias-high-mountain-pastures-through-remote-sensing-methods-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3788</span> Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Mavhuru">B. Mavhuru</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Nethengwe"> N. S. Nethengwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drainage%20basin" title="drainage basin">drainage basin</a>, <a href="https://publications.waset.org/abstracts/search?q=geomorphological%20processes" title=" geomorphological processes"> geomorphological processes</a>, <a href="https://publications.waset.org/abstracts/search?q=gully%20development" title=" gully development"> gully development</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title=" land degradation"> land degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=riparian%20land%20use%20and%20sediment%20load" title=" riparian land use and sediment load"> riparian land use and sediment load</a> </p> <a href="https://publications.waset.org/abstracts/48218/assessing-the-impacts-of-riparian-land-use-on-gully-development-and-sediment-load-a-case-study-of-nzhelele-river-valley-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3787</span> Application of Space Technology at Cadestral Level and Land Resources Management with Special Reference to Bhoomi Sena Project of Uttar Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Srivastava">A. K. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20K.%20Singh"> Sandeep K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Kulshetra"> A. K. Kulshetra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the backbone of developing countries of Asian sub-continent like India. Uttar Pradesh is the most populous and fifth largest State of India. Total population of the state is 19.95 crore, which is 16.49% of the country that is more than that of many other countries of the world. Uttar Pradesh occupies only 7.36% of the total area of India. It is a well-established fact that agriculture has virtually been the lifeline of the State’s economy in the past for long and its predominance is likely to continue for a fairly long time in future. The total geographical area of the state is 242.01 lakh hectares, out of which 120.44 lakh hectares is facing various land degradation problems. This needs to be put under various conservation and reclamation measures at much faster pace in order to enhance agriculture productivity in the State. Keeping in view the above scenario Department of Agriculture, Government of Uttar Pradesh has formulated a multi-purpose project namely Bhoomi Sena for the entire state. The main objective of the project is to improve the land degradation using low cost technology available at village level. The total outlay of the project is Rs. 39643.75 Lakhs for an area of about 226000 ha included in the 12th Five Year Plan (2012-13 to 2016-17). It is expected that the total man days would be 310.60 lakh. An attempt has been made to use the space technology like remote sensing, geographical information system, at cadastral level for the overall management of agriculture engineering work which is required for the treatment of degradation of the land. After integration of thematic maps a proposed action plan map has been prepared for the future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=topographic%20survey" title=" topographic survey"> topographic survey</a>, <a href="https://publications.waset.org/abstracts/search?q=cadestral%20mapping" title=" cadestral mapping"> cadestral mapping</a> </p> <a href="https://publications.waset.org/abstracts/5567/application-of-space-technology-at-cadestral-level-and-land-resources-management-with-special-reference-to-bhoomi-sena-project-of-uttar-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3786</span> Soil Degradation Processes in Marginal Uplands of Samar Island, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dernie%20Taganna%20Olguera">Dernie Taganna Olguera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marginal uplands are fragile ecosystems in the tropics that need to be evaluated for sustainable utilization and land degradation mitigation. Thus, this study evaluated the dominant soil degradation processes in selected marginal uplands of Samar Island, Philippines; evaluated the important factors influencing soil degradation in the selected sites and identified the indicators of soil degradation in marginal uplands of the tropical landscape of Samar Island, Philippines. Two (2) sites were selected (Sta. Rita, Samar and Salcedo, Eastern, Samar) representing the western and eastern sides of Samar Island respectively. These marginal uplands represent different agro-climatic zones suitable for the study. Soil erosion is the major soil degradation process in the marginal uplands studied. It resulted in not only considerable soil losses but nutrient losses as well. Soil erosion varied with vegetation cover and site. It was much higher in the sweetpotato, cassava, and gabi crops than under natural vegetation. In addition, soil erosion was higher in Salcedo than in Sta. Rita, which is related to climatic and soil characteristics. Bulk density, porosity, aggregate stability, soil pH, organic matter, and carbon dioxide evolution are good indicators of soil degradation. The dominance of Saccharum spontaneum Linn., Imperata cylindrica Linn, Melastoma malabathricum Linn. and Psidium guajava Linn indicated degraded soil condition. Farmer’s practices particularly clean culture and organic fertilizer application influenced the degree of soil degradation in the marginal uplands of Samar Island, Philippines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20degradation" title="soil degradation">soil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20uplands" title=" marginal uplands"> marginal uplands</a>, <a href="https://publications.waset.org/abstracts/search?q=Samar%20island" title=" Samar island"> Samar island</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippines" title=" Philippines"> Philippines</a> </p> <a href="https://publications.waset.org/abstracts/38693/soil-degradation-processes-in-marginal-uplands-of-samar-island-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3785</span> Assessment of Land Use and Land Cover Change in Lake Ol Bolossat Catchment, Nyandarua County, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Wangui">John Wangui</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Gachene"> Charles Gachene</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Mureithi"> Stephen Mureithi</a>, <a href="https://publications.waset.org/abstracts/search?q=Boniface%20Kiteme"> Boniface Kiteme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land use changes caused by demographic, natural variability, economic, technological and policy factors affect the goods and services derived from an ecosystem. In the past few decades, Lake Ol Bolossat catchment in Nyandarua County Kenya has been facing challenges of land cover changes threatening its capacity to perform ecosystems functions and adversely affecting communities and ecosystems downstream. This study assessed land cover changes in the catchment for a period of twenty eight years (from 1986 to 2014). Analysis of three Landsat images i.e. L5 TM 1986, L5 TM 1995 and L8 OLI/TIRS 2014 was done using ERDAS 9.2 software. The results show that dense forest, cropland and area under water increased by 27%, 29% and 3% respectively. On the other hand, open forest, dense grassland, open grassland, bushland and shrubland decreased by 3%, 3%, 11%, 26% and 1% respectively during the period under assessment. The lake was noted to have increased due to siltation caused by soil erosion causing a reduction in Lake’s depth and consequently causing temporary flooding of the wetland. The study concludes that the catchment is under high demographic pressure which would lead to resource use conflicts and therefore formulation of mitigation measures is highly recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title="land cover">land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20change" title=" land use change"> land use change</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title=" land degradation"> land degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyandarua" title=" Nyandarua"> Nyandarua</a>, <a href="https://publications.waset.org/abstracts/search?q=Remote%20sensing" title=" Remote sensing"> Remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/67259/assessment-of-land-use-and-land-cover-change-in-lake-ol-bolossat-catchment-nyandarua-county-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3784</span> Securing Land Rights for Food Security in Africa: An Appraisal of Links Between Smallholders’ Land Rights and the Right to Adequate Food in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Husen%20Ahmed%20Tura">Husen Ahmed Tura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are strong links between secure land rights and food security in Africa. However, as land is owned by governments, land users do not have adequate legislative protection. This article explores normative and implementation gaps in relation to small-scale farmers’ land rights under the Ethiopia’s law. It finds that the law facilitates eviction of small-scale farmers and indigenous peoples from their land without adequate alternative means of livelihood. It argues that as access to land and other natural resources is strongly linked to the right to adequate food, Ethiopia should reform its land laws in the light of its legal obligations under international human rights law to respect, protect and fulfill the right to adequate food and ensure freedom from hunger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smallholder" title="smallholder">smallholder</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20land%20rights" title=" secure land rights "> secure land rights </a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20to%20food" title=" right to food"> right to food</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20grabbing" title=" land grabbing"> land grabbing</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20evictions" title=" forced evictions"> forced evictions</a> </p> <a href="https://publications.waset.org/abstracts/55657/securing-land-rights-for-food-security-in-africa-an-appraisal-of-links-between-smallholders-land-rights-and-the-right-to-adequate-food-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3783</span> Analysis of Changes in Land Uses Planning for Bangalore City as per Master Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minakshi%20Goswami">Minakshi Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Khire"> M. V. Khire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The urban land use is an outcome of geographical and socio economic factors over the decades. Hence, spatial information on land use and possibilities of alternate use is essential for the selection, planning and implementation to meet the increasing demands of human needs and welfare of the urban area. This information assists in monitoring the land use resulting out of charging demands of increasing urban population over the decades. So in this paper, a detailed work on urban land use pattern, with a special reference to build up land in Bangalore city is analyzed in view of the various master plans from 1975to 2011. An attempt has been made to study the status of urban land use of Bangalore city during this period to detect the changes on land utilization rate that has taken place in each master plan period, particularly in the built-up land. The set of measures taken by the city corporation to contain the problems regarding the extremely bothering existing land use in Bangalore city is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=built%20up%20land" title="built up land">built up land</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20changes" title=" land use changes"> land use changes</a>, <a href="https://publications.waset.org/abstracts/search?q=master%20plan" title=" master plan"> master plan</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a> </p> <a href="https://publications.waset.org/abstracts/44049/analysis-of-changes-in-land-uses-planning-for-bangalore-city-as-per-master-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=128">128</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20degradation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10