CINXE.COM

Sbornik: Mathematics - IOPscience

<!DOCTYPE html> <html xml:lang="en" lang="en"> <head> <!-- Start cookieyes banner --> <!-- End cookieyes banner --> <title>Sbornik: Mathematics - IOPscience</title> <meta charset="utf-8" /> <meta http-equiv="x-ua-compatible" content="IE=edge" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=1.0" /> <script> function DeferJS(src) { function downloadJSAtOnload() { var element = document.createElement("script"); element.src = src; document.body.appendChild(element); } if (window.addEventListener) window.addEventListener("load", downloadJSAtOnload, false); else if (window.attachEvent) window.attachEvent("onload", downloadJSAtOnload); else window.onload = downloadJSAtOnload; } </script> <!-- start metadata--><!-- end metadata--> <script type="text/javascript"> //start common.config (function () { let config = {"ENABLE_MATHJAX_BY_DEFAULT":"true","SECURED_ENVIRONMENT":"true","SHOW_REFERENCE_ENTITLEMENT":"false"} || {}; window.config = {...config, ...window.config}; })(); //end common.config </script> <script> var _urconfig = { sid: "defc3a7d-4b34-4b6f-ad1c-0716e0a05a65", aip: 0, usePageProtocol: false }; (function (d, s) { var js = d.createElement(s), sc = d.getElementsByTagName(s)[0]; js.src = "https://hit.uptrendsdata.com/rum.min.js"; js.async = "async"; sc.parentNode.insertBefore(js, sc); } (document, "script")); </script> <!-- uptrends--> <meta name="robots" content="noarchive" /> <!--start home.baiduWebmasterTools.verification--> <!--end home.baiduWebmasterTools.verification--> <!--start home.google.verification--> <!--end home.google.verification--> <!--start common.baidu.statistics.script> --> <!--end common.baidu.statistics.script--> <!--start common.styles--> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/critical-styles.min.css" type="text/css"/> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/main-styles.min.css" media="print" onload="this.media='all'"/> <!--[if lte IE 10]> <link rel="stylesheet" href="https://static.iopscience.com/3.72.0/css/gridset-ie-lte8.css" type="text/css"/> <![endif]--> <!--end common.styles--> <!--start common.gs.head--> <!-- Google Scholar Universal Casa --> <!-- End Google Scholar Universal Casa --> <!--end common.gs.head--> <!--start common.ga.head--> <script> window.iabConfig = { allowedVendors: ['755','804', '1020'], allowedGoogleVendors: [] } </script> <!-- Google Tag Manager --> <script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push( {'gtm.start': new Date().getTime(), event: 'gtm.js'} ); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-M73Z4W'); </script> <!-- End Google Tag Manager --> <!--end common.ga.head--> <script> const mathjaxVersion = 3; </script> <script>var __uzdbm_1 = "905cff6b-cb1f-4e37-b449-fb10b63088a2";var __uzdbm_2 = "OWRmYjk4NDItY252ai00ODY3LTkyM2EtZmE3ZjA1MWZkMjg2JDguMjIyLjIwOC4xNDY=";var __uzdbm_3 = "7f6000f06f7ad2-37fe-4a75-97fd-8f9f68a7164717323909722790-86dfa6127f1a7f1710";var __uzdbm_4 = "false";var __uzdbm_5 = "uzmx";var __uzdbm_6 = "7f90008102dc52-c4d7-4f66-b3aa-d91b64509c391-17323909722790-99a6605c1bbc3d9410";var __uzdbm_7 = "iop.org";</script> <script> (function (w, d, e, u, c, g, a, b) { w["SSJSConnectorObj"] = w["SSJSConnectorObj"] || { ss_cid: c, domain_info: "auto", }; w[g] = function (i, j) { w["SSJSConnectorObj"][i] = j; }; a = d.createElement(e); a.async = true; if ( navigator.userAgent.indexOf('MSIE') !== -1 || navigator.appVersion.indexOf('Trident/') > -1 ) { u = u.replace("/advanced/", "/advanced/ie/"); } a.src = u; b = d.getElementsByTagName(e)[0]; b.parentNode.insertBefore(a, b); })( window, document, "script", "https://new.iopscience.iop.org/18f5227b-e27b-445a-a53f-f845fbe69b40/stormcaster.js", "cnvl", "ssConf" ); ssConf("c1", "https://new.iopscience.iop.org"); ssConf("c3", "c99a4269-161c-4242-a3f0-28d44fa6ce24"); ssConf("au", "new.iopscience.iop.org"); ssConf("cu", "validate.perfdrive.com, ssc"); </script></head> <body itemscope itemtype="http://schema.org/Organization" class="issn-1064-5616"> <a id="back-to-top-target" tabindex="-1"></a> <!-- Google Tag Manager (noscript) --> <noscript><iframe title="GA" src="https://www.googletagmanager.com/ns.html?id=GTM-M73Z4W" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="content-grid"> <!-- Start Production toolbar --> <!-- End Production toolbar --> <!-- Start Downtime Banner --> <!-- End Downtime Banner --> <!-- Header starts --> <header class="content-grid__full-width" role="banner" data-nav-group> <a class="sr-skip sr-skip--overlay header__skip" href="#skip-to-content-link-target">Skip to content</a> <div class="accessibility" style="display: none;"> <p><strong>Accessibility Links</strong></p> <ul> <li><a href="#page-content">Skip to content</a></li> <li><a href="/search#contentCol">Skip to search IOPscience</a></li> <li><a href="/journals#contentCol">Skip to Journals list</a></li> <li><a href="/page/accessibility#contentCol">Accessibility help</a></li> </ul> </div> <div class="dgh-showgrid tgh-showgrid cf" name="contentCol"> <nav role="navigation" class="wd-main-nav" aria-label="Site"> <a href="#sidr-main" id="simple-menu" class="nav-top-link" aria-label="Menu"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--bars--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M0 96C0 78.3 14.3 64 32 64H416c17.7 0 32 14.3 32 32s-14.3 32-32 32H32C14.3 128 0 113.7 0 96zM0 256c0-17.7 14.3-32 32-32H416c17.7 0 32 14.3 32 32s-14.3 32-32 32H32c-17.7 0-32-14.3-32-32zM448 416c0 17.7-14.3 32-32 32H32c-17.7 0-32-14.3-32-32s14.3-32 32-32H416c17.7 0 32 14.3 32 32z"/></svg></a> <a href="/" itemprop="url" class="header-logo wd-header-graphic"> <meta itemprop="name" content="IOPscience"> <img height="15" width="100" src="" alt=""> <span class="offscreen-hidden">IOP Science home</span> </a> <a class="btn btn-default" id="accessibility-help" href="/page/accessibility">Accessibility Help</a> <ul id="sidr" class="nav__list"> <li class="nav-search nav-item"> <button class="nav-top-link-drop-down nav-top-link-drop-down--icon" data-nav-trigger="articlelookup"> <svg class="fa-icon fa-icon--lrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--!Font Awesome Free 6.6.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><title>Search</title><path d="M416 208c0 45.9-14.9 88.3-40 122.7L502.6 457.4c12.5 12.5 12.5 32.8 0 45.3s-32.8 12.5-45.3 0L330.7 376c-34.4 25.2-76.8 40-122.7 40C93.1 416 0 322.9 0 208S93.1 0 208 0S416 93.1 416 208zM208 352a144 144 0 1 0 0-288 144 144 0 1 0 0 288z"/></svg> </button> <div class="nav-drop-down nav-drop-down--full-width" data-nav-item="articlelookup"> <div class="wrapper--search cf"> <div id="search" class="wd-header-search art-lookup__search"> <form accept-charset="utf-8,iso-8859-1" class="primary-search" method="get" action="/nsearch" role="search"> <div class="art-lookup__fields-wrapper"> <label for="quickSearch">Search all IOPscience content</label> <input type="search" x-webkit-speech="" name="terms" id="quickSearch" class="art-lookup__field--grow" placeholder="Search all IOPscience content" value="" escapeXml="true"/> <button type="submit" x-webkit-speech="" class="btn btn-default hdr-search-btn bd-0 art-lookup__submit">Search</button> </div> </form> </div> <div id="wd-content-finder" class="art-lookup__content-finder"> <form accept-charset="utf-8,iso-8859-1" method="get" action="/findcontent" name="contentFinderForm" id="wd-find-art-form" class="find-article-issue-display" autocomplete="OFF" aria-labelledby="article-lookup"> <fieldset> <legend id="article-lookup" class="eyebrow eyebrow--blue">Article Lookup</legend> <div class="art-lookup__fields-wrapper"> <label for="CF_JOURNAL" class="offscreen-hidden">Select journal (required)</label> <select name="CF_JOURNAL" class="find-article-select art-lookup__content-finder-field art-lookup__field--grow art-lookup__content-finder-field--first" id="CF_JOURNAL"> <option value="none">Select journal (required)</option><option value="2053-1583">2D Mater. (2014 - present)</option><option value="1004-423X">Acta Phys. Sin. (Overseas Edn) (1992 - 1999)</option><option value="2043-6262">Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)</option><option value="1882-0786">Appl. Phys. Express (2008 - present)</option><option value="1758-5090">Biofabrication (2009 - present)</option><option value="1748-3190">Bioinspir. Biomim. (2006 - present)</option><option value="1748-605X">Biomed. Mater. (2006 - present)</option><option value="2057-1976">Biomed. Phys. Eng. Express (2015 - present)</option><option value="0508-3443">Br. J. Appl. Phys. (1950 - 1967)</option><option value="1009-9271">Chin. J. Astron. Astrophys. (2001 - 2008)</option><option value="1003-7713">Chin. J. Chem. Phys. (1987 - 2007)</option><option value="1674-0068">Chin. J. Chem. Phys. (2008 - 2012)</option><option value="1009-1963">Chinese Phys. (2000 - 2007)</option><option value="1674-1056">Chinese Phys. B (2008 - present)</option><option value="1674-1137">Chinese Phys. C (2008 - present)</option><option value="0256-307X">Chinese Phys. Lett. (1984 - present)</option><option value="0264-9381">Class. Quantum Grav. (1984 - present)</option><option value="0143-0815">Clin. Phys. Physiol. Meas. (1980 - 1992)</option><option value="1364-7830">Combustion Theory and Modelling (1997 - 2004)</option><option value="0253-6102">Commun. Theor. Phys. (1982 - present)</option><option value="1749-4699">Comput. Sci. Discov. (2008 - 2015)</option><option value="2057-1739">Converg. Sci. Phys. Oncol. (2015 - 2018)</option><option value="0967-1846">Distrib. Syst. Engng. (1993 - 1999)</option><option value="2754-2734">ECS Adv. (2022 - present)</option><option value="2162-8734">ECS Electrochem. Lett. (2012 - 2015)</option><option value="2162-8777">ECS J. Solid State Sci. Technol. (2012 - present)</option><option value="2754-2726">ECS Sens. Plus (2022 - present)</option><option value="2162-8750">ECS Solid State Lett. (2012 - 2015)</option><option value="1938-5862">ECS Trans. (2005 - present)</option><option value="0295-5075">EPL (1986 - present)</option><option value="1944-8783">Electrochem. Soc. Interface (1992 - present)</option><option value="1944-8775">Electrochem. Solid-State Lett. (1998 - 2012)</option><option value="2516-1075">Electron. Struct. (2019 - present)</option><option value="2631-8695">Eng. Res. Express (2019 - present)</option><option value="2515-7620">Environ. Res. Commun. (2018 - present)</option><option value="1748-9326">Environ. Res. Lett. (2006 - present)</option><option value="2752-5295">Environ. Res.: Climate (2022 - present)</option><option value="2752-664X">Environ. Res.: Ecology (2022 - present)</option><option value="2753-3751">Environ. Res.: Energy (2024 - present)</option><option value="2976-601X">Environ. Res.: Food Syst. (2024 - present)</option><option value="2752-5309">Environ. Res.: Health (2022 - present)</option><option value="2634-4505">Environ. Res.: Infrastruct. Sustain. (2021 - present)</option><option value="3033-4942">Environ. Res.: Water (2025 - present)</option><option value="0143-0807">Eur. J. Phys. (1980 - present)</option><option value="2058-8585">Flex. Print. Electron. (2015 - present)</option><option value="1873-7005">Fluid Dyn. Res. (1986 - present)</option><option value="2631-6331">Funct. Compos. Struct. (2018 - present)</option><option value="1755-1315">IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)</option><option value="1757-899X">IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)</option><option value="2633-1357">IOPSciNotes (2020 - 2022)</option><option value="2631-7990">Int. J. Extrem. Manuf. (2019 - present)</option><option value="0266-5611">Inverse Problems (1985 - present)</option><option value="1064-5632">Izv. Math. (1993 - present)</option><option value="1752-7163">J. Breath Res. (2007 - present)</option><option value="1475-7516">J. Cosmol. Astropart. Phys. (2003 - present)</option><option value="1945-7111">J. Electrochem. Soc. (1902 - present)</option><option value="1742-2140">J. Geophys. Eng. (2004 - 2018)</option><option value="1126-6708">J. High Energy Phys. (1997 - 2009)</option><option value="1748-0221">J. Inst. (2006 - present)</option><option value="0960-1317">J. Micromech. Microeng. (1991 - present)</option><option value="1741-2552">J. Neural Eng. (2004 - present)</option><option value="0368-3281">J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)</option><option value="0150-536X">J. Opt. (1977 - 1998)</option><option value="2040-8986">J. Opt. (2010 - present)</option><option value="1464-4258">J. Opt. A: Pure Appl. Opt. (1999 - 2009)</option><option value="1464-4266">J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)</option><option value="0022-3689">J. Phys. A: Gen. Phys. (1968 - 1972)</option><option value="0305-4470">J. Phys. A: Math. Gen. (1975 - 2006)</option><option value="0301-0015">J. Phys. A: Math. Nucl. Gen. (1973 - 1974)</option><option value="1751-8121">J. Phys. A: Math. Theor. (2007 - present)</option><option value="0953-4075">J. Phys. B: At. Mol. Opt. Phys. (1988 - present)</option><option value="0022-3700">J. Phys. B: Atom. Mol. Phys. (1968 - 1987)</option><option value="0022-3719">J. Phys. C: Solid State Phys. (1968 - 1988)</option><option value="2399-6528">J. Phys. Commun. (2017 - present)</option><option value="2632-072X">J. Phys. Complex. (2019 - present)</option><option value="0022-3727">J. Phys. D: Appl. Phys. (1968 - present)</option><option value="0022-3735">J. Phys. E: Sci. Instrum. (1968 - 1989)</option><option value="2515-7655">J. Phys. Energy (2018 - present)</option><option value="0305-4608">J. Phys. F: Met. Phys. (1971 - 1988)</option><option value="0954-3899">J. Phys. G: Nucl. Part. Phys. (1989 - present)</option><option value="0305-4616">J. Phys. G: Nucl. Phys. (1975 - 1988)</option><option value="2515-7639">J. Phys. Mater. (2018 - present)</option><option value="2515-7647">J. Phys. Photonics (2018 - present)</option><option value="0953-8984">J. Phys.: Condens. Matter (1989 - present)</option><option value="1742-6596">J. Phys.: Conf. Ser. (2004 - present)</option><option value="0952-4746">J. Radiol. Prot. (1988 - present)</option><option value="3050-2454">J. Reliab. Sci. Eng. (2025 - present)</option><option value="0950-7671">J. Sci. Instrum. (1923 - 1967)</option><option value="1674-4926">J. Semicond. (2009 - present)</option><option value="0260-2814">J. Soc. Radiol. Prot. (1981 - 1987)</option><option value="1742-5468">J. Stat. Mech. (2004 - present)</option><option value="1468-5248">JoT (2000 - 2004)</option><option value="1347-4065">Jpn. J. Appl. Phys. (1962 - present)</option><option value="1555-6611">Laser Phys. (2013 - present)</option><option value="1612-202X">Laser Phys. Lett. (2004 - present)</option><option value="3049-4753">Mach. Learn.: Earth (2025 - present)</option><option value="3049-4761">Mach. Learn.: Eng. (2025 - present)</option><option value="3049-477X">Mach. Learn.: Health (2025 - present)</option><option value="2632-2153">Mach. Learn.: Sci. Technol. (2019 - present)</option><option value="2752-5724">Mater. Futures (2022 - present)</option><option value="2633-4356">Mater. Quantum. Technol. (2020 - present)</option><option value="2053-1591">Mater. Res. Express (2014 - present)</option><option value="0025-5726">Math. USSR Izv. (1967 - 1992)</option><option value="0025-5734">Math. USSR Sb. (1967 - 1993)</option><option value="0957-0233">Meas. Sci. Technol. (1990 - present)</option><option value="2151-2043">Meet. Abstr. (2002 - present)</option><option value="2050-6120">Methods Appl. Fluoresc. (2013 - present)</option><option value="0026-1394">Metrologia (1965 - present)</option><option value="0965-0393">Modelling Simul. Mater. Sci. Eng. (1992 - present)</option><option value="2399-7532">Multifunct. Mater. (2018 - 2022)</option><option value="2632-959X">Nano Ex. (2020 - present)</option><option value="2399-1984">Nano Futures (2017 - present)</option><option value="0957-4484">Nanotechnology (1990 - present)</option><option value="0954-898X">Network (1990 - 2004)</option><option value="2634-4386">Neuromorph. Comput. Eng. (2021 - present)</option><option value="1367-2630">New J. Phys. (1998 - present)</option><option value="0951-7715">Nonlinearity (1988 - present)</option><option value="0335-7368">Nouvelle Revue d'Optique (1973 - 1976)</option><option value="0029-4780">Nouvelle Revue d'Optique Appliqu茅e (1970 - 1972)</option><option value="0029-5515">Nucl. Fusion (1960 - present)</option><option value="1538-3873">PASP (1889 - present)</option><option value="1478-3975">Phys. Biol. (2004 - present)</option><option value="0031-9112">Phys. Bull. (1950 - 1988)</option><option value="0031-9120">Phys. Educ. (1966 - present)</option><option value="0031-9155">Phys. Med. Biol. (1956 - present)</option><option value="1402-4896">Phys. Scr. (1970 - present)</option><option value="2058-7058">Phys. World (1988 - present)</option><option value="1063-7869">Phys.-Usp. (1993 - present)</option><option value="0305-4624">Physics in Technology (1973 - 1988)</option><option value="0967-3334">Physiol. Meas. (1993 - present)</option><option value="0741-3335">Plasma Phys. Control. Fusion (1984 - present)</option><option value="0032-1028">Plasma Physics (1967 - 1983)</option><option value="2516-1067">Plasma Res. Express (2018 - 2022)</option><option value="1009-0630">Plasma Sci. Technol. (1999 - present)</option><option value="0963-0252">Plasma Sources Sci. Technol. (1992 - present)</option><option value="0959-5309">Proc. Phys. Soc. (1926 - 1948)</option><option value="0370-1328">Proc. Phys. Soc. (1958 - 1967)</option><option value="0370-1298">Proc. Phys. Soc. A (1949 - 1957)</option><option value="0370-1301">Proc. Phys. Soc. B (1949 - 1957)</option><option value="1478-7814">Proc. Phys. Soc. London (1874 - 1925)</option><option value="2576-1579">Proc. Vol. (1967 - 2005)</option><option value="2516-1091">Prog. Biomed. Eng. (2018 - present)</option><option value="2516-1083">Prog. Energy (2018 - present)</option><option value="0963-6625">Public Understand. Sci. (1992 - 2002)</option><option value="0963-9659">Pure Appl. Opt. (1992 - 1998)</option><option value="1469-7688">Quantitative Finance (2001 - 2004)</option><option value="1063-7818">Quantum Electron. (1993 - present)</option><option value="0954-8998">Quantum Opt. (1989 - 1994)</option><option value="2058-9565">Quantum Sci. Technol. (2015 - present)</option><option value="1355-5111">Quantum Semiclass. Opt. (1995 - 1998)</option><option value="0034-4885">Rep. Prog. Phys. (1934 - present)</option><option value="1674-4527">Res. Astron. Astrophys. (2009 - present)</option><option value="2515-5172">Research Notes of the AAS (2017 - present)</option><option value="0034-6683">RevPhysTech (1970 - 1972)</option><option value="0036-021X">Russ. Chem. Rev. (1960 - present)</option><option value="0036-0279">Russ. Math. Surv. (1960 - present)</option><option value="1064-5616" selected="selected">Sb. Math. (1993 - present)</option><option value="1468-6996">Sci. Technol. Adv. Mater. (2000 - 2015)</option><option value="0268-1242">Semicond. Sci. Technol. (1986 - present)</option><option value="0964-1726">Smart Mater. Struct. (1992 - present)</option><option value="0049-1748">Sov. J. Quantum Electron. (1971 - 1992)</option><option value="0038-5670">Sov. Phys. Usp. (1958 - 1992)</option><option value="0953-2048">Supercond. Sci. Technol. (1988 - present)</option><option value="2051-672X">Surf. Topogr.: Metrol. Prop. (2013 - present)</option><option value="2977-3504">Sustain. Sci. Technol. (2024 - present)</option><option value="1538-3881">The Astronomical Journal (1849 - present)</option><option value="0004-637X">The Astrophysical Journal (1996 - present)</option><option value="2041-8205">The Astrophysical Journal Letters (2010 - present)</option><option value="0067-0049">The Astrophysical Journal Supplement Series (1996 - present)</option><option value="2632-3338">The Planetary Science Journal (2020 - present)</option><option value="2156-7395">Trans. Amer: Electrochem. Soc. (1930 - 1930)</option><option value="1945-6859">Trans. Electrochem. Soc. (1931 - 1948)</option><option value="1475-4878">Trans. Opt. Soc. (1899 - 1932)</option><option value="2053-1613">Transl. Mater. Res. (2014 - 2018)</option><option value="0959-7174">Waves Random Media (1991 - 2004)</option> </select> <label for="CF_VOLUME" class="offscreen-hidden">Volume number:</label> <input type="text" name="CF_VOLUME" id="CF_VOLUME" class="art-lookup__content-finder-field" placeholder="Volume" x-webkit-speech=""> <label for="CF_ISSUE" class="offscreen-hidden">Issue number (if known):</label> <input type="text" name="CF_ISSUE" id="CF_ISSUE" class="art-lookup__content-finder-field" placeholder="Issue" x-webkit-speech=""> <label for="CF_PAGE" class="offscreen-hidden">Article or page number:</label> <input type="text" name="CF_PAGE" id="CF_PAGE" class="art-lookup__content-finder-field art-lookup__content-finder-field--last" placeholder="Article or page" x-webkit-speech=""> <button type="submit" class="btn btn-default art-lookup__submit" name="submit">Lookup</button> </div> </fieldset> </form> </div> </div> </div> </li> <li class="nav-journals nav-item wd-nav-journal"> <button class="nav-top-link-drop-down" data-nav-trigger="journals">Journals<svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg></button> <div class="nav-drop-down wd-nav-journal-dd" data-nav-item="journals"> <div class="nav-drop-down__grid"> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/journals">Journals list</a> <span class="nav-drop-down__item-info m-hide">Browse more than 100 science journal titles</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/page/subjects">Subject collections</a> <span class="nav-drop-down__item-info m-hide">Read the very best research published in IOP journals</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/journals?type=partner#js-tab-pubpart">Publishing partners</a> <span class="nav-drop-down__item-info m-hide">Partner organisations and publications</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/info/page/openaccess">Open access</a> <span class="nav-drop-down__item-info m-hide">IOP Publishing open access policy guide</span> </div> <div class="nav-drop-down__item"> <a class="nav-drop-down__item-title" href="/conference-series">IOP Conference Series</a> <span class="nav-drop-down__item-info m-hide">Read open access proceedings from science conferences worldwide</span> </div> </div> </div> </li> <li class="nav-books nav-item wd-nav-books"> <a href="/booklistinfo/home" class="nav-top-link">Books</a> </li> <li class="nav-publishing-support nav-item wd-publishing-support"> <a href="https://publishingsupport.iopscience.iop.org" class="nav-top-link">Publishing Support</a> </li> <!-- Header Login starts here --> <li class="nav-login nav-item wd-nav-login"> <button class="nav-top-link-drop-down" id="login-drop-down-user" data-nav-trigger="login"><svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-user--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M399 384.2C376.9 345.8 335.4 320 288 320H224c-47.4 0-88.9 25.8-111 64.2c35.2 39.2 86.2 63.8 143 63.8s107.8-24.7 143-63.8zM0 256a256 256 0 1 1 512 0A256 256 0 1 1 0 256zm256 16a72 72 0 1 0 0-144 72 72 0 1 0 0 144z"/></svg>Login<svg aria-hidden="true" class="fa-icon fa-icon--right fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg></button> <div class="nav-drop-down wd-nav-login-dd" data-nav-item="login"> <a href="https://myiopscience.iop.org/signin?origin=a0&amp;return=https%3A%2F%2Fiopscience.iop.org%2Fjournal%2F1064-5616" id="wd-login-link">IOPscience login / Sign Up</a> </div> </li> <!-- Header Login ends here --> </ul> </nav> </div> </header> <div class="page-body" > <!-- Start two column layout --> <!-- Start two column layout --> <div class="grid-2-col db-showgrid tb-showgrid cf"> <main id="skip-to-content-link-target"> <!-- Secondary header starts --> <div class="secondary-header cf" id="wd-secondary-header"> <!-- Branded journal header starts --> <!-- Branded journal header starts --> <div class="branded"> <div class="publication-name" id="wd-pub-name"> <h1 class="publication-title" itemprop="name" itemid="periodical"> <!-- Branded journal header starts --> <a href="/journal/1064-5616" itemprop="url">Sbornik: Mathematics</a> <!-- Journal image link starts --> <!-- Journal image link ends --> </h1> </div> <div class="partner-logos m-hide" id="wd-partner-logos"> <div class="partner-logo-alignment"> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/ee882393-0888-11e2-8d2d-4d5160a0f0b4/lms.gif?guest=true" alt="The London Mathematical Society, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="The London Mathematical Society" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/ee882393-0888-11e2-8d2d-4d5160a0f0b4/lms.gif?guest=true" alt="The London Mathematical Society logo."/> </div> <div class="overlay-text"> <a href="https://www.lms.ac.uk/">The London Mathematical Society</a> </div> </div> </span> <!-- Partner logo ends --> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/c6bc30e2-0889-11e2-8d2d-4d5160a0f0b4/ras.gif?guest=true" alt="Russian Academy of Sciences, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="Russian Academy of Sciences" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/c6bc30e2-0889-11e2-8d2d-4d5160a0f0b4/ras.gif?guest=true" alt="Russian Academy of Sciences logo."/> </div> <div class="overlay-text"> <a href="https://www.ras.ru/">Russian Academy of Sciences</a> </div> </div> </span> <!-- Partner logo ends --> <!-- Partner logo starts --> <button class="overlay-launch partner-logo" aria-expanded="false"> <img src="https://cms.iopscience.org/931ce701-088a-11e2-8d2d-4d5160a0f0b4/turpion.gif?guest=true" alt="Turpion, find out more."> </button> <span class="overlay-set"> <div class="tint-screen"></div> <div role="dialog" aria-label="Turpion" aria-modal="true" class="overlay-panel"> <button class="close-icon close-overlay" aria-label="Close"><svg aria-hidden="true" class="fa-icon fa-icon--xlrg" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--circle-xmark--><!--!Font Awesome Free 6.5.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M256 512A256 256 0 1 0 256 0a256 256 0 1 0 0 512zM175 175c9.4-9.4 24.6-9.4 33.9 0l47 47 47-47c9.4-9.4 24.6-9.4 33.9 0s9.4 24.6 0 33.9l-47 47 47 47c9.4 9.4 9.4 24.6 0 33.9s-24.6 9.4-33.9 0l-47-47-47 47c-9.4 9.4-24.6 9.4-33.9 0s-9.4-24.6 0-33.9l47-47-47-47c-9.4-9.4-9.4-24.6 0-33.9z"/></svg></button> <div class="overlay-img"> <img src="https://cms.iopscience.org/931ce701-088a-11e2-8d2d-4d5160a0f0b4/turpion.gif?guest=true" alt="Turpion logo."/> </div> <div class="overlay-text"> <a href="http://www.turpion.org/">Turpion</a> </div> </div> </span> <!-- Partner logo ends --> </div> </div> </div> <!-- Branded journal header ends --> </div> <!-- Secondary header ends --> <div class="db1 tb1"> <!-- Start Journal Content --> <div class="flex-container"> <!-- Start Journal introduction --> <div class="mb-2" id="wd-jnl-hm-intro"> <div class="pull-left"> <img alt="" width="125" src="https://cms.iopscience.org/0fc0735d-ec1f-11e5-b0b6-759f86a2008e/journal_cover?guest=true" border="0"/> <span><br><strong>ISSN: </strong>1468-4802</span> </div> <div class="media-body"> <p><em>Sbornik: Mathematics</em> is the English translation of the Russian monthly journal <em>Matematicheskii Sbornik</em>. This is the oldest Russian mathematical journal, in publication since 1866.&nbsp;<em>Sbornik: Mathematics</em>&nbsp;has been published in partnership with Turpion Ltd since 1995.&nbsp;&nbsp;<em>Sbornik: Mathematics</em> is published bimonthly; each issue being made up of two issues of <em>Matematicheskii Sbornik</em> translated into English. The journal publishes only original research papers containing full results in the author&#39;s field of study.</p> <div class="btn-multi-block"> <div class="jnl-notifications print-hide"> <!-- BEGIN JHP RSS feed link --> <div class="jnl-notifications-wrapper"> <a class="link--decoration-none" href="/journal/rss/1064-5616"> <svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--rss--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M0 64C0 46.3 14.3 32 32 32c229.8 0 416 186.2 416 416c0 17.7-14.3 32-32 32s-32-14.3-32-32C384 253.6 226.4 96 32 96C14.3 96 0 81.7 0 64zM0 416a64 64 0 1 1 128 0A64 64 0 1 1 0 416zM32 160c159.1 0 288 128.9 288 288c0 17.7-14.3 32-32 32s-32-14.3-32-32c0-123.7-100.3-224-224-224c-17.7 0-32-14.3-32-32s14.3-32 32-32z"/></svg>RSS</a> </div> <!-- END JHP RSS feed link --> <!-- Start Email Alert --> <div class="jnl-notifications-wrapper"> <a class="link--decoration-none loginRequired" href="https://myiopscience.iop.org/signin?origin=a0&amp;return=https%3A%2F%2Fiopscience.iop.org%2Fmyiopscience%2Falerts%2Fsubscribe%3Fjournal%3D1064-5616" id="noId" data-ga-event="journal_alert_sign_up" > <svg aria-hidden="true" class="fa-icon fa-icon--left" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--bell--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M224 0c-17.7 0-32 14.3-32 32V51.2C119 66 64 130.6 64 208v18.8c0 47-17.3 92.4-48.5 127.6l-7.4 8.3c-8.4 9.4-10.4 22.9-5.3 34.4S19.4 416 32 416H416c12.6 0 24-7.4 29.2-18.9s3.1-25-5.3-34.4l-7.4-8.3C401.3 319.2 384 273.9 384 226.8V208c0-77.4-55-142-128-156.8V32c0-17.7-14.3-32-32-32zm45.3 493.3c12-12 18.7-28.3 18.7-45.3H224 160c0 17 6.7 33.3 18.7 45.3s28.3 18.7 45.3 18.7s33.3-6.7 45.3-18.7z"/></svg>Sign up for new issue notifications </a> </div> <!-- End Email Alert --> <!-- End Email Alert --> <!-- End Email Alert --> </div> </div> </div> </div> <!-- End Journal intro --> <!-- Start Journal home volume listings --> <div id="wd-jnl-hm-vol-forms" class="mb-2 mid-table-mb-25 clear-fl"> <div class="cf"> <div class="mid-tablet-half-left"> <form id="currentVolumeIssuesForm" class="select-w-btn mb-1 cf" name="currentVolumeIssuesForm" action="/issue" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="latestVolumeIssuesSelector" class="cf">Current volume</label> <select name="latestVolumeIssuesSelect" id="latestVolumeIssuesSelector"> <option value="/issue/1064-5616/213/4">Number 4, April 2022</option><option value="/issue/1064-5616/213/3">Number 3, March 2022</option><option value="/issue/1064-5616/213/2">Number 2, February 2022</option><option value="/issue/1064-5616/213/1">Number 1, January 2022</option> </select> <button type="submit" id="latestVolumeIssues" class="btn btn-primary-2 select-w-btn__submit">Go</button> </form> </div> <div class="mid-tablet-half-right"> <form id="allVolumesForm" name="allVolumesForm" class="select-w-btn mb-1 cf" action="/volume" method="get" onsubmit="return false" accept-charset="utf-8,iso-8859-1"> <label for="allVolumesSelector" class="cf">Journal archive</label> <select name="allVolumesSelect" id="allVolumesSelector"> <option value="/volume/1064-5616/213">Vol 213, 2022</option><option value="/volume/1064-5616/212">Vol 212, 2021</option><option value="/volume/1064-5616/211">Vol 211, 2020</option><option value="/volume/1064-5616/210">Vol 210, 2019</option><option value="/volume/1064-5616/209">Vol 209, 2018</option><option value="/volume/1064-5616/208">Vol 208, 2017</option><option value="/volume/1064-5616/207">Vol 207, 2016</option><option value="/volume/1064-5616/206">Vol 206, 2015</option><option value="/volume/1064-5616/205">Vol 205, 2014</option><option value="/volume/1064-5616/204">Vol 204, 2013</option><option value="/volume/1064-5616/203">Vol 203, 2012</option><option value="/volume/1064-5616/202">Vol 202, 2011</option><option value="/volume/1064-5616/201">Vol 201, 2010</option><option value="/volume/1064-5616/200">Vol 200, 2009</option><option value="/volume/1064-5616/199">Vol 199, 2008</option><option value="/volume/1064-5616/198">Vol 198, 2007</option><option value="/volume/1064-5616/197">Vol 197, 2006</option><option value="/volume/1064-5616/196">Vol 196, 2005</option><option value="/volume/1064-5616/195">Vol 195, 2004</option><option value="/volume/1064-5616/194">Vol 194, 2003</option><option value="/volume/1064-5616/193">Vol 193, 2002</option><option value="/volume/1064-5616/192">Vol 192, 2001</option><option value="/volume/1064-5616/191">Vol 191, 2000</option><option value="/volume/1064-5616/190">Vol 190, 1999</option><option value="/volume/1064-5616/189">Vol 189, 1998</option><option value="/volume/1064-5616/188">Vol 188, 1997</option><option value="/volume/1064-5616/187">Vol 187, 1996</option><option value="/volume/1064-5616/186">Vol 186, 1995</option><option value="/volume/1064-5616/80">Vol 80, 1995</option><option value="/volume/1064-5616/81">Vol 81, 1995</option><option value="/volume/1064-5616/82">Vol 82, 1995</option><option value="/volume/1064-5616/83">Vol 83, 1995</option><option value="/volume/1064-5616/77">Vol 77, 1994</option><option value="/volume/1064-5616/78">Vol 78, 1994</option><option value="/volume/1064-5616/79">Vol 79, 1994</option><option value="/volume/1064-5616/75">Vol 75, 1993</option><option value="/volume/1064-5616/76">Vol 76, 1993</option> </select> <button type="submit" id="allVolumes" class="btn btn-primary-2 select-w-btn__submit event_journal-vol">Go</button> </form> </div> <!-- For Conference Series Journal --> <!-- Start Focus issues --> <!-- End Focus issues --> </div> </div> <!-- End Journal home volume listings --> </div> <!-- Start Journal Metrics --> <div id="wd-journal-metrics" class="metrics"> <div class="metrics__grid"> <div class="metrics__metric"> <span class="metrics__description">2020 Impact factor</span> <span class="metrics__score">1.274</span> </div> <div class="metrics__metric"> <span class="metrics__description">Citescore</span> <span class="metrics__score">1.6</span> </div> </div> </div> <!-- End Journal Metrics --> <div class="cf mb-1"> <!-- Start of Editorial news section --> <!-- End of Editorial news section --> <!-- Start Article listing tabs --> <div class="tabs cf mb-2 mt-1 tabs--vertical" id="wd-jnl-hm-art-list"> <!-- Start Tabs list --> <div role="tablist"> <button role="tab" aria-selected="false" aria-controls="most-read-tab" id="most-read" class="event_tabs" tabindex="-1"> Most read </button> <button role="tab" aria-selected="true" aria-controls="latest-articles-tab" id="latest-articles" class="event_tabs"> Latest articles </button> </div> <!-- End Tabs list --> <!-- Start Most read tabpanel --> <div tabindex="0" role="tabpanel" id="most-read-tab" aria-labelledby="most-read" hidden="hidden"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Most read</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">,&nbsp;in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9427" class="art-list-item-title event_main-link">On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation</a> <p class="small art-list-item-meta"> V. I. Bogachev <em>et al</em> 2021 <em>Sb. Math.</em> <b>212</b> 745 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation" data-link-purpose-append-open="On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation">Open abstract</span> </button> <a href="/article/10.1070/SM9427/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation</span></a> <a href="/article/10.1070/SM9427/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The paper gives a solution to the long-standing problem of uniqueness for probability solutions to the Cauchy problem for the Fokker- Planck-Kolmogorov equation with an unbounded drift coefficient and unit diffusion coefficient. It is proved that in the one-dimensional case uniqueness holds and in all other dimensions it fails. The case of nonconstant diffusion coefficients is also investigated. </p><p> Bibliography: 70 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9427">https://doi.org/10.1070/SM9427</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9410" class="art-list-item-title event_main-link">A Viskovatov algorithm for Hermite-Pad茅 polynomials</a> <p class="small art-list-item-meta"> N. R. Ikonomov and S. P. Suetin 2021 <em>Sb. Math.</em> <b>212</b> 1279 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="A Viskovatov algorithm for Hermite-Pad茅 polynomials" data-link-purpose-append-open="A Viskovatov algorithm for Hermite-Pad茅 polynomials">Open abstract</span> </button> <a href="/article/10.1070/SM9410/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;A Viskovatov algorithm for Hermite-Pad茅 polynomials</span></a> <a href="/article/10.1070/SM9410/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;A Viskovatov algorithm for Hermite-Pad茅 polynomials</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> We propose and justify an algorithm for producing Hermite- Pad茅 polynomials of type I for an arbitrary tuple of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn1.gif" style="max-width: 100%;" alt="$m+1$" align="top"></img></span><script type="math/tex">m+1</script></span></span> formal power series <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn2.gif" style="max-width: 100%;" alt="$[f_0,\dots,f_m]$" align="top"></img></span><script type="math/tex">[f_0,\dots,f_m]</script></span></span>, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn3.gif" style="max-width: 100%;" alt="$m\geq1$" align="top"></img></span><script type="math/tex">m\geq1</script></span></span>, about the point <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn4.gif" style="max-width: 100%;" alt="$z=0$" align="top"></img></span><script type="math/tex">z=0</script></span></span> (<span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn5.gif" style="max-width: 100%;" alt="$f_j\in\mathbb{C}[[z]]$" align="top"></img></span><script type="math/tex">f_j\in\mathbb{C}[[z]]</script></span></span>) under the assumption that the series have a certain ('general position') nondegeneracy property. This algorithm is a straightforward extension of the classical Viskovatov algorithm for constructing Pad茅 polynomials (for <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn6.gif" style="max-width: 100%;" alt="$m=1$" align="top"></img></span><script type="math/tex">m=1</script></span></span> our algorithm coincides with the Viskovatov algorithm). </p><p> The algorithm is based on a recurrence relation and has the following feature: all the Hermite-Pad茅 polynomials corresponding to the multi- indices <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn7.gif" style="max-width: 100%;" alt="$(k,k,k,\dots,k,k)$" align="top"></img></span><script type="math/tex">(k,k,k,\dots,k,k)</script></span></span>, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn8.gif" style="max-width: 100%;" alt="$(k+1,k,k,\dots,k,k)$" align="top"></img></span><script type="math/tex">(k+1,k,k,\dots,k,k)</script></span></span>, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn9.gif" style="max-width: 100%;" alt="$(k+1,k+1,k,\dots,k,k)$" align="top"></img></span><script type="math/tex">(k+1,k+1,k,\dots,k,k)</script></span></span>, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn10.gif" style="max-width: 100%;" alt="$\dots$" align="top"></img></span><script type="math/tex">\dots</script></span></span>, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn11.gif" style="max-width: 100%;" alt="$(k+1,k+1,k+1,\dots,k+1,k)$" align="top"></img></span><script type="math/tex">(k+1,k+1,k+1,\dots,k+1,k)</script></span></span> are already known at the point when the algorithm produces the Hermite-Pad茅 polynomials corresponding to the multi- index <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn12.gif" style="max-width: 100%;" alt="$(k+1,k+1,k+1,\dots,k+1,k+1)$" align="top"></img></span><script type="math/tex">(k+1,k+1,k+1,\dots,k+1,k+1)</script></span></span>. </p><p> We show how the Hermite-Pad茅 polynomials corresponding to different multi-indices can be found recursively via this algorithm by changing the initial conditions appropriately. </p><p> At every step <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn13.gif" style="max-width: 100%;" alt="$n$" align="top"></img></span><script type="math/tex">n</script></span></span>, the algorithm can be parallelized in <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/9/1279/revision1/MSB_212_9_1279ieqn1.gif" style="max-width: 100%;" alt="$m+1$" align="top"></img></span><script type="math/tex">m+1</script></span></span> independent evaluations. </p><p> Bibliography: 30 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9410">https://doi.org/10.1070/SM9410</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9445" class="art-list-item-title event_main-link">Uniform convergence criterion for non-harmonic sine series</a> <p class="small art-list-item-meta"> K. A. Oganesyan 2021 <em>Sb. Math.</em> <b>212</b> 70 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Uniform convergence criterion for non-harmonic sine series" data-link-purpose-append-open="Uniform convergence criterion for non-harmonic sine series">Open abstract</span> </button> <a href="/article/10.1070/SM9445/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Uniform convergence criterion for non-harmonic sine series</span></a> <a href="/article/10.1070/SM9445/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Uniform convergence criterion for non-harmonic sine series</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> We show that for a nonnegative monotonic sequence <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn1.gif" style="max-width: 100%;" alt="$\{c_k\}$" align="top"></img></span><script type="math/tex">\{c_k\}</script></span></span> the condition <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn2.gif" style="max-width: 100%;" alt="$c_kk\to 0$" align="top"></img></span><script type="math/tex">c_kk\to 0</script></span></span> is sufficient for the series <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn3.gif" style="max-width: 100%;" alt="$\sum_{k=1}^{\infty}c_k\sin k^{\alpha} x$" align="top"></img></span><script type="math/tex">\sum_{k=1}^{\infty}c_k\sin k^{\alpha} x</script></span></span> to converge uniformly on any bounded set for <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn4.gif" style="max-width: 100%;" alt="$\alpha\in (0,2)$" align="top"></img></span><script type="math/tex">\alpha\in (0,2)</script></span></span>, and for any odd <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn5.gif" style="max-width: 100%;" alt="$\alpha$" align="top"></img></span><script type="math/tex">\alpha</script></span></span> it is sufficient for it to converge uniformly on the whole of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn6.gif" style="max-width: 100%;" alt="$\mathbb{R}$" align="top"></img></span><script type="math/tex">\mathbb{R}</script></span></span>. Moreover, the latter assertion still holds if we replace <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn7.gif" style="max-width: 100%;" alt="$k^{\alpha}$" align="top"></img></span><script type="math/tex">k^{\alpha}</script></span></span> by any polynomial in odd powers with rational coefficients. On the other hand, in the case of even <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn5.gif" style="max-width: 100%;" alt="$\alpha$" align="top"></img></span><script type="math/tex">\alpha</script></span></span> it is necessary that <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn8.gif" style="max-width: 100%;" alt="$\sum_{k=1}^{\infty}c_k&lt;\infty$" align="top"></img></span><script type="math/tex">\sum_{k=1}^{\infty}c_k<\infty</script></span></span> for the above series to converge at the point <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn9.gif" style="max-width: 100%;" alt="$\pi/2$" align="top"></img></span><script type="math/tex">\pi/2</script></span></span> or at <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn10.gif" style="max-width: 100%;" alt="$2\pi/3$" align="top"></img></span><script type="math/tex">2\pi/3</script></span></span>. As a consequence, we obtain uniform convergence criteria. Furthermore, the results for natural numbers <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn5.gif" style="max-width: 100%;" alt="$\alpha$" align="top"></img></span><script type="math/tex">\alpha</script></span></span> remain true for sequences in the more general class <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/1/70/revision5/MSB_212_1_70ieqn11.gif" style="max-width: 100%;" alt="$\mathrm{RBVS}$" align="top"></img></span><script type="math/tex">\mathrm{RBVS}</script></span></span>. </p><p> Bibliography: 17 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9445">https://doi.org/10.1070/SM9445</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9402" class="art-list-item-title event_main-link">Critical Galton-Watson branching processes with a countable set of types and infinite second moments</a> <p class="small art-list-item-meta"> V. A. Vatutin <em>et al</em> 2021 <em>Sb. Math.</em> <b>212</b> 1 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Critical Galton-Watson branching processes with a countable set of types and infinite second moments" data-link-purpose-append-open="Critical Galton-Watson branching processes with a countable set of types and infinite second moments">Open abstract</span> </button> <a href="/article/10.1070/SM9402/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Critical Galton-Watson branching processes with a countable set of types and infinite second moments</span></a> <a href="/article/10.1070/SM9402/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Critical Galton-Watson branching processes with a countable set of types and infinite second moments</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> We consider an indecomposable Galton-Watson branching process with a countable set of types. Assuming that the process is critical and may have infinite variance of the offspring sizes of some (or all) types of particles we describe the asymptotic behaviour of the survival probability of the process and establish a Yaglom-type conditional limit theorem for the infinite-dimensional vector of the number of particles of all types. </p><p> Bibliography: 20 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9402">https://doi.org/10.1070/SM9402</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9193" class="art-list-item-title event_main-link">Spectral representations of topological groups and near-openly generated groups</a> <p class="small art-list-item-meta"> V. M. Valov and K. L. Kozlov 2020 <em>Sb. Math.</em> <b>211</b> 258 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Spectral representations of topological groups and near-openly generated groups" data-link-purpose-append-open="Spectral representations of topological groups and near-openly generated groups">Open abstract</span> </button> <a href="/article/10.1070/SM9193/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Spectral representations of topological groups and near-openly generated groups</span></a> <a href="/article/10.1070/SM9193/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Spectral representations of topological groups and near-openly generated groups</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> Near-openly generated groups are introduced. They form a topological and multiplicative subclass of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/2/258/revision1/MSB_211_2_258ieqn1.gif" style="max-width: 100%;" alt="$\mathbb R$" align="top"></img></span><script type="math/tex">\mathbb R</script></span></span>-factorizable groups. Dense and open subgroups, quotients and the Raikov completion of a near-openly generated group are near-openly generated. Almost connected pro-Lie groups, Lindel枚f almost metrizable groups and the spaces <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/2/258/revision1/MSB_211_2_258ieqn2.gif" style="max-width: 100%;" alt="$C_p(X)$" align="top"></img></span><script type="math/tex">C_p(X)</script></span></span> of all continuous real-valued functions on a Tychonoff space with pointwise convergence topology are near-openly generated. </p><p> We provide characterizations of near-openly generated groups using methods of inverse spectra and topological game theory. </p><p> Bibliography: 24 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9193">https://doi.org/10.1070/SM9193</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9340" class="art-list-item-title event_main-link">Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients</a> <p class="small art-list-item-meta"> A. M. Savchuk and A. A. Shkalikov 2020 <em>Sb. Math.</em> <b>211</b> 1623 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients" data-link-purpose-append-open="Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients">Open abstract</span> </button> <a href="/article/10.1070/SM9340/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients</span></a> <a href="/article/10.1070/SM9340/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> Ordinary differential equations of the form <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn1.gif" style="max-width: 100%;" alt="$ \tau(y)- \lambda ^{2m} \varrho(x) y=0, \qquad \tau(y) =\sum_{k,s=0}^m(\tau_{k,s}(x)y^{(m-k)}(x))^{(m-s)}, $" align="top"></img></span><script type="math/tex">\tau(y)- \lambda ^{2m} \varrho(x) y=0, \qquad \tau(y) =\sum_{k,s=0}^m(\tau_{k,s}(x)y^{(m-k)}(x))^{(m-s)},</script></span></span> on the finite interval <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn2.gif" style="max-width: 100%;" alt="$x\in[0,1]$" align="top"></img></span><script type="math/tex">x\in[0,1]</script></span></span> are under consideration. Here the functions <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn3.gif" style="max-width: 100%;" alt="$\tau_{0,0}$" align="top"></img></span><script type="math/tex">\tau_{0,0}</script></span></span> and <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn4.gif" style="max-width: 100%;" alt="$\varrho$" align="top"></img></span><script type="math/tex">\varrho</script></span></span> are absolutely continuous and positive and the coefficients of the differential expression <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn5.gif" style="max-width: 100%;" alt="$\tau(y)$" align="top"></img></span><script type="math/tex">\tau(y)</script></span></span> are subject to the conditions <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn6.gif" style="max-width: 100%;" alt="$ \tau_{k,s}^{(-l)}\in L_2[0,1], \qquad 0\leqslant k,s \leqslant m, \quad l=\min\{k,s\}, $" align="top"></img></span><script type="math/tex">\tau_{k,s}^{(-l)}\in L_2[0,1], \qquad 0\leqslant k,s \leqslant m, \quad l=\min\{k,s\},</script></span></span> where <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn7.gif" style="max-width: 100%;" alt="$f^{(-k)}$" align="top"></img></span><script type="math/tex">f^{(-k)}</script></span></span> denotes the <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn8.gif" style="max-width: 100%;" alt="$k$" align="top"></img></span><script type="math/tex">k</script></span></span>th antiderivative of the function <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn9.gif" style="max-width: 100%;" alt="$f$" align="top"></img></span><script type="math/tex">f</script></span></span> in the sense of distributions. Our purpose is to derive analogues of the classical asymptotic Birkhoff-type representations for the fundamental system of solutions of the above equation with respect to the spectral parameter as <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn10.gif" style="max-width: 100%;" alt="$\lambda \to \infty$" align="top"></img></span><script type="math/tex">\lambda \to \infty</script></span></span> in certain sectors of the complex plane <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn11.gif" style="max-width: 100%;" alt="$\mathbb C$" align="top"></img></span><script type="math/tex">\mathbb C</script></span></span>. We reduce this equation to a system of first-order equations of the form <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn12.gif" style="max-width: 100%;" alt="$ \mathbf y'=\lambda\rho(x)\mathrm B\mathbf y+\mathrm A(x)\mathbf y+\mathrm C(x,\lambda)\mathbf y, $" align="top"></img></span><script type="math/tex">\mathbf y'=\lambda\rho(x)\mathrm B\mathbf y+\mathrm A(x)\mathbf y+\mathrm C(x,\lambda)\mathbf y,</script></span></span> where <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn13.gif" style="max-width: 100%;" alt="$\rho$" align="top"></img></span><script type="math/tex">\rho</script></span></span> is a positive function, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn14.gif" style="max-width: 100%;" alt="$\mathrm B$" align="top"></img></span><script type="math/tex">\mathrm B</script></span></span> is a matrix with constant elements, the elements of the matrices <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn15.gif" style="max-width: 100%;" alt="$\mathrm A(x)$" align="top"></img></span><script type="math/tex">\mathrm A(x)</script></span></span> and <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn16.gif" style="max-width: 100%;" alt="$\mathrm C(x,\lambda)$" align="top"></img></span><script type="math/tex">\mathrm C(x,\lambda)</script></span></span> are integrable functions, and <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn17.gif" style="max-width: 100%;" alt="$\|\mathrm C(x,\lambda)\|_{L_1}=o(1)$" align="top"></img></span><script type="math/tex">\|\mathrm C(x,\lambda)\|_{L_1}=o(1)</script></span></span> as <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/11/1623/revision4/MSB_211_11_1623ieqn10.gif" style="max-width: 100%;" alt="$\lambda \to \infty$" align="top"></img></span><script type="math/tex">\lambda \to \infty</script></span></span>. For systems of this kind, we obtain new results concerning the asymptotic representation of the fundamental solution matrix, which we use to make an asymptotic analysis of the above scalar equations of high order. </p><p> Bibliography: 44 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9340">https://doi.org/10.1070/SM9340</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9275" class="art-list-item-title event_main-link">Kripke semantics for the logic of problems and propositions</a> <p class="small art-list-item-meta"> A. A. Onoprienko 2020 <em>Sb. Math.</em> <b>211</b> 709 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Kripke semantics for the logic of problems and propositions" data-link-purpose-append-open="Kripke semantics for the logic of problems and propositions">Open abstract</span> </button> <a href="/article/10.1070/SM9275/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Kripke semantics for the logic of problems and propositions</span></a> <a href="/article/10.1070/SM9275/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Kripke semantics for the logic of problems and propositions</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> In this paper we study the propositional fragment <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/5/709/revision1/MSB_211_5_709ieqn1.gif" style="max-width: 100%;" alt="$\mathrm{HC}$" align="top"></img></span><script type="math/tex">\mathrm{HC}</script></span></span> of the joint logic of problems and propositions introduced by Melikhov. We provide Kripke semantics for this logic and show that <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/5/709/revision1/MSB_211_5_709ieqn1.gif" style="max-width: 100%;" alt="$\mathrm{HC}$" align="top"></img></span><script type="math/tex">\mathrm{HC}</script></span></span> is complete with respect to those models and has the finite model property. We consider examples of the use of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/5/709/revision1/MSB_211_5_709ieqn1.gif" style="max-width: 100%;" alt="$\mathrm{HC}$" align="top"></img></span><script type="math/tex">\mathrm{HC}</script></span></span>-models usage. In particular, we prove that <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/5/709/revision1/MSB_211_5_709ieqn1.gif" style="max-width: 100%;" alt="$\mathrm{HC}$" align="top"></img></span><script type="math/tex">\mathrm{HC}</script></span></span> is a conservative extension of the logic <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/5/709/revision1/MSB_211_5_709ieqn2.gif" style="max-width: 100%;" alt="$\mathrm{H4}$" align="top"></img></span><script type="math/tex">\mathrm{H4}</script></span></span>. We also show that the logic <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/211/5/709/revision1/MSB_211_5_709ieqn1.gif" style="max-width: 100%;" alt="$\mathrm{HC}$" align="top"></img></span><script type="math/tex">\mathrm{HC}</script></span></span> is complete with respect to Kripke frames with sets of audit worlds introduced by Artemov and Protopopescu (who called them audit set models). </p><p> Bibliography: 31 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9275">https://doi.org/10.1070/SM9275</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9446" class="art-list-item-title event_main-link">Singularities on toric fibrations</a> <p class="small art-list-item-meta"> C. Birkar and Y. Chen 2021 <em>Sb. Math.</em> <b>212</b> 288 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Singularities on toric fibrations" data-link-purpose-append-open="Singularities on toric fibrations">Open abstract</span> </button> <a href="/article/10.1070/SM9446/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Singularities on toric fibrations</span></a> <a href="/article/10.1070/SM9446/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Singularities on toric fibrations</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> In this paper we investigate singularities on toric fibrations. In this context we study a conjecture of Shokurov (a special case of which is due to M<span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn1.gif" style="max-width: 100%;" alt="$^c$" align="top"></img></span><script type="math/tex">^c</script></span></span>Kernan which roughly says that if <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn2.gif" style="max-width: 100%;" alt="$(X,B)\to Z$" align="top"></img></span><script type="math/tex">(X,B)\to Z</script></span></span> is an <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn3.gif" style="max-width: 100%;" alt="$\varepsilon$" align="top"></img></span><script type="math/tex">\varepsilon</script></span></span>-lc Fano-type log Calabi-Yau fibration, then the singularities of the log base <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn4.gif" style="max-width: 100%;" alt="$(Z,B_Z+M_Z)$" align="top"></img></span><script type="math/tex">(Z,B_Z+M_Z)</script></span></span> are bounded in terms of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn3.gif" style="max-width: 100%;" alt="$\varepsilon$" align="top"></img></span><script type="math/tex">\varepsilon</script></span></span> and <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn5.gif" style="max-width: 100%;" alt="$\dim X$" align="top"></img></span><script type="math/tex">\dim X</script></span></span> where <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn6.gif" style="max-width: 100%;" alt="$B_Z$" align="top"></img></span><script type="math/tex">B_Z</script></span></span> and <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn7.gif" style="max-width: 100%;" alt="$M_Z$" align="top"></img></span><script type="math/tex">M_Z</script></span></span> are the discriminant and moduli divisors of the canonical bundle formula. A corollary of our main result says that if <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn8.gif" style="max-width: 100%;" alt="$X\to Z$" align="top"></img></span><script type="math/tex">X\to Z</script></span></span> is a toric Fano fibration with <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn9.gif" style="max-width: 100%;" alt="$X$" align="top"></img></span><script type="math/tex">X</script></span></span> being <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn3.gif" style="max-width: 100%;" alt="$\varepsilon$" align="top"></img></span><script type="math/tex">\varepsilon</script></span></span>-lc, then the multiplicities of the fibres over codimension one points are bounded depending only on <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn3.gif" style="max-width: 100%;" alt="$\varepsilon$" align="top"></img></span><script type="math/tex">\varepsilon</script></span></span> and <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/212/3/288/revision3/MSB_212_3_288ieqn5.gif" style="max-width: 100%;" alt="$\dim X$" align="top"></img></span><script type="math/tex">\dim X</script></span></span>. </p><p> Bibliography: 20 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9446">https://doi.org/10.1070/SM9446</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9108" class="art-list-item-title event_main-link">Letter to the editors</a> <p class="small art-list-item-meta"> V. A. Kozlov and S. A. Nazarov 2018 <em>Sb. Math.</em> <b>209</b> 919 </p> <div class="art-list-item-tools small wd-abstr-upper"> <a href="/article/10.1070/SM9108/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Letter to the editors</span></a> <a href="/article/10.1070/SM9108/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Letter to the editors</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9108">https://doi.org/10.1070/SM9108</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM2013v204n09ABEH004339" class="art-list-item-title event_main-link">Conformally flat Lorentzian manifolds with special holonomy groups</a> <p class="small art-list-item-meta"> A. S. Galaev 2013 <em>Sb. Math.</em> <b>204</b> 1264 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Conformally flat Lorentzian manifolds with special holonomy groups" data-link-purpose-append-open="Conformally flat Lorentzian manifolds with special holonomy groups">Open abstract</span> </button> <a href="/article/10.1070/SM2013v204n09ABEH004339/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Conformally flat Lorentzian manifolds with special holonomy groups</span></a> <a href="/article/10.1070/SM2013v204n09ABEH004339/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Conformally flat Lorentzian manifolds with special holonomy groups</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p>We obtain a local classification of conformally flat Lorentzian manifolds with special holonomy groups. The corresponding local metrics are certain extensions of Riemannian spaces of constant sectional curvature to Walker metrics.</p><p>Bibliography: 28 titles.</p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM2013v204n09ABEH004339">https://doi.org/10.1070/SM2013v204n09ABEH004339</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Most read tabpanel --> <!-- Start Latest tabpanel --> <div tabindex="0" role="tabpanel" id="latest-articles-tab" aria-labelledby="latest-articles"> <div class=" reveal-container reveal-closed reveal-enabled reveal-container--jnl-tab"> <h2 class="tabpanel__title"> <button type="button" class="reveal-trigger event_tabs-accordion" aria-expanded="false"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg>Latest articles</button> </h2> <div class="reveal-content tabpanel__content" style="display: none"> <p> <button data-reveal-label-alt="Close all abstracts" class="reveal-all-trigger mr-2 small" data-reveal-text="Open all abstracts" data-link-purpose-append="in this tab" data-link-purpose-append-open="in this tab"> Open all abstracts<span class="offscreen-hidden">,&nbsp;in this tab</span> </button> </p> <!-- articleEntryList start--> <div class="art-list"> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9542" class="art-list-item-title event_main-link">Configuration spaces of hinged mechanisms, and their projections</a> <p class="small art-list-item-meta"> M. D. Kovalev 2022 <em>Sb. Math.</em> <b>213</b> 512 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Configuration spaces of hinged mechanisms, and their projections" data-link-purpose-append-open="Configuration spaces of hinged mechanisms, and their projections">Open abstract</span> </button> <a href="/article/10.1070/SM9542/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Configuration spaces of hinged mechanisms, and their projections</span></a> <a href="/article/10.1070/SM9542/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Configuration spaces of hinged mechanisms, and their projections</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> Our subject is the geometry of planar hinged mechanisms. The article contains a formalization of basic concepts of the theory of hinged-lever constructions, as well as some information from real algebraic geometry needed for their study. We consider mechanisms with variable number of degrees of freedom and mechanisms that have more than one degree of freedom but each hinge of which moves with one degree of freedom. For the last type we find the dimension of the configuration space. We give a number of examples of mechanisms with unusual geometric properties and formulate open questions. </p><p> Bibliography: 17 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9542">https://doi.org/10.1070/SM9542</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9559" class="art-list-item-title event_main-link">How many roots of a system of random Laurent polynomials are real?</a> <p class="small art-list-item-meta"> B. Ya. Kazarnovskii 2022 <em>Sb. Math.</em> <b>213</b> 466 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="How many roots of a system of random Laurent polynomials are real?" data-link-purpose-append-open="How many roots of a system of random Laurent polynomials are real?">Open abstract</span> </button> <a href="/article/10.1070/SM9559/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;How many roots of a system of random Laurent polynomials are real?</span></a> <a href="/article/10.1070/SM9559/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;How many roots of a system of random Laurent polynomials are real?</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> We say that a zero of a Laurent polynomial that lies on the unit circle with centre <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/466/revision1/MSB_213_4_466ieqn1.gif" style="max-width: 100%;" alt="$0\in\mathbb C$" align="top"></img></span><script type="math/tex">0\in\mathbb C</script></span></span> is real. We also say that a Laurent polynomial that is real on this circle is real. In contrast with ordinary polynomials, it is known that for random real Laurent polynomials of increasing degree the average proportion of real roots tends to <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/466/revision1/MSB_213_4_466ieqn2.gif" style="max-width: 100%;" alt="$1/\sqrt 3$" align="top"></img></span><script type="math/tex">1/\sqrt 3</script></span></span> rather than to <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/466/revision1/MSB_213_4_466ieqn3.gif" style="max-width: 100%;" alt="$0$" align="top"></img></span><script type="math/tex">0</script></span></span>. We show that this phenomenon of the asymptotically nonvanishing proportion of real roots also holds for systems of Laurent polynomials of several variables. The corresponding asymptotic formula is obtained in terms of the mixed volumes of certain convex compact sets determining the growth of the system of polynomials. </p><p> Bibliography: 11 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9559">https://doi.org/10.1070/SM9559</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9579" class="art-list-item-title event_main-link">Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities</a> <p class="small art-list-item-meta"> D. B. Zot'ev and V. I. Sidel'nikov 2022 <em>Sb. Math.</em> <b>213</b> 443 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities" data-link-purpose-append-open="Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities">Open abstract</span> </button> <a href="/article/10.1070/SM9579/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities</span></a> <a href="/article/10.1070/SM9579/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The topological bifurcations of Liouville foliations on invariant <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/443/revision1/MSB_213_4_443ieqn1.gif" style="max-width: 100%;" alt="$3$" align="top"></img></span><script type="math/tex">3</script></span></span>-manifolds that are induced by attaching toric <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/443/revision1/MSB_213_4_443ieqn2.gif" style="max-width: 100%;" alt="$\Theta$" align="top"></img></span><script type="math/tex">\Theta</script></span></span>-handles are investigated. It is shown that each marked molecule (Fomenko-Zieschang invariant) can be realized on an invariant submanifold of a closed symplectic manifold with contact singularities which is obtained by attaching toric <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/443/revision1/MSB_213_4_443ieqn2.gif" style="max-width: 100%;" alt="$\Theta$" align="top"></img></span><script type="math/tex">\Theta</script></span></span>-handles sequentially to a set of symplectic manifolds, while these latter have the structures of locally trivial fibrations over <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/443/revision1/MSB_213_4_443ieqn3.gif" style="max-width: 100%;" alt="$S^1$" align="top"></img></span><script type="math/tex">S^1</script></span></span> associated with atoms. </p><p> Bibliography: 10 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9579">https://doi.org/10.1070/SM9579</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9609" class="art-list-item-title event_main-link">Time minimization problem on the group of motions of a plane with admissible control in a half-disc</a> <p class="small art-list-item-meta"> A. P. Mashtakov 2022 <em>Sb. Math.</em> <b>213</b> 534 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Time minimization problem on the group of motions of a plane with admissible control in a half-disc" data-link-purpose-append-open="Time minimization problem on the group of motions of a plane with admissible control in a half-disc">Open abstract</span> </button> <a href="/article/10.1070/SM9609/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Time minimization problem on the group of motions of a plane with admissible control in a half-disc</span></a> <a href="/article/10.1070/SM9609/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Time minimization problem on the group of motions of a plane with admissible control in a half-disc</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The time minimization problem with admissible control in a half-disc is considered on the group of motions of a plane. The control system under study provides a model of a car on the plane that can move forwards or rotate in place. Optimal trajectories of such a system are used to detect salient curves in image analysis. In particular, in medical image analysis such trajectories are used for tracking vessels in retinal images. The problem is of independent interest in geometric control theory: it provides a model example when the set of values of the control parameters contains zero at the boundary. The problem of controllability and existence of optimal trajectories is studied. By analysing the Hamiltonian system of the Pontryagin maximum principle the explicit form of extremal controls and trajectories is found. Optimality of the extremals is partially investigated. The structure of the optimal synthesis is described. </p><p> Bibliography: 33 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9609">https://doi.org/10.1070/SM9609</a> </div> </div> </div> </div> <div class="art-list-item reveal-container reveal-closed"> <div class="art-list-item-body"> <a href="/article/10.1070/SM9628" class="art-list-item-title event_main-link">Extremal functional <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="https://content.cld.iop.org/journals/1064-5616/213/4/556/revision1/MSB_213_4_556ieqn1.gif" alt="$L_p$" align="top"></img></span><script type="math/tex">L_p</script></span></span>-interpolation on an arbitrary mesh on the real axis</a> <p class="small art-list-item-meta"> Yu. N. Subbotin and V. T. Shevaldin 2022 <em>Sb. Math.</em> <b>213</b> 556 </p> <div class="art-list-item-tools small wd-abstr-upper"> <button type="button" class="reveal-trigger mr-2 nowrap"> <svg aria-hidden="true" class="fa-icon fa-icon--left fa-icon--flip" role="img" focusable="false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><!--caret-down--><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.--><path d="M137.4 374.6c12.5 12.5 32.8 12.5 45.3 0l128-128c9.2-9.2 11.9-22.9 6.9-34.9s-16.6-19.8-29.6-19.8L32 192c-12.9 0-24.6 7.8-29.6 19.8s-2.2 25.7 6.9 34.9l128 128z"/></svg><span class="reveal-trigger-label" data-reveal-text="Open abstract" data-reveal-label-alt="Close abstract" data-link-purpose-append="Extremal functional -interpolation on an arbitrary mesh on the real axis" data-link-purpose-append-open="Extremal functional -interpolation on an arbitrary mesh on the real axis">Open abstract</span> </button> <a href="/article/10.1070/SM9628/meta" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="View article"> <span class="icon-article"></span>View article<span class="offscreen-hidden">,&nbsp;Extremal functional -interpolation on an arbitrary mesh on the real axis</span></a> <a href="/article/10.1070/SM9628/pdf" class="mr-2 mb-0 nowrap event_mini-link" data-event-action="PDF"><span class="icon-file-pdf"></span>PDF<span class="offscreen-hidden">,&nbsp;Extremal functional -interpolation on an arbitrary mesh on the real axis</span></a> </div> <div class="reveal-content"> <div class="article-text view-text-small"><p> The Golomb-de Boor problem of extremal interpolation of infinite real sequences with smallest <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/556/revision1/MSB_213_4_556ieqn1.gif" style="max-width: 100%;" alt="$L_p$" align="top"></img></span><script type="math/tex">L_p</script></span></span>-norm of the <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/556/revision1/MSB_213_4_556ieqn2.gif" style="max-width: 100%;" alt="$n$" align="top"></img></span><script type="math/tex">n</script></span></span>th derivative of the interpolant, <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/556/revision1/MSB_213_4_556ieqn3.gif" style="max-width: 100%;" alt="$1\leqslant p\leqslant \infty$" align="top"></img></span><script type="math/tex">1\leqslant p\leqslant \infty</script></span></span>, on an arbitrary mesh on the real axis is studied under constraints on the norms of the corresponding divided differences. For this smallest norm, lower estimates are obtained for any <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/556/revision1/MSB_213_4_556ieqn4.gif" style="max-width: 100%;" alt="$n\in \mathbb N$" align="top"></img></span><script type="math/tex">n\in \mathbb N</script></span></span> in terms of <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/556/revision1/MSB_213_4_556ieqn5.gif" style="max-width: 100%;" alt="$B$" align="top"></img></span><script type="math/tex">B</script></span></span>-splines. For the second derivative, this quantity is estimated from below and above by constants depending on the parameter <span xmlns:xlink="http://www.w3.org/1999/xlink" class="inline-eqn"><span class="tex"><span class="texImage"><img src="" data-src="https://content.cld.iop.org/journals/1064-5616/213/4/556/revision1/MSB_213_4_556ieqn6.gif" style="max-width: 100%;" alt="$p$" align="top"></img></span><script type="math/tex">p</script></span></span>. </p><p> Bibliography: 13 titles. </p></div> <div class="art-list-item-tools small wd-abstr-lower"> <a class="mr-2" href="https://doi.org/10.1070/SM9628">https://doi.org/10.1070/SM9628</a> </div> </div> </div> </div> </div> <!-- articleEntryList end--> </div> </div> </div> <!-- End Latest tabpanel --> <!-- Express Letters tabpanel --> <!-- Express Letters tabpanel --> <!-- Start Review tabpanel --> <!-- End Review tabpanel --> <!-- Start Featured tabpanel --> <!-- End Featured tabpanel --> <!-- Start Editor's chocie tabpanel --> <!-- End Editor's chocie tabpanel --> <!-- Start AM tabpanel --> <!-- End AM tabpanel --> <!-- Start Trending tabpanel --> <!-- End Trending tabpanel --> <!-- Start Open Access tabpanel --> <!-- End Open Access tabpanel --> <!-- Start Spotlights tabpanel --> <!-- End Spotlights tabpanel --> </div> <!-- End Article listing tabs --> </div> <!-- End Journal Content --> </div> </main> <div class="db2 tb2"> <div class="side-and-below"> <!-- Start Journal links --> <div class="sidebar-list" id="wd-jnl-links"> <h2 class="sidebar-list__heading">Journal links</h2> <ul class="sidebar-list__list"><li><a href="http://www.mathnet.ru/php/esubmission.phtml?jrnid=sm&wshow=snote&option_lang=eng"><b>Submit an article</b></a></li> <li><a href="/1064-5616/page/About">About the journal</a></li> <li><a href="/1064-5616/page/Editorial Board">Editorial Board</a></li> <li><a href="https://www.turpion.org/php/homes/pa.phtml?jrnid=sm&page=auth">Author guidelines</a></li> <li><a href="/1064-5616/page/News_and_editorial">News and editorial</a></li> <li><a href="/1064-5616/page/Prices and ordering"><a href="http://librarians.iop.org/instinfo">Pricing and ordering</a></a></li> <li><a href="/1064-5616/page/Contact_us">Contact us</a></li></ul> </div> <!-- End Journal links --> <!-- Start journal partners list --> <!-- End journal partners list --> <!-- Start Journal history --> <div class="sidebar-list" id="wd-jnl-history"> <h2 class="sidebar-list__heading">Journal information</h2> <ul class="sidebar-list__list"> <li class="sidebar-list__list-item">1993-present <br/> Sbornik: Mathematics <br/> Online ISSN: 1468-4802<br/> Print ISSN: 1064-5616<br/> </li> </ul> <br/> <h2 class="sidebar-list__heading">Journal history</h2> <ul class="sidebar-list__list"> <li class="sidebar-list__list-item">1993-present <br/> <a href="/journal/1064-5616">Sbornik: Mathematics</a> </li> <li class="sidebar-list__list-item">1967-1993 <br/> <a href="/journal/0025-5734">Mathematics of the USSR-Sbornik</a> </li> </ul> </div> <!-- End Journal history --> <!-- End Journal Sidebar --> </div> </div> </div> <!-- End two column layout --> </div> <div data-scroll-header="" class="data-header-anchor" id="exp"></div> <!-- Footer starts --> <footer class="footer content-grid__full-width" data-footer-content role="contentinfo"> <nav aria-label="Further resources" class="footer__grid"> <div> <h2 class="footer__heading">IOPscience</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="/journalList">Journals</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/booklistinfo/home">Books</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/conference-series">IOP Conference Series</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/aboutiopscience">About IOPscience</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/about-us/contact-us/">Contact Us</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/info/page/developing-countries-access">Developing countries access</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/open_access/">IOP Publishing open access policy</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/accessibility">Accessibility</a> </li> </ul> </div> <div> <h2 class="footer__heading">IOP Publishing</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/copyright/">Copyright 2024 IOP Publishing</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/terms">Terms and Conditions</a> </li> <li class="footer__item"> <a class="link--colour--white" href="/page/disclaimer">Disclaimer</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/privacy-cookies-policy/">Privacy and Cookie Policy</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://ioppublishing.org/legal/textanddataminingpolicy/">Text and Data mining policy</a> </li> </ul> </div> <div> <h2 class="footer__heading">Publishing Support</h2> <ul class="footer__list"> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/">Authors</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/publishing-support/reviewers/">Reviewers</a> </li> <li class="footer__item"> <a class="link--colour--white" href="https://publishingsupport.iopscience.iop.org/publishing-support/organisers/">Conference Organisers</a> </li> </ul> </div> </nav> <!-- end nav --> <div class="footer__notice"> <div class="footer__notice-inner"> <div class="footer__notice-text"> <svg aria-hidden="true" class="footer__cookie fa-icon" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M257.5 27.6c-.8-5.4-4.9-9.8-10.3-10.6c-22.1-3.1-44.6 .9-64.4 11.4l-74 39.5C89.1 78.4 73.2 94.9 63.4 115L26.7 190.6c-9.8 20.1-13 42.9-9.1 64.9l14.5 82.8c3.9 22.1 14.6 42.3 30.7 57.9l60.3 58.4c16.1 15.6 36.6 25.6 58.7 28.7l83 11.7c22.1 3.1 44.6-.9 64.4-11.4l74-39.5c19.7-10.5 35.6-27 45.4-47.2l36.7-75.5c9.8-20.1 13-42.9 9.1-64.9c-.9-5.3-5.3-9.3-10.6-10.1c-51.5-8.2-92.8-47.1-104.5-97.4c-1.8-7.6-8-13.4-15.7-14.6c-54.6-8.7-97.7-52-106.2-106.8zM208 144a32 32 0 1 1 0 64 32 32 0 1 1 0-64zM144 336a32 32 0 1 1 64 0 32 32 0 1 1 -64 0zm224-64a32 32 0 1 1 0 64 32 32 0 1 1 0-64z"/> </svg> <span><strong>This site uses cookies</strong>. By continuing to use this site you agree to our use of cookies.</span></div> <div class="footer__socials"> <div class="footer__social-icons"> <a class="link--colour--white replicate-hover" href="https://twitter.com/ioppublishing?lang=en"> <span class="sr-only">IOP Publishing Twitter page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.facebook.com/ioppublishing/"> <span class="sr-only">IOP Publishing Facebook page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M504 256C504 119 393 8 256 8S8 119 8 256c0 123.78 90.69 226.38 209.25 245V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.28c-30.8 0-40.41 19.12-40.41 38.73V256h68.78l-11 71.69h-57.78V501C413.31 482.38 504 379.78 504 256z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.linkedin.com/company/iop-publishing"> <span class="sr-only">IOP Publishing LinkedIn page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 448 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M100.28 448H7.4V148.9h92.88zM53.79 108.1C24.09 108.1 0 83.5 0 53.8a53.79 53.79 0 0 1 107.58 0c0 29.7-24.1 54.3-53.79 54.3zM447.9 448h-92.68V302.4c0-34.7-.7-79.2-48.29-79.2-48.29 0-55.69 37.7-55.69 76.7V448h-92.78V148.9h89.08v40.8h1.3c12.4-23.5 42.69-48.3 87.88-48.3 94 0 111.28 61.9 111.28 142.3V448z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.youtube.com/channel/UC6sGrQTcmY8NpmfGEfRqRrg"> <span class="sr-only">IOP Publishing Youtube page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 60 576 395" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M549.655 124.083c-6.281-23.65-24.787-42.276-48.284-48.597C458.781 64 288 64 288 64S117.22 64 74.629 75.486c-23.497 6.322-42.003 24.947-48.284 48.597-11.412 42.867-11.412 132.305-11.412 132.305s0 89.438 11.412 132.305c6.281 23.65 24.787 41.5 48.284 47.821C117.22 448 288 448 288 448s170.78 0 213.371-11.486c23.497-6.321 42.003-24.171 48.284-47.821 11.412-42.867 11.412-132.305 11.412-132.305s0-89.438-11.412-132.305zm-317.51 213.508V175.185l142.739 81.205-142.739 81.201z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://ioppublishing.org/wp-content/uploads/2020/11/WeChat-QR-Code.png"> <span class="sr-only">IOP Publishing WeChat QR code</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 576 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M385.2 167.6c6.4 0 12.6.3 18.8 1.1C387.4 90.3 303.3 32 207.7 32 100.5 32 13 104.8 13 197.4c0 53.4 29.3 97.5 77.9 131.6l-19.3 58.6 68-34.1c24.4 4.8 43.8 9.7 68.2 9.7 6.2 0 12.1-.3 18.3-.8-4-12.9-6.2-26.6-6.2-40.8-.1-84.9 72.9-154 165.3-154zm-104.5-52.9c14.5 0 24.2 9.7 24.2 24.4 0 14.5-9.7 24.2-24.2 24.2-14.8 0-29.3-9.7-29.3-24.2.1-14.7 14.6-24.4 29.3-24.4zm-136.4 48.6c-14.5 0-29.3-9.7-29.3-24.2 0-14.8 14.8-24.4 29.3-24.4 14.8 0 24.4 9.7 24.4 24.4 0 14.6-9.6 24.2-24.4 24.2zM563 319.4c0-77.9-77.9-141.3-165.4-141.3-92.7 0-165.4 63.4-165.4 141.3S305 460.7 397.6 460.7c19.3 0 38.9-5.1 58.6-9.9l53.4 29.3-14.8-48.6C534 402.1 563 363.2 563 319.4zm-219.1-24.5c-9.7 0-19.3-9.7-19.3-19.6 0-9.7 9.7-19.3 19.3-19.3 14.8 0 24.4 9.7 24.4 19.3 0 10-9.7 19.6-24.4 19.6zm107.1 0c-9.7 0-19.3-9.7-19.3-19.6 0-9.7 9.7-19.3 19.3-19.3 14.5 0 24.4 9.7 24.4 19.3.1 10-9.9 19.6-24.4 19.6z"/> </svg> </a> <a class="link--colour--white replicate-hover" href="https://www.weibo.com/u/2931886367"> <span class="sr-only">IOP Publishing Weibo page</span> <svg aria-hidden="true" class="fa-icon fa-icon--xlrg" focusable="false" viewBox="0 0 512 512" xmlns="http://www.w3.org/2000/svg"> <!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2023 Fonticons, Inc. --> <path d="M407 177.6c7.6-24-13.4-46.8-37.4-41.7-22 4.8-28.8-28.1-7.1-32.8 50.1-10.9 92.3 37.1 76.5 84.8-6.8 21.2-38.8 10.8-32-10.3zM214.8 446.7C108.5 446.7 0 395.3 0 310.4c0-44.3 28-95.4 76.3-143.7C176 67 279.5 65.8 249.9 161c-4 13.1 12.3 5.7 12.3 6 79.5-33.6 140.5-16.8 114 51.4-3.7 9.4 1.1 10.9 8.3 13.1 135.7 42.3 34.8 215.2-169.7 215.2zm143.7-146.3c-5.4-55.7-78.5-94-163.4-85.7-84.8 8.6-148.8 60.3-143.4 116s78.5 94 163.4 85.7c84.8-8.6 148.8-60.3 143.4-116zM347.9 35.1c-25.9 5.6-16.8 43.7 8.3 38.3 72.3-15.2 134.8 52.8 111.7 124-7.4 24.2 29.1 37 37.4 12 31.9-99.8-55.1-195.9-157.4-174.3zm-78.5 311c-17.1 38.8-66.8 60-109.1 46.3-40.8-13.1-58-53.4-40.3-89.7 17.7-35.4 63.1-55.4 103.4-45.1 42 10.8 63.1 50.2 46 88.5zm-86.3-30c-12.9-5.4-30 .3-38 12.9-8.3 12.9-4.3 28 8.6 34 13.1 6 30.8.3 39.1-12.9 8-13.1 3.7-28.3-9.7-34zm32.6-13.4c-5.1-1.7-11.4.6-14.3 5.4-2.9 5.1-1.4 10.6 3.7 12.9 5.1 2 11.7-.3 14.6-5.4 2.8-5.2 1.1-10.9-4-12.9z"/> </svg> </a> </div> <a href="https://ioppublishing.org/"> <img alt="IOP Publishing" class="footer__social-logo" src=''/> </a> </div> </div> </div> </footer> <!-- Footer ends --> </div> <script> let imgBase = "https://static.iopscience.com/3.72.0/img"; let scriptBase = "https://static.iopscience.com/3.72.0/js"; /* Cutting the mustard - http://responsivenews.co.uk/post/18948466399/cutting-the-mustard */ /* This is the original if statement, from the link above. I have amended it to turn of JS on all IE browsers less than 10. This is due to a function in the iop.jquery.toolbar.js line 35/36. Uses .remove which is not native js supported in IE9 or lower */ /* if('querySelector' in document && 'localStorage' in window && 'addEventListener' in window) { */ /* This is the updated selector, taken from: https://justmarkup.com/log/2015/02/26/cut-the-mustard-revisited/ */ if('visibilityState' in document) { /*! loadJS: load a JS file asynchronously. [c]2014 @scottjehl, Filament Group, Inc. (Based on http://goo.gl/REQGQ by Paul Irish).. Licensed MIT */ function loadJS( src, cb ){ "use strict"; let ref = window.document.getElementsByTagName( "script" )[ 0 ]; let script = window.document.createElement( "script" ); script.src = src; script.async = true; ref.parentNode.insertBefore( script, ref ); if (cb && typeof(cb) === "function") { script.onload = cb; } return script; } } </script> <script>loadJS( scriptBase + "/scripts.min.js" );</script> <!-- Pop-up banner --> <script> (function(g,e,o,t,a,r,ge,tl,y){ t=g.getElementsByTagName(e)[0];y=g.createElement(e);y.async=true; var a=window,b=g.documentElement,c=g.getElementsByTagName('body')[0],w=a.innerWidth||b.clientWidth||c.clientWidth,h=a.innerHeight||b.clientHeight||c.clientHeight; y.src='https://g9706132415.co/gp?id=-N-2MD8QdW3dNu4Sq7Do&refurl='+g.referrer+'&winurl='+encodeURIComponent(window.location)+'&cw='+w+'&ch='+h; t.parentNode.insertBefore(y,t); })(document,'script');</script> <script> (function(g,e,o,t,a,r,ge,tl,y){ let s=function(){let def="geotargetlygeocontent1630585676742_default",len=g.getElementsByClassName(def).length; if(len>0){for(let i=0;i<len;i++){g.getElementsByClassName(def)[i].style.display='inline';}}}; t=g.getElementsByTagName(e)[0];y=g.createElement(e); y.async=true;y.src='https://g1584674684.co/gc?winurl='+encodeURIComponent(window.location)+'&refurl='+g.referrer+'&id='+"-MiaTiCEOcFuuh3oEof1"; t.parentNode.insertBefore(y,t);y.onerror=function(){s()};})(document,'script'); </script> <noscript> <style>.geotargetlygeocontent1630585676742_default{display:inline !important}</style> </noscript> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10