CINXE.COM

Mild-slope equation - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Mild-slope equation - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ce12a9bc-8079-4757-b195-20b76da95223","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Mild-slope_equation","wgTitle":"Mild-slope equation","wgCurRevisionId":1253285699,"wgRevisionId":1253285699,"wgArticleId":20112097,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location missing publisher","Articles with short description","Short description is different from Wikidata","Coastal geography","Equations of fluid dynamics","Water waves"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Mild-slope_equation","wgRelevantArticleId":20112097,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q6850879","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/3/38/CGWAVE_Tedious_Creek_MD.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="796"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/CGWAVE_Tedious_Creek_MD.jpg/800px-CGWAVE_Tedious_Creek_MD.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="531"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/CGWAVE_Tedious_Creek_MD.jpg/640px-CGWAVE_Tedious_Creek_MD.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="424"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Mild-slope equation - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Mild-slope_equation"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Mild-slope_equation&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Mild-slope_equation"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Mild-slope_equation rootpage-Mild-slope_equation skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Mild-slope+equation" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Mild-slope+equation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Mild-slope+equation" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Mild-slope+equation" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Formulation_for_monochromatic_wave_motion" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formulation_for_monochromatic_wave_motion"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Formulation for monochromatic wave motion</span> </div> </a> <ul id="toc-Formulation_for_monochromatic_wave_motion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transformation_to_an_inhomogeneous_Helmholtz_equation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Transformation_to_an_inhomogeneous_Helmholtz_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Transformation to an inhomogeneous Helmholtz equation</span> </div> </a> <ul id="toc-Transformation_to_an_inhomogeneous_Helmholtz_equation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Propagating_waves" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Propagating_waves"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Propagating waves</span> </div> </a> <ul id="toc-Propagating_waves-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivation_of_the_mild-slope_equation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Derivation_of_the_mild-slope_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Derivation of the mild-slope equation</span> </div> </a> <button aria-controls="toc-Derivation_of_the_mild-slope_equation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Derivation of the mild-slope equation subsection</span> </button> <ul id="toc-Derivation_of_the_mild-slope_equation-sublist" class="vector-toc-list"> <li id="toc-Luke&#039;s_variational_principle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Luke&#039;s_variational_principle"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Luke's variational principle</span> </div> </a> <ul id="toc-Luke&#039;s_variational_principle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linear_wave_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linear_wave_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Linear wave theory</span> </div> </a> <ul id="toc-Linear_wave_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vertical_shape_function_from_Airy_wave_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vertical_shape_function_from_Airy_wave_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Vertical shape function from Airy wave theory</span> </div> </a> <ul id="toc-Vertical_shape_function_from_Airy_wave_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Monochromatic_waves" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Monochromatic_waves"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Monochromatic waves</span> </div> </a> <ul id="toc-Monochromatic_waves-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applicability_and_validity_of_the_mild-slope_equation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applicability_and_validity_of_the_mild-slope_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Applicability and validity of the mild-slope equation</span> </div> </a> <ul id="toc-Applicability_and_validity_of_the_mild-slope_equation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Mild-slope equation</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 1 language" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-1" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">1 language</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_de_pendiente_suave" title="Ecuación de pendiente suave – Spanish" lang="es" hreflang="es" data-title="Ecuación de pendiente suave" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6850879#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Mild-slope_equation" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Mild-slope_equation" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Mild-slope_equation"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Mild-slope_equation&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Mild-slope_equation"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Mild-slope_equation&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Mild-slope_equation" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Mild-slope_equation" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Mild-slope_equation&amp;oldid=1253285699" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Mild-slope_equation&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Mild-slope_equation&amp;id=1253285699&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMild-slope_equation"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMild-slope_equation"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Mild-slope_equation&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Mild-slope_equation&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q6850879" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Physics phenomenon and formula</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:CGWAVE_Tedious_Creek_MD.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/CGWAVE_Tedious_Creek_MD.jpg/220px-CGWAVE_Tedious_Creek_MD.jpg" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/38/CGWAVE_Tedious_Creek_MD.jpg/330px-CGWAVE_Tedious_Creek_MD.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/38/CGWAVE_Tedious_Creek_MD.jpg/440px-CGWAVE_Tedious_Creek_MD.jpg 2x" data-file-width="980" data-file-height="650" /></a><figcaption>Simulation of wave penetration—involving <a href="/wiki/Diffraction" title="Diffraction">diffraction</a> and <a href="/wiki/Refraction" title="Refraction">refraction</a>—into Tedious Creek, Maryland, using <a href="/wiki/CGWAVE" class="mw-redirect" title="CGWAVE">CGWAVE</a> (which solves the mild-slope equation)</figcaption></figure> <p>In <a href="/wiki/Fluid_dynamics" title="Fluid dynamics">fluid dynamics</a>, the <b>mild-slope equation</b> describes the combined effects of <a href="/wiki/Diffraction" title="Diffraction">diffraction</a> and <a href="/wiki/Refraction" title="Refraction">refraction</a> for <a href="/wiki/Water_wave" class="mw-redirect" title="Water wave">water waves</a> propagating over <a href="/wiki/Bathymetry" title="Bathymetry">bathymetry</a> and due to lateral boundaries—like <a href="/wiki/Breakwater_(structure)" title="Breakwater (structure)">breakwaters</a> and <a href="/wiki/Coastline" class="mw-redirect" title="Coastline">coastlines</a>. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in <a href="/wiki/Coastal_engineering" title="Coastal engineering">coastal engineering</a> to compute the wave-field changes near <a href="/wiki/Harbour" class="mw-redirect" title="Harbour">harbours</a> and <a href="/wiki/Coast" title="Coast">coasts</a>. </p><p>The mild-slope equation models the propagation and transformation of water waves, as they travel through waters of varying depth and interact with lateral boundaries such as <a href="/wiki/Cliff" title="Cliff">cliffs</a>, <a href="/wiki/Beach" title="Beach">beaches</a>, <a href="/wiki/Seawall" title="Seawall">seawalls</a> and breakwaters. As a result, it describes the variations in wave <a href="/wiki/Amplitude" title="Amplitude">amplitude</a>, or equivalently <a href="/wiki/Wave_height" title="Wave height">wave height</a>. From the wave amplitude, the amplitude of the <a href="/wiki/Flow_velocity" title="Flow velocity">flow velocity</a> oscillations underneath the water surface can also be computed. These quantities—wave amplitude and flow-velocity amplitude—may subsequently be used to determine the wave effects on coastal and offshore structures, ships and other floating objects, <a href="/wiki/Sediment_transport" title="Sediment transport">sediment transport</a> and resulting <a href="/wiki/Bathymetric" class="mw-redirect" title="Bathymetric">bathymetric</a> changes of the sea bed and coastline, mean flow fields and <a href="/wiki/Mass_transfer" title="Mass transfer">mass transfer</a> of dissolved and floating materials. Most often, the mild-slope equation is solved by computer using methods from <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical analysis</a>. </p><p>A first form of the mild-slope equation was developed by <a href="/wiki/Carl_Eckart" title="Carl Eckart">Eckart</a> in 1952, and an improved version—the mild-slope equation in its classical formulation—has been derived independently by Juri Berkhoff in 1972.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Thereafter, many modified and extended forms have been proposed, to include the effects of, for instance: <a href="/wiki/Wave%E2%80%93current_interaction" title="Wave–current interaction">wave–current interaction</a>, wave <a href="/wiki/Nonlinearity" class="mw-redirect" title="Nonlinearity">nonlinearity</a>, steeper sea-bed slopes, <a href="/wiki/Drag_(physics)" title="Drag (physics)">bed friction</a> and <a href="/wiki/Wave_breaking" class="mw-redirect" title="Wave breaking">wave breaking</a>. Also <a href="/wiki/Parabolic_partial_differential_equation" title="Parabolic partial differential equation">parabolic</a> approximations to the mild-slope equation are often used, in order to reduce the computational cost. </p><p>In case of a constant depth, the mild-slope equation reduces to the <a href="/wiki/Helmholtz_equation" title="Helmholtz equation">Helmholtz equation</a> for wave diffraction. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Formulation_for_monochromatic_wave_motion">Formulation for monochromatic wave motion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=1" title="Edit section: Formulation for monochromatic wave motion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For <a href="/wiki/Monochromatic" class="mw-redirect" title="Monochromatic">monochromatic</a> waves according to <a href="/wiki/Airy_wave_theory" title="Airy wave theory">linear theory</a>—with the <a href="/wiki/Free_surface" title="Free surface">free surface</a> elevation given as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (x,y,t)=\Re \left\{\eta (x,y)\,e^{-i\omega t}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow> <mo>{</mo> <mrow> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> </mrow> </msup> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (x,y,t)=\Re \left\{\eta (x,y)\,e^{-i\omega t}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97c2b0fb72232bb8900f16a16f1b2e54ebc7a29a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.08ex; height:3.343ex;" alt="{\displaystyle \zeta (x,y,t)=\Re \left\{\eta (x,y)\,e^{-i\omega t}\right\}}"></span> and the waves propagating on a fluid layer of <a href="/wiki/Average" title="Average">mean</a> water depth <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7235c6799c7d4112231c9941bd428fe6a4111fe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.667ex; height:2.843ex;" alt="{\displaystyle h(x,y)}"></span>—the mild-slope equation is:<sup id="cite_ref-Dingemans_ms_4-0" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \left(c_{p}\,c_{g}\,\nabla \eta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,\eta \,=\,0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B7;<!-- η --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>&#x03B7;<!-- η --></mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \left(c_{p}\,c_{g}\,\nabla \eta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,\eta \,=\,0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/775d59dc3cbf7293b5bb440e07f3f84380f08492" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.385ex; height:3.343ex;" alt="{\displaystyle \nabla \cdot \left(c_{p}\,c_{g}\,\nabla \eta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,\eta \,=\,0,}"></span> where: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e47d88d7b005cde292435a8b17b73bae5501e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.498ex; height:2.843ex;" alt="{\displaystyle \eta (x,y)}"></span> is the <a href="/wiki/Complex-valued_amplitude" class="mw-redirect" title="Complex-valued amplitude">complex-valued amplitude</a> of the free-surface elevation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (x,y,t);}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (x,y,t);}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ef71c6b3f4ca56f6055d262ba47ddc6e219589e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.944ex; height:2.843ex;" alt="{\displaystyle \zeta (x,y,t);}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> is the horizontal position;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is the <a href="/wiki/Angular_frequency" title="Angular frequency">angular frequency</a> of the monochromatic wave motion;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> is the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Re \{\cdot \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mo fence="false" stretchy="false">{</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Re \{\cdot \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67288315a1fa97e581ec9d1b85cd6d22e5531ff3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.896ex; height:2.843ex;" alt="{\displaystyle \Re \{\cdot \}}"></span> means taking the <a href="/wiki/Real_part" class="mw-redirect" title="Real part">real part</a> of the quantity between braces;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }"></span> is the horizontal <a href="/wiki/Gradient" title="Gradient">gradient</a> operator;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6df6024211b717870f07844116e116b2eb314d12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.583ex; height:2.176ex;" alt="{\displaystyle \nabla \cdot }"></span> is the <a href="/wiki/Divergence" title="Divergence">divergence</a> operator;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is the <a href="/wiki/Wavenumber" title="Wavenumber">wavenumber</a>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77463f4fbb953a6f1fe19d83708e553f6d21457f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.066ex; height:2.343ex;" alt="{\displaystyle c_{p}}"></span> is the <a href="/wiki/Phase_speed" class="mw-redirect" title="Phase speed">phase speed</a> of the waves and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f66b66841d4193e6ef61fe348c322d7616acc32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.028ex; height:2.343ex;" alt="{\displaystyle c_{g}}"></span> is the <a href="/wiki/Group_speed" class="mw-redirect" title="Group speed">group speed</a> of the waves.</li></ul> <p>The phase and group speed depend on the <a href="/wiki/Dispersion_(water_waves)" title="Dispersion (water waves)">dispersion relation</a>, and are derived from <a href="/wiki/Airy_wave_theory" title="Airy wave theory">Airy wave theory</a> as:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\omega ^{2}&amp;=\,g\,k\,\tanh \,(kh),\\c_{p}&amp;=\,{\frac {\omega }{k}}\quad {\text{and}}\\c_{g}&amp;=\,{\frac {1}{2}}\,c_{p}\,\left[1\,+\,kh\,{\frac {1-\tanh ^{2}(kh)}{\tanh \,(kh)}}\right]\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mspace width="thinmathspace" /> <mi>k</mi> <mspace width="thinmathspace" /> <mi>tanh</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C9;<!-- ω --></mi> <mi>k</mi> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mi>k</mi> <mi>h</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>tanh</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>tanh</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\omega ^{2}&amp;=\,g\,k\,\tanh \,(kh),\\c_{p}&amp;=\,{\frac {\omega }{k}}\quad {\text{and}}\\c_{g}&amp;=\,{\frac {1}{2}}\,c_{p}\,\left[1\,+\,kh\,{\frac {1-\tanh ^{2}(kh)}{\tanh \,(kh)}}\right]\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea166d03c957e2f124a3fc7620ab2ff9eadccad4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:37.293ex; height:15.843ex;" alt="{\displaystyle {\begin{aligned}\omega ^{2}&amp;=\,g\,k\,\tanh \,(kh),\\c_{p}&amp;=\,{\frac {\omega }{k}}\quad {\text{and}}\\c_{g}&amp;=\,{\frac {1}{2}}\,c_{p}\,\left[1\,+\,kh\,{\frac {1-\tanh ^{2}(kh)}{\tanh \,(kh)}}\right]\end{aligned}}}"></span> where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is <a href="/wiki/Earth%27s_gravity" class="mw-redirect" title="Earth&#39;s gravity">Earth's gravity</a> and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tanh }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tanh</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tanh }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1494d5d222bc80846ce45e804a38b0ea37e846b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.652ex; height:2.176ex;" alt="{\displaystyle \tanh }"></span> is the <a href="/wiki/Hyperbolic_tangent" class="mw-redirect" title="Hyperbolic tangent">hyperbolic tangent</a>.</li></ul> <p>For a given angular frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span>, the wavenumber <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> has to be solved from the dispersion equation, which relates these two quantities to the water depth <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Transformation_to_an_inhomogeneous_Helmholtz_equation">Transformation to an inhomogeneous Helmholtz equation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=2" title="Edit section: Transformation to an inhomogeneous Helmholtz equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Through the transformation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \,=\,\eta \,{\sqrt {c_{p}\,c_{g}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mi>&#x03B7;<!-- η --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \,=\,\eta \,{\sqrt {c_{p}\,c_{g}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ce7dca56f3b80c4884fbd2165fd4be44eae38" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.006ex; height:3.176ex;" alt="{\displaystyle \psi \,=\,\eta \,{\sqrt {c_{p}\,c_{g}}},}"></span> the mild slope equation can be cast in the form of an <a href="/wiki/Inhomogeneous_Helmholtz_equation" class="mw-redirect" title="Inhomogeneous Helmholtz equation">inhomogeneous Helmholtz equation</a>:<sup id="cite_ref-Dingemans_ms_4-1" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \psi \,+\,k_{c}^{2}\,\psi \,=\,0\qquad {\text{with}}\qquad k_{c}^{2}\,=\,k^{2}\,-\,{\frac {\Delta \left({\sqrt {c_{p}\,c_{g}}}\right)}{\sqrt {c_{p}\,c_{g}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msubsup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>with</mtext> </mrow> <mspace width="2em" /> <msubsup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </msqrt> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \psi \,+\,k_{c}^{2}\,\psi \,=\,0\qquad {\text{with}}\qquad k_{c}^{2}\,=\,k^{2}\,-\,{\frac {\Delta \left({\sqrt {c_{p}\,c_{g}}}\right)}{\sqrt {c_{p}\,c_{g}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43c70b8e353b38560bd5f79bec04643b01d1000a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:54.448ex; height:7.176ex;" alt="{\displaystyle \Delta \psi \,+\,k_{c}^{2}\,\psi \,=\,0\qquad {\text{with}}\qquad k_{c}^{2}\,=\,k^{2}\,-\,{\frac {\Delta \left({\sqrt {c_{p}\,c_{g}}}\right)}{\sqrt {c_{p}\,c_{g}}}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> is the <a href="/wiki/Laplace_operator" title="Laplace operator">Laplace operator</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Propagating_waves">Propagating waves</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=3" title="Edit section: Propagating waves"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In spatially <a href="/wiki/Coherence_(physics)" title="Coherence (physics)">coherent</a> fields of propagating waves, it is useful to split the <a href="/wiki/Complex_amplitude" class="mw-redirect" title="Complex amplitude">complex amplitude</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e47d88d7b005cde292435a8b17b73bae5501e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.498ex; height:2.843ex;" alt="{\displaystyle \eta (x,y)}"></span> in its amplitude and phase, both <a href="/wiki/Real_number" title="Real number">real valued</a>:<sup id="cite_ref-Dingemans_259_263_7-0" class="reference"><a href="#cite_note-Dingemans_259_263-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta (x,y)\,=\,a(x,y)\,e^{i\,\theta (x,y)},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mspace width="thinmathspace" /> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta (x,y)\,=\,a(x,y)\,e^{i\,\theta (x,y)},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/618bea38c38eac4103d155ae2c3f084faa82cd01" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.498ex; height:3.343ex;" alt="{\displaystyle \eta (x,y)\,=\,a(x,y)\,e^{i\,\theta (x,y)},}"></span> where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=|\eta |\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=|\eta |\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1023a35fb73af54e3e6a0352c3ad6138402be582" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.178ex; height:2.843ex;" alt="{\displaystyle a=|\eta |\,}"></span> is the amplitude or <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41724238aa62aeef8fd437347731c787721cfd04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.557ex; height:2.176ex;" alt="{\displaystyle \eta \,}"></span> and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta =\arg\{\eta \}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>arg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03B7;<!-- η --></mi> <mo fence="false" stretchy="false">}</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta =\arg\{\eta \}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb98fa09ae461fc970175da5600e63530d44c75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.307ex; height:2.843ex;" alt="{\displaystyle \theta =\arg\{\eta \}\,}"></span> is the wave phase, which is the <a href="/wiki/Arg_(mathematics)" class="mw-redirect" title="Arg (mathematics)">argument</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc94fc42a3ecbad87643808e17ec9634147cf812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.816ex; height:2.176ex;" alt="{\displaystyle \eta .}"></span></li></ul> <p>This transforms the mild-slope equation in the following set of equations (apart from locations for which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf223704e486ba56f34fc1f0f269c65e8be68a23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.026ex; height:2.176ex;" alt="{\displaystyle \nabla \theta }"></span> is singular):<sup id="cite_ref-Dingemans_259_263_7-1" class="reference"><a href="#cite_note-Dingemans_259_263-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial \kappa _{y}}{\partial {x}}}\,-\,{\frac {\partial \kappa _{x}}{\partial {y}}}\,=\,0\qquad &amp;{\text{ with }}\kappa _{x}\,=\,{\frac {\partial \theta }{\partial {x}}}{\text{ and }}\kappa _{y}\,=\,{\frac {\partial \theta }{\partial {y}}},\\\kappa ^{2}\,=\,k^{2}\,+\,{\frac {\nabla \cdot \left(c_{p}\,c_{g}\,\nabla a\right)}{c_{p}\,c_{g}\,a}}\qquad &amp;{\text{ with }}\kappa \,=\,{\sqrt {\kappa _{x}^{2}\,+\,\kappa _{y}^{2}}}\quad {\text{ and}}\\\nabla \cdot \left({\boldsymbol {v}}_{g}\,E\right)\,=\,0\qquad &amp;{\text{ with }}E\,=\,{\frac {1}{2}}\,\rho \,g\,a^{2}\quad {\text{and}}\quad {\boldsymbol {v}}_{g}\,=\,c_{g}\,{\frac {\boldsymbol {\kappa }}{k}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mspace width="2em" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;with&#xA0;</mtext> </mrow> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>a</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>a</mi> </mrow> </mfrac> </mrow> <mspace width="2em" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;with&#xA0;</mtext> </mrow> <mi>&#x03BA;<!-- κ --></mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msubsup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>E</mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mspace width="2em" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;with&#xA0;</mtext> </mrow> <mi>E</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mi>g</mi> <mspace width="thinmathspace" /> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> <mi>k</mi> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial \kappa _{y}}{\partial {x}}}\,-\,{\frac {\partial \kappa _{x}}{\partial {y}}}\,=\,0\qquad &amp;{\text{ with }}\kappa _{x}\,=\,{\frac {\partial \theta }{\partial {x}}}{\text{ and }}\kappa _{y}\,=\,{\frac {\partial \theta }{\partial {y}}},\\\kappa ^{2}\,=\,k^{2}\,+\,{\frac {\nabla \cdot \left(c_{p}\,c_{g}\,\nabla a\right)}{c_{p}\,c_{g}\,a}}\qquad &amp;{\text{ with }}\kappa \,=\,{\sqrt {\kappa _{x}^{2}\,+\,\kappa _{y}^{2}}}\quad {\text{ and}}\\\nabla \cdot \left({\boldsymbol {v}}_{g}\,E\right)\,=\,0\qquad &amp;{\text{ with }}E\,=\,{\frac {1}{2}}\,\rho \,g\,a^{2}\quad {\text{and}}\quad {\boldsymbol {v}}_{g}\,=\,c_{g}\,{\frac {\boldsymbol {\kappa }}{k}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b716a39c3d4197d11423facd97b523fe87bd80c2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:70.986ex; height:18.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial \kappa _{y}}{\partial {x}}}\,-\,{\frac {\partial \kappa _{x}}{\partial {y}}}\,=\,0\qquad &amp;{\text{ with }}\kappa _{x}\,=\,{\frac {\partial \theta }{\partial {x}}}{\text{ and }}\kappa _{y}\,=\,{\frac {\partial \theta }{\partial {y}}},\\\kappa ^{2}\,=\,k^{2}\,+\,{\frac {\nabla \cdot \left(c_{p}\,c_{g}\,\nabla a\right)}{c_{p}\,c_{g}\,a}}\qquad &amp;{\text{ with }}\kappa \,=\,{\sqrt {\kappa _{x}^{2}\,+\,\kappa _{y}^{2}}}\quad {\text{ and}}\\\nabla \cdot \left({\boldsymbol {v}}_{g}\,E\right)\,=\,0\qquad &amp;{\text{ with }}E\,=\,{\frac {1}{2}}\,\rho \,g\,a^{2}\quad {\text{and}}\quad {\boldsymbol {v}}_{g}\,=\,c_{g}\,{\frac {\boldsymbol {\kappa }}{k}},\end{aligned}}}"></span> where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> is the <a href="/wiki/Average" title="Average">average</a> wave-energy density per unit horizontal area (the sum of the <a href="/wiki/Kinetic_energy" title="Kinetic energy">kinetic</a> and <a href="/wiki/Potential_energy" title="Potential energy">potential energy</a> densities),</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\kappa }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\kappa }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93c546f30253b5be3bec39a12c54dcc7baede83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.553ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\kappa }}}"></span> is the effective wavenumber vector, with components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\kappa _{x},\kappa _{y}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\kappa _{x},\kappa _{y}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/300a886d67d8cf491f46f16dc10deea8fd2ce532" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.39ex; height:3.009ex;" alt="{\displaystyle (\kappa _{x},\kappa _{y}),}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {v}}_{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {v}}_{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bff08e62fb773f02a0c153a0ad7a9e2f8ba442d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.339ex; height:2.343ex;" alt="{\displaystyle {\boldsymbol {v}}_{g}}"></span> is the effective <a href="/wiki/Group_velocity" title="Group velocity">group velocity</a> vector,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> is the fluid <a href="/wiki/Density" title="Density">density</a>, and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is the acceleration by the <a href="/wiki/Earth%27s_gravity" class="mw-redirect" title="Earth&#39;s gravity">Earth's gravity</a>.</li></ul> <p>The last equation shows that wave energy is conserved in the mild-slope equation, and that the wave energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> is transported in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\kappa }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\kappa }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93c546f30253b5be3bec39a12c54dcc7baede83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.553ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\kappa }}}"></span>-direction normal to the wave <a href="/wiki/Crest_(physics)" class="mw-redirect" title="Crest (physics)">crests</a> (in this case of pure wave motion without mean currents).<sup id="cite_ref-Dingemans_259_263_7-2" class="reference"><a href="#cite_note-Dingemans_259_263-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> The effective group speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\boldsymbol {v}}_{g}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\boldsymbol {v}}_{g}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3eb9f0e07be98663227ae669fb6082c438836ac1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.633ex; height:3.009ex;" alt="{\displaystyle |{\boldsymbol {v}}_{g}|}"></span> is different from the group speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{g}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{g}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ec2f73e91a67a8298e9cee900984c81ada3d890" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.675ex; height:2.343ex;" alt="{\displaystyle c_{g}.}"></span> </p><p>The first equation states that the effective wavenumber <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\kappa }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\kappa }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93c546f30253b5be3bec39a12c54dcc7baede83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.553ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\kappa }}}"></span> is <a href="/wiki/Irrotational" class="mw-redirect" title="Irrotational">irrotational</a>, a direct consequence of the fact it is the derivative of the wave phase <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>, a <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a>. The second equation is the <a href="/wiki/Eikonal_equation" title="Eikonal equation">eikonal equation</a>. It shows the effects of diffraction on the effective wavenumber: only for more-or-less progressive waves, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\nabla \cdot (c_{p}\,c_{g}\,\nabla a)\right|\ll k^{2}\,c_{p}\,c_{g}\,a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>&#x226A;<!-- ≪ --></mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\nabla \cdot (c_{p}\,c_{g}\,\nabla a)\right|\ll k^{2}\,c_{p}\,c_{g}\,a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebc172db7a37ca08c0a99a510210d290a4ba6d98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.764ex; height:3.343ex;" alt="{\displaystyle \left|\nabla \cdot (c_{p}\,c_{g}\,\nabla a)\right|\ll k^{2}\,c_{p}\,c_{g}\,a,}"></span> the splitting into amplitude <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and phase <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> leads to consistent-varying and meaningful fields of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\kappa }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\kappa }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93c546f30253b5be3bec39a12c54dcc7baede83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.553ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\kappa }}}"></span>. Otherwise, <i>κ</i><sup>2</sup> can even become negative. When the diffraction effects are totally neglected, the effective wavenumber <i>κ</i> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>, and the <a href="/wiki/Geometric_optics" class="mw-redirect" title="Geometric optics">geometric optics</a> approximation for wave <a href="/wiki/Refraction" title="Refraction">refraction</a> can be used.<sup id="cite_ref-Dingemans_259_263_7-3" class="reference"><a href="#cite_note-Dingemans_259_263-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1214851843">.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important}}</style><div class="hidden-begin mw-collapsible mw-collapsible-leftside-toggle mw-collapsed" style=""><div class="hidden-title skin-nightmode-reset-color" style="">Details of the derivation of the above equations</div><div class="hidden-content mw-collapsible-content" style="font-size: 100%"> <p>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta =a\,\exp(i\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo>=</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta =a\,\exp(i\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c155d9699e40f4663b5987b5befc44403ac51e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.527ex; height:2.843ex;" alt="{\displaystyle \eta =a\,\exp(i\theta )}"></span> is used in the mild-slope equation, the result is, apart from a factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(i\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(i\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ccf5e9af4aeb10b79a0f6029c0f99f9467fea51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.255ex; height:2.843ex;" alt="{\displaystyle \exp(i\theta )}"></span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{p}\,c_{g}\,\left(\Delta a\,+\,2i\,\nabla a\cdot \nabla \theta \,-\,a\,\nabla \theta \cdot \nabla \theta \,+\,i\,a\,\Delta \theta \right)\,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \left(\nabla a\,+\,i\,a\,\nabla \theta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,a\,=\,0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>a</mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mn>2</mn> <mi>i</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>a</mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{p}\,c_{g}\,\left(\Delta a\,+\,2i\,\nabla a\cdot \nabla \theta \,-\,a\,\nabla \theta \cdot \nabla \theta \,+\,i\,a\,\Delta \theta \right)\,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \left(\nabla a\,+\,i\,a\,\nabla \theta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,a\,=\,0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f810e9664c0e6c84620302a67841d439b94fcf33" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:92.856ex; height:3.343ex;" alt="{\displaystyle c_{p}\,c_{g}\,\left(\Delta a\,+\,2i\,\nabla a\cdot \nabla \theta \,-\,a\,\nabla \theta \cdot \nabla \theta \,+\,i\,a\,\Delta \theta \right)\,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \left(\nabla a\,+\,i\,a\,\nabla \theta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,a\,=\,0.}"></span> </p><p>Now both the real part and the imaginary part of this equation have to be equal to zero: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;c_{p}\,c_{g}\,\Delta a\,-\,c_{p}\,c_{g}\,a\,\nabla \theta \cdot \nabla \theta \,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \nabla a\,+\,k^{2}\,c_{p}\,c_{g}\,a\,=\,0\quad {\text{and}}\\&amp;2\,c_{p}\,c_{g}\,\nabla a\cdot \nabla \theta \,+\,c_{p}\,c_{g}\,a\,\Delta \theta \,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \left(a\,\nabla \theta \right)\,=\,0.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>a</mi> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>a</mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mn>2</mn> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;c_{p}\,c_{g}\,\Delta a\,-\,c_{p}\,c_{g}\,a\,\nabla \theta \cdot \nabla \theta \,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \nabla a\,+\,k^{2}\,c_{p}\,c_{g}\,a\,=\,0\quad {\text{and}}\\&amp;2\,c_{p}\,c_{g}\,\nabla a\cdot \nabla \theta \,+\,c_{p}\,c_{g}\,a\,\Delta \theta \,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \left(a\,\nabla \theta \right)\,=\,0.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83e2a338eb2663d9498c9a5854ebe494f03a0a17" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:67.161ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}&amp;c_{p}\,c_{g}\,\Delta a\,-\,c_{p}\,c_{g}\,a\,\nabla \theta \cdot \nabla \theta \,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \nabla a\,+\,k^{2}\,c_{p}\,c_{g}\,a\,=\,0\quad {\text{and}}\\&amp;2\,c_{p}\,c_{g}\,\nabla a\cdot \nabla \theta \,+\,c_{p}\,c_{g}\,a\,\Delta \theta \,+\,\nabla \left(c_{p}\,c_{g}\right)\cdot \left(a\,\nabla \theta \right)\,=\,0.\end{aligned}}}"></span> </p><p>The effective wavenumber vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\kappa }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\kappa }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93c546f30253b5be3bec39a12c54dcc7baede83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.553ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\kappa }}}"></span> is <i>defined</i> as the gradient of the wave phase: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\kappa }}=\nabla \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> <mo>=</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\kappa }}=\nabla \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f407bd882ae44349f5a37cf98b5ed98de43c2cc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.677ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\kappa }}=\nabla \theta }"></span> and its <a href="/wiki/Vector_length" class="mw-redirect" title="Vector length">vector length</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa =|{\boldsymbol {\kappa }}|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa =|{\boldsymbol {\kappa }}|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5d767ecf2c0e6987995b9dd7eb19b1c9e0cceb7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.931ex; height:2.843ex;" alt="{\displaystyle \kappa =|{\boldsymbol {\kappa }}|.}"></span> </p><p>Note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\kappa }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\kappa }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93c546f30253b5be3bec39a12c54dcc7baede83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.553ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\kappa }}}"></span> is an <a href="/wiki/Irrotational" class="mw-redirect" title="Irrotational">irrotational</a> field, since the <a href="/wiki/Vector_calculus_identities#Curl_of_the_gradient" title="Vector calculus identities">curl of the gradient</a> is zero: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \times {\boldsymbol {\kappa }}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \times {\boldsymbol {\kappa }}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/733c1f03a44ff44317021d8a8c906e912f682b40" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.237ex; height:2.176ex;" alt="{\displaystyle \nabla \times {\boldsymbol {\kappa }}=0.}"></span> </p><p>Now the real and imaginary parts of the transformed mild-slope equation become, first multiplying the imaginary part by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\kappa ^{2}\,=\,k^{2}\,+\,{\frac {\nabla (c_{p}\,c_{g})}{c_{p}\,c_{g}}}\cdot {\frac {\nabla a}{a}}\,+\,{\frac {\Delta a}{a}}\quad {\text{and}}\\&amp;c_{p}\,c_{g}\,\nabla \left(a^{2}\right)\cdot {\boldsymbol {\kappa }}\,+\,c_{p}\,c_{g}\,\nabla \cdot {\boldsymbol {\kappa }}\,+\,a^{2}\,{\boldsymbol {\kappa }}\cdot \nabla \left(c_{p}\,c_{g}\right)\,=\,0.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>a</mi> </mrow> <mi>a</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>a</mi> </mrow> <mi>a</mi> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\kappa ^{2}\,=\,k^{2}\,+\,{\frac {\nabla (c_{p}\,c_{g})}{c_{p}\,c_{g}}}\cdot {\frac {\nabla a}{a}}\,+\,{\frac {\Delta a}{a}}\quad {\text{and}}\\&amp;c_{p}\,c_{g}\,\nabla \left(a^{2}\right)\cdot {\boldsymbol {\kappa }}\,+\,c_{p}\,c_{g}\,\nabla \cdot {\boldsymbol {\kappa }}\,+\,a^{2}\,{\boldsymbol {\kappa }}\cdot \nabla \left(c_{p}\,c_{g}\right)\,=\,0.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74a3c20ceac5982314a6e6148d773dcde573b65b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:53.052ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}&amp;\kappa ^{2}\,=\,k^{2}\,+\,{\frac {\nabla (c_{p}\,c_{g})}{c_{p}\,c_{g}}}\cdot {\frac {\nabla a}{a}}\,+\,{\frac {\Delta a}{a}}\quad {\text{and}}\\&amp;c_{p}\,c_{g}\,\nabla \left(a^{2}\right)\cdot {\boldsymbol {\kappa }}\,+\,c_{p}\,c_{g}\,\nabla \cdot {\boldsymbol {\kappa }}\,+\,a^{2}\,{\boldsymbol {\kappa }}\cdot \nabla \left(c_{p}\,c_{g}\right)\,=\,0.\end{aligned}}}"></span> </p><p>The first equation directly leads to the eikonal equation above for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BA;<!-- κ --></mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88c8b1ec8f7ab988d2caa957a2a7e8bbb828d5b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.726ex; height:1.676ex;" alt="{\displaystyle \kappa \,}"></span>, while the second gives: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \left({\boldsymbol {\kappa }}\,c_{p}\,c_{g}\,a^{2}\right)\,=\,0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BA;<!-- κ --></mi> </mrow> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \left({\boldsymbol {\kappa }}\,c_{p}\,c_{g}\,a^{2}\right)\,=\,0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69257519f928c2d2b4cdc397997fd1e05f751c06" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.519ex; height:3.343ex;" alt="{\displaystyle \nabla \cdot \left({\boldsymbol {\kappa }}\,c_{p}\,c_{g}\,a^{2}\right)\,=\,0,}"></span> </p><p>which—by noting that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{p}=\omega /k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{p}=\omega /k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd06c06efeef217ee96792d1ae72b01ec6d6c5d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.984ex; height:3.009ex;" alt="{\displaystyle c_{p}=\omega /k}"></span> in which the angular frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> is a constant for time-<a href="/wiki/Harmonic" title="Harmonic">harmonic</a> motion—leads to the wave-energy conservation equation. </p> </div></div> <div class="mw-heading mw-heading2"><h2 id="Derivation_of_the_mild-slope_equation">Derivation of the mild-slope equation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=4" title="Edit section: Derivation of the mild-slope equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The mild-slope equation can be derived by the use of several methods. Here, we will use a <a href="/wiki/Calculus_of_variations" title="Calculus of variations">variational</a> approach.<sup id="cite_ref-Dingemans_ms_4-2" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> The fluid is assumed to be <a href="/wiki/Viscosity" title="Viscosity">inviscid</a> and <a href="/wiki/Incompressible" class="mw-redirect" title="Incompressible">incompressible</a>, and the flow is assumed to be <a href="/wiki/Irrotational" class="mw-redirect" title="Irrotational">irrotational</a>. These assumptions are valid ones for surface gravity waves, since the effects of <a href="/wiki/Vorticity" title="Vorticity">vorticity</a> and <a href="/wiki/Viscosity" title="Viscosity">viscosity</a> are only significant in the <a href="/wiki/Stokes_boundary_layer" class="mw-redirect" title="Stokes boundary layer">Stokes boundary layers</a> (for the oscillatory part of the flow). Because the flow is irrotational, the wave motion can be described using <a href="/wiki/Potential_flow" title="Potential flow">potential flow</a> theory. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214851843"><div class="hidden-begin mw-collapsible mw-collapsible-leftside-toggle mw-collapsed" style=""><div class="hidden-title skin-nightmode-reset-color" style="">Details of the derivation of the mild-slope equation</div><div class="hidden-content mw-collapsible-content" style="font-size: 100%"> <div class="mw-heading mw-heading3"><h3 id="Luke's_variational_principle"><span id="Luke.27s_variational_principle"></span>Luke's variational principle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=5" title="Edit section: Luke&#039;s variational principle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Luke%27s_variational_principle" title="Luke&#39;s variational principle">Luke's variational principle</a></div> <p>Luke's <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a> formulation gives a variational formulation for <a href="/wiki/Non-linear" class="mw-redirect" title="Non-linear">non-linear</a> surface gravity waves.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> For the case of a horizontally unbounded domain with a constant <a href="/wiki/Density" title="Density">density</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span>, a free fluid surface at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=\zeta (x,y,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=\zeta (x,y,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c787343d228cff82cab3b9d5c5819f01345c380" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.484ex; height:2.843ex;" alt="{\displaystyle z=\zeta (x,y,t)}"></span> and a fixed sea bed at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=-h(x,y),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=-h(x,y),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7b692300eb2e584f8b4a7200797413486af7f07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.309ex; height:2.843ex;" alt="{\displaystyle z=-h(x,y),}"></span> Luke's variational principle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta {\mathcal {L}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta {\mathcal {L}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/630fe89b387c45ced85724ee86186efa9ec01439" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.913ex; height:2.343ex;" alt="{\displaystyle \delta {\mathcal {L}}=0}"></span> uses the <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}=\int _{t_{0}}^{t_{1}}\iint L\,{\text{d}}x\,{\text{d}}y\,{\text{d}}t,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x222C;<!-- ∬ --></mo> <mi>L</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>x</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>y</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}=\int _{t_{0}}^{t_{1}}\iint L\,{\text{d}}x\,{\text{d}}y\,{\text{d}}t,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/978015287ed75ee21747e2b66e1e5244d227b5d6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.611ex; height:6.509ex;" alt="{\displaystyle {\mathcal {L}}=\int _{t_{0}}^{t_{1}}\iint L\,{\text{d}}x\,{\text{d}}y\,{\text{d}}t,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> is the horizontal <a href="/wiki/Lagrangian_density" class="mw-redirect" title="Lagrangian density">Lagrangian density</a>, given by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=-\rho \,\left\{\int _{-h(x,y)}^{\zeta (x,y,t)}\left[{\frac {\partial \Phi }{\partial t}}+\,{\frac {1}{2}}\left(\left({\frac {\partial \Phi }{\partial x}}\right)^{2}+\left({\frac {\partial \Phi }{\partial y}}\right)^{2}+\left({\frac {\partial \Phi }{\partial z}}\right)^{2}\right)\right]\;{\text{d}}z\;+\,{\frac {1}{2}}\,g\,(\zeta ^{2}\,-\,h^{2})\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mrow> <mo>{</mo> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>z</mi> <mspace width="thickmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>g</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=-\rho \,\left\{\int _{-h(x,y)}^{\zeta (x,y,t)}\left[{\frac {\partial \Phi }{\partial t}}+\,{\frac {1}{2}}\left(\left({\frac {\partial \Phi }{\partial x}}\right)^{2}+\left({\frac {\partial \Phi }{\partial y}}\right)^{2}+\left({\frac {\partial \Phi }{\partial z}}\right)^{2}\right)\right]\;{\text{d}}z\;+\,{\frac {1}{2}}\,g\,(\zeta ^{2}\,-\,h^{2})\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22864e095cd4577eeffe2f40e1102cfd97b11428" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:89.254ex; height:7.509ex;" alt="{\displaystyle L=-\rho \,\left\{\int _{-h(x,y)}^{\zeta (x,y,t)}\left[{\frac {\partial \Phi }{\partial t}}+\,{\frac {1}{2}}\left(\left({\frac {\partial \Phi }{\partial x}}\right)^{2}+\left({\frac {\partial \Phi }{\partial y}}\right)^{2}+\left({\frac {\partial \Phi }{\partial z}}\right)^{2}\right)\right]\;{\text{d}}z\;+\,{\frac {1}{2}}\,g\,(\zeta ^{2}\,-\,h^{2})\right\},}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x,y,z,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x,y,z,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3966d3f926d8c9bd26f5dee5f540a2a027647e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.002ex; height:2.843ex;" alt="{\displaystyle \Phi (x,y,z,t)}"></span> is the <a href="/wiki/Velocity_potential" title="Velocity potential">velocity potential</a>, with the <a href="/wiki/Flow_velocity" title="Flow velocity">flow velocity</a> components being <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Phi /\partial {x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Phi /\partial {x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ddb24c6e9910230c6e532b4ea2cd4301de89ef0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.453ex; height:2.843ex;" alt="{\displaystyle \partial \Phi /\partial {x},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Phi /\partial {y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Phi /\partial {y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e4bc4b1a76b8167441f08332e1a9e90e48fce5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.632ex; height:2.843ex;" alt="{\displaystyle \partial \Phi /\partial {y}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Phi /\partial {z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Phi /\partial {z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cad15b05ac5c6be36f0dd5d09809fc04179313d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.565ex; height:2.843ex;" alt="{\displaystyle \partial \Phi /\partial {z}}"></span> in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> directions, respectively. Luke's Lagrangian formulation can also be recast into a <a href="/wiki/Hamiltonian_mechanics" title="Hamiltonian mechanics">Hamiltonian formulation</a> in terms of the surface elevation and velocity potential at the free surface.<sup id="cite_ref-Miles1977_10-0" class="reference"><a href="#cite_note-Miles1977-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Taking the variations of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}(\Phi ,\zeta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo>,</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}(\Phi ,\zeta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901d07973aae5382470b2d3655cb98ac38e07d24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.22ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}(\Phi ,\zeta )}"></span> with respect to the potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x,y,z,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x,y,z,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3966d3f926d8c9bd26f5dee5f540a2a027647e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.002ex; height:2.843ex;" alt="{\displaystyle \Phi (x,y,z,t)}"></span> and surface elevation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (x,y,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (x,y,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f604f182a2de6f3089c7bf98d4e7acf62862faa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.297ex; height:2.843ex;" alt="{\displaystyle \zeta (x,y,t)}"></span> leads to the <a href="/wiki/Laplace_equation" class="mw-redirect" title="Laplace equation">Laplace equation</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed80a2011a3912b028ba32a52dfa57165455f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Phi }"></span> in the fluid interior, as well as all the boundary conditions both on the free surface <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=\zeta (x,y,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=\zeta (x,y,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c787343d228cff82cab3b9d5c5819f01345c380" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.484ex; height:2.843ex;" alt="{\displaystyle z=\zeta (x,y,t)}"></span> as at the bed at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=-h(x,y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=-h(x,y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bfa790551a3dcf432d8c5834864eaf2e7e1c992" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.309ex; height:2.843ex;" alt="{\displaystyle z=-h(x,y).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Linear_wave_theory">Linear wave theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=6" title="Edit section: Linear wave theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In case of linear wave theory, the vertical integral in the Lagrangian density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> is split into a part from the bed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=-h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=-h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fab042aeef8b57ff6db8bb8a16fea9721a9c524e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.334ex; height:2.343ex;" alt="{\displaystyle z=-h}"></span> to the mean surface at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/463359fa7c7563dc29f2079e63195b0035f1ab5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.996ex; height:2.509ex;" alt="{\displaystyle z=0,}"></span> and a second part from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b92bfc06485cc90286474b14a516a68d8bfdd7b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.349ex; height:2.176ex;" alt="{\displaystyle z=0}"></span> to the free surface <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=\zeta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>&#x03B6;<!-- ζ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=\zeta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5ea3147863c519c5919661b33bf50cefa3630c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.282ex; height:2.509ex;" alt="{\displaystyle z=\zeta }"></span>. Using a <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> expansion for the second integral around the mean free-surface elevation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/463359fa7c7563dc29f2079e63195b0035f1ab5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.996ex; height:2.509ex;" alt="{\displaystyle z=0,}"></span> and only retaining quadratic terms in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed80a2011a3912b028ba32a52dfa57165455f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Phi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2579c0a35d39cc67c4fab7a644b786cf6d22ec16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.742ex; height:2.509ex;" alt="{\displaystyle \zeta ,}"></span> the Lagrangian density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db742b8c210fc611329a4c2dcc3af4b4e1a110cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.637ex; height:2.509ex;" alt="{\displaystyle L_{0}}"></span> for linear wave motion becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{0}=-\rho \,\left\{\zeta \,\left[{\frac {\partial \Phi }{\partial t}}\right]_{z=0}\,+\,\int _{-h}^{0}{\frac {1}{2}}\left[\left({\frac {\partial \Phi }{\partial x}}\right)^{2}+\left({\frac {\partial \Phi }{\partial y}}\right)^{2}+\left({\frac {\partial \Phi }{\partial z}}\right)^{2}\right]\;{\text{d}}z\;+\,{\frac {1}{2}}\,g\,\zeta ^{2}\,\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mspace width="thinmathspace" /> <mrow> <mo>{</mo> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mspace width="thinmathspace" /> <msub> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>z</mi> <mspace width="thickmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>g</mi> <mspace width="thinmathspace" /> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{0}=-\rho \,\left\{\zeta \,\left[{\frac {\partial \Phi }{\partial t}}\right]_{z=0}\,+\,\int _{-h}^{0}{\frac {1}{2}}\left[\left({\frac {\partial \Phi }{\partial x}}\right)^{2}+\left({\frac {\partial \Phi }{\partial y}}\right)^{2}+\left({\frac {\partial \Phi }{\partial z}}\right)^{2}\right]\;{\text{d}}z\;+\,{\frac {1}{2}}\,g\,\zeta ^{2}\,\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f38cab641014b9c80f19baf788daafe013a10ae2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:82.357ex; height:7.509ex;" alt="{\displaystyle L_{0}=-\rho \,\left\{\zeta \,\left[{\frac {\partial \Phi }{\partial t}}\right]_{z=0}\,+\,\int _{-h}^{0}{\frac {1}{2}}\left[\left({\frac {\partial \Phi }{\partial x}}\right)^{2}+\left({\frac {\partial \Phi }{\partial y}}\right)^{2}+\left({\frac {\partial \Phi }{\partial z}}\right)^{2}\right]\;{\text{d}}z\;+\,{\frac {1}{2}}\,g\,\zeta ^{2}\,\right\}.}"></span> </p><p>The term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial \Phi /\partial {t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial \Phi /\partial {t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2040393cdd89a0bf61a9f842bdce4210d2bfad4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.316ex; height:2.843ex;" alt="{\displaystyle \partial \Phi /\partial {t}}"></span> in the vertical integral is dropped since it has become dynamically uninteresting: it gives a zero contribution to the <a href="/wiki/Euler%E2%80%93Lagrange_equation" title="Euler–Lagrange equation">Euler–Lagrange equations</a>, with the upper integration limit now fixed. The same is true for the neglected bottom term proportional to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ee96b2a49abab22ea200cc66ab956379d0c4773" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.393ex; height:2.676ex;" alt="{\displaystyle h^{2}}"></span> in the potential energy. </p><p>The waves propagate in the horizontal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span> plane, while the structure of the potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed80a2011a3912b028ba32a52dfa57165455f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Phi }"></span> is not wave-like in the vertical <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>-direction. This suggests the use of the following assumption on the form of the potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi :}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi :}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa7ea40abe90cb7f3836387a714e03f5e7b9edd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.97ex; height:2.176ex;" alt="{\displaystyle \Phi :}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x,y,z,t)=f(z;x,y)\,\varphi (x,y,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>;</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x,y,z,t)=f(z;x,y)\,\varphi (x,y,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74da03d975a934dbddc46c0d5a9a643738c17796" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.939ex; height:2.843ex;" alt="{\displaystyle \Phi (x,y,z,t)=f(z;x,y)\,\varphi (x,y,t)}"></span> with normalisation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0;x,y)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>;</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0;x,y)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b016b3ed3bd2de72622569e18ce38f3de53e68ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.064ex; height:2.843ex;" alt="{\displaystyle f(0;x,y)=1}"></span> at the mean free-surface elevation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c4b4f587279c117e1bc45384fbd68d090bf4b8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.996ex; height:2.176ex;" alt="{\displaystyle z=0.}"></span> </p><p>Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x,y,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x,y,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8faed7deab8d4cfb3e377b754c14a25ed85c2e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.722ex; height:2.843ex;" alt="{\displaystyle \varphi (x,y,t)}"></span> is the velocity potential at the mean free-surface level <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c4b4f587279c117e1bc45384fbd68d090bf4b8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.996ex; height:2.176ex;" alt="{\displaystyle z=0.}"></span> Next, the mild-slope assumption is made, in that the vertical shape function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> changes slowly in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41cf50e4a314ca8e2c30964baa8d26e5be7a9386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle (x,y)}"></span>-plane, and horizontal derivatives of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> can be neglected in the flow velocity. So: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}{\dfrac {\partial \Phi }{\partial {x}}}\\[2ex]{\dfrac {\partial \Phi }{\partial {y}}}\\[2ex]{\dfrac {\partial \Phi }{\partial {z}}}\end{pmatrix}}\,\approx \,{\begin{pmatrix}f{\dfrac {\partial \varphi }{\partial {x}}}\\[2ex]f{\dfrac {\partial \varphi }{\partial {y}}}\\[2ex]{\dfrac {\partial {f}}{\partial {z}}}\,\varphi \end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="1.26em 1.26em 0.4em" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>&#x2248;<!-- ≈ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="1.26em 1.26em 0.4em" columnspacing="1em"> <mtr> <mtd> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </mrow> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </mrow> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}{\dfrac {\partial \Phi }{\partial {x}}}\\[2ex]{\dfrac {\partial \Phi }{\partial {y}}}\\[2ex]{\dfrac {\partial \Phi }{\partial {z}}}\end{pmatrix}}\,\approx \,{\begin{pmatrix}f{\dfrac {\partial \varphi }{\partial {x}}}\\[2ex]f{\dfrac {\partial \varphi }{\partial {y}}}\\[2ex]{\dfrac {\partial {f}}{\partial {z}}}\,\varphi \end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc2bb53daedd2e2511aed21380b4c1a2e23c0cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:23.328ex; height:22.176ex;" alt="{\displaystyle {\begin{pmatrix}{\dfrac {\partial \Phi }{\partial {x}}}\\[2ex]{\dfrac {\partial \Phi }{\partial {y}}}\\[2ex]{\dfrac {\partial \Phi }{\partial {z}}}\end{pmatrix}}\,\approx \,{\begin{pmatrix}f{\dfrac {\partial \varphi }{\partial {x}}}\\[2ex]f{\dfrac {\partial \varphi }{\partial {y}}}\\[2ex]{\dfrac {\partial {f}}{\partial {z}}}\,\varphi \end{pmatrix}}.}"></span> </p><p>As a result: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{0}=-\rho \left\{\zeta {\frac {\partial \varphi }{\partial t}}\,+{\frac {1}{2}}\,F\left[\left({\frac {\partial \varphi }{\partial {x}}}\right)^{2}+\left({\frac {\partial \varphi }{\partial {y}}}\right)^{2}\right]\,+{\frac {1}{2}}\,G\varphi ^{2}+{\frac {1}{2}}\,g\zeta ^{2}\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mrow> <mo>{</mo> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>F</mi> <mrow> <mo>[</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>G</mi> <msup> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>g</mi> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{0}=-\rho \left\{\zeta {\frac {\partial \varphi }{\partial t}}\,+{\frac {1}{2}}\,F\left[\left({\frac {\partial \varphi }{\partial {x}}}\right)^{2}+\left({\frac {\partial \varphi }{\partial {y}}}\right)^{2}\right]\,+{\frac {1}{2}}\,G\varphi ^{2}+{\frac {1}{2}}\,g\zeta ^{2}\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b25ae10581cc07d78425fab1beb8e2b3a4d2a2ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:66.803ex; height:7.509ex;" alt="{\displaystyle L_{0}=-\rho \left\{\zeta {\frac {\partial \varphi }{\partial t}}\,+{\frac {1}{2}}\,F\left[\left({\frac {\partial \varphi }{\partial {x}}}\right)^{2}+\left({\frac {\partial \varphi }{\partial {y}}}\right)^{2}\right]\,+{\frac {1}{2}}\,G\varphi ^{2}+{\frac {1}{2}}\,g\zeta ^{2}\right\},}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}F&amp;=\int _{-h}^{0}f^{2}\,{\text{d}}z\\G&amp;=\int _{-h}^{0}\left({\frac {{\text{d}}f}{{\text{d}}z}}\right)^{2}{\text{d}}z.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>F</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <mi>G</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>f</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>z</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}F&amp;=\int _{-h}^{0}f^{2}\,{\text{d}}z\\G&amp;=\int _{-h}^{0}\left({\frac {{\text{d}}f}{{\text{d}}z}}\right)^{2}{\text{d}}z.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/499a34eb1ad2c9a9e6f5c81950e5a9bdd377b46b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:20.724ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}F&amp;=\int _{-h}^{0}f^{2}\,{\text{d}}z\\G&amp;=\int _{-h}^{0}\left({\frac {{\text{d}}f}{{\text{d}}z}}\right)^{2}{\text{d}}z.\end{aligned}}}"></span> </p><p>The <a href="/wiki/Euler%E2%80%93Lagrange_equation" title="Euler–Lagrange equation">Euler–Lagrange equations</a> for this Lagrangian density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db742b8c210fc611329a4c2dcc3af4b4e1a110cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.637ex; height:2.509ex;" alt="{\displaystyle L_{0}}"></span> are, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi (x,y,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi (x,y,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a5752e2eb2d11de5515e6d330b79e631a731906" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.232ex; height:2.843ex;" alt="{\displaystyle \xi (x,y,t)}"></span> representing either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta :}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta :}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c40a155dd976fc3705cbe4ffdcc47bff3b73bb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.387ex; height:2.509ex;" alt="{\displaystyle \zeta :}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial {L_{0}}}{\partial \xi }}-{\frac {\partial }{\partial {t}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {t})}}\right)-{\frac {\partial }{\partial {x}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {x})}}\right)-{\frac {\partial }{\partial {y}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {y})}}\right)=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial {L_{0}}}{\partial \xi }}-{\frac {\partial }{\partial {t}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {t})}}\right)-{\frac {\partial }{\partial {x}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {x})}}\right)-{\frac {\partial }{\partial {y}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {y})}}\right)=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b8bfe5e68819fff8884fdbf8ed65b509c24bf93" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:69.134ex; height:6.343ex;" alt="{\displaystyle {\frac {\partial {L_{0}}}{\partial \xi }}-{\frac {\partial }{\partial {t}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {t})}}\right)-{\frac {\partial }{\partial {x}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {x})}}\right)-{\frac {\partial }{\partial {y}}}\left({\frac {\partial {L_{0}}}{\partial (\partial \xi /\partial {y})}}\right)=0.}"></span> </p><p>Now <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BE;<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b461aaf61091abd5d2c808931c48b8ff9647db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.03ex; height:2.509ex;" alt="{\displaystyle \xi }"></span> is first taken equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> and then to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8843b83e5b60116bafbba232629752394ad08e56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.742ex; height:2.509ex;" alt="{\displaystyle \zeta .}"></span> As a result, the evolution equations for the wave motion become:<sup id="cite_ref-Dingemans_ms_4-3" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial \zeta }{\partial t}}\,&amp;+\nabla \cdot \left(F\,\nabla \varphi \right)-G\varphi =0\quad {\text{and}}\\{\frac {\partial \varphi }{\partial t}}\,&amp;+\,g\zeta =0,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B6;<!-- ζ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <mo>+</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>F</mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>G</mi> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mn>0</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <mo>+</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mi>&#x03B6;<!-- ζ --></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial \zeta }{\partial t}}\,&amp;+\nabla \cdot \left(F\,\nabla \varphi \right)-G\varphi =0\quad {\text{and}}\\{\frac {\partial \varphi }{\partial t}}\,&amp;+\,g\zeta =0,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a93e0232485f92ff5bc0b4c1a3ff84e387e19684" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:35.18ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial \zeta }{\partial t}}\,&amp;+\nabla \cdot \left(F\,\nabla \varphi \right)-G\varphi =0\quad {\text{and}}\\{\frac {\partial \varphi }{\partial t}}\,&amp;+\,g\zeta =0,\end{aligned}}}"></span> with <span class="texhtml">∇</span> the horizontal gradient operator: <span class="texhtml">∇ ≡ (∂/∂<i>x</i>, ∂/∂<i>y</i>)<sup>T</sup></span> where superscript <span class="texhtml">T</span> denotes the <a href="/wiki/Transpose" title="Transpose">transpose</a>. </p><p>The next step is to choose the shape function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and to determine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc645a5b7e8a2022ad70fc42dbda04c008a33a9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.474ex; height:2.176ex;" alt="{\displaystyle G.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Vertical_shape_function_from_Airy_wave_theory">Vertical shape function from Airy wave theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=7" title="Edit section: Vertical shape function from Airy wave theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since the objective is the description of waves over mildly sloping beds, the shape function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dd568d570b390c337c0a911f0a1c5c214e8240" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.176ex; height:2.843ex;" alt="{\displaystyle f(z)}"></span> is chosen according to <a href="/wiki/Airy_wave_theory" title="Airy wave theory">Airy wave theory</a>. This is the linear theory of waves propagating in constant depth <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d298611ab61576b6db29d9b50b6af8f12910fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.986ex; height:2.176ex;" alt="{\displaystyle h.}"></span> The form of the shape function is:<sup id="cite_ref-Dingemans_ms_4-4" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f={\frac {\cosh \left(k\left(z+h\right)\right)}{\cosh(kh)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mrow> <mo>(</mo> <mrow> <mi>z</mi> <mo>+</mo> <mi>h</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>cosh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f={\frac {\cosh \left(k\left(z+h\right)\right)}{\cosh(kh)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2558e371fc6dcc39c90b8e6030608bcc2f896dec" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.748ex; height:6.509ex;" alt="{\displaystyle f={\frac {\cosh \left(k\left(z+h\right)\right)}{\cosh(kh)}},}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d18e060406f195657b2151490ca3d491f7a7ce0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.54ex; height:2.843ex;" alt="{\displaystyle k(x,y)}"></span> now in general not a constant, but chosen to vary with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> according to the local depth <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7235c6799c7d4112231c9941bd428fe6a4111fe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.667ex; height:2.843ex;" alt="{\displaystyle h(x,y)}"></span> and the linear dispersion relation:<sup id="cite_ref-Dingemans_ms_4-5" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}^{2}=gk\tanh(kh).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mi>g</mi> <mi>k</mi> <mi>tanh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}^{2}=gk\tanh(kh).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/101d3274f6db916413ce087dbb89b8f27e48d364" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.971ex; height:3.176ex;" alt="{\displaystyle \omega _{0}^{2}=gk\tanh(kh).}"></span> </p><p>Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}"></span> a constant angular frequency, chosen in accordance with the characteristics of the wave field under study. Consequently, the integrals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> become:<sup id="cite_ref-Dingemans_ms_4-6" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}F&amp;=\int _{h}^{0}f^{2}\,{\text{d}}z={\frac {1}{g}}c_{p}c_{g}\quad {\text{and}}\\G&amp;=\int _{h}^{0}\left({\frac {\partial f}{\partial z}}\right)^{2}{\text{d}}z={\frac {1}{g}}\left(\omega _{0}^{2}-k^{2}c_{p}c_{g}\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>F</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>g</mi> </mfrac> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>G</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>d</mtext> </mrow> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>g</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}F&amp;=\int _{h}^{0}f^{2}\,{\text{d}}z={\frac {1}{g}}c_{p}c_{g}\quad {\text{and}}\\G&amp;=\int _{h}^{0}\left({\frac {\partial f}{\partial z}}\right)^{2}{\text{d}}z={\frac {1}{g}}\left(\omega _{0}^{2}-k^{2}c_{p}c_{g}\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5207a7deeab1202c1094ccb8913e78f447c51386" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:40.219ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}F&amp;=\int _{h}^{0}f^{2}\,{\text{d}}z={\frac {1}{g}}c_{p}c_{g}\quad {\text{and}}\\G&amp;=\int _{h}^{0}\left({\frac {\partial f}{\partial z}}\right)^{2}{\text{d}}z={\frac {1}{g}}\left(\omega _{0}^{2}-k^{2}c_{p}c_{g}\right).\end{aligned}}}"></span> </p> </div></div> <p>The following time-dependent equations give the evolution of the free-surface elevation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (x,y,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (x,y,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f604f182a2de6f3089c7bf98d4e7acf62862faa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.297ex; height:2.843ex;" alt="{\displaystyle \zeta (x,y,t)}"></span> and free-surface potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (x,y,t):}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (x,y,t):}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/595aa42850d3df54741e8e66bb156187b75503d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.879ex; height:2.843ex;" alt="{\displaystyle \phi (x,y,t):}"></span><sup id="cite_ref-Dingemans_ms_4-7" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}g\,{\frac {\partial \zeta }{\partial {t}}}&amp;+\nabla \cdot \left(c_{p}c_{g}\,\nabla \varphi \right)+\left(k^{2}c_{p}c_{g}-\omega _{0}^{2}\right)\varphi =0,\\{\frac {\partial \varphi }{\partial {t}}}&amp;+g\zeta =0,\quad {\text{with}}\quad \omega _{0}^{2}=gk\tanh(kh).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B6;<!-- ζ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>+</mo> <mi>g</mi> <mi>&#x03B6;<!-- ζ --></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>with</mtext> </mrow> <mspace width="1em" /> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mi>g</mi> <mi>k</mi> <mi>tanh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}g\,{\frac {\partial \zeta }{\partial {t}}}&amp;+\nabla \cdot \left(c_{p}c_{g}\,\nabla \varphi \right)+\left(k^{2}c_{p}c_{g}-\omega _{0}^{2}\right)\varphi =0,\\{\frac {\partial \varphi }{\partial {t}}}&amp;+g\zeta =0,\quad {\text{with}}\quad \omega _{0}^{2}=gk\tanh(kh).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01cee8a412ee0a788719d0ee44ab5da4f87e1474" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:45.191ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}g\,{\frac {\partial \zeta }{\partial {t}}}&amp;+\nabla \cdot \left(c_{p}c_{g}\,\nabla \varphi \right)+\left(k^{2}c_{p}c_{g}-\omega _{0}^{2}\right)\varphi =0,\\{\frac {\partial \varphi }{\partial {t}}}&amp;+g\zeta =0,\quad {\text{with}}\quad \omega _{0}^{2}=gk\tanh(kh).\end{aligned}}}"></span> </p><p>From the two evolution equations, one of the variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c3916703cae7938143d38865f78f27faadd4ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.095ex; height:2.509ex;" alt="{\displaystyle \zeta }"></span> can be eliminated, to obtain the time-dependent form of the mild-slope equation:<sup id="cite_ref-Dingemans_ms_4-8" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial ^{2}\zeta }{\partial t^{2}}}+\nabla \cdot \left(c_{p}c_{g}\,\nabla \zeta \right)+\left(k^{2}c_{p}c_{g}-\omega _{0}^{2}\right)\zeta =0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>&#x03B6;<!-- ζ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B6;<!-- ζ --></mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial ^{2}\zeta }{\partial t^{2}}}+\nabla \cdot \left(c_{p}c_{g}\,\nabla \zeta \right)+\left(k^{2}c_{p}c_{g}-\omega _{0}^{2}\right)\zeta =0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a758b6c55471512607672f081b0396b7d1d3886" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:44.974ex; height:6.009ex;" alt="{\displaystyle -{\frac {\partial ^{2}\zeta }{\partial t^{2}}}+\nabla \cdot \left(c_{p}c_{g}\,\nabla \zeta \right)+\left(k^{2}c_{p}c_{g}-\omega _{0}^{2}\right)\zeta =0,}"></span> and the corresponding equation for the free-surface potential is identical, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c3916703cae7938143d38865f78f27faadd4ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.095ex; height:2.509ex;" alt="{\displaystyle \zeta }"></span> replaced by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0b6c90c1e9984232aed2d530ac2fb2660ea000a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.167ex; height:2.176ex;" alt="{\displaystyle \varphi .}"></span> The time-dependent mild-slope equation can be used to model waves in a narrow band of frequencies around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e11b59c293cf0a159b7ddd63ae5a43c720a59a4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.147ex; height:2.009ex;" alt="{\displaystyle \omega _{0}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Monochromatic_waves">Monochromatic waves</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=8" title="Edit section: Monochromatic waves"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider monochromatic waves with complex amplitude <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta (x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta (x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e47d88d7b005cde292435a8b17b73bae5501e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.498ex; height:2.843ex;" alt="{\displaystyle \eta (x,y)}"></span> and angular frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (x,y,t)=\Re \left\{\eta (x,y)\,e^{-i\omega it}\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow> <mo>{</mo> <mrow> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>i</mi> <mi>t</mi> </mrow> </msup> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (x,y,t)=\Re \left\{\eta (x,y)\,e^{-i\omega it}\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b63c0f0536d66deeb1215f429bf2de232197b295" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.681ex; height:3.343ex;" alt="{\displaystyle \zeta (x,y,t)=\Re \left\{\eta (x,y)\,e^{-i\omega it}\right\},}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}"></span> chosen equal to each other, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =\omega _{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =\omega _{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45544f4b8701c914cf79cc606665500ac03109d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.691ex; height:2.009ex;" alt="{\displaystyle \omega =\omega _{0}.}"></span> Using this in the time-dependent form of the mild-slope equation, recovers the classical mild-slope equation for time-harmonic wave motion:<sup id="cite_ref-Dingemans_ms_4-9" class="reference"><a href="#cite_note-Dingemans_ms-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot \left(c_{p}\,c_{g}\,\nabla \eta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,\eta \,=\,0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>&#x03B7;<!-- η --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>&#x03B7;<!-- η --></mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla \cdot \left(c_{p}\,c_{g}\,\nabla \eta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,\eta \,=\,0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/504018eba41eb6f06f79faf17240301c7dbf30a5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.385ex; height:3.343ex;" alt="{\displaystyle \nabla \cdot \left(c_{p}\,c_{g}\,\nabla \eta \right)\,+\,k^{2}\,c_{p}\,c_{g}\,\eta \,=\,0.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Applicability_and_validity_of_the_mild-slope_equation">Applicability and validity of the mild-slope equation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=9" title="Edit section: Applicability and validity of the mild-slope equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The standard mild slope equation, without extra terms for bed slope and bed curvature, provides accurate results for the wave field over bed slopes ranging from 0 to about 1/3.<sup id="cite_ref-Booij1983_11-0" class="reference"><a href="#cite_note-Booij1983-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> However, some subtle aspects, like the amplitude of reflected waves, can be completely wrong, even for slopes going to zero. This mathematical curiosity has little practical importance in general since this reflection becomes vanishingly small for small bottom slopes. </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=10" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFEckart1952" class="citation cs2"><a href="/wiki/Carl_Eckart" title="Carl Eckart">Eckart, C.</a> (1952), <a rel="nofollow" class="external text" href="https://archive.org/details/circularofbureau521unse#page/164/mode/2up/search/165">"The propagation of gravity waves from deep to shallow water"</a>, <i>Circular 20</i>, National Bureau of Standards: 165–173, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1952grwa.conf..165E">1952grwa.conf..165E</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Circular+20&amp;rft.atitle=The+propagation+of+gravity+waves+from+deep+to+shallow+water&amp;rft.pages=165-173&amp;rft.date=1952&amp;rft_id=info%3Abibcode%2F1952grwa.conf..165E&amp;rft.aulast=Eckart&amp;rft.aufirst=C.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcircularofbureau521unse%23page%2F164%2Fmode%2F2up%2Fsearch%2F165&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerkhoff1972" class="citation cs2">Berkhoff, J. C. W. (1972), "Computation of combined refraction–diffraction", <a rel="nofollow" class="external text" href="http://journals.tdl.org/ICCE/article/view/2767"><i>Proceedings 13th International Conference on Coastal Engineering</i></a>, Vancouver, pp.&#160;471–490, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.9753%2Ficce.v13.23">10.9753/icce.v13.23</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Computation+of+combined+refraction%E2%80%93diffraction&amp;rft.btitle=Proceedings+13th+International+Conference+on+Coastal+Engineering&amp;rft.place=Vancouver&amp;rft.pages=471-490&amp;rft.date=1972&amp;rft_id=info%3Adoi%2F10.9753%2Ficce.v13.23&amp;rft.aulast=Berkhoff&amp;rft.aufirst=J.+C.+W.&amp;rft_id=http%3A%2F%2Fjournals.tdl.org%2FICCE%2Farticle%2Fview%2F2767&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerkhoff1976" class="citation cs2">Berkhoff, J. C. W. (1976), <a rel="nofollow" class="external text" href="http://repository.tudelft.nl/assets/uuid:381c691b-eea8-4f67-be8f-d471a7da1d58/261254.pdf"><i>Mathematical models for simple harmonic linear water wave models; wave refraction and diffraction</i></a> <span class="cs1-format">(PDF)</span> (PhD. Thesis), Delft University of Technology</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+models+for+simple+harmonic+linear+water+wave+models%3B+wave+refraction+and+diffraction&amp;rft.pub=Delft+University+of+Technology&amp;rft.date=1976&amp;rft.aulast=Berkhoff&amp;rft.aufirst=J.+C.+W.&amp;rft_id=http%3A%2F%2Frepository.tudelft.nl%2Fassets%2Fuuid%3A381c691b-eea8-4f67-be8f-d471a7da1d58%2F261254.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></span> </li> <li id="cite_note-Dingemans_ms-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-Dingemans_ms_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Dingemans_ms_4-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFDingemans1997">Dingemans (1997</a>, pp.&#160;248–256 &amp; 378–379)</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFDingemans1997">Dingemans (1997</a>, p.&#160;49)</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFMei1994">Mei (1994</a>, pp.&#160;86–89)</span> </li> <li id="cite_note-Dingemans_259_263-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Dingemans_259_263_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Dingemans_259_263_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Dingemans_259_263_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Dingemans_259_263_7-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFDingemans1997">Dingemans (1997</a>, pp.&#160;259–262)</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBooij1981" class="citation cs2">Booij, N. (1981), <a rel="nofollow" class="external text" href="http://repository.tudelft.nl/assets/uuid:05f9b2b1-b237-491f-927a-2a470e0808f3/Booij1981.pdf"><i>Gravity waves on water with non-uniform depth and current</i></a> <span class="cs1-format">(PDF)</span> (PhD. Thesis), Delft University of Technology, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981PhDT........37B">1981PhDT........37B</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravity+waves+on+water+with+non-uniform+depth+and+current&amp;rft.pub=Delft+University+of+Technology&amp;rft.date=1981&amp;rft_id=info%3Abibcode%2F1981PhDT........37B&amp;rft.aulast=Booij&amp;rft.aufirst=N.&amp;rft_id=http%3A%2F%2Frepository.tudelft.nl%2Fassets%2Fuuid%3A05f9b2b1-b237-491f-927a-2a470e0808f3%2FBooij1981.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuke1967" class="citation cs2">Luke, J. C. (1967), "A variational principle for a fluid with a free surface", <i>Journal of Fluid Mechanics</i>, <b>27</b> (2): 395–397, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1967JFM....27..395L">1967JFM....27..395L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0022112067000412">10.1017/S0022112067000412</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123409273">123409273</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Fluid+Mechanics&amp;rft.atitle=A+variational+principle+for+a+fluid+with+a+free+surface&amp;rft.volume=27&amp;rft.issue=2&amp;rft.pages=395-397&amp;rft.date=1967&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123409273%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FS0022112067000412&amp;rft_id=info%3Abibcode%2F1967JFM....27..395L&amp;rft.aulast=Luke&amp;rft.aufirst=J.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></span> </li> <li id="cite_note-Miles1977-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Miles1977_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiles1977" class="citation cs2"><a href="/wiki/John_W._Miles" title="John W. Miles">Miles, J. W.</a> (1977), "On Hamilton's principle for surface waves", <i>Journal of Fluid Mechanics</i>, <b>83</b> (1): 153–158, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977JFM....83..153M">1977JFM....83..153M</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0022112077001104">10.1017/S0022112077001104</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121777750">121777750</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Fluid+Mechanics&amp;rft.atitle=On+Hamilton%27s+principle+for+surface+waves&amp;rft.volume=83&amp;rft.issue=1&amp;rft.pages=153-158&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121777750%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FS0022112077001104&amp;rft_id=info%3Abibcode%2F1977JFM....83..153M&amp;rft.aulast=Miles&amp;rft.aufirst=J.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></span> </li> <li id="cite_note-Booij1983-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Booij1983_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBooij1983" class="citation cs2">Booij, N. (1983), "A note on the accuracy of the mild-slope equation", <i>Coastal Engineering</i>, <b>7</b> (1): 191–203, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983CoasE...7..191B">1983CoasE...7..191B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0378-3839%2883%2990017-0">10.1016/0378-3839(83)90017-0</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Coastal+Engineering&amp;rft.atitle=A+note+on+the+accuracy+of+the+mild-slope+equation&amp;rft.volume=7&amp;rft.issue=1&amp;rft.pages=191-203&amp;rft.date=1983&amp;rft_id=info%3Adoi%2F10.1016%2F0378-3839%2883%2990017-0&amp;rft_id=info%3Abibcode%2F1983CoasE...7..191B&amp;rft.aulast=Booij&amp;rft.aufirst=N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Mild-slope_equation&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDingemans1997" class="citation cs2">Dingemans, M. W. (1997), <i>Water wave propagation over uneven bottoms</i>, Advanced Series on Ocean Engineering, vol.&#160;13, World Scientific, Singapore, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/981-02-0427-2" title="Special:BookSources/981-02-0427-2"><bdi>981-02-0427-2</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/36126836">36126836</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Water+wave+propagation+over+uneven+bottoms&amp;rft.series=Advanced+Series+on+Ocean+Engineering&amp;rft.pub=World+Scientific%2C+Singapore&amp;rft.date=1997&amp;rft_id=info%3Aoclcnum%2F36126836&amp;rft.isbn=981-02-0427-2&amp;rft.aulast=Dingemans&amp;rft.aufirst=M.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span>, 2 Parts, 967 pages.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiu1990" class="citation cs2">Liu, P. L.-F. (1990), "Wave transformation", in B. Le Méhauté and D. M. Hanes (ed.), <i>Ocean Engineering Science</i>, The Sea, vol.&#160;9A, Wiley Interscience, pp.&#160;27–63, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-52856-0" title="Special:BookSources/0-471-52856-0"><bdi>0-471-52856-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Wave+transformation&amp;rft.btitle=Ocean+Engineering+Science&amp;rft.series=The+Sea&amp;rft.pages=27-63&amp;rft.pub=Wiley+Interscience&amp;rft.date=1990&amp;rft.isbn=0-471-52856-0&amp;rft.aulast=Liu&amp;rft.aufirst=P.+L.-F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMei1994" class="citation cs2"><a href="/wiki/Chiang_C._Mei" title="Chiang C. Mei">Mei, Chiang C.</a> (1994), <i>The applied dynamics of ocean surface waves</i>, Advanced Series on Ocean Engineering, vol.&#160;1, World Scientific, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9971-5-0789-7" title="Special:BookSources/9971-5-0789-7"><bdi>9971-5-0789-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+applied+dynamics+of+ocean+surface+waves&amp;rft.series=Advanced+Series+on+Ocean+Engineering&amp;rft.pub=World+Scientific&amp;rft.date=1994&amp;rft.isbn=9971-5-0789-7&amp;rft.aulast=Mei&amp;rft.aufirst=Chiang+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span>, 740 pages.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPorterChamberlain1997" class="citation cs2">Porter, D.; Chamberlain, P. G. (1997), "Linear wave scattering by two-dimensional topography", in J. N. Hunt (ed.), <i>Gravity waves in water of finite depth</i>, Advances in Fluid Mechanics, vol.&#160;10, Computational Mechanics Publications, pp.&#160;13–53, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-85312-351-X" title="Special:BookSources/1-85312-351-X"><bdi>1-85312-351-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Linear+wave+scattering+by+two-dimensional+topography&amp;rft.btitle=Gravity+waves+in+water+of+finite+depth&amp;rft.series=Advances+in+Fluid+Mechanics&amp;rft.pages=13-53&amp;rft.pub=Computational+Mechanics+Publications&amp;rft.date=1997&amp;rft.isbn=1-85312-351-X&amp;rft.aulast=Porter&amp;rft.aufirst=D.&amp;rft.au=Chamberlain%2C+P.+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPorter2003" class="citation cs2">Porter, D. (2003), "The mild-slope equations", <i>Journal of Fluid Mechanics</i>, <b>494</b>: 51–63, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003JFM...494...51P">2003JFM...494...51P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0022112003005846">10.1017/S0022112003005846</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121112316">121112316</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Fluid+Mechanics&amp;rft.atitle=The+mild-slope+equations&amp;rft.volume=494&amp;rft.pages=51-63&amp;rft.date=2003&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121112316%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FS0022112003005846&amp;rft_id=info%3Abibcode%2F2003JFM...494...51P&amp;rft.aulast=Porter&amp;rft.aufirst=D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMild-slope+equation" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Physical_oceanography" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Physical_oceanography" title="Template:Physical oceanography"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Physical_oceanography" title="Template talk:Physical oceanography"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Physical_oceanography" title="Special:EditPage/Template:Physical oceanography"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Physical_oceanography" style="font-size:114%;margin:0 4em"><a href="/wiki/Physical_oceanography" title="Physical oceanography">Physical oceanography</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Wind_wave" title="Wind wave">Waves</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Airy_wave_theory" title="Airy wave theory">Airy wave theory</a></li> <li><a href="/wiki/Ballantine_scale" title="Ballantine scale">Ballantine scale</a></li> <li><a href="/wiki/Modulational_instability" title="Modulational instability">Benjamin–Feir instability</a></li> <li><a href="/wiki/Boussinesq_approximation_(water_waves)" title="Boussinesq approximation (water waves)">Boussinesq approximation</a></li> <li><a href="/wiki/Breaking_wave" title="Breaking wave">Breaking wave</a></li> <li><a href="/wiki/Clapotis" title="Clapotis">Clapotis</a></li> <li><a href="/wiki/Cnoidal_wave" title="Cnoidal wave">Cnoidal wave</a></li> <li><a href="/wiki/Cross_sea" title="Cross sea">Cross sea</a></li> <li><a href="/wiki/Dispersion_(water_waves)" title="Dispersion (water waves)">Dispersion</a></li> <li><a href="/wiki/Edge_wave" title="Edge wave">Edge wave</a></li> <li><a href="/wiki/Equatorial_wave" title="Equatorial wave">Equatorial waves</a></li> <li><a href="/wiki/Gravity_wave" title="Gravity wave">Gravity wave</a></li> <li><a href="/wiki/Green%27s_law" title="Green&#39;s law">Green's law</a></li> <li><a href="/wiki/Infragravity_wave" title="Infragravity wave">Infragravity wave</a></li> <li><a href="/wiki/Internal_wave" title="Internal wave">Internal wave</a></li> <li><a href="/wiki/Iribarren_number" title="Iribarren number">Iribarren number</a></li> <li><a href="/wiki/Kelvin_wave" title="Kelvin wave">Kelvin wave</a></li> <li><a href="/wiki/Kinematic_wave" title="Kinematic wave">Kinematic wave</a></li> <li><a href="/wiki/Longshore_drift" title="Longshore drift">Longshore drift</a></li> <li><a href="/wiki/Luke%27s_variational_principle" title="Luke&#39;s variational principle">Luke's variational principle</a></li> <li><a class="mw-selflink selflink">Mild-slope equation</a></li> <li><a href="/wiki/Radiation_stress" title="Radiation stress">Radiation stress</a></li> <li><a href="/wiki/Rogue_wave" title="Rogue wave">Rogue wave</a></li> <li><a href="/wiki/Rossby_wave" title="Rossby wave">Rossby wave</a></li> <li><a href="/wiki/Rossby-gravity_waves" title="Rossby-gravity waves">Rossby-gravity waves</a></li> <li><a href="/wiki/Sea_state" title="Sea state">Sea state</a></li> <li><a href="/wiki/Seiche" title="Seiche">Seiche</a></li> <li><a href="/wiki/Significant_wave_height" title="Significant wave height">Significant wave height</a></li> <li><a href="/wiki/Soliton" title="Soliton">Soliton</a></li> <li><a href="/wiki/Stokes_drift" title="Stokes drift">Stokes drift</a></li> <li><a href="/wiki/Stokes_problem" title="Stokes problem">Stokes problem</a></li> <li><a href="/wiki/Stokes_wave" title="Stokes wave">Stokes wave</a></li> <li><a href="/wiki/Swell_(ocean)" title="Swell (ocean)">Swell</a></li> <li><a href="/wiki/Trochoidal_wave" title="Trochoidal wave">Trochoidal wave</a></li> <li><a href="/wiki/Tsunami" title="Tsunami">Tsunami</a> <ul><li><a href="/wiki/Megatsunami" title="Megatsunami">megatsunami</a></li></ul></li> <li><a href="/wiki/Undertow_(water_waves)" title="Undertow (water waves)">Undertow</a></li> <li><a href="/wiki/Ursell_number" title="Ursell number">Ursell number</a></li> <li><a href="/wiki/Wave_action_(continuum_mechanics)" title="Wave action (continuum mechanics)">Wave action</a></li> <li><a href="/wiki/Wave_base" title="Wave base">Wave base</a></li> <li><a href="/wiki/Wave_height" title="Wave height">Wave height</a></li> <li><a href="/wiki/Wave_nonlinearity" title="Wave nonlinearity">Wave nonlinearity</a></li> <li><a href="/wiki/Wave_power" title="Wave power">Wave power</a></li> <li><a href="/wiki/Wave_radar" title="Wave radar">Wave radar</a></li> <li><a href="/wiki/Wave_setup" title="Wave setup">Wave setup</a></li> <li><a href="/wiki/Wave_shoaling" title="Wave shoaling">Wave shoaling</a></li> <li><a href="/wiki/Wave_turbulence" title="Wave turbulence">Wave turbulence</a></li> <li><a href="/wiki/Wave%E2%80%93current_interaction" title="Wave–current interaction">Wave–current interaction</a></li> <li><a href="/wiki/Waves_and_shallow_water" title="Waves and shallow water">Waves and shallow water</a> <ul><li><a href="/wiki/One-dimensional_Saint-Venant_equations" class="mw-redirect" title="One-dimensional Saint-Venant equations">one-dimensional Saint-Venant equations</a></li> <li><a href="/wiki/Shallow_water_equations" title="Shallow water equations">shallow water equations</a></li></ul></li> <li><a href="/wiki/Wind_fetch" title="Wind fetch">Wind fetch</a></li> <li><a href="/wiki/Wind_setup" title="Wind setup">Wind setup</a></li> <li><a href="/wiki/Wind_wave" title="Wind wave">Wind wave</a> <ul><li><a href="/wiki/Wind_wave_model" title="Wind wave model">model</a></li></ul></li></ul> </div></td><td class="noviewer navbox-image" rowspan="10" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Upwelling.svg" class="mw-file-description" title="Upwelling"><img alt="Upwelling" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Upwelling.svg/120px-Upwelling.svg.png" decoding="async" width="120" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Upwelling.svg/180px-Upwelling.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Upwelling.svg/240px-Upwelling.svg.png 2x" data-file-width="365" data-file-height="242" /></a></span><br /><br /><br /><br /><br /><br /><span typeof="mw:File"><a href="/wiki/File:Antarctic_bottom_water.svg" class="mw-file-description" title="Antarctic bottom water"><img alt="Antarctic bottom water" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Antarctic_bottom_water.svg/120px-Antarctic_bottom_water.svg.png" decoding="async" width="120" height="76" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Antarctic_bottom_water.svg/180px-Antarctic_bottom_water.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Antarctic_bottom_water.svg/240px-Antarctic_bottom_water.svg.png 2x" data-file-width="745" data-file-height="470" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ocean_current" title="Ocean current">Circulation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atmospheric_circulation" title="Atmospheric circulation">Atmospheric circulation</a></li> <li><a href="/wiki/Baroclinity" title="Baroclinity">Baroclinity</a></li> <li><a href="/wiki/Boundary_current" title="Boundary current">Boundary current</a></li> <li><a href="/wiki/Coriolis_force" title="Coriolis force">Coriolis force</a></li> <li><a href="/wiki/Coriolis%E2%80%93Stokes_force" title="Coriolis–Stokes force">Coriolis–Stokes force</a></li> <li><a href="/wiki/Craik%E2%80%93Leibovich_vortex_force" title="Craik–Leibovich vortex force">Craik–Leibovich vortex force</a></li> <li><a href="/wiki/Downwelling" title="Downwelling">Downwelling</a></li> <li><a href="/wiki/Eddy_(fluid_dynamics)" title="Eddy (fluid dynamics)">Eddy</a></li> <li><a href="/wiki/Ekman_layer" title="Ekman layer">Ekman layer</a></li> <li><a href="/wiki/Ekman_spiral" title="Ekman spiral">Ekman spiral</a></li> <li><a href="/wiki/Ekman_transport" title="Ekman transport">Ekman transport</a></li> <li><a href="/wiki/El_Ni%C3%B1o%E2%80%93Southern_Oscillation" title="El Niño–Southern Oscillation">El Niño–Southern Oscillation</a></li> <li><a href="/wiki/General_circulation_model" title="General circulation model">General circulation model</a></li> <li><a href="/wiki/Geochemical_Ocean_Sections_Study" title="Geochemical Ocean Sections Study">Geochemical Ocean Sections Study</a></li> <li><a href="/wiki/Geostrophic_current" title="Geostrophic current">Geostrophic current</a></li> <li><a href="/wiki/Global_Ocean_Data_Analysis_Project" title="Global Ocean Data Analysis Project">Global Ocean Data Analysis Project</a></li> <li><a href="/wiki/Gulf_Stream" title="Gulf Stream">Gulf Stream</a></li> <li><a href="/wiki/Humboldt_Current" title="Humboldt Current">Humboldt Current</a></li> <li><a href="/wiki/Hydrothermal_circulation" title="Hydrothermal circulation">Hydrothermal circulation</a></li> <li><a href="/wiki/Langmuir_circulation" title="Langmuir circulation">Langmuir circulation</a></li> <li><a href="/wiki/Longshore_drift" title="Longshore drift">Longshore drift</a></li> <li><a href="/wiki/Loop_Current" title="Loop Current">Loop Current</a></li> <li><a href="/wiki/Modular_Ocean_Model" title="Modular Ocean Model">Modular Ocean Model</a></li> <li><a href="/wiki/Ocean_current" title="Ocean current">Ocean current</a></li> <li><a href="/wiki/Ocean_dynamical_thermostat" title="Ocean dynamical thermostat">Ocean dynamical thermostat</a></li> <li><a href="/wiki/Ocean_dynamics" title="Ocean dynamics">Ocean dynamics</a></li> <li><a href="/wiki/Ocean_gyre" title="Ocean gyre">Ocean gyre</a></li> <li><a href="/wiki/Overflow_(oceanography)" title="Overflow (oceanography)">Overflow</a></li> <li><a href="/wiki/Princeton_Ocean_Model" title="Princeton Ocean Model">Princeton Ocean Model</a></li> <li><a href="/wiki/Rip_current" title="Rip current">Rip current</a></li> <li><a href="/wiki/Subsurface_ocean_current" title="Subsurface ocean current">Subsurface ocean current</a></li> <li><a href="/wiki/Sverdrup_balance" title="Sverdrup balance">Sverdrup balance</a></li> <li><a href="/wiki/Thermohaline_circulation" title="Thermohaline circulation">Thermohaline circulation</a> <ul><li><a href="/wiki/Shutdown_of_thermohaline_circulation" class="mw-redirect" title="Shutdown of thermohaline circulation">shutdown</a></li></ul></li> <li><a href="/wiki/Upwelling" title="Upwelling">Upwelling</a></li> <li><a href="/wiki/Whirlpool" title="Whirlpool">Whirlpool</a></li> <li><a href="/wiki/Wind_generated_current" title="Wind generated current">Wind generated current</a></li> <li><a href="/wiki/World_Ocean_Circulation_Experiment" title="World Ocean Circulation Experiment">World Ocean Circulation Experiment</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Tide" title="Tide">Tides</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amphidromic_point" title="Amphidromic point">Amphidromic point</a></li> <li><a href="/wiki/Earth_tide" title="Earth tide">Earth tide</a></li> <li><a href="/wiki/Head_of_tide" title="Head of tide">Head of tide</a></li> <li><a href="/wiki/Internal_tide" title="Internal tide">Internal tide</a></li> <li><a href="/wiki/Lunitidal_interval" title="Lunitidal interval">Lunitidal interval</a></li> <li><a href="/wiki/Perigean_spring_tide" title="Perigean spring tide">Perigean spring tide</a></li> <li><a href="/wiki/Rip_tide" title="Rip tide">Rip tide</a></li> <li><a href="/wiki/Rule_of_twelfths" title="Rule of twelfths">Rule of twelfths</a></li> <li><a href="/wiki/Slack_tide" title="Slack tide">Slack tide</a></li> <li><a href="/wiki/Theory_of_tides" title="Theory of tides">Theory of tides</a></li> <li><a href="/wiki/Tidal_bore" title="Tidal bore">Tidal bore</a></li> <li><a href="/wiki/Tidal_force" title="Tidal force">Tidal force</a></li> <li><a href="/wiki/Tidal_power" title="Tidal power">Tidal power</a></li> <li><a href="/wiki/Tidal_race" title="Tidal race">Tidal race</a></li> <li><a href="/wiki/Tidal_range" title="Tidal range">Tidal range</a></li> <li><a href="/wiki/Tidal_resonance" title="Tidal resonance">Tidal resonance</a></li> <li><a href="/wiki/Tide_gauge" title="Tide gauge">Tide gauge</a></li> <li><a href="/wiki/Tideline" title="Tideline">Tideline</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Landform" title="Landform">Landforms</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abyssal_fan" title="Abyssal fan">Abyssal fan</a></li> <li><a href="/wiki/Abyssal_plain" title="Abyssal plain">Abyssal plain</a></li> <li><a href="/wiki/Atoll" title="Atoll">Atoll</a></li> <li><a href="/wiki/Bathymetric_chart" title="Bathymetric chart">Bathymetric chart</a></li> <li><a href="/wiki/Carbonate_platform" title="Carbonate platform">Carbonate platform</a></li> <li><a href="/wiki/Coastal_geography" title="Coastal geography">Coastal geography</a></li> <li><a href="/wiki/Cold_seep" title="Cold seep">Cold seep</a></li> <li><a href="/wiki/Continental_margin" title="Continental margin">Continental margin</a></li> <li><a href="/wiki/Continental_rise" title="Continental rise">Continental rise</a></li> <li><a href="/wiki/Continental_shelf" title="Continental shelf">Continental shelf</a></li> <li><a href="/wiki/Contourite" title="Contourite">Contourite</a></li> <li><a href="/wiki/Guyot" title="Guyot">Guyot</a></li> <li><a href="/wiki/Hydrography" title="Hydrography">Hydrography</a></li> <li><a href="/wiki/Knoll_(oceanography)" title="Knoll (oceanography)">Knoll</a></li> <li><a href="/wiki/Ocean_bank" title="Ocean bank">Ocean bank</a></li> <li><a href="/wiki/Oceanic_basin" title="Oceanic basin">Oceanic basin</a></li> <li><a href="/wiki/Oceanic_plateau" title="Oceanic plateau">Oceanic plateau</a></li> <li><a href="/wiki/Oceanic_trench" title="Oceanic trench">Oceanic trench</a></li> <li><a href="/wiki/Passive_margin" title="Passive margin">Passive margin</a></li> <li><a href="/wiki/Seabed" title="Seabed">Seabed</a></li> <li><a href="/wiki/Seamount" title="Seamount">Seamount</a></li> <li><a href="/wiki/Submarine_canyon" title="Submarine canyon">Submarine canyon</a></li> <li><a href="/wiki/Submarine_volcano" title="Submarine volcano">Submarine volcano</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Plate_tectonics" title="Plate tectonics">Plate<br />tectonics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convergent_boundary" title="Convergent boundary">Convergent boundary</a></li> <li><a href="/wiki/Divergent_boundary" title="Divergent boundary">Divergent boundary</a></li> <li><a href="/wiki/Fracture_zone" title="Fracture zone">Fracture zone</a></li> <li><a href="/wiki/Hydrothermal_vent" title="Hydrothermal vent">Hydrothermal vent</a></li> <li><a href="/wiki/Marine_geology" title="Marine geology">Marine geology</a></li> <li><a href="/wiki/Mid-ocean_ridge" title="Mid-ocean ridge">Mid-ocean ridge</a></li> <li><a href="/wiki/Mohorovi%C4%8Di%C4%87_discontinuity" title="Mohorovičić discontinuity">Mohorovičić discontinuity</a></li> <li><a href="/wiki/Oceanic_crust" title="Oceanic crust">Oceanic crust</a></li> <li><a href="/wiki/Outer_trench_swell" title="Outer trench swell">Outer trench swell</a></li> <li><a href="/wiki/Ridge_push" title="Ridge push">Ridge push</a></li> <li><a href="/wiki/Seafloor_spreading" title="Seafloor spreading">Seafloor spreading</a></li> <li><a href="/wiki/Slab_pull" title="Slab pull">Slab pull</a></li> <li><a href="/wiki/Slab_suction" title="Slab suction">Slab suction</a></li> <li><a href="/wiki/Slab_window" title="Slab window">Slab window</a></li> <li><a href="/wiki/Subduction" title="Subduction">Subduction</a></li> <li><a href="/wiki/Transform_fault" title="Transform fault">Transform fault</a></li> <li><a href="/wiki/Vine%E2%80%93Matthews%E2%80%93Morley_hypothesis" title="Vine–Matthews–Morley hypothesis">Vine–Matthews–Morley hypothesis</a></li> <li><a href="/wiki/Volcanic_arc" title="Volcanic arc">Volcanic arc</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Ocean zones</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benthic_zone" title="Benthic zone">Benthic</a></li> <li><a href="/wiki/Deep_ocean_water" title="Deep ocean water">Deep ocean water</a></li> <li><a href="/wiki/Deep_sea" title="Deep sea">Deep sea</a></li> <li><a href="/wiki/Littoral_zone" title="Littoral zone">Littoral</a></li> <li><a href="/wiki/Mesopelagic_zone" title="Mesopelagic zone">Mesopelagic</a></li> <li><a href="/wiki/Oceanic_zone" title="Oceanic zone">Oceanic</a></li> <li><a href="/wiki/Pelagic_zone" title="Pelagic zone">Pelagic</a></li> <li><a href="/wiki/Photic_zone" title="Photic zone">Photic</a></li> <li><a href="/wiki/Surf_zone" title="Surf zone">Surf</a></li> <li><a href="/wiki/Swash" title="Swash">Swash</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Sea_level" title="Sea level">Sea level</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Deep-ocean_Assessment_and_Reporting_of_Tsunamis" title="Deep-ocean Assessment and Reporting of Tsunamis">Deep-ocean Assessment and Reporting of Tsunamis</a></li> <li><a href="/wiki/Global_Sea_Level_Observing_System" title="Global Sea Level Observing System">Global Sea Level Observing System</a></li> <li><a href="/wiki/North_West_Shelf_Operational_Oceanographic_System" title="North West Shelf Operational Oceanographic System">North West Shelf Operational Oceanographic System</a></li> <li><a href="/wiki/Sea-level_curve" title="Sea-level curve">Sea-level curve</a></li> <li><a href="/wiki/Sea_level_drop" title="Sea level drop">Sea level drop</a></li> <li><a href="/wiki/Sea_level_rise" title="Sea level rise">Sea level rise</a></li> <li><a href="/wiki/World_Geodetic_System" title="World Geodetic System">World Geodetic System</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Acoustical_oceanography" class="mw-redirect" title="Acoustical oceanography">Acoustics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Deep_scattering_layer" title="Deep scattering layer">Deep scattering layer</a></li> <li><a href="/wiki/Ocean_acoustic_tomography" title="Ocean acoustic tomography">Ocean acoustic tomography</a></li> <li><a href="/wiki/Sofar_bomb" title="Sofar bomb">Sofar bomb</a></li> <li><a href="/wiki/SOFAR_channel" title="SOFAR channel">SOFAR channel</a></li> <li><a href="/wiki/Underwater_acoustics" title="Underwater acoustics">Underwater acoustics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Satellites</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Jason-1" title="Jason-1">Jason-1</a></li> <li><a href="/wiki/OSTM/Jason-2" title="OSTM/Jason-2">OSTM/Jason-2</a></li> <li><a href="/wiki/Jason-3" title="Jason-3">Jason-3</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ocean_acidification" title="Ocean acidification">Acidification</a></li> <li><a href="/wiki/Argo_(oceanography)" title="Argo (oceanography)">Argo</a></li> <li><a href="/wiki/Benthic_lander" title="Benthic lander">Benthic lander</a></li> <li><a href="/wiki/Color_of_water" title="Color of water">Color of water</a></li> <li><a href="/wiki/DSV_Alvin" title="DSV Alvin">DSV <i>Alvin</i></a></li> <li><a href="/wiki/Marginal_sea" class="mw-redirect" title="Marginal sea">Marginal sea</a></li> <li><a href="/wiki/Marine_energy" title="Marine energy">Marine energy</a></li> <li><a href="/wiki/Marine_pollution" title="Marine pollution">Marine pollution</a></li> <li><a href="/wiki/Mooring_(oceanography)" title="Mooring (oceanography)">Mooring</a></li> <li><a href="/wiki/National_Oceanographic_Data_Center" title="National Oceanographic Data Center">National Oceanographic Data Center</a></li> <li><a href="/wiki/Ocean" title="Ocean">Ocean</a></li> <li><a href="/wiki/Ocean_exploration" title="Ocean exploration">Explorations</a></li> <li><a href="/wiki/Ocean_observations" title="Ocean observations">Observations</a></li> <li><a href="/wiki/Ocean_reanalysis" title="Ocean reanalysis">Reanalysis</a></li> <li><a href="/wiki/Ocean_surface_topography" title="Ocean surface topography">Ocean surface topography</a></li> <li><a href="/wiki/Ocean_temperature" title="Ocean temperature">Ocean temperature</a></li> <li><a href="/wiki/Ocean_thermal_energy_conversion" title="Ocean thermal energy conversion">Ocean thermal energy conversion</a></li> <li><a href="/wiki/Oceanography" title="Oceanography">Oceanography</a> <ul><li><a href="/wiki/Outline_of_oceanography" title="Outline of oceanography">Outline of oceanography</a></li></ul></li> <li><a href="/wiki/Pelagic_sediment" title="Pelagic sediment">Pelagic sediment</a></li> <li><a href="/wiki/Sea_surface_microlayer" title="Sea surface microlayer">Sea surface microlayer</a></li> <li><a href="/wiki/Sea_surface_temperature" title="Sea surface temperature">Sea surface temperature</a></li> <li><a href="/wiki/Seawater" title="Seawater">Seawater</a></li> <li><a href="/wiki/Science_On_a_Sphere" title="Science On a Sphere">Science On a Sphere</a></li> <li><a href="/wiki/Ocean_stratification" title="Ocean stratification">Stratification</a></li> <li><a href="/wiki/Thermocline" title="Thermocline">Thermocline</a></li> <li><a href="/wiki/Underwater_glider" title="Underwater glider">Underwater glider</a></li> <li><a href="/wiki/Water_column" title="Water column">Water column</a></li> <li><a href="/wiki/World_Ocean_Atlas" title="World Ocean Atlas">World Ocean Atlas</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Physical_oceanography" title="Category:Physical oceanography">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Physical_oceanography" class="extiw" title="commons:Category:Physical oceanography">Commons</a></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Waves_in_pacifica_1.jpg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/Waves_in_pacifica_1.jpg/16px-Waves_in_pacifica_1.jpg" decoding="async" width="16" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/Waves_in_pacifica_1.jpg/24px-Waves_in_pacifica_1.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/45/Waves_in_pacifica_1.jpg/32px-Waves_in_pacifica_1.jpg 2x" data-file-width="2000" data-file-height="1358" /></a></span> </span><a href="/wiki/Portal:Oceans" title="Portal:Oceans">Oceans&#32;portal</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐694cf4987f‐hvrjm Cached time: 20241125224108 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.524 seconds Real time usage: 0.807 seconds Preprocessor visited node count: 2220/1000000 Post‐expand include size: 53463/2097152 bytes Template argument size: 925/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 57124/5000000 bytes Lua time usage: 0.250/10.000 seconds Lua memory usage: 6634884/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 413.899 1 -total 37.76% 156.306 1 Template:Reflist 30.92% 127.985 12 Template:Citation 23.41% 96.897 1 Template:Physical_oceanography 22.35% 92.488 1 Template:Navbox 20.56% 85.104 1 Template:Short_description 14.20% 58.769 2 Template:Pagetype 8.39% 34.726 4 Template:Harvtxt 4.82% 19.964 1 Template:Main 3.55% 14.686 6 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:20112097-0!canonical and timestamp 20241125224108 and revision id 1253285699. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Mild-slope_equation&amp;oldid=1253285699">https://en.wikipedia.org/w/index.php?title=Mild-slope_equation&amp;oldid=1253285699</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Coastal_geography" title="Category:Coastal geography">Coastal geography</a></li><li><a href="/wiki/Category:Equations_of_fluid_dynamics" title="Category:Equations of fluid dynamics">Equations of fluid dynamics</a></li><li><a href="/wiki/Category:Water_waves" title="Category:Water waves">Water waves</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 25 October 2024, at 05:54<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Mild-slope_equation&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-hvrjm","wgBackendResponseTime":992,"wgPageParseReport":{"limitreport":{"cputime":"0.524","walltime":"0.807","ppvisitednodes":{"value":2220,"limit":1000000},"postexpandincludesize":{"value":53463,"limit":2097152},"templateargumentsize":{"value":925,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":57124,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 413.899 1 -total"," 37.76% 156.306 1 Template:Reflist"," 30.92% 127.985 12 Template:Citation"," 23.41% 96.897 1 Template:Physical_oceanography"," 22.35% 92.488 1 Template:Navbox"," 20.56% 85.104 1 Template:Short_description"," 14.20% 58.769 2 Template:Pagetype"," 8.39% 34.726 4 Template:Harvtxt"," 4.82% 19.964 1 Template:Main"," 3.55% 14.686 6 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.250","limit":"10.000"},"limitreport-memusage":{"value":6634884,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBerkhoff1972\"] = 1,\n [\"CITEREFBerkhoff1976\"] = 1,\n [\"CITEREFBooij1981\"] = 1,\n [\"CITEREFBooij1983\"] = 1,\n [\"CITEREFDingemans1997\"] = 1,\n [\"CITEREFEckart1952\"] = 1,\n [\"CITEREFLiu1990\"] = 1,\n [\"CITEREFLuke1967\"] = 1,\n [\"CITEREFMei1994\"] = 1,\n [\"CITEREFMiles1977\"] = 1,\n [\"CITEREFPorter2003\"] = 1,\n [\"CITEREFPorterChamberlain1997\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Citation\"] = 12,\n [\"Harvtxt\"] = 4,\n [\"Hidden begin\"] = 2,\n [\"Hidden end\"] = 2,\n [\"Main\"] = 1,\n [\"Math\"] = 3,\n [\"Physical oceanography\"] = 1,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n}\narticle_whitelist = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-694cf4987f-hvrjm","timestamp":"20241125224108","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Mild-slope equation","url":"https:\/\/en.wikipedia.org\/wiki\/Mild-slope_equation","sameAs":"http:\/\/www.wikidata.org\/entity\/Q6850879","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q6850879","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-11-07T17:44:11Z","dateModified":"2024-10-25T05:54:29Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/38\/CGWAVE_Tedious_Creek_MD.jpg","headline":"combined effects of diffraction and refraction for water waves propagating over variable depth and with lateral boundaries"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10