CINXE.COM

Search results for: vermicompost

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vermicompost</title> <meta name="description" content="Search results for: vermicompost"> <meta name="keywords" content="vermicompost"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vermicompost" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vermicompost"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 34</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vermicompost</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratthana%20Ammaraphitak">Pratthana Ammaraphitak</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyachon%20Ketsuwan"> Piyachon Ketsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rattapoom%20Prommana"> Rattapoom Prommana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vermicompost%20liquid" title="vermicompost liquid">vermicompost liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient" title=" nutrient"> nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20production" title=" electricity production"> electricity production</a> </p> <a href="https://publications.waset.org/abstracts/82720/electricity-production-from-vermicompost-liquid-using-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Reduction of Chemical Fertilizer in Rice-Rice Cropping Pattern Using Different Vermicompost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azizul%20Haque">Azizul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamrun%20Nahar"> Kamrun Nahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiments were conducted to reduce the chemical fertilizers with the integrated use of straight and phospho- vermicompost with chemical fertilizers in T. aman-Boro rice cropping pattern at the BINA farm, Mymensingh during 2019-20. Six treatments were used in the experiment for both the crops. The treatments used for T. aman rice (Binadhan 17) with straight vermicompost were as follows: T1: Native soil fertility, T2: 100% N from Chemical Fertilizer (CF), T3:70%N from CF, T4: 30% N from vermicompost-3 + 70% N from CF and T5:30% N from vermicompost-4 + 70% N from CF and T6: 100% PKS only. The treatments of Boro rice (var. Binadhan -10) with phospho-vermicompost were: T1: Native soil fertility, T2: 100% NPKS from chemical fertilizer (CF), T3:75% NKS from CF (Non IPNS) with 1 t ha-1 Phospho-vermicompost (P-Vermicom), T4: 100% NKS (IPNS) with 2 t ha-1 P-Vermicom, T5: 100% NKS from CF (Non IPNS) with 2 t ha-1 P-Vermicom and T6: 100% NKS. The experiments were conducted in a Randomized Complete Block Design with three replications. The treatment T5 (5.5 t ha-1) gave maximum grain yield of T.aman rice followed by the treatment T4 (5.4 t ha-1). But the treatmentsT5, T4, and T2 gave identical grain yields of T. aman rice. Similar results were observed in case of straw yields of T. Aman rice. The result indicated that 70% N from CF with 30% N from either straight vermicompost-3 or straight vermicompost-4 gave comparable yield to the sole application of 100% N from CF alone. Therefore, 30% chemical fertilizers (N, P, K and S) could be saved with the integrated (IPNS) use of vermicompost-3 or vermicompost-4 in the cultivation of T. aman rice. Application of Phospho-vermicompost significantly influenced the yield and yield contributing characters of Boro rice (Binadhan-10). The treatment T4 (7.23.0 t ha-1) gave maximum grain yield of Boro rice followed by the treatments T2 and T5. But the treatments T2 and T5 produced statistically similar grain yields. The results from the treatment T4 (100% NKS (IPNS) with 2.0 t ha-1P-Vermicom) indicated that full demand of P could be met up from 2 t ha-1 Phospho-vermicompost with IPNS chemical fertilizers (NKS) which was sufficient for attaining the highest grain yield of Boro rice than that of the treatment T2 (100% NPKS from CF) and the treatmentT5 (100% NKS from CF (Non IPNS) + 2 t ha-1 Phospho-vermicompost). The results revealed that 100% P and substantial amount of N (21%), K (44.6%) and S (53.7%) fertilizers could be saved with the integrated use of Phospho-vermicompost in the cultivation of Boro rice. In case of Boro rice partial cost benefit analysis showed that the application of Phospho-vermicompost (@2 tha--1) with IPNS chemical fertilizes (NKS) gave higher return of Tk. 18,213 / - than that of only 100% chemical fertilizer. Therefore, use of Phospho-vermicompost was beneficial for the cultivation of Boro rice in combination with suitable dose of chemical fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphovermicompost" title="phosphovermicompost">phosphovermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping%20pattern" title=" cropping pattern"> cropping pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20yield" title=" rice yield"> rice yield</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a> </p> <a href="https://publications.waset.org/abstracts/153965/reduction-of-chemical-fertilizer-in-rice-rice-cropping-pattern-using-different-vermicompost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Effect of Vermicompost and Vermitea on the Growth and Yield of Selected Vegetable Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josephine%20R.%20Migalbin">Josephine R. Migalbin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurhamid%20C.%20Imlan"> Jurhamid C. Imlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelyn%20P.%20Esteban"> Evelyn P. Esteban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to determine the effect of vermicompost and vermitea as organic fertilizers on the growth and yield of selected vegetable crops specifically eggplant, tomatoes and sweet pepper. The study was laid-out in Randomized Complete Block Design with 4 treatments replicated 4 times. The treatments were as follows: Treatment I (control), Treatment II (vermitea), Treatment III (vermicompost with buffalo manure), and Treatment IV (vermicompost with goat and sheep manure). In all the vegetable crops, almost all parameters significantly increased compared with the control except for number of fruits in eggplant and plant height in tomatoes where no significant difference was observed among treatments. The highest marketable fruit yield (tons/ha) was obtained from plants applied with vermicompost with goat and sheep manure but comparable with plants applied with vermicompost with buffalo manure and vermitea while the control plots received the lowest yield. The 28 spotted beetle (Epilachna philippinensis), and shoot and fruit borer (Leucinodes orbonalis) were the serious pests observed in the study on eggplant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marketable%20fruit%20yield" title="marketable fruit yield">marketable fruit yield</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=vermitea" title=" vermitea"> vermitea</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20crops" title=" vegetable crops"> vegetable crops</a> </p> <a href="https://publications.waset.org/abstracts/26398/effect-of-vermicompost-and-vermitea-on-the-growth-and-yield-of-selected-vegetable-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Waste Minimization through Vermicompost: An Alternative Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Fabiola">Mary Fabiola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vermicompost is the product or process of composting using various worms. Large-scale vermicomposting is practiced in Canada, Italy, Japan, Malaysia, the Philippines, and the United States. The vermicompost may be used for farming, landscaping, and creating compost tea or for sale. Some of these operations produce worms for bait and/or home vermicomposting. As a processing system, The vermicomposting of organic waste is very simple. Worms ingest the waste material-break it up in their rudimentary. Gizzards, consume the digestible/putrefiable portion and then excrete a stable, Humus-like material that can be immediately marketed. Vermitechnology can be a promising technique that has shown its potential in certain challenging areas like augmentation of food production, waste recycling, management of solid wastes etc. There is no doubt that in India, where on side pollution is increasing due to accumulation of organic wastes and on the other side there is shortage of organic manure, which could increase the fertility and productivity of the land and produce nutritive and safe food. So, the scope for vermicomposting is enormous. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20wastes" title=" solid wastes"> solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recycling" title=" waste recycling "> waste recycling </a> </p> <a href="https://publications.waset.org/abstracts/14404/waste-minimization-through-vermicompost-an-alternative-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Effects of Organic Fertilizer and Azotobacter and Azospirillum Bacteria on Concentration and Composition of Essential Oil of Coriander (Coriandrum Sativum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Darzi">M. T. Darzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shirkhodaei"> M. Shirkhodaei</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Haj%20Seyed%20Hadi"> M. R. Haj Seyed Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study was to determine the effects of organic fertilizer and azotobacter and azospirillum bacteria on concentration and composition of essential oil in the coriander essential oil content, essential oil yield, linalool percent, alpha pinene percent and cymene percent in essential oil. The experiment was carried out as factorial experiment in the base of randomized complete blocks design with eight treatments and three replications at research field of Agriculture Company of Ran in Firouzkuh of iran in 2012. The factors were Vermicompost in four levels (0, 3, 6 and 9 ton/ha) and biofertilizer, mixture of Azotobacter chroococcum and Azospirillum lipoferum in two levels (non-inoculated and inoculated seeds). The present results have shown that vermicompost had significant effects on evaluated traits except linalool percent in essential oil, as the highest essential oil content, essential oil yield and alpha pinene percent in essential were obtained after applying 6 ton/ha vermicompost. The minimum cymene percent in essential oil were obtained after applying 6 ton/ha vermicompost. Biofertilizer also showed significant effects on essential oil yield only. The highest essential oil yield were obtained by using the biofertilizer (inoculated seeds). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coriander" title="coriander">coriander</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title=" biofertilizer"> biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/29211/effects-of-organic-fertilizer-and-azotobacter-and-azospirillum-bacteria-on-concentration-and-composition-of-essential-oil-of-coriander-coriandrum-sativum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meiyan%20Xing">Meiyan Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Cenran%20Li"> Cenran Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Xiang"> Liang Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung%20vermicompost" title="cow dung vermicompost">cow dung vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20germination" title=" seed germination"> seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20growth" title=" seedling growth"> seedling growth</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20utilization" title=" sludge utilization"> sludge utilization</a> </p> <a href="https://publications.waset.org/abstracts/59981/influence-of-agricultural-utilization-of-sewage-sludge-vermicompost-on-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Giraddi">R. S. Giraddi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Poleshi"> C. M. Poleshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.&nbsp; Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (<em>Capsicum annum</em> var. longum) and soybean, (<em>Glycine max </em>cv JS 335) were conducted during <em>Kharif</em> 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost&gt;conventional chemical control&gt;neem cake&gt;vermicompost&gt;untreated control.&nbsp; The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title="humic acid">humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=azadirachtin" title=" azadirachtin"> azadirachtin</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=insect-pest" title=" insect-pest"> insect-pest</a> </p> <a href="https://publications.waset.org/abstracts/79931/humic-acid-and-azadirachtin-derivatives-for-the-management-of-crop-pests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Land Equivalent Ration of Chickpea - Barley as Affected by Mixed Cropping System and Vermicompost in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effect of vermin compost on yield, and Land equivalent ration (LER) of chickpea-barley mixed cropping under normal dry land condition can be useful in order to increase qualitative and quantitative performance. In this case, two factors include fertilizer (vermicompost biological fertilizer, ammonium phosphate chemical fertilizer, vermicompost + %75 chemical fertilizer) and chickpea + barley mixed cropping (sole chickpea, %75 chickpea: %25 barley, %50 chickpea: %50 barley, %25 chickpea: %75 barley, and sole barley) in RCBD in three replications in two experiments include normal and dry land conditions were studied. Result showed that total LER base on dry matter was affected by environment and mixed cropping interaction and was more than 1 in all mixed cropping treatments. In different mixed cropping rates, wet forage yield decreased by decreasing chickpea ratio as well as increasing barley ratio. Total LER mean in base on forage dry matter in mixed-, chemical-, and vermicompost fertilizer treatments were 1.12, 1.05 and 1.10 in normal condition and 1.15, 1.08 and 1.14 in dry land condition, respectively, represented the important of biological fertilizer in mixed cropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20equivalent%20ration" title="land equivalent ration">land equivalent ration</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20fertilizer" title=" biological fertilizer"> biological fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20cropping%20systems" title=" mixed cropping systems"> mixed cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/37487/land-equivalent-ration-of-chickpea-barley-as-affected-by-mixed-cropping-system-and-vermicompost-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Effect of Band Application of Organic Manures on Growth and Yield of Pigeonpea (Cajanus cajan (L.) Millsp.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Kalaghatagi">S. B. Kalaghatagi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Guggari"> A. K. Guggari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20S.%20Manikashetti"> Pallavi S. Manikashetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment to study the effect of band application of organic manures on growth and yield of pigeon pea was conducted during 2016-17 at Kharif Seed Farm, College of Agriculture, Vijayapura. The experiment was carried out in randomized block design with thirteen treatments viz., T1 to T6 were band application of vermicompost at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 t ha⁻¹, respectively. The treatments T7 to T12 include band application of sieved FYM at 1, 2, 3, 4, 5 and 6 t ha⁻¹, respectively and were compared with already recommended practice of broadcasting of FYM at 6 t ha⁻¹ (T13); and recommended dose of fertilizer (25:50:0 NPK kg ha⁻¹) was applied commonly to all the treatments. The results revealed that band application of vermicompost (VC) at 3 t ha⁻¹ recorded significantly higher number of pods plant⁻¹ (116), grain weight plant⁻¹ (37.35 g), grain yield (1,647 kg ha⁻¹), stalk yield (2,920 kg ha⁻¹) and harvest index (0.36) and was on par with the band application of VC at 2.0 and 2.5 t ha⁻¹ and sieved FYM at 4.0 and 5.0 t ha⁻¹ as compared to broadcasting of FYM at 6 t ha-1 (99.33, 24.07 g, 1,061 kg ha⁻¹, 2,920 kg ha⁻¹ and 0.36, respectively). Significantly higher net return (Rupees 59,410 ha⁻¹) and benefit cost ratio of 2.92 recorded with band application of VC at 3 t ha⁻¹ over broadcasting of FYM at 6 tonnes per ha (Rupees 25,401 ha⁻¹ and 1.78, respectively). It indicates from the above results that, growing of pigeon pea with band application of VC at 2, 2.5 and 3 t ha⁻¹ and sieved FYM at 4 and 5 t ha⁻¹ leads to saving of 1 tonne of VC and 2 tonnes of FYM per ha. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20manures" title="organic manures">organic manures</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed%20pigeonpea" title=" rainfed pigeonpea"> rainfed pigeonpea</a>, <a href="https://publications.waset.org/abstracts/search?q=sieved%20FYM" title=" sieved FYM"> sieved FYM</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/82804/effect-of-band-application-of-organic-manures-on-growth-and-yield-of-pigeonpea-cajanus-cajan-l-millsp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Precious%20Ehiomogue">Precious Ehiomogue</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifechukwude%20Israel%20Ahuchaogu"> Ifechukwude Israel Ahuchaogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Isiguzo%20Edwin%20Ahaneku"> Isiguzo Edwin Ahaneku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=crude-oil" title=" crude-oil"> crude-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20soil" title=" contaminated soil"> contaminated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation%20and%20vermicompost" title=" remediation and vermicompost"> remediation and vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/165700/an-evaluation-of-the-artificial-neural-network-and-adaptive-neuro-fuzzy-inference-system-predictive-models-for-the-remediation-of-crude-oil-contaminated-soil-using-vermicompost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Mohammad">Seyed Ali Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Modarres%20Sanavy"> Modarres Sanavy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Keshavarz"> Hamed Keshavarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mokhtassi-Bidgoli"> Ali Mokhtassi-Bidgoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fresh%20yield" title="fresh yield">fresh yield</a>, <a href="https://publications.waset.org/abstracts/search?q=peppermint" title=" peppermint"> peppermint</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20nitrogen" title=" synthetic nitrogen"> synthetic nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/66596/the-effect-of-alternative-organic-fertilizer-and-chemical-fertilizer-on-nitrogen-and-yield-of-peppermint-mentha-peperita" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunwar%20D.%20Yadav">Kunwar D. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayanand%20Sharma"> Dayanand Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and <em>Eisenia foetida </em>as earthworm spices. The vermicompost reactor of 0.3 m<sup>3</sup> capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung" title="cow dung">cow dung</a>, <a href="https://publications.waset.org/abstracts/search?q=Eisenia%20foetida" title=" Eisenia foetida"> Eisenia foetida</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20sludge" title=" textile sludge"> textile sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/80034/vermicomposting-of-textile-industries-dyeing-sludge-by-using-eisenia-foetida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Phytoremediation Potential of Enhanced Tobacco BAC F3 in Soil Contaminated with Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova">Violina Angelova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative study has been carried out into the impact of organic meliorants on the uptake of heavy metals, micro and macroelements and the phytoremediation potential of enhanced tobacco BAC F3. The soil used as part of this experiment was sampled from the vicinity of the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The pot experiment carried out consisted of a randomized, complete block design containing nine treatments and three replications (27 pots). The treatments consisted of a control (with no organic meliorants) and compost and vermicompost meliorants (added at 5%, 10%, 15%, and 30%, and recalculated based on their dry soil weight). Upon reaching commercial ripeness, the tobacco plants were gathered. Heavy metals, micro and macroelement contents in roots, stems, and leaves of tobacco were analyzed by the method of the microwave mineralization. To determine the elements in the samples, inductively coupled emission spectrometry (Jobin Yvon Emission - JY 38 S, France) was used. The distribution of the heavy metals, micro, and macroelements in the organs of the enhanced tobacco has a selective character and depended above all on the parts of the plants and the element that was examined. Pb, Zn, Cu, Fe, Mn, P and Mg distribution in tobacco decreases in the following order: roots > leaves > stems, and for Cd, K, and Ca - leaves > roots > stems. The high concentration of Cd in the leaves and the high translocation factor indicate the possibility of enhanced tobacco to be used in phytoextraction. Tested organic amendments significantly influenced the uptake of heavy metals, micro and macroelements by the roots, stems, and leaves of tobacco. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn, and Cd by the enhanced tobacco. The compost and vermicompost treatments significantly reduced heavy metals concentration in leaves and increased uptake of K, Ca and Mg. The 30% compost and 30% vermicompost treatments led to the maximal reduction of heavy metals in enhanced tobacco BAC F3. The addition of compost and vermicompost further reduces the ability to digest the heavy metals in the leaves, and phytoremediation potential of enhanced tobacco BAC F3. Acknowledgment: The financial support by the Bulgarian National Science Fund Project DFNI Н04/9 is greatly appreciated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20and%20macroelements" title=" micro and macroelements"> micro and macroelements</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20tobacco%20BAC%20F3" title=" enhanced tobacco BAC F3"> enhanced tobacco BAC F3</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20meliorants" title=" organic meliorants"> organic meliorants</a> </p> <a href="https://publications.waset.org/abstracts/107337/phytoremediation-potential-of-enhanced-tobacco-bac-f3-in-soil-contaminated-with-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20R.%20Angelova">Violina R. Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20N.%20Perifanova-Nemska"> Mariana N. Perifanova-Nemska</a>, <a href="https://publications.waset.org/abstracts/search?q=Galina%20P.%20Uzunova"> Galina P. Uzunova</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Huu%20Q.%20Lee"> Huu Q. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field study was conducted to evaluate the efficacy of the sunflower (<em>Helianthus annuus </em>L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals in the sunflower plant and the quality of the sunflower oil (heavy metals and fatty acid composition) were determined. The tested organic amendments significantly influenced the uptake of Pb, Zn and Cd by the sunflower plant. The incorporation of 40 t/decare of compost and 20 t/decare of vermicompost to the soil led to an increase in the ability of the sunflower to take up and accumulate Cd, Pb and Zn. Sunflower can be subjected to the accumulators of Pb, Zn and Cd and can be successfully used for phytoremediation of contaminated soils with heavy metals. The 40 t/daa compost treatment led to a decrease in heavy metal content in sunflower oil to below the regulated limits. Oil content and fatty acids composition were affected by compost and vermicompost amendment treatments. Adding compost and vermicompost increased the oil content in the seeds. Adding organic amendments increased the content of stearic, palmitoleic and oleic acids, and reduced the content of palmitic and gadoleic acids in sunflower oil. The possibility of further industrial processing of seeds to oil and use of the obtained oil will make sunflowers economically interesting crops for farmers of phytoremediation technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted%20soils" title=" polluted soils"> polluted soils</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a> </p> <a href="https://publications.waset.org/abstracts/52411/potential-of-sunflower-helianthus-annuus-l-for-phytoremediation-of-soils-contaminated-with-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Influence of Biological and Chemical Fertilizers on Quantitative Characteristics of Sweet Wormwood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Yarahmadi">Anahita Yarahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Mahboobi"> Nazanin Mahboobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Sadat%20Rahmatpour%20Nori"> Nahid Sadat Rahmatpour Nori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Bijeh%20Keshavarzi"> Mohammad Hossein Bijeh Keshavarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Shakori"> Mohammad Javad Shakori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed at considering biological fertilizer effect and chemical fertilizer on the quantitative characteristics of Sweet wormwood (Artemisia annua L.), an experiment was carried out in factorial design in completely randomized design with 4 replications in an experimental greenhouse which was located in Tehran. Experimental treatment involved chemical fertilizers (Nitrogen, Phosphorus) in4 levels and biological fertilizers in 4 levels (control, Nitroxin, Bio-phosphorus and Vemricompost). Results showed that using biological fertilizers and increasing different levels of chemical fertilizers (N, P) had significant effects on all the characteristics. Considering means comparison showed that biological fertilizers lead to significant enhancement on all the characteristics and among biological fertilizers, Vermicompost treatment has the most effect. Considering means comparison tables of different levels of chemical fertilizer have been found that (N80P80) had the most increase on characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20annua%20L" title="Artemisia annua L">Artemisia annua L</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-fertilizer" title=" bio-fertilizer"> bio-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/66492/influence-of-biological-and-chemical-fertilizers-on-quantitative-characteristics-of-sweet-wormwood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Effects of Different Organic Manures on the Antioxidant Activity, Vitamin C and Nitrate Concentrations of Broccoli (Brassica oleracea L. var italica) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahriye%20Sonmez">Sahriye Sonmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Citak"> Sedat Citak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the effects of different organic manures on antioxidant activity, vitamin C and nitrate concentrations of broccoli (Brassica oleracea L. var italica) plants. For this purpose, broccoli plants were grown on open field conditions in 2 successive years (2011-2013) including 4 different seasons [(Spring 1 (March-June, 2011), Autumn 1 (September 2011-January 2012), Spring 2 (March-June, 2012), Autumn 2 (September 2012-January 2013)]. Organic manures (Farm manure (FM), vermicompost (VC) and leonardite (L) and its mixture (50 % FM+50% L, 50 % VC+50% FM, 50% L+50% VC and 33% FM+33% VC+33% L), one chemical fertilizer and one control, collectively 9 applications was investigated. The results indicated that the vitamin C concentrations of broccoli plants ranged from 31.4-55.8 mg/100 g, 43-631 mg/kg in nitrate concentrations and 11.0-56.7 mg/ml as IC50 inhibition values in antioxidant activities of broccoli plants. Also, it was determined that the effective applications were at the 50 % VC+50% FM for vitamin C concentrations, at the chemical fertilizer for nitrate concentrations and at the 100 % FM for antioxidant activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broccoli" title="broccoli">broccoli</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20manure" title=" farm manure"> farm manure</a>, <a href="https://publications.waset.org/abstracts/search?q=leonardite" title=" leonardite"> leonardite</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/28990/effects-of-different-organic-manures-on-the-antioxidant-activity-vitamin-c-and-nitrate-concentrations-of-broccoli-brassica-oleracea-l-var-italica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Effects of Nutrient Source and Drying Methods on Physical and Phytochemical Criteria of Pot Marigold (Calendula offiCinalis L.) Flowers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Tabrizi">Leila Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Dezhaboun"> Farnaz Dezhaboun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of plant nutrient source and different drying methods on physical and phytochemical characteristics of pot marigold (Calendula officinalis L., Asteraceae) flowers, a factorial experiment was conducted based on completely randomized design with three replications in Research Laboratory of University of Tehran in 2010. Different nutrient sources (vermicompost, municipal waste compost, cattle manure, mushroom compost and control) which were applied in a field experiment for flower production and different drying methods including microwave (300, 600 and 900 W), oven (60, 70 and 80oC) and natural-shade drying in room temperature, were tested. Criteria such as drying kinetic, antioxidant activity, total flavonoid content, total phenolic compounds and total carotenoid of flowers were evaluated. Results indicated that organic inputs as nutrient source for flowers had no significant effects on quality criteria of pot marigold except of total flavonoid content, while drying methods significantly affected phytochemical criteria. Application of microwave 300, 600 and 900 W resulted in the highest amount of total flavonoid content, total phenolic compounds and antioxidant activity, respectively, while oven drying caused the lowest amount of phytochemical criteria. Also, interaction effect of nutrient source and drying method significantly affected antioxidant activity in which the highest amount of antioxidant activity was obtained in combination of vermicompost and microwave 900 W. In addition, application of vermicompost combined with oven drying at 60oC caused the lowest amount of antioxidant activity. Based on results of drying trend, microwave drying showed a faster drying rate than those oven and natural-shade drying in which by increasing microwave power and oven temperature, time of flower drying decreased whereas slope of moisture content reduction curve showed accelerated trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying%20kinetic" title="drying kinetic">drying kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20criteria" title=" phytochemical criteria"> phytochemical criteria</a> </p> <a href="https://publications.waset.org/abstracts/28542/effects-of-nutrient-source-and-drying-methods-on-physical-and-phytochemical-criteria-of-pot-marigold-calendula-officinalis-l-flowers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Training Manual of Organic Agriculture Farming for the Farmers: A Case Study from Kunjpura and Surrounding Villages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishi%20Pal%20Singh">Rishi Pal Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Indian Scenario, Organic agriculture is growing by the conscious efforts of inspired people who are able to create the best promising relationship between the earth and men. Nowadays, the major challenge is its entry into the policy-making framework, its entry into the global market and weak sensitization among the farmers. But, during the last two decades, the contamination in environment and food which is linked with the bad agricultural potential/techniques has diverted the mind set of farmers towards the organic farming. In the view of above concept, a small-scale project has been installed to promote the 20 farmers from the Kunjura and surrounding villages for organic farming. This project is working since from the last 3 crops (starting from October, 2016) and found that it can meet both demands and complete development of rural areas. Farmers of this concept are working on the principles such that the nature never demands unreasonable quantities of water, mining and to destroy the microbes and other organisms. As per details of Organic Monitor estimates, global sales reached in billion in the present analysis. In this initiative, firstly, wheat and rice were considered for farming and observed that the production of crop has grown almost 10-15% per year from the last crop production. This is not linked only with the profit or loss but also emphasized on the concept of health, ecology, fairness and care of soil enrichment. Several techniques were used like use of biological fertilizers instead of chemicals, multiple cropping, temperature management, rain water harvesting, development of own seed, vermicompost and integration of animals. In the first year, to increase the fertility of the land, legumes (moong, cow pea and red gram) were grown in strips for the 60, 90 and 120 days. Simultaneously, the mixture of compost and vermicompost in the proportion of 2:1 was applied at the rate of 2.0 ton per acre which was enriched with 5 kg Azotobacter and 5 kg Rhizobium biofertilizer. To complete the amount of phosphorus, 250 kg rock phosphate was used. After the one month, jivamrut can be used with the irrigation water or during the rainy days. In next season, compost-vermicompost mixture @ 2.5 ton/ha was used for all type of crops. After the completion of this treatment, now the soil is ready for high value ordinary/horticultural crops. The amount of above stated biofertilizers, compost-vermicompost and rock phosphate may be increased for the high alternative fertilizers. The significance of the projects is that now the farmers believe in cultural alternative (use of disease-free their own seed, organic pest management), maintenance of biodiversity, crop rotation practices and health benefits of organic farming. This type of organic farming projects should be installed at the level of gram/block/district administration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunjpura" title=" Kunjpura"> Kunjpura</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-fertilizers" title=" bio-fertilizers"> bio-fertilizers</a> </p> <a href="https://publications.waset.org/abstracts/96047/training-manual-of-organic-agriculture-farming-for-the-farmers-a-case-study-from-kunjpura-and-surrounding-villages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Equipping Organic Farming in Medicinal and Aromatic Plants: Central Institute of Medicinal and Aromatic Plants&#039; Scientific Interventions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Kalra">Alok Kalra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consumers and practitioners (medical herbalists, pharmacists, and aromatherapists) with strong and increased awareness about health and environment demand organically grown medicinal and aromatic plants (MAPs) to offer a valued product. As the system does not permit the use of synthetic fertilizers the use of nutrient rich organic manures is extremely important. CSIR-CIMAP has developed a complete recycling package for managing distillation and agro-waste of medicinal and aromatic plants for production of superior quality vermicompost involving microbes capable of producing high amounts of humic acid. The major benefits being faster composting period and nutrient rich vermicompost; a nutrient advantage of about 100-150% over the most commonly used organic manure (FYM). At CSIR-CIMAP, strains of microbial inoculants with multiple activities especially strains useful both as biofertilizers and biofungicide and consortia of microbes possessing diverse functional activities have been developed. CSIR-CIMAP has also initiated a program where a large number of accessions are being screened for identifying organic proficient genotypes in mints, ashwagandha, geranium and safed musli. Some of the natural plant growth promoters like calliterpenones from the plant Callicarpa macrophylla has been tested successfully for induction of rooting in stem cuttings and improving growth and yield of various crops. Some of the microbes especially the endophytes have even been identified improving the active constituents of medicinal and aromatic plants. The above said scientific interventions making organic farming a charming proposition would be discussed in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20agriculture" title="organic agriculture">organic agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20inoculants" title=" microbial inoculants"> microbial inoculants</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizers" title=" organic fertilizers"> organic fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20plant%20growth%20promoters" title=" natural plant growth promoters"> natural plant growth promoters</a> </p> <a href="https://publications.waset.org/abstracts/60559/equipping-organic-farming-in-medicinal-and-aromatic-plants-central-institute-of-medicinal-and-aromatic-plants-scientific-interventions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Determinants Affecting to Adoption of Climate Smart Agriculture Technologies in the Northern Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Rezaul%20Karim">Md. Rezaul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Thiel"> Andreas Thiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh is known as one of the most climate vulnerable countries in the world. Innovative technologies are always the key responses to the management of climate impacts. The objectives of this study are to determine the farmer’s perception of climate variability, to compare farmers’ perceptions with metrological data, and to explore the determinants that affect the likelihood of adoption of the selected Climate Smart Agricultural (CSA) technologies. Data regarding climate change perception, determinants and adoption were collected based on the household survey from stratified and randomly selected 365 farmers of the Biral sub-district under Dinajpur district in drought-prone northern Bangladesh. The likelihood of adoption of CSA technologies was analyzed following a multivariate probit model. The findings show that about 82.5% of the farmers perceived increasing temperature, and 75.1 % of farmers perceived decreasing dry season rainfall over the years, which is similarly relevant to metrological data. About 76.4.7% and 80.85% of farmers were aware of the drought tolerance crops and vermicompost, respectively; more than half of the farmers adopted these practices. Around 70.7% of farmers were aware of perching for insect control, but 46.3% of farmers adopted this practice. Although two-thirds of farmers were aware of crop diversification and pheromone trap, adoption was lower compared to the other three CSAs. Results also indicate that the likelihood of adoption of the selected CSAs is significantly influenced by different factors such as socio-economic characteristics, institutional factors and perceived technological or innovation attributes. The likelihood of adopting drought tolerance crops is affected by 11, while crop diversification and perching method by 7, pheromone trap by 9 and vermicompost by 8 determining factors. Lack of information and unavailability of input appear to be major obstacles to the non-adoption of CSA technologies. This study suggests that policy implications are necessary to promote extension services and overcome the obstacles to the non-adoption of individual CSA technologies. It further recommends that the research study should be conducted in a diverse context, nationally or globally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=determinants" title="determinants">determinants</a>, <a href="https://publications.waset.org/abstracts/search?q=adoption" title=" adoption"> adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20smart%20agriculture" title=" climate smart agriculture"> climate smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=northern%20Bangladesh" title=" northern Bangladesh"> northern Bangladesh</a> </p> <a href="https://publications.waset.org/abstracts/160989/determinants-affecting-to-adoption-of-climate-smart-agriculture-technologies-in-the-northern-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raka%20Rahmatulloh">Raka Rahmatulloh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ilham%20Nugraha"> Mohammad Ilham Nugraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ifan%20Fathurrahman"> Muhammad Ifan Fathurrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated" title="integrated">integrated</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock%20wastes" title=" livestock wastes"> livestock wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20livestock%20development" title=" sustainable livestock development"> sustainable livestock development</a> </p> <a href="https://publications.waset.org/abstracts/59311/reorientation-of-sustainable-livestock-management-a-case-study-applied-to-wastes-management-in-faculty-of-animal-husbandry-padjadjaran-university-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Dendroremediation of a Defunct Lead Acid Battery Recycling Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Ruiz-Olivares">Alejandro Ruiz-Olivares</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20del%20Carmen%20Gonz%C3%A1lez-Ch%C3%A1vez"> M. del Carmen González-Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=Rogelio%20Carrillo-Gonz%C3%A1lez"> Rogelio Carrillo-González</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20Reyes-Ramos"> Martha Reyes-Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Su%C3%A1rez%20Espinosa"> Javier Suárez Espinosa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of automobiles has increased and proportionally, the demand for batteries to impulse them. When the device is aged, all the battery materials are reused through lead acid battery recycling (LABR). Importation of used lead acid batteries in Mexico has increased in the last years since many recycling factories have been settled in the country. Inadequate disposal of lead-acid battery recycling (LABR) wastes left soil severely polluted with Pb, Cu, and salts (Na+, SO2− 4, PO3− 4). Soil organic amendments may contribute with essential nutrients and sequester (scavenger compounds) metals to allow plant establishment. The objective of this research was to revegetate a former lead-acid battery recycling site aided with organic amendments. Seven tree species (Acacia farnesiana, Casuarina equisetifolia, Cupressus lusitanica, Eucalyptus obliqua, Fraxinus excelsior, Prosopis laevigata and Pinus greggii) and two organic amendments (vermicompost and vermicompost + sawdust mixture) were tested for phytoremediation of a defunct LABR site. Plants were irrigated during the dry season. Monitoring of the soils was carried out during the experiment: Available metals, salts concentrations and their spatial pattern in soil were analyzed. Plant species and amendments were compared through analysis of covariance and longitudinal analysis. High concentrations of extractable (DTPA-TEA-CaCl₂) metals (up to 15,685 mg kg⁻¹ and 478 mg kg⁻¹ for Pb and Cu) and soluble salts (292 mg kg-1 and 23,578 mg kg-1 for PO3− 4and SO2− 4) were found in the soil after three and six months of setting up the experiment. Lead and Cu concentrations were depleted in the rhizosphere after amendments addition. Spatial pattern of PO3− 4, SO2− 4 and DTPA-extractable Pb and Cu changed slightly through time. In spite of extreme soil conditions the plant species planted: A. farnesiana, E. obliqua, C. equisetifolia and F. excelsior had 100% of survival. Available metals and salts differently affected each species. In addition, negative effect on growth due to Pb accumulated in shoots was observed only in C. lusitanica. Many specimens accumulated high concentrations of Pb ( > 1000 mg kg-1) in shoots. C. equisetifolia and C. lusitanica had the best rate of growth. Based on the results, all the evaluated species may be useful for revegetation of Pb-polluted soils. Besides their use in phytoremediation, some ecosystem services can be obtained from the woodland such as encourage wildlife, wood production, and carbon sequestration. Further research should be conducted to analyze these services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=inadequate%20disposal" title=" inadequate disposal"> inadequate disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20amendments" title=" organic amendments"> organic amendments</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation%20with%20trees" title=" phytoremediation with trees"> phytoremediation with trees</a> </p> <a href="https://publications.waset.org/abstracts/65517/dendroremediation-of-a-defunct-lead-acid-battery-recycling-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20protein" title="crude protein">crude protein</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20forage%20yield" title=" wet forage yield"> wet forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20forage%20yield" title=" dry forage yield"> dry forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress%20condition" title=" water stress condition"> water stress condition</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20watered" title=" well watered"> well watered</a> </p> <a href="https://publications.waset.org/abstracts/31169/forage-quality-of-chickpea-barley-as-affected-by-mixed-cropping-system-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Organic Manure on Production of Potato (Solanum tuberosum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Behrooz">R. Behrooz</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jahanfar"> D. Jahanfar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Reza"> D. Reza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic farming is a fundamental principle in sustainable agriculture. Preventing excessive contamination of water and soil with pesticides and chemical fertilizers is important in order to produce healthy food. For this purpose, two potato cultivars (Sante and Marfona) and seven levels of fertilizer (non-fertilizer, chemical fertilizer, granulated chicken manure, common manure, compost, vermicompost and tea compost) were evaluated by factorial experiment based on randomized complete block design (RCBD) with three replications. According to the results, the effect of different manure was significant on number of tubers per plant, tuber weight per plant and tuber yield. The highest value of these traits was obtained by using of chicken manure which was significantly superior to other treatments. However, there was no significant difference between the two varieties. According to the results, the use of chicken manure has produced the highest potato yield even in comparison with the use of chemical fertilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20manure" title=" organic manure"> organic manure</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=tuber%20yield" title=" tuber yield"> tuber yield</a> </p> <a href="https://publications.waset.org/abstracts/95085/effect-of-organic-manure-on-production-of-potato-solanum-tuberosum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Challenges for Municipal Solid Waste Management in India: A Case Study of Eluru, Andhra Pradesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Prasada%20Rao%20P.">V. V. Prasada Rao P.</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Venkata%20Subbaiah"> K. Venkata Subbaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sudhir%20Kumar"> J. Sudhir Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most Indian cities or townships are facing greater challenges in proper disposal of their municipal solid wastes, which are growing exponentially with the rising urban population and improvement in the living standards. As per the provisional figures, 377 million people live in the urban areas accounting for 31.16 % of the Country’s total population, and expected to grow by 3.74% every year. In India, the municipal authority is liable for the safe management & disposal of Municipal Solid Wastes. However, even with the current levels of MSW generation, a majority of the local governments are unable to comply with their constitutional responsibility due to reasons ranging from cultural aspects to technological and financial constraints. In contrast, it is expected that the MSW generation in India is likely to increase from 68.8 MTD in 2011 to 160.5 MTD by 2041. Thus, the immediate challenge before the urban local bodies in India is to evolve suitable strategies not only to cope up with the current levels, but also to address the anticipated generation levels of MSW. This paper discusses the reasons for the low levels of enforcement of MSW Rules and suggests effective management strategies for the safe disposal of MSW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20waste" title="biodegradable waste">biodegradable waste</a>, <a href="https://publications.waset.org/abstracts/search?q=dumping%20sites" title=" dumping sites"> dumping sites</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20strategy" title=" management strategy"> management strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20%28MSW%29" title=" municipal solid waste (MSW)"> municipal solid waste (MSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=MSW%20rules" title=" MSW rules"> MSW rules</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/34871/challenges-for-municipal-solid-waste-management-in-india-a-case-study-of-eluru-andhra-pradesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Effects of Cow Manure Treated by Fruit Beetle Larvae, Waxworms and Tiger Worms on Plant Growth in Relation to Its Use as Potting Compost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20S.%20Alwaneen">Waleed S. Alwaneen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dairy industry is flourishing in world to provide milk and milk products to local population. Besides milk products, dairy industries also generate a substantial amount of cow manure that significantly affects the environment. Moreover, heat produced during the decomposition of the cow manure adversely affects the crop germination. Different companies are producing vermicompost using different species of worms/larvae to overcome the harmful effects using fresh manure. Tiger worm treatment enhanced plant growth, especially in the compost-manure ratio (75% compost, 25% cow manure), followed by a ratio of 50% compost, 50% cow manure. &nbsp;Results also indicated that plant growth in Waxworm treated manure was weak as compared to plant growth in compost treated with Fruit Beetle (FB), Waxworms (WW), and Control (C) especially in the compost (25% compost, 75% cow manure) and 100% cow manure where there was no growth at all. Freshplant weight, fresh leaf weight and fresh root weight were significantly higher in the compost treated with Tiger worms in (75% compost, 25% cow manure); no evidence was seen for any significant differences in the dry root weight measurement between FB, Tiger worms (TW), WW, Control (C) in all composts. TW produced the best product, especially at the compost ratio of 75% compost, 25% cow manure followed by 50% compost, 50% cow manure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruit%20beetle" title="fruit beetle">fruit beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=tiger%20worms" title=" tiger worms"> tiger worms</a>, <a href="https://publications.waset.org/abstracts/search?q=waxworms" title=" waxworms"> waxworms</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/112712/the-effects-of-cow-manure-treated-by-fruit-beetle-larvae-waxworms-and-tiger-worms-on-plant-growth-in-relation-to-its-use-as-potting-compost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Detection of Arcobacter and Helicobacter pylori Contamination in Organic Vegetables by Cultural and Polymerase Chain Reaction (PCR) Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Garc%C3%ADa-Ferr%C3%BAs">Miguel García-Ferrús</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Gonz%C3%A1lez"> Ana González</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20A.%20Ferr%C3%BAs"> María A. Ferrús</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most demanded organic foods worldwide are those that are consumed fresh, such as fruits and vegetables. However, there is a knowledge gap about some aspects of organic food microbiological quality and safety. Organic fruits and vegetables are more exposed to pathogenic microorganisms due to surface contact with natural fertilizers such as animal manure, wastes and vermicompost used during farming. It has been suggested that some emergent pathogens, such as Helicobacter pylori or Arcobacter spp., could reach humans through the consumption of raw or minimally processed vegetables. Therefore, the objective of this work was to study the contamination of organic fresh green leafy vegetables by Arcobacter spp. and Helicobacter pylori. For this purpose, a total of 24 vegetable samples, 13 lettuce and 11 spinach were acquired from 10 different ecological supermarkets and greengroceries and analyzed by culture and PCR. Arcobacter spp. was detected in 5 samples (20%) by PCR, 4 spinach and one lettuce. One spinach sample was found to be also positive by culture. For H. pylori, the H. pylori VacA gene-specific band was detected in 12 vegetable samples (50%), 10 lettuces and 2 spinach. Isolation in the selective medium did not yield any positive result, possibly because of low contamination levels together with the presence of the organism in its viable but non-culturable form. Results showed significant levels of H. pylori and Arcobacter contamination in organic vegetables that are generally consumed raw, which seems to confirm that these foods can act as transmission vehicles to humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcobacter%20sp." title="Arcobacter sp.">Arcobacter sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicobacter%20pylori" title="Helicobacter pylori">Helicobacter pylori</a>, <a href="https://publications.waset.org/abstracts/search?q=Organic%20Vegetables" title="Organic Vegetables">Organic Vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=Polymerase%20Chain%20Reaction%20%28PCR%29" title="Polymerase Chain Reaction (PCR)">Polymerase Chain Reaction (PCR)</a> </p> <a href="https://publications.waset.org/abstracts/140251/detection-of-arcobacter-and-helicobacter-pylori-contamination-in-organic-vegetables-by-cultural-and-polymerase-chain-reaction-pcr-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Conservation Agriculture Practice in Bangladesh: Farmers’ Socioeconomic Status and Soil Environment Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20T.%20Uddin">Mohammad T. Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurup%20R.%20Dhar"> Aurup R. Dhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to assess the impact of conservation agriculture practice on farmers&rsquo; socioeconomic condition and soil environmental quality in Bangladesh. A total of 450 (i.e., 50 focal, 150 proximal and 250 control) farmers from five districts were selected for this study. Descriptive statistics like sum, averages, percentages, etc. were calculated to evaluate the socioeconomic data. Using Enyedi&rsquo;s crop productivity index, it was found that the crop productivity of focal, proximal and control farmers was increased by 0.9, 1.2 and 1.3 percent, respectively. The result of DID (Difference-in-difference) analysis indicated that the impact of conservation agriculture practice on farmers&rsquo; average annual income was significant. Multidimensional poverty index (MPI) indicates that poverty in terms of deprivation of health, education and living standards was decreased; and a remarkable improvement in farmers&rsquo; socioeconomic status was found after adopting conservation agriculture practice. Most of the focal and proximal farmers stated about increased soil environmental condition where majority of control farmers stated about constant environmental condition in this regard. The Probit model reveals that minimum tillage operation, permanent organic soil cover, and application of compost and vermicompost were found significant factors affecting soil environmental quality under conservation agriculture. Input support, motivation, training programmes and extension services are recommended to implement in order to raise the awareness and enrich the knowledge of the farmers on conservation agriculture practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20agriculture" title="conservation agriculture">conservation agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20productivity" title=" crop productivity"> crop productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=socioeconomic%20status" title=" socioeconomic status"> socioeconomic status</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20environment%20quality" title=" soil environment quality"> soil environment quality</a> </p> <a href="https://publications.waset.org/abstracts/63697/conservation-agriculture-practice-in-bangladesh-farmers-socioeconomic-status-and-soil-environment-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Samuel%20Raj">B. Samuel Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20R.%20D.%20Jebakumar"> Solomon R. D. Jebakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20microbial%20fuel%20cell" title=" soil microbial fuel cell"> soil microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20microbial%20fuel%20cell" title=" plant microbial fuel cell"> plant microbial fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/25813/bio-energy-from-metabolic-activity-of-bacteria-in-plant-and-soil-using-novel-microbial-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Varying Frequency Application of Vermicast as Supplemented with 19-19-19+Me in the Agronomic Performance of Lettuce (Lactuca sativa)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesryl%20B.%20Paulite">Jesryl B. Paulite</a>, <a href="https://publications.waset.org/abstracts/search?q=Eixer%20Niel%20V.%20Enesco"> Eixer Niel V. Enesco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lettuce is not well known in the lowland locality in the tropical countries like Philippines. Farmers thought that this crop is not adaptable to the climate that we have in lowland. But some new varieties can tolerate warmer conditions. The massive use of pesticides in lettuce production might chronically affect human health and environment. The move of the Philippine government is toward organic. One of the organic material is vermicompost. It is an organic fertilizer that serves as soil conditioner and enhances soil fertility and promotes vigorous and healthy crop growth and Supplementation of 19-19-19+M.E. will make it better since it contains N-P-K and selected microelements to meet the nutritive requirements of the crop. The experiment was conducted at Purok 3, Brgy. Tiburcia, Kapalong, Davao del Norte from February 6, 2014 to March 4, 2014. The study was conducted to determine the effect of varying frequency application of vermicast as supplemented with 19-19-19+M.E. in lettuce. Specifically, this aimed to 1.) Identify the agronomic performance of lettuce as affected by varying frequency application of vermicast as supplemented with 19-19-19+M.E.; 2.) Assess the economic profitability of lettuce as applied with vermicast as supplemented with 19-19-19+M.E. The study was laid out in Randomized Complete Block Design (RCBD) with four treatments and three replications. The treatments were as follow: T1 – Untreated, T2 - Weekly Application, T3- Bi-weekly Application, and T4- Monthly Application. The data on percent (%) mortality were transformed using square root of transformation before Analysis of Variance (ANOVA). Results revealed not significant in terms of percent mortality in weekly and monthly application of the treatment having a mean of 1.76 % and 3.09 %. However, Significant differences were observed in agronomic performances such as; plant height with a mean of 10.63 cm in weekly application and 6.40 cm for the untreated, leaf width with a mean of 10.80 cm for the weekly application and 6.03 for the untreated, fresh weight with a mean of 25.67 g for the weekly application and 6.83 g for the untreated, and yield with a mean of 1,208.33 kg/ha for the weekly application and 327.08 kg/ha for the untreated, respectively. Results further exposed that profitability of lettuce in terms of Return of Production Cost (RPC) were; bi-weekly with 91.01 %, monthly with 68.20 %, weekly with 25.34 % and untreated (control) with 16.69 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agronomic%20performance" title="agronomic performance">agronomic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20profitability" title=" economic profitability"> economic profitability</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicast" title=" vermicast"> vermicast</a>, <a href="https://publications.waset.org/abstracts/search?q=percent%20mortality" title=" percent mortality"> percent mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=19-19-19%2BME" title=" 19-19-19+ME "> 19-19-19+ME </a> </p> <a href="https://publications.waset.org/abstracts/23058/varying-frequency-application-of-vermicast-as-supplemented-with-19-19-19me-in-the-agronomic-performance-of-lettuce-lactuca-sativa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vermicompost&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vermicompost&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10