CINXE.COM
Search results for: meat storage practices
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: meat storage practices</title> <meta name="description" content="Search results for: meat storage practices"> <meta name="keywords" content="meat storage practices"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="meat storage practices" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="meat storage practices"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6800</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: meat storage practices</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6800</span> Knowledge-driven Integration of Meat Storage and Safety Practices among College of Science Undergraduate Students of Polytechnic University of the Philippines – Sta. Mesa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erwin%20L.%20Descallar">Erwin L. Descallar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food safety is crucial in protecting the health of consumers, maintaining integrity in the entire food industry, and ensuring regulatory compliance. Food is a universal need for survival, and everyone is at risk of engaging in improper food handling, which increases vulnerability to foodborne illnesses. The level of knowledge or awareness and meat storage practices of students are behaviors influenced by various demographic factors. The Health Belief Model examines the relationship of such demographic factors towards the attitude, perception, and actions of individuals on perceived risk. This study aims to analyze and understand the correlation of said behaviors with course programs, prior food poisoning experience, and food handling of university students. The study employed randomized responses from 89 university students (n=89) under the College of Science at the Polytechnic University of the Philippines–Sta. Mesa (Manila). The results were subjected to measures of central tendency for score ranking and inferential statistics. The statistics were compared using Pearson ‘r’ Product Moment Correlation to determine the degree of relationship between the knowledge and practices on meat storage and safety. No statistically significant differences were found between the course program of students, food poisoning experiences, level of knowledge, and awareness regarding proper meat storage practices. However, increased frequency and involvement in meat handling have shown a positive correlation, indicating that there is a correlation between food handling and proper meat storage practices of university students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices" title="meat storage practices">meat storage practices</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20handling" title=" food handling"> food handling</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20science%20and%20technology" title=" meat science and technology"> meat science and technology</a> </p> <a href="https://publications.waset.org/abstracts/194666/knowledge-driven-integration-of-meat-storage-and-safety-practices-among-college-of-science-undergraduate-students-of-polytechnic-university-of-the-philippines-sta-mesa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6799</span> Meat Consumption for Family Health in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chigbu%20Ruth%20Nnena">Chigbu Ruth Nnena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discussed the concept of meat its nutritive value in family meals. The paper further discussed the selection, storage and preparation of meat in family meal the Nigerian way. The paper made the following recommendations among others; that families in Nigeria should rear cow meat for easy access to the meant and that family should purchase meat that are fresh from chain shops in the market to avoid meat contamination among others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meat" title="meat">meat</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20meals" title=" storage meals"> storage meals</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20and%20preparation" title=" concept and preparation"> concept and preparation</a> </p> <a href="https://publications.waset.org/abstracts/40769/meat-consumption-for-family-health-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6798</span> Effect of Citric Acid and Clove on Cured Smoked Meat: A Traditional Meat Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esther%20Eduzor">Esther Eduzor</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20A.%20Negbenebor"> Charles A. Negbenebor</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20O.%20Agu"> Helen O. Agu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smoking of meat enhances the taste and look of meat, it also increases its longevity, and helps preserve the meat by slowing down the spoilage of fat and growth of bacteria. The Lean meat from the forequarter of beef carcass was obtained from the Maiduguri abattoir. The meat was cut into four portions with weight ranging from 525-545 g. The meat was cut into bits measuring about 8 cm in length, 3.5 cm in thickness and weighed 64.5 g. Meat samples were washed, cured with various concentration of sodium chloride, sodium nitrate, citric acid and clove for 30 min, drained and smoked in a smoking kiln at a temperature range of 55-600°C, for 8 hr a day for 3 days. The products were stored at ambient temperature and evaluated microbiologically and organoleptically. In terms of processing and storage there were increases in pH, free fatty acid content, a decrease in water holding capacity and microbial count of the cured smoked meat. The panelists rated control samples significantly (p < 0.05) higher in terms of colour, texture, taste and overall acceptability. The following organisms were isolated and identified during storage: Bacillus specie, Bacillus subtilis, streptococcus, Pseudomonas, Aspergillus niger, Candida and Penicillium specie. The study forms a basis for new product development for meat industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title="citric acid">citric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=cloves" title=" cloves"> cloves</a>, <a href="https://publications.waset.org/abstracts/search?q=smoked%20meat" title=" smoked meat"> smoked meat</a>, <a href="https://publications.waset.org/abstracts/search?q=bioengineering" title=" bioengineering"> bioengineering</a> </p> <a href="https://publications.waset.org/abstracts/21685/effect-of-citric-acid-and-clove-on-cured-smoked-meat-a-traditional-meat-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6797</span> Dried Venison Quality Parameters Changes during Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laima%20Silina">Laima Silina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilze%20Gramatina"> Ilze Gramatina</a>, <a href="https://publications.waset.org/abstracts/search?q=Liga%20Skudra"> Liga Skudra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatjana%20Rakcejeva"> Tatjana Rakcejeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the current research was to determine quality parameters changes of dried venison during storage. Protein, fat and moisture content dynamics as well microbiological quality was analyzed. For the experiments the meat (0.02×4.00×7.00 cm) pieces were marinated in “teriyaki sauce” marinade (composition: teriyaki sauce, sweet and sour sauce, taco sauce, soy sauce, American BBQ sauce hickory, sesame oil, garlic, garlic salt, tabasco red pepper sauce) at 4±2°C temperature for 48±1h. Sodium monophosphate (E339) was also added in part of marinade to improve the meat textural properties. After marinating, meat samples were dried in microwave-vacuum drier MUSSON–1, packaged in vacuum pouches made from polymer film (PA/PE) with barrier properties and storage for 4 months at 18±1°C temperature in dark place. Dried venison samples were analyzed after 0, 35, 91 and 112 days of storage. During the storage total plate counts of dried venison samples significantly (p<0.05) increased. No significant differences in the content of protein, fat and moisture were detected when analyzing dried meat samples during storage and comparing them with the chemical parameters of just dried meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying" title="drying">drying</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-vacuum%20drier" title=" microwave-vacuum drier"> microwave-vacuum drier</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=venison" title=" venison"> venison</a> </p> <a href="https://publications.waset.org/abstracts/11850/dried-venison-quality-parameters-changes-during-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6796</span> Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Maqsood">Sajid Maqsood</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysha%20Al%20Rashedi"> Aysha Al Rashedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Abushelaibi"> Aisha Abushelaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusaimah%20Manheem"> Kusaimah Manheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20antioxidants" title="natural antioxidants">natural antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20oxidation" title=" lipid oxidation"> lipid oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=camel%20meat" title=" camel meat"> camel meat</a> </p> <a href="https://publications.waset.org/abstracts/12471/effect-of-phenolic-compounds-on-off-odor-development-and-oxidative-stability-of-camel-meat-during-refrigerated-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6795</span> Papaya Leaf in Broiler Chicken Feed Reducing Lipid Peroxidation of Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ebrahimi">M. Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Maroufyan"> E. Maroufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shakeri"> M. Shakeri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Oskoueian"> E. Oskoueian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F%20Soleimani"> A. F Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Goh"> Y. M. Goh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipid peroxidation is a main reason of low quality in meat and meat products. The free radical chain reaction is the major process of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the main starter of the chain reaction. Papaya leaf contains several secondary metabolites which can be used as a potential antioxidant in broiler feed. Hence, this research was carried out to evaluate the potential of papaya leaf to prevent lipid peroxidation and enhance the antioxidant activity of breast meat of broiler chicken. The results showed that supplementation of papaya leaf at 5%, significantly (p < 0.05) reduced the lipid peroxidation compared to control group. The supplementation of papaya leaf prevented from lipid peroxidation and enhanced the antioxidant activity of the broiler breast meat significantly (p < 0.05) after different storage periods. Papaya leaf reduced the lipid oxidation of meat during storage with strong free radical-scavenging ability. In conclusion, supplementation of papaya leaf in broiler diet to have high quality meat is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=papaya%20leaf" title=" papaya leaf"> papaya leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20meat" title=" breast meat"> breast meat</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/17709/papaya-leaf-in-broiler-chicken-feed-reducing-lipid-peroxidation-of-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6794</span> The Influence of the Types of Smoke Powder and Storage Duration on Sensory Quality of Balinese Beef and Buffalo Meatballs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Abustam">E. Abustam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Said"> M. I. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusuf"> M. Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Ali"> H. M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to examine the sensory quality of meatballs made from Balinese beef and buffalo meat after the addition of smoke powder prior to storage at the temperatures of 2-5°C for 7 days. This study used meat from Longissimus dorsi muscle of male Balinese cattle aged 3 years and of male buffalo aged 5 years as the main raw materials, and smoke powder as a binder and preservative in making meatballs. The study was based on completely randomized design (CRD) of factorial pattern of 2 x 3 x 2 where factors 1, 2 and 3 included the types of meat (cattle and buffalo), types of smoke powder (oven dried, freeze dried and spray dried) with a level of 2% of the weight of the meat (b/b), and storage duration (0 and 7 days) with three replications respectively. The parameters measured were the meatball sensory quality (scores of tenderness, firmness, chewing residue, and intensity of flavor). The results of this study show that each type of meat has produced different sensory characteristics. The meatballs made from buffalo meat have higher tenderness and elasticity scores than the Balinese beef. Meanwhile, the buffalo meatballs have a lower residue mastication score than the Balinese beef. Each type of smoke powders has produced a relatively similar sensory quality of meatballs. It can be concluded that the smoke powder of 2% of the weight of the meat (w/w) could maintain the sensory quality of the meatballs for 7 days of storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balinese%20beef%20meatballs" title="Balinese beef meatballs">Balinese beef meatballs</a>, <a href="https://publications.waset.org/abstracts/search?q=buffalo%20meatballs" title=" buffalo meatballs"> buffalo meatballs</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20quality" title=" sensory quality"> sensory quality</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20powder" title=" smoke powder"> smoke powder</a> </p> <a href="https://publications.waset.org/abstracts/37490/the-influence-of-the-types-of-smoke-powder-and-storage-duration-on-sensory-quality-of-balinese-beef-and-buffalo-meatballs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6793</span> The Potential of Extending the Shelf Life of Meat by Encapsulation with Red Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onuoha%20Ogbonnaya%20Gideon">Onuoha Ogbonnaya Gideon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishaq%20Hafsah%20Yusuf"> Ishaq Hafsah Yusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Meat is a perishable food of good nutrition. Meat ranks among the most significant, nutritious, and favored food items available to most locals. It is a good source of protein (17-19%), depending on sources, and contains appreciable amounts of fat and moisture. However, it has a very short shelf life due mainly to its high moisture, fat, and other nutrient contents. Meat spoilage can result from microbial proliferation as well as inherent enzymes in the meat tissues. Bacteria contamination and permeability to both oxygen and water vapor are major concerns associated with spoilage of meat and its storage. Packaging is fundamental in the preservation and presentation of food. Red clay is a very common substance; hydrous aluminum phyllosilicate, sometimes with varying amounts of iron, magnesium, alkali metals, alkaline earth, and cation formed from sedimentary rocks. Furthermore, red clay is an extremely absorbent material and develops plasticity when wet due to the molecular film of water surrounding the clay particles but can become hard, impervious, brittle, and non-brittle and non-plastic when dry. In developing countries, the high cost of refrigeration technologies and most other methods of preserving meat are exorbitant and thus can be substituted with the less expensive and readily available red clay for the preservation of meat. Methodology: 1000g of lean meat was diced into cubes of 10g each. The sample was then divided into four groups labelled raw meat (RMC); raw in 10% brine solution (RMB), boiled meat (BMC), and fried meat (FMC). It was then encapsulated with 2mm thick red clay and then heated in a muffle furnace at a temperature of 600OC for 30min. The samples were kept on a bench top for 30 days, and a storage study was carried out. Results: Our findings showed a decrease in value during storage for the physiochemical properties of all the sample; pH values decreased [RMC (7.05-7.6), RMB (8.46-7.0), BMC (6.0-5.0), FMC (4.08-3.9)]; free fatty acid content decreased with storage time [RMC (32.6%-31%), RMB (30.2%-28.6%), BMC (30.5%-27.4%), FMC (25.6%-23.8%)]; total soluble solid value decreased [RMC16.20-15.07, RMB (17.22-16.04), BMC (17.05-15.54), FMC (15.3-14.9)]. Conclusion: This result shows that encapsulation with red clay reduced all the values analyzed and thus has the potential to extend the shelf life of stored meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20clay" title="red clay">red clay</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulating" title=" encapsulating"> encapsulating</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20meat" title=" lean meat"> lean meat</a> </p> <a href="https://publications.waset.org/abstracts/156232/the-potential-of-extending-the-shelf-life-of-meat-by-encapsulation-with-red-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6792</span> Influence of Freeze-Thaw Cycles on Protein Integrity and Quality of Chicken Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafees%20Ahmed">Nafees Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Izyani%20Kamaruzman"> Nur Izyani Kamaruzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Saralla%20Nathan"> Saralla Nathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ezharul%20Hoque%20Chowdhury"> Mohd Ezharul Hoque Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuar%20Zaini%20Md%20Zain"> Anuar Zaini Md Zain</a>, <a href="https://publications.waset.org/abstracts/search?q=Iekhsan%20Othman"> Iekhsan Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifah%20Binti%20Syed%20Hassan"> Sharifah Binti Syed Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meat quality is always subject to consumer scrutiny when purchasing from retail markets on mislabeling as fresh meat. Various physiological and biochemical changes influence the quality of meat. As a major component of muscle tissue, proteins play a major role in muscle foods. In meat industry, freezing is the most common form of storage of meat products. Repeated cycles of freezing and thawing are common in restaurants, kitchen, and retail outlets and can also occur during transportation or storage. Temperature fluctuation is responsible for physical, chemical, and biochemical changes. Repeated cycles of ‘freeze-thaw’ degrade the quality of meat by stimulating the lipid oxidation and surface discoloration. The shelf life of meat is usually determined by its appearance, texture, color, flavor, microbial activity, and nutritive value and is influenced by frozen storage and subsequent thawing. The main deterioration of frozen meat during storage is due to protein. Due to the large price differences between fresh and frozen–thawed meat, it is of great interest to consumer to know whether a meat product is truly fresh or not. Researchers have mainly focused on the reduction of moisture loss due to freezing and thawing cycles of meat. The water holding capacity (WHC) of muscle proteins and reduced water content are key quality parameters of meat that ultimately changes color and texture. However, there has been limited progress towards understanding the actual mechanisms behind the meat quality changes under the freeze–thaw cycles. Furthermore, effect of freeze-thaw process on integrity of proteins is ignored. In this paper, we have studied the effect of ‘freeze-thawing’ on physicochemical changes of chicken meat protein. We have assessed the quality of meat by pH, spectroscopic measurements, Western Blot. Our results showed that increase in freeze-thaw cycles causes changes in pH. Measurements of absorbance (UV-visible and IR) indicated the degradation of proteins. The expression of various proteins (CREB, AKT, MAPK, GAPDH, and phosphorylated forms) were performed using Western Blot. These results indicated the repeated cycles of freeze-thaw is responsible for deterioration of protein, thus causing decrease in nutritious value of meat. It damges the use of these products in Islamic Sharia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20meat" title="chicken meat">chicken meat</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw" title=" freeze-thaw"> freeze-thaw</a>, <a href="https://publications.waset.org/abstracts/search?q=halal" title=" halal"> halal</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20blot" title=" western blot"> western blot</a> </p> <a href="https://publications.waset.org/abstracts/32910/influence-of-freeze-thaw-cycles-on-protein-integrity-and-quality-of-chicken-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6791</span> Unlocking the Health Benefits of Goat Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Makangali">K. Makangali</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tokysheva"> G. Tokysheva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shoman"> A. Shoman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Goat meat and goat meat products have garnered increasing attention within the realm of nutrition and health due to their potential to provide a myriad of benefits. This scientific article presents a comprehensive review of the health advantages associated with goat meat consumption and the products derived from it. The paper explores the nutritional content of goat meat, highlighting its favorable composition in terms of protein, essential minerals, and amino acids. It delves into the intricate balance of macronutrients, with lower fat and cholesterol levels compared to other meats, making goat meat a desirable choice for individuals seeking healthier dietary options. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goat%20meat" title="goat meat">goat meat</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20products" title=" meat products"> meat products</a>, <a href="https://publications.waset.org/abstracts/search?q=meat" title=" meat"> meat</a> </p> <a href="https://publications.waset.org/abstracts/175653/unlocking-the-health-benefits-of-goat-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6790</span> Quality of Bali Beef and Broiler after Immersion in Liquid Smoke on Different Concentrations and Storage Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Abustam">E. Abustam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusuf"> M. Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Ali"> H. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Said"> M. I. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20N.%20Yuliati"> F. N. Yuliati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to improve the durability and quality of Bali beef (M. Longissimus dorsi) and broiler carcass through the addition of liquid smoke as a natural preservative. This study was using Longissimus dorsi muscle from male Bali beef aged 3 years, broiler breast and thigh aged 40 days. Three types of meat were marinated in liquid smoke with concentrations of 0, 5, and 10% for 30 minutes at the level of 20% of the sample weight (w/w). The samples were storage at 2-5°C for 1 month. This study designed as a factorial experiment 3 x 3 x 4 based on a completely randomized design with 5 replications; the first factor was meat type (beef, chicken breast and chicken thigh); the 2nd factor was liquid smoke concentrations (0, 5, and 10%), and the 3rd factor was storage duration (1, 2, 3, and 4 weeks). Parameters measured were TBA value, total bacterial colonies, water holding capacity (WHC), shear force value both before and after cooking (80°C – 15min.), and cooking loss. The results showed that the type of meat produced WHC, shear force value, cooking loss and TBA differed between the three types of meat. Higher concentration of liquid smoke, the WHC, shear force value, TBA, and total bacterial colonies were decreased; at a concentration of 10% of liquid smoke, the total bacterial colonies decreased by 57.3% from untreated with liquid smoke. Longer storage, the total bacterial colonies and WHC were increased, while the shear force value and cooking loss were decreased. It can be concluded that a 10% concentration of liquid smoke was able to maintain fat oxidation and bacterial growth in Bali beef and chicken breast and thigh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bali%20beef" title="Bali beef">Bali beef</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken%20meat" title=" chicken meat"> chicken meat</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20smoke" title=" liquid smoke"> liquid smoke</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20quality" title=" meat quality"> meat quality</a> </p> <a href="https://publications.waset.org/abstracts/36881/quality-of-bali-beef-and-broiler-after-immersion-in-liquid-smoke-on-different-concentrations-and-storage-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6789</span> Microplastic Migration from Food Packaging on Cured Meat Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klytaimnistra%20Katsara">Klytaimnistra Katsara</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Kenanakis"> George Kenanakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleftherios%20Alissandrakis"> Eleftherios Alissandrakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vassilis%20M.%20Papadakis"> Vassilis M. Papadakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, microplastics (MPs) attracted the interest of the research community as the level of environmental plastic pollution has increased over the years. Through air inhalation and food consumption, MPs enter the human body, creating a series of possible health issues. The majority of MPs enter through the digestive tract; they migrate from the plastic packaging of the foodstuffs. Several plastics, such as Polyethylene (PE), are commonly used as food packaging material due to their preservation and storage capabilities. In this work, the surfaces of three different cured meat products with varied fat compositions were studied (bacon, mortadella, and salami) to determine the migration of MPs from plastic packaging. Micro-Raman spectroscopic measurements were performed in an experimental set lasting 28 days, where the meat samples were stored in vacuum-sealed low-density polyethylene (LDPE) pouches under refrigeration conditions at 4°C. Specific measurement days (0, 3, 9, 12, 15, and 28 days of storage) were chosen to obtain comparative results. Raman micro-spectroscopy was used to monitor the MPs migration, where the Raman spectral profile of LDPE first appeared on day 9 in Bacon, day 15 in Salami, and finally, on day 28 in Mortadella. All the meat samples on day 28 were tainted because a layer of bacterial outgrowth had developed on their surface. In conclusion, MP migration from food packaging to the surface of the cured meat samples was proven. To minimize the consumption of MPs in cured meat products that are stored in plastic packaging, a short period of storage time under refrigeration conditions is advised. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cured%20meat" title="cured meat">cured meat</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20packaging" title=" food packaging"> food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=low-density%20polyethylene" title=" low-density polyethylene"> low-density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastic%20migration" title=" microplastic migration"> microplastic migration</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-Raman%20spectroscopy" title=" micro-Raman spectroscopy"> micro-Raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/168909/microplastic-migration-from-food-packaging-on-cured-meat-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6788</span> Studies on the Effect of Dehydration Techniques, Treatments, Packaging Material and Methods on the Quality of Buffalo Meat during Ambient Temperature Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ahmad%20Safapuri">Tariq Ahmad Safapuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Saghir%20Ahmad"> Saghir Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhana%20Allai"> Farhana Allai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to evaluate the effect dehydration techniques (polyhouse and tray drying), different treatment (SHMP, SHMP+ salt, salt + turmeric), different packaging material (HDPE, combination film), and different packaging methods (air, vacuum, CO2 Flush) on quality of dehydrated buffalo meat during ambient temperature storage. The quality measuring parameters included physico-chemical characteristics i.e. pH, rehydration ratio, moisture content and microbiological characteristics viz total plate content. It was found that the treatment of (SHMP, SHMP + salt, salt + turmeric increased the pH. Moisture Content of dehydrated meat samples were found in between 7.20% and 5.54%.the rehydration ratio of salt+ turmeric treated sample was found to be highest and lowest for controlled meat sample. the bacterial count log TPC/g of salt + turmeric and tray dried was lowest i.e. 1.80.During ambient temperature storage ,there was no considerable change in pH of dehydrated sample till 150 days. however the moisture content of samples increased in different packaging system in different manner. The highest moisture rise was found in case of controlled meat sample HDPE/air packed while the lowest increase was reported for SHMP+ Salt treated Packed by vacuum in combination film packed sample. Rehydration ratio was found considerably affected in case of HDPE and air packed sample dehydrated in polyhouse after 150 days of ambient storage. While there was a very little change in the rehydration ratio of meat samples packed in combination film CO2 flush system. The TPC was found under safe limit even after 150 days of storage. The microbial count was found to be lowest for salt+ turmeric treated samples after 150 days of storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title="ambient temperature">ambient temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydration%20technique" title=" dehydration technique"> dehydration technique</a>, <a href="https://publications.waset.org/abstracts/search?q=rehydration%20ratio" title=" rehydration ratio"> rehydration ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=SHMP%20%28sodium%20hexa%20meta%20phosphate%29" title=" SHMP (sodium hexa meta phosphate)"> SHMP (sodium hexa meta phosphate)</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE%20%28high%20density%20polyethelene%29" title=" HDPE (high density polyethelene) "> HDPE (high density polyethelene) </a> </p> <a href="https://publications.waset.org/abstracts/35333/studies-on-the-effect-of-dehydration-techniques-treatments-packaging-material-and-methods-on-the-quality-of-buffalo-meat-during-ambient-temperature-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6787</span> Pale, Firm and Non-Exudative (PFN): An Emerging Major Broiler Breast Meat Group</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cintia%20Midori%20Kaminishikawahara">Cintia Midori Kaminishikawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20J%C3%A9ssica%20Mendon%C3%A7a"> Fernanda Jéssica Mendonça</a>, <a href="https://publications.waset.org/abstracts/search?q=Mois%C3%A9s%20Grespan"> Moisés Grespan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elza%20Iouko%20Ida"> Elza Iouko Ida</a>, <a href="https://publications.waset.org/abstracts/search?q=Massami%20Shimokomaki"> Massami Shimokomaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Louren%C3%A7o%20Soares"> Adriana Lourenço Soares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of broiler breast meat is changing as a result of continuing emphasis on genetically bird’s selection for efficiently higher meat production. The consumer is experiencing a cooked product that is drier and less juicy when consumed. Breast meat has been classified as PSE (pale, soft, exudative), DFD (dark, firm, dry) and normal color meat. However, recently variations of this color have been observed and they are not in line with the specificity of the meat functional properties. Thus, the objective of this work was to report the finding of a new pale meat color group characterized as Pale, Firm and Non-exudative (PFN) based on its pH, color, meat functional properties and micro structural evaluation. Breast meat fillets samples (n=1045) from commercial line were classified into PSE (pH ≤5.8, L* ≥ 53.0), PFN (pH > 5.8 and L* ≥ 53.0) and Normal (pH >5.8 and L* < 53.0), based on pH and L* values. In sequence, a total of 30 samples of each group were analyzed for the water holding capacity (WHC) and shear force (SF). The incidence was 9.1% for PSE meat, 85.7% for PFN and 5.2% for Normal meat. The PSE meat presented lower values of WHC (P ≤ 0.05) followed in sequence by PFN and Normal samples and also the SF values of fresh PFN was higher than PSE meat (P ≤ 0.05) and similar to Normal samples. Under optical microscopy, the cell diameter was 10% higher for PFN in relation to PSE meat and similar to Normal meat. These preliminary results indicate an emerging group of breast meat and it should be considered that the Pale, Firm and Non-exudative should be considered as an ideal broiler breast meat quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20PSE%20meat" title="broiler PSE meat">broiler PSE meat</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20microscopy" title=" light microscopy"> light microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20holding%20capacity" title=" water holding capacity"> water holding capacity</a> </p> <a href="https://publications.waset.org/abstracts/44255/pale-firm-and-non-exudative-pfn-an-emerging-major-broiler-breast-meat-group" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6786</span> Efficiency of PCR-RFLP for the Identification of Adulteries in Meat Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hela%20Gargouri">Hela Gargouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Moalla"> Nizar Moalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassen%20Hadj%20Kacem"> Hassen Hadj Kacem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meat adulteration affecting the safety and quality of food is becoming one of the main concerns of public interest across the world. The drastic consequences on the meat industry highlighted the urgent necessity to control the products' quality and to point out the complexity of both supply and processing circuits. Due to the expansion of this problem, the authentic testing of foods, particularly meat and its products, is deemed crucial to avoid unfair market competition and to protect consumers from fraudulent practices of meat adulteration. The adoption of authentication methods by the food quality-control laboratories is becoming a priority issue. However, in some developing countries, the number of food tests is still insignificant, although a variety of processed and traditional meat products are widely consumed. Little attention has been paid to provide an easy, fast, reproducible, and low-cost molecular test, which could be conducted in a basic laboratory. In the current study, the 359 bp fragment of the cytochrome-b gene was mapped by PCR-RFLP using firstly fresh biological supports (DNA and meat) and then turkey salami as an example of commercial processed meat. This technique has been established through several optimizations, namely: the selection of restriction enzymes. The digestion with BsmAI, SspI, and TaaI succeed to identify the seven included animal species when meat is formed by individual species and when the meat is a mixture of different origin. In this study, the PCR-RFLP technique using universal primer succeed to meet our needs by providing an indirect sequencing method identifying by restriction enzymes the specificities characterizing different species on the same amplicon reducing the number of potential tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adulteration" title="adulteration">adulteration</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20species" title=" animal species"> animal species</a>, <a href="https://publications.waset.org/abstracts/search?q=authentication" title=" authentication"> authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=meat" title=" meat"> meat</a>, <a href="https://publications.waset.org/abstracts/search?q=mtDNA" title=" mtDNA"> mtDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR-RFLP" title=" PCR-RFLP"> PCR-RFLP</a> </p> <a href="https://publications.waset.org/abstracts/137599/efficiency-of-pcr-rflp-for-the-identification-of-adulteries-in-meat-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6785</span> Ochratoxin-A in Traditional Meat Products from Croatian Households</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelka%20Pleadin">Jelka Pleadin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Kudumija"> Nina Kudumija</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vulic"> Ana Vulic</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Zadravec"> Manuela Zadravec</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Lesic"> Tina Lesic</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Skrivanko"> Mario Skrivanko</a>, <a href="https://publications.waset.org/abstracts/search?q=Irena%20Perkovic"> Irena Perkovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20Vahcic"> Nada Vahcic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Products of animal origin, such as meat and meat products, can contribute to human mycotoxins’ intake coming as a result of either indirect transfer from farm animals exposed to naturally contaminated grains and feed (carry-over effects) or direct contamination with moulds or naturally contaminated spice mixtures used in meat production. Ochratoxin A (OTA) is mycotoxin considered to be of the outermost importance from the public health standpoint in connection with meat products. The aim of this study was to investigate the occurrence of OTA in different traditional meat products circulating on Croatian markets during 2018, produced by a large number of households situated in eastern and north Croatian regions using a variety of technologies. Concentrations of OTA were determined in traditional meat products (n = 70), including dry fermented sausages (Slavonian kulen, Slavonian sausage, Istrian sausage and domestic sausage; n = 28), dry-cured meat products (pancetta, pork rack and ham; n = 22) and cooked sausages (liver sausages, black pudding sausages and pate; n = 20). OTA was analyzed by use of quantitative screening immunoassay method (ELISA) and confirmed for positive samples (higher than the limit of detection) by liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Whereas the bacon samples contaminated with OTA were not found, its level in dry fermented sausages ranged from 0.22 to 2.17 µg/kg and in dry-cured meat products from 0.47 to 5.35 µg/kg, with in total 9% of positive samples. Besides possible primary contamination of these products arising due to improper manufacturing or/and storage conditions, observed OTA contamination could also be the consequence of secondary contamination that comes as a result of contaminated feed the animals were fed on. OTA levels obtained in cooked sausages ranged from 0.32 to 4.12 µg/kg (5% of positives) and could probably be linked to the contaminated raw materials (liver, kidney and spices) used in the sausages production. The results showed an occasional OTA contamination of traditional meat products, pointing that to avoid such contamination on households these products should be produced and processed under standardized and well-controlled conditions. Further investigations should be performed in order to identify mycotoxin-producing moulds on the surface of the products and to define preventative measures that can reduce the contamination of traditional meat products during their production on households and period of storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Croatian%20households" title="Croatian households">Croatian households</a>, <a href="https://publications.waset.org/abstracts/search?q=ochratoxin-A" title=" ochratoxin-A"> ochratoxin-A</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20cooked%20sausages" title=" traditional cooked sausages"> traditional cooked sausages</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20dry-cured%20meat%20products" title=" traditional dry-cured meat products"> traditional dry-cured meat products</a> </p> <a href="https://publications.waset.org/abstracts/104865/ochratoxin-a-in-traditional-meat-products-from-croatian-households" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6784</span> Biochemical Characterization of Meat Goat in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafid%20Nadia">Hafid Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Meziane%20Toufik"> Meziane Toufik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was the characterization of the goat meat by the determination of quantity and the quality in Batna region. The first part was the evaluation of production and consumption. The investigations show that the goat meat third after mutton and beef, it’s especially consumed by the indigenous population located in the Mountain and steep area. The second part of this review treats nutritional quality of this meat by the quantification of the chemical composition, including fat profile, and establishes a link between animal age and the values of these parameters. Moisture, fat contents, and cholesterol levels varied with age. Because of the decreasing level of cholesterol in the Chevon meat, it is more recommended for consumption to prevent or reduce the incidence of coronary disease and heart attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20composition" title="biochemical composition">biochemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20meat" title=" goat meat"> goat meat</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20attack" title=" heart attack"> heart attack</a> </p> <a href="https://publications.waset.org/abstracts/23395/biochemical-characterization-of-meat-goat-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">669</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6783</span> Effects of Marinating with Cashew Apple Extract on the Bacterial Growth of Beef and Chicken Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Susanti">S. Susanti</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Bintoro"> V. P. Bintoro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Setiadi"> A. Setiadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Santoso"> S. I. Santoso</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Febriandi"> D. R. Febriandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meat is a foodstuff of animal origin. It is perishable because a suitable medium for bacterial growth. That is why meat can be a potential hazard to humans. Several ways have been done to inhibit bacterial population in an effort to prolong the meat shelf-life. However, aberration sometimes happens in the practices of meat preservation, for example by using chemical material that possessed strong antibacterial activity like formaldehyde. For health reason, utilization of formaldehyde as a food preservative was forbidden because of DNA damage resulting cancer and birth defects. Therefore, it is important to seek a natural food preservative that is not harmful to the body. This study aims to reveal the potency of cashew apple as natural food preservative by measuring its antibacterial activity and marinating effect on the bacterial growth of beef and chicken meat. Antibacterial activity was measured by The Kirby-Bauer method while bacterial growth was determined by total plate count method. The results showed that inhibition zone of 10-30% cashew apple extract significantly wider compared to 0% extract on the medium of E. coli, S. aureus, S. typii, and Bacillus sp. Furthermore, beef marinated with 20-30% cashew apple extract and chicken meat marinated with 5-15% extract significantly less in the total number of bacteria compared to 0% extract. It can be concluded that marinating with 5-30% cashew apple extract can effectively inhibit the bacterial growth of beef and chicken meat. Moreover, the concentration of extracts to inhibit bacterial populations in chicken meat was reached at the lower level compared to beef. Thus, cashew apple is potential as a natural food preservative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20growth" title="bacterial growth">bacterial growth</a>, <a href="https://publications.waset.org/abstracts/search?q=cashew%20apple" title=" cashew apple"> cashew apple</a>, <a href="https://publications.waset.org/abstracts/search?q=marinating" title=" marinating"> marinating</a>, <a href="https://publications.waset.org/abstracts/search?q=meat" title=" meat"> meat</a> </p> <a href="https://publications.waset.org/abstracts/51485/effects-of-marinating-with-cashew-apple-extract-on-the-bacterial-growth-of-beef-and-chicken-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6782</span> Protein Quality of Game Meat Hunted in Latvia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vita%20Strazdina">Vita Strazdina</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandrs%20Jemeljanovs"> Aleksandrs Jemeljanovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Vita%20Sterna"> Vita Sterna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietic%20product" title="dietic product">dietic product</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20meat" title=" game meat"> game meat</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=scores" title=" scores"> scores</a> </p> <a href="https://publications.waset.org/abstracts/10553/protein-quality-of-game-meat-hunted-in-latvia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6781</span> The Influences of Marketplace Knowledge, General Product Class Knowledge, and Knowledge in Meat Product with Traceability on Trust in Meat Traceability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawpong%20Polyorat">Kawpong Polyorat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the outbreak of mad cow disease and bird flu, consumers have become more concerned with meat quality and safety. As a result, meat traceability is adopted as one approach to handle consumers’ concern in this issue. Nevertheless, in Thailand, meat traceability is rarely used as a marketing tool to persuade consumers. As a consequence, the present study attempts to understand consumer trust in the meat traceability system by conducting a study in this country to examine the impact of three types of consumer knowledge on this trust. The study results reveal that out of three types of consumer knowledge, marketplace knowledge was the sole predictor of consumer trust in meat traceability and it has a positive influence. General product class knowledge and knowledge in meat products with traceability, however, did not significantly influence consumer trust. The research results provide several implications and directions for future study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20knowledge" title="consumer knowledge">consumer knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing" title=" marketing"> marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20knowledge" title=" product knowledge"> product knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/55321/the-influences-of-marketplace-knowledge-general-product-class-knowledge-and-knowledge-in-meat-product-with-traceability-on-trust-in-meat-traceability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6780</span> Meat Products Demand in Oyo West Local Government: An Application of Almost Ideal Demand System (LA/AIDS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Adeniyi">B. A. Adeniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Daud"> S. A. Daud</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Amao"> O. Amao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates consumer demand for meat products in Oyo West Local Government using linear approximate almost ideal demand system (LA/AIDS). Questions that were addressed by the study include: first, what is the type and quantity of meat products available to the household and their demand pattern? Second is the investigation of the factors that affect meat products demand pattern and proportion of income that is spent on them. For the above purpose cross-sectional data were collected from 156 households of the study area and analyzed to reveal the functional relationship between meat products consumption and some socio-economic variables of the household. Results indicated that per capita meat consumption increased as household income and education increased but decreased with age. It was also found that male tend to consume more meat products than their female counterparts and that increase in household size will first increased per caput meat consumption but later decreased it. Price also tends to greatly influence the demand pattern of meat products. The results of elasticity computed from the results of regression analysis revealed that own price elasticity for all meat products were negative which indicated that they were normal products while cross and expenditure elasticity were positive which further confirmed that meat products were normal and substitute products. This study therefore concludes that the relevance of these variables imposed a great challenge to the policy makers and the government, in the sense that more cost effective methods of meat production technology have to be devised in other to make consumption of meat products more affordable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meat%20products" title="meat products">meat products</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20production" title=" animal production"> animal production</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/45245/meat-products-demand-in-oyo-west-local-government-an-application-of-almost-ideal-demand-system-laaids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6779</span> Life Cycle-Based Analysis of Meat Production: Ecosystem Impacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Zeyuan%20Ma">Michelle Zeyuan Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermann%20Heilmeier"> Hermann Heilmeier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, meat production ecosystem impacts initiated many hot discussions and researchers, and it is a difficult implementation to reduce such impacts due to the demand of meat products. It calls for better management and control of ecosystem impacts from every aspects of meat production. This article analyzes the ecosystem impacts of meat production based on meat products life cycle. The analysis shows that considerable ecosystem impacts are caused by different meat production steps: initial establishment phase, animal raising, slaughterhouse processing, meat consumption, and wastes management. Based on this analysis, the impacts are summarized as: leading factor for biodiversity loss; water waste, land use waste and land degradation; greenhouse gases emissions; pollution to air, water, and soil; related major diseases. The article also provides a discussion on a solution-sustainable food system, which could help in reducing ecosystem impacts. The analysis method is based on the life cycle level, it provides a concept of the whole meat industry ecosystem impacts, and the analysis result could be useful to manage or control meat production ecosystem impacts from investor, producer and consumer sides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eutrophication" title="eutrophication">eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20based%20analysis" title=" life cycle based analysis"> life cycle based analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20food" title=" sustainable food"> sustainable food</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/91199/life-cycle-based-analysis-of-meat-production-ecosystem-impacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6778</span> Effect of Dietary Melissa officinalis Leaves Supplementation on Lipid Oxidation of Broiler Breast Fillets During Refrigerated Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khosro%20Ghazvinian">Khosro Ghazvinian</a>, <a href="https://publications.waset.org/abstracts/search?q=Touba%20Khodaeian"> Touba Khodaeian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the oxidative stability of meat products, the use of dietary form of antioxidants can extend the shelf life and acceptability of muscle food during exposition or storage condition. As shown, this method is more effective than adding direct preservatives due to uniform incorporation of dietary additives into sub cellular membrane and therefore, they can properly inhibit the oxidative reaction at their localized sites. Furthermore, postmortem addition of antioxidants to meat cannot directly inhibit the oxidation in membrane phospholipids. Therefore, this study was designed to evaluate the effects of feed supplementation with Melissa officinalis leaves on lipid peroxidation of chicken breast fillets during refrigerated storage. In this study, 72 one-day old Ross 308 broilers distributed in four groups with six replicates (3 chickens each) were fed a basal diet (CONT) or basal diet supplemented with 5, 10, and 15 gr/Kg M.officinalis, for 6 weeks. Following slaughter, fillets from breast were stored at 4 °C in the dark for 12 days, and lipid oxidation was assessed on the basis of thiobarbituric acid reactive substances (TBARS) formed. Results showed that incorporation of M.officinalis in broiler diets delayed lipid oxidation in raw breast meat during refrigerated storage comparative with CONT(p<0.05). In this regard, TBARS levels of breast samples containing higher concentrations (10 and 15 gr/Kg) of M. officinalis (625.43 and 504.32 µg/kg MDA equivalents, respectively )were significantly lower than those of control and 5g/kg samples (872.75 and 841.32 µg/kg MDA equivalents, respectively) (p<0.05). Therefore, M. officinalis might be utilized in novel applications as a nutritional supplement or a functional food component. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20fillet" title="breast fillet">breast fillet</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20oxidation" title=" lipid oxidation"> lipid oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20officinalis" title=" Melissa officinalis"> Melissa officinalis</a>, <a href="https://publications.waset.org/abstracts/search?q=TBARS%20assay" title=" TBARS assay"> TBARS assay</a> </p> <a href="https://publications.waset.org/abstracts/46646/effect-of-dietary-melissa-officinalis-leaves-supplementation-on-lipid-oxidation-of-broiler-breast-fillets-during-refrigerated-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6777</span> Hydrogen Storage in Carbonized Coconut Meat (Kernel)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viney%20Dixit">Viney Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20R.%20Shahi"> Rohit R. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Bhatnagar"> Ashish Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jain"> P. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yadav"> T. P. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Srivastava"> O. N. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20kernel" title="coconut kernel">coconut kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=KCl" title=" KCl"> KCl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca" title=" Ca"> Ca</a> </p> <a href="https://publications.waset.org/abstracts/12194/hydrogen-storage-in-carbonized-coconut-meat-kernel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6776</span> Incidence of Fungal Infections and Mycotoxicosis in Pork Meat and Pork By-Products in Egyptian Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Samir%20Hakim">Ashraf Samir Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Randa%20Mohamed%20Alarousy"> Randa Mohamed Alarousy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The consumption of food contaminated with molds (microscopic filamentous fungi) and their toxic metabolites results in the development of food-borne mycotoxicosis. The spores of molds are ubiquitously spread in the environment and can be detected everywhere. Ochratoxin A is a potentially carcinogenic fungal toxin found in a variety of food commodities , not only is considered the most abundant and hence the most commonly detected member but also is the most toxic one.Ochratoxin A is the most abundant and hence the most commonly detected member, but is also the most toxic of the three. A very limited research works concerning foods of porcine origin in Egypt were obtained in spite of presence a considerable swine population and consumers. In this study, the quality of various ready-to-eat local and imported pork meat and meat byproducts sold in Egyptian markets as well as edible organs as liver and kidney were assessed for the presence of various molds and their toxins as a raw material. Mycological analysis was conducted on (n=110) samples which included pig livers n=10 and kidneys n=10 from the Basateen slaughter house; local n=70 and 20 imported processed pork meat byproducts.The isolates were identified using traditional mycological and biochemical tests while, Ochratoxin A levels were quantitatively analyzed using the high performance liquid. Results of conventional mycological tests for detecting the presence of fungal growth (yeasts or molds) were negative, while the results of mycotoxins concentrations were be greatly above the permiceable limits or "tolerable weekly intake" (TWI) of ochratoxin A established by EFSA in 2006 in local pork and pork byproducts while the imported samples showed a very slightly increasing.Since ochratoxin A is stable and generally resistant to heat and processing, control of ochratoxin A contamination lies in the control of the growth of the toxin-producing fungi. Effective prevention of ochratoxin A contamination therefore depends on good farming and agricultural practices. Good Agricultural Practices (GAP) including methods to reduce fungal infection and growth during harvest, storage, transport and processing provide the primary line of defense against contamination with ochratoxin A. To the best of our knowledge this is the first report of mycological assessment, especially the mycotoxins in pork byproducts in Egypt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20markets" title="Egyptian markets">Egyptian markets</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxicosis" title=" mycotoxicosis"> mycotoxicosis</a>, <a href="https://publications.waset.org/abstracts/search?q=ochratoxin%20A" title=" ochratoxin A"> ochratoxin A</a>, <a href="https://publications.waset.org/abstracts/search?q=pork%20meat" title=" pork meat"> pork meat</a>, <a href="https://publications.waset.org/abstracts/search?q=pork%20by-products" title=" pork by-products "> pork by-products </a> </p> <a href="https://publications.waset.org/abstracts/26233/incidence-of-fungal-infections-and-mycotoxicosis-in-pork-meat-and-pork-by-products-in-egyptian-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6775</span> Nutritional Value of Rabbit Meat after Contamination with 1,1-Dimethylhydrazine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balgabay%20Sadepovich%20Maikanov">Balgabay Sadepovich Maikanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Tyulegenovna%20Auteleyeva"> Laura Tyulegenovna Auteleyeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Seidenova%20Simbat%20Polatbekovna"> Seidenova Simbat Polatbekovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article reduced nutritional value of the rabbits’ meat at 1, 1 dimethylhydrazine experimental toxicosis is shown. The assay was performed on liquid chromatograph SHIMADZU LC-20 Prominence (Japan) with fluorometric and spectrophotometric detector. This research has revealed that samples of rabbit meat of the experimental group had significant differences from the control group:in amino acids concentration from 1.2% to 9.1%; vitamin concentration from 11.2% to 60.5%, macro – minerals concentration from 17.4% to 78.1% and saturated fatty acids concentration from 17,1% to 34.5%, respectively. The decrease in the chemical composition of rabbits’ meat at 1,1 dimethylhydrazine toxicosis may be due to changes in the internal processes associated with impaired metabolic homeostasis of animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1" title="1">1</a>, <a href="https://publications.waset.org/abstracts/search?q=1-dimethylhydrazine" title="1-dimethylhydrazine">1-dimethylhydrazine</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20homeostasis" title=" metabolic homeostasis"> metabolic homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20value" title=" nutritional value"> nutritional value</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit%20meat" title=" rabbit meat"> rabbit meat</a> </p> <a href="https://publications.waset.org/abstracts/71264/nutritional-value-of-rabbit-meat-after-contamination-with-11-dimethylhydrazine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6774</span> Further Evidence for the Existence of Broiler Chicken PFN (Pale, Firm and Non-Exudative Meat) and PSE (Pale, Soft and Exudative) in Brazilian Commercial Flocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20M.%20Carvalho">Leila M. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Erica%20S.%20Oliveira"> Maria Erica S. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnoud%20C.%20Neto"> Arnoud C. Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Elza%20I.%20Ida"> Elza I. Ida</a>, <a href="https://publications.waset.org/abstracts/search?q=Massami%20Shimokomaki"> Massami Shimokomaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20S.%20Madruga"> Marta S. Madruga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of broiler breast meat is changing as a result of the continuing emphasis on genetic selection for a more efficient meat production. Breast meat has been classified as PSE (pale, soft, exudative), DFD (dark, firm, dry) and normal color meat, and recently a third group has emerged: the so-called PFN (pale, firm, non-exudative) meat. This classification was based on pH, color and functional properties. The aim of this work was to confirm the existence of PFN and PSE meat by biochemical characterization and functional properties. Twenty four hours of refrigerated fillet, Pectoralis major, m. samples (n= 838) were taken from Cobb flocks 42-48 days old, obtained in Northeastern Brazil tropical region, the Northeastern, considered to have only dry and wet seasons. Color (L*), pH, water holding capacity (WHC), values were evaluated and compared with PSE group samples. These samples were classified as Normal (46<L*<53; pH>5.8), PSE meat (L*≥53; pH<5.8) and PFN (L*≥53; pH>5.8). The occurrence of control meat, PSE and PFN was 69.09%, 11.10% and 19.81%, respectively. Samples from PFN presented 4.0-5.0% higher WHC in relation to PSE meat and similar to control group. These results are explained by the fact that PSE meat syndrome occurs because of higher protein denaturation as the consequence of a simultaneous lower pH values under warm carcass sooner after slaughtering impairing the myofibril proteins functional properties. Conversely, PFN samples follow normal glycolysis rate maintaining the normal proteins activities. In conclusion, the results reported herein confirm the existence of this emerging broiler meat group with similar properties as control group and it should be considered as normal breast meat group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20breast%20meat" title="broiler breast meat">broiler breast meat</a>, <a href="https://publications.waset.org/abstracts/search?q=funcional%20properties" title=" funcional properties"> funcional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=PFN" title=" PFN"> PFN</a>, <a href="https://publications.waset.org/abstracts/search?q=PSE" title=" PSE"> PSE</a> </p> <a href="https://publications.waset.org/abstracts/44941/further-evidence-for-the-existence-of-broiler-chicken-pfn-pale-firm-and-non-exudative-meat-and-pse-pale-soft-and-exudative-in-brazilian-commercial-flocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6773</span> The Roles of Health Consciousness, Health Motivation, and Trust in the Purchase Intention of Meat with Traceability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawpong%20Polyorat">Kawpong Polyorat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathamon%20Buaprommee"> Nathamon Buaprommee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food safety crises including mad cow disease and bird flu have raised consumers’ concern in meat safety. In response, the meat industry has adopted traceability systems to standardize quality and safety of their meat production. Traceability, however, is still rarely positioned as a marketing tool to persuade consumers who are meat endusers. Therefore, the present study attempts to understand consumer behaviors in the context of meat with traceability system by conducting a study in Thailand where research in this area is scant. The study results, based on structural equation modeling with AMOS, reveal that, while health motivation has a significant, positive impact on traceability trust, health consciousness does not directly affect traceability. Health consciousness, nevertheless, have a positive influence on health motivation. Finally, traceability trust has a positive impact on purchase intention of meat with traceability. Research implications and future study directions conclude the study report. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title="consumer behavior">consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20consciousness" title=" health consciousness"> health consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20motivation" title=" health motivation"> health motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a> </p> <a href="https://publications.waset.org/abstracts/12676/the-roles-of-health-consciousness-health-motivation-and-trust-in-the-purchase-intention-of-meat-with-traceability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6772</span> Effects of Methods of Confinement during Transportation of Market Pigs on Meat Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pongchan%20Na-Lampang">Pongchan Na-Lampang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to compare the results of transport of slaughter pigs to slaughterhouse by 2 methods, i.e. individual confined and group confined on the truck on meat quality. The pigs were transported for 1 h on a distance of 70 km. The stocking densities were 0.35 m2/pig and 0.48 m2 for group and individual crate treatment, respectively. It was found that meat quality of pigs transported by 2 different methods as measured in terms of pH level (at 45 min and 48 hr post mortem), color (brightness, redness and yellowness) and water holding capacity was not significantly different. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=market%20pig" title="market pig">market pig</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20quality" title=" meat quality"> meat quality</a>, <a href="https://publications.waset.org/abstracts/search?q=confinement" title=" confinement"> confinement</a> </p> <a href="https://publications.waset.org/abstracts/8183/effects-of-methods-of-confinement-during-transportation-of-market-pigs-on-meat-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6771</span> Application of New Sprouted Wheat Brine for Delicatessen Products From Horse Meat, Beef and Pork</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulmira%20Kenenbay">Gulmira Kenenbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Urishbay%20Chomanov"> Urishbay Chomanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruzhan%20Shoman"> Aruzhan Shoman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabiga%20Kassimbek"> Rabiga Kassimbek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main task of the meat-processing industry is the production of meat products as the main source of animal protein, ensuring the vital activity of the human body, in the required volumes, high quality, diverse assortment. Providing the population with high-quality food products what are biologically full, balanced in composition of basic nutrients and enriched by targeted physiologically active components, is one of the highest priority scientific and technical problems to be solved. In this regard, the formulation of a new brine from sprouted wheat for meat delicacies from horse meat, beef and pork has been developed. The new brine contains flavored aromatic ingredients, juice of the germinated wheat and vegetable juice. The viscosity of meat of horse meat, beef and pork were studied during massaging. Thermodynamic indices, water activity and binding energy of horse meat, beef and pork with application of new brine are investigated. A recipe for meat products with vegetable additives has been developed. Organoleptic evaluation of meat products was carried out. Physicochemical parameters of meat products with vegetable additives are carried out. Analysis of the obtained data shows that the values of the index aw (water activity) and the binding energy of moisture in the experimental samples of meat products are higher than in the control samples. It has been established by investigations that with increasing water activity and the binding energy of moisture, the tenderness of ready meat delicacies increases with the use of a new brine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compounding" title="compounding">compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20products" title=" functional products"> functional products</a>, <a href="https://publications.waset.org/abstracts/search?q=delicatessen%20products" title=" delicatessen products"> delicatessen products</a>, <a href="https://publications.waset.org/abstracts/search?q=brine" title=" brine"> brine</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20additives" title=" vegetable additives"> vegetable additives</a> </p> <a href="https://publications.waset.org/abstracts/75253/application-of-new-sprouted-wheat-brine-for-delicatessen-products-from-horse-meat-beef-and-pork" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=226">226</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=227">227</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meat%20storage%20practices&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>