CINXE.COM
Search results for: liquid-propellant rocket engine
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: liquid-propellant rocket engine</title> <meta name="description" content="Search results for: liquid-propellant rocket engine"> <meta name="keywords" content="liquid-propellant rocket engine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="liquid-propellant rocket engine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="liquid-propellant rocket engine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 834</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: liquid-propellant rocket engine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Substructure Method for Thermal-Stress Analysis of Liquid-Propellant Rocket Engine Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20V.%20Korotkaya">Olga V. Korotkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is devoted to an important problem of calculation of deflected mode of the combustion chamber and the nozzle end of a new liquid-propellant rocket cruise engine. A special attention is given to the methodology of calculation. Three operating modes are considered. The analysis has been conducted in ANSYS software. The methods of conducted research are mathematical modelling, substructure method, cyclic symmetry, and finite element method. The calculation has been carried out to order of S. P. Korolev Rocket and Space Corporation «Energia». The main results are practical. Proposed methodology and created models would be able to use for a wide range of strength problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title="combustion chamber">combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20symmetry" title=" cyclic symmetry"> cyclic symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine" title=" liquid-propellant rocket engine"> liquid-propellant rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20end" title=" nozzle end"> nozzle end</a>, <a href="https://publications.waset.org/abstracts/search?q=substructure" title=" substructure"> substructure</a> </p> <a href="https://publications.waset.org/abstracts/3281/substructure-method-for-thermal-stress-analysis-of-liquid-propellant-rocket-engine-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Machine Learning Algorithms for Rocket Propulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R%C3%B4mulo%20Eust%C3%A1quio%20Martins%20de%20Souza">Rômulo Eustáquio Martins de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Alexandre%20Rodrigues%20de%20Vasconcelos%20Figueiredo"> Paulo Alexandre Rodrigues de Vasconcelos Figueiredo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20analysis" title="data analysis">data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20propulsion" title=" rocket propulsion"> rocket propulsion</a> </p> <a href="https://publications.waset.org/abstracts/168232/machine-learning-algorithms-for-rocket-propulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hisham%20Elmouazen">Hisham Elmouazen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaobing%20Zhang"> Xiaobing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20CFD" title="computational fluid dynamics CFD">computational fluid dynamics CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative-cooled%20system" title=" regenerative-cooled system"> regenerative-cooled system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=V-rib%20cross-sections" title=" V-rib cross-sections"> V-rib cross-sections</a> </p> <a href="https://publications.waset.org/abstracts/163876/numerical-analysis-of-various-v-rib-cross-section-to-optimize-thermal-performance-of-the-rocket-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Experimental Study of Iron Metal Powder Compacting by Controlled Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Todor%20N.%20Penchev">Todor N. Penchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20N.%20Karastoianov"> Dimitar N. Karastoianov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20D.%20Gyoshev"> Stanislav D. Gyoshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For compacting of iron powder are used hydraulic presses and high velocity hammers. In this paper are presented initial research on application of an innovative powder compacting method, which uses a hammer working with controlled impact. The results show that by this method achieves the reduction of rebounds and improve efficiency of impact, compared with a high-speed compacting. Depending on the power of the engine (industrial rocket engine), this effect may be amplified to such an extent as to obtain a impact without rebound (sticking impact) and in long-time action of the impact force. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20powder%20compacting" title=" iron powder compacting"> iron powder compacting</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine" title=" rocket engine"> rocket engine</a> </p> <a href="https://publications.waset.org/abstracts/33204/experimental-study-of-iron-metal-powder-compacting-by-controlled-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Experimental Study of Upsetting and Die Forging with Controlled Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Penchev">T. Penchev</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Karastoyanov"> D. Karastoyanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results from experimental research of deformation by upsetting and die forging of lead specimens wit controlled impact are presented. Laboratory setup for conducting the investigations, which uses cold rocket engine operated with compressed air, is described. The results show that when using controlled impact is achieving greater plastic deformation and consumes less impact energy than at ordinary impact deformation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine" title="rocket engine">rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=forging%20hammer" title=" forging hammer"> forging hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=sticking%20impact" title=" sticking impact"> sticking impact</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20deformation" title=" plastic deformation"> plastic deformation</a> </p> <a href="https://publications.waset.org/abstracts/3645/experimental-study-of-upsetting-and-die-forging-with-controlled-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Computational Fluid Dynamics Model of Various Types of Rocket Engine Nozzles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Pietrykowski">Konrad Pietrykowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Bialy"> Michal Bialy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Karpinski"> Pawel Karpinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Radoslaw%20Maczka"> Radoslaw Maczka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nozzle is an element of the rocket engine in which the conversion of the potential energy of gases generated during combustion into the kinetic energy of the gas stream takes place. The design parameters of the nozzle have a decisive influence on the ballistic characteristics of the engine. Designing a nozzle assembly is, therefore, one of the most responsible stages in developing a rocket engine design. The paper presents the results of the simulation of three types of rocket propulsion nozzles. Calculations were made using CFD (Computational Fluid Dynamics) in ANSYS Fluent software. The next types of nozzles differ in shape. The analysis was made of a conical nozzle, a bell type nozzle with a conical supersonic part and a bell type nozzle. Calculation results are presented in the form of pressure, velocity and kinetic energy distributions of turbulence in the longitudinal section. The courses of these values along the nozzles are also presented. The results show that the cone nozzle generates strong turbulence in the critical section. Which negatively affect the flow of the working medium. In the case of a bell nozzle, the transformation of the wall caused the elimination of flow disturbances in the critical section. This reduces the probability of waves forming before or after the trailing edge. The most sophisticated construction is the bell type nozzle. It allows you to maximize performance without adding extra weight. The bell type nozzle can be used as a starter and auxiliary engine nozzle due to its advantages. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine" title=" rocket engine"> rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a> </p> <a href="https://publications.waset.org/abstracts/106607/computational-fluid-dynamics-model-of-various-types-of-rocket-engine-nozzles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> A Single Stage Rocket Using Solid Fuels in Conventional Propulsion Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20R%20Evans">John R Evans</a>, <a href="https://publications.waset.org/abstracts/search?q=Sook-Ying%20%20Ho"> Sook-Ying Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Rey%20Chin"> Rey Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the research investigations orientated to the starting and propelling of a solid fuel rocket engine which operates as combined cycle propulsion system using three thrust pulses. The vehicle has been designed to minimise the cost of launching small number of Nano/Cube satellites into low earth orbits (LEO). A technology described in this paper is a ground-based launch propulsion system which starts the rocket vertical motion immediately causing air flow to enter the ramjet’s intake. Current technology has a ramjet operation predicted to be able to start high subsonic speed of 280 m/s using a liquid fuel ramjet (LFRJ). The combined cycle engine configuration is in many ways fundamentally different from the LFRJ. A much lower subsonic start speed is highly desirable since the use of a mortar to obtain the latter speed for rocket means a shorter launcher length can be utilized. This paper examines the means and has some performance calculations, including Computational Fluid Dynamics analysis of air-intake at suitable operational conditions, 3-DOF point mass trajectory analysis of multi-pulse propulsion system (where pulse ignition time and thrust magnitude can be controlled), etc. of getting a combined cycle rocket engine use in a single stage vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combine%20cycle%20propulsion%20system" title="combine cycle propulsion system">combine cycle propulsion system</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20earth%20orbit%20launch%20vehicle" title=" low earth orbit launch vehicle"> low earth orbit launch vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20analysis" title=" computational fluid dynamics analysis"> computational fluid dynamics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=3dof%20trajectory%20analysis" title=" 3dof trajectory analysis "> 3dof trajectory analysis </a> </p> <a href="https://publications.waset.org/abstracts/136487/a-single-stage-rocket-using-solid-fuels-in-conventional-propulsion-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Pradeep">O. S. Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vigneshwaran"> S. Vigneshwaran</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Praveen%20Kumar"> K. Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jeyendran"> K. Jeyendran</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0<sup>o</sup>, 30<sup>o</sup>, 45<sup>o</sup>, and 60<sup>o</sup>. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title="combustion chamber">combustion chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket" title=" liquid rocket"> liquid rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20engine%20wall%20heat%20flux" title=" rocket engine wall heat flux"> rocket engine wall heat flux</a> </p> <a href="https://publications.waset.org/abstracts/62084/wall-heat-flux-mapping-in-liquid-rocket-combustion-chamber-with-different-jet-impingement-angles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Design, Modeling, Fabrication, and Testing of a Scaled down Hybrid Rocket Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawthawala%20Nancy%20Manish">Pawthawala Nancy Manish</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Alay%20Hashim"> Syed Alay Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hybrid rocket is a rocket engine which uses propellants in two different states of matter- one is in solid and the other either gas or liquid. A hybrid rocket exhibit advantages over both liquid rockets and solid rockets especially in terms of simplicity, stop-start-restart capabilities, safety and cost. This paper deals the design and development of a hybrid rocket having paraffin wax as solid fuel and liquid oxygen as oxidizer. Due to variation of pressure in combustion chamber there is significantly change in mass flow rate, burning rate and uneven regression along the length of the grain. This project describes the working model of a hybrid propellant rocket motor. We have designed a hybrid rocket thrust chamber based on the predetermined combustion chamber pressure and the properties of hybrid propellant. This project is all ready in working condition with normal oxygen injector. Now we have planned to modify the injector design to improve the combustion property. We will use spray type injector for injecting the oxidizer. This idea will increase the performance followed by the regression rate of the solid fuel. By employing mass conservation law, oxygen mass flux, oxidizer/fuel ratio and regression rate the thrust coefficient can be obtained for our current design. CATIA V5 R20 is our design software for the complete setup. This project is fully based on experimental evaluation and the collection of combustion and flow parameters. The thrust chamber is made of stainless steel and the duration of test is around 15-20 seconds (Maximum). These experiments indicates that paraffin based fuel provides the opportunity to satisfy a broad range of mission requirements for the next generation of the hybrid rocket system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burning%20rate" title="burning rate">burning rate</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20oxygen" title=" liquid oxygen"> liquid oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rate" title=" mass flow rate"> mass flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin%20wax%20and%20%20sugar" title=" paraffin wax and sugar"> paraffin wax and sugar</a> </p> <a href="https://publications.waset.org/abstracts/45401/design-modeling-fabrication-and-testing-of-a-scaled-down-hybrid-rocket-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20B.%20Gon%C3%A7alves">R. F. B. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20N.%20Iwama"> E. N. Iwama</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20F.%20F.%20Rocco"> J. A. F. F. Rocco</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Iha"> K. Iha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelf-life" title="shelf-life">shelf-life</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozawa%20method" title=" Ozawa method"> Ozawa method</a>, <a href="https://publications.waset.org/abstracts/search?q=Kissinger%20method" title=" Kissinger method"> Kissinger method</a>, <a href="https://publications.waset.org/abstracts/search?q=LAMMPS%20software" title=" LAMMPS software"> LAMMPS software</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a> </p> <a href="https://publications.waset.org/abstracts/99235/aging-evaluation-of-ammonium-perchloratehydroxyl-terminated-polybutadiene-based-solid-rocket-engine-by-reactive-molecular-dynamics-simulation-and-thermal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jim%20J.%20Catina">Jim J. Catina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jackee%20M.%20Gwynn"> Jackee M. Gwynn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20S.%20Kang"> Jin S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylonitrile%20butadiene%20styrene" title="acrylonitrile butadiene styrene">acrylonitrile butadiene styrene</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/157623/heat-treatment-of-additively-manufactured-hybrid-rocket-fuel-grains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Design and Analysis of Active Rocket Control Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Jerzy%20Rugor">Piotr Jerzy Rugor</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Wajoras"> Julia Wajoras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented work regards a single-stage aerodynamically controlled solid propulsion rocket. Steering a rocket to fly along a predetermined trajectory can be beneficial for minimizing aerodynamic losses and achieved by implementing an active control system on board. In this particular case, a canard configuration has been chosen, although other methods of control have been considered and preemptively analyzed, including non-aerodynamic ones. The objective of this work is to create a system capable of guiding the rocket, focusing on roll stabilization. The paper describes initial analysis of the problem, covers the main challenges of missile guidance and presents data acquired during the experimental study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20canard%20control%20system" title="active canard control system">active canard control system</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket%20design" title=" rocket design"> rocket design</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20optimization" title=" flight optimization"> flight optimization</a> </p> <a href="https://publications.waset.org/abstracts/78444/design-and-analysis-of-active-rocket-control-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Review of Factors Which Affect Throttling by Oxidiser Flow Control in Hybrid Rocket Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natcha%20Laethongkham">Natcha Laethongkham</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayan%20Ramanayake"> Gayan Ramanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Charlesworth"> Philip Charlesworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Leshan%20Uggalla"> Leshan Uggalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The throttling process in hybrid rocket engines (HREs) poses challenges due to inherent instability, impacting the engine’s reliability and robustness. Identifying and advancing existing technology is crucial to meet the demands of complex mission profiles required for next-generation launch vehicles. This paper reviews the current literature, focusing on oxidiser flow control for throttling purposes in HREs. Covered areas include oxidiser choices, commonly used throttle valves, and literature trends. Common oxidisers for throttling are hydrogen peroxide, nitrous oxide, and liquid oxygen. Two frequently chosen valves for throttling are the ball and variation pintle valves. The review identifies two primary research focuses: flow control valve studies and control system design. The current research stage is highlighted, and suggestions for future directions are proposed to advance thrust control systems in HREs. This includes further studies in existing research focuses and exploring new approaches such as system scheme design, numerical modelling, and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20rocket%20engines" title="hybrid rocket engines">hybrid rocket engines</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidiser%20flow%20control" title=" oxidiser flow control"> oxidiser flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20control" title=" thrust control"> thrust control</a>, <a href="https://publications.waset.org/abstracts/search?q=throttle%20valve" title=" throttle valve"> throttle valve</a>, <a href="https://publications.waset.org/abstracts/search?q=review" title=" review"> review</a> </p> <a href="https://publications.waset.org/abstracts/191042/review-of-factors-which-affect-throttling-by-oxidiser-flow-control-in-hybrid-rocket-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> A Spatial Perspective on the Metallized Combustion Aspect of Rockets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitresh%20Prasad">Chitresh Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Ramesh"> Arvind Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Virkar"> Aditya Virkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Karan%20Dholkaria"> Karan Dholkaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Malhotra"> Vinayak Malhotra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Propellant Rocket is a rocket that utilises a combination of a solid Oxidizer and a solid Fuel. Success in Solid Rocket Motor design and development depends significantly on knowledge of burning rate behaviour of the selected solid propellant under all motor operating conditions and design limit conditions. Most Solid Motor Rockets consist of the Main Engine, along with multiple Boosters that provide an additional thrust to the space-bound vehicle. Though widely used, they have been eclipsed by Liquid Propellant Rockets, because of their better performance characteristics. The addition of a catalyst such as Iron Oxide, on the other hand, can drastically enhance the performance of a Solid Rocket. This scientific investigation tries to emulate the working of a Solid Rocket using Sparklers and Energized Candles, with a central Energized Candle acting as the Main Engine and surrounding Sparklers acting as the Booster. The Energized Candle is made of Paraffin Wax, with Magnesium filings embedded in it’s wick. The Sparkler is made up of 45% Barium Nitrate, 35% Iron, 9% Aluminium, 10% Dextrin and the remaining composition consists of Boric Acid. The Magnesium in the Energized Candle, and the combination of Iron and Aluminium in the Sparkler, act as catalysts and enhance the burn rates of both materials. This combustion of Metallized Propellants has an influence over the regression rate of the subject candle. The experimental parameters explored here are Separation Distance, Systematically varying Configuration and Layout Symmetry. The major performance parameter under observation is the Regression Rate of the Energized Candle. The rate of regression is significantly affected by the orientation and configuration of the sparklers, which usually act as heat sources for the energized candle. The Overall Efficiency of any engine is factorised by the thermal and propulsive efficiencies. Numerous efforts have been made to improve one or the other. This investigation focuses on the Orientation of Rocket Motor Design to maximize their Overall Efficiency. The primary objective is to analyse the Flame Spread Rate variations of the energized candle, which resembles the solid rocket propellant used in the first stage of rocket operation thereby affecting the Specific Impulse values in a Rocket, which in turn have a deciding impact on their Time of Flight. Another objective of this research venture is to determine the effectiveness of the key controlling parameters explored. This investigation also emulates the exhaust gas interactions of the Solid Rocket through concurrent ignition of the Energized Candle and Sparklers, and their behaviour is analysed. Modern space programmes intend to explore the universe outside our solar system. To accomplish these goals, it is necessary to design a launch vehicle which is capable of providing incessant propulsion along with better efficiency for vast durations. The main motivation of this study is to enhance Rocket performance and their Overall Efficiency through better designing and optimization techniques, which will play a crucial role in this human conquest for knowledge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20modifications" title="design modifications">design modifications</a>, <a href="https://publications.waset.org/abstracts/search?q=improving%20overall%20efficiency" title=" improving overall efficiency"> improving overall efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=metallized%20combustion" title=" metallized combustion"> metallized combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20rate%20variations" title=" regression rate variations"> regression rate variations</a> </p> <a href="https://publications.waset.org/abstracts/95905/a-spatial-perspective-on-the-metallized-combustion-aspect-of-rockets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Winged Test Rocket with Fully Autonomous Guidance and Control for Realizing Reusable Suborbital Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koichi%20Yonemoto">Koichi Yonemoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Yamasaki"> Hiroshi Yamasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Masatomo%20Ichige"> Masatomo Ichige</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Ura"> Yusuke Ura</a>, <a href="https://publications.waset.org/abstracts/search?q=Guna%20S.%20Gossamsetti"> Guna S. Gossamsetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Takumi%20Ohki"> Takumi Ohki</a>, <a href="https://publications.waset.org/abstracts/search?q=Kento%20Shirakata"> Kento Shirakata</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahsan%20R.%20Choudhuri"> Ahsan R. Choudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinji%20Ishimoto"> Shinji Ishimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Mugitani"> Takashi Mugitani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroya%20Asakawa"> Hiroya Asakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideaki%20Nanri"> Hideaki Nanri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the strategic development plan of winged rockets WIRES (WInged REusable Sounding rocket) aiming at unmanned suborbital winged rocket for demonstrating future fully reusable space transportation technologies, such as aerodynamics, Navigation, Guidance and Control (NGC), composite structure, propulsion system, and cryogenic tanks etc., by universities in collaboration with government and industries, as well as the past and current flight test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20guidance%20and%20control" title="autonomous guidance and control">autonomous guidance and control</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20rocket" title=" reusable rocket"> reusable rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20transportation%20system" title=" space transportation system"> space transportation system</a>, <a href="https://publications.waset.org/abstracts/search?q=suborbital%20vehicle" title=" suborbital vehicle"> suborbital vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=winged%20rocket" title=" winged rocket"> winged rocket</a> </p> <a href="https://publications.waset.org/abstracts/40850/winged-test-rocket-with-fully-autonomous-guidance-and-control-for-realizing-reusable-suborbital-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> A Finite Element Method Simulation for Rocket Motor Material Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Kritsana">T. Kritsana</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sawitri"> P. Sawitri</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Teeratas"> P. Teeratas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket%20motor%20case" title="rocket motor case">rocket motor case</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20stress" title=" principal stress"> principal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/12993/a-finite-element-method-simulation-for-rocket-motor-material-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Study of Acoustic Resonance of Model Liquid Rocket Combustion Chamber and Its Suppression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vimal%20O.%20Kumar">Vimal O. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Muthukumaran"> C. K. Muthukumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rakesh"> P. Rakesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid rocket engine (LRE) combustion chamber is subjected to pressure oscillation during the combustion process. The combustion noise (acoustic noise) is a broad band, small amplitude, high frequency component pressure oscillation. They constitute only a minor fraction ( < 1%) of the entire combustion process. However, this high frequency oscillation is huge concern during the design phase of LRE combustion chamber as it would cause catastrophic failure of the chamber. Depends on the chamber geometry, certain frequencies form standing wave pattern, and they resonate with high amplitude and are known as Eigen modes. These Eigen modes could cause failures unless it is suppressed to be within safe limits. These modes are categorized into radial, tangential, and azimuthal modes, and their structure inside the combustion chamber is of interest to the researchers. In the present proposal, experimental as well as numerical simulation will be performed to obtain the frequency-amplitude characteristics of the model combustion chamber for different baffle configuration. The main objective of this study is to find effect of baffle configuration that would provide better suppression of acoustic modes. The experimental study aims at measuring the frequency amplitude characteristics at certain points in the chamber wall. The experimental measurement will be also used for scheme used in numerical simulation. In addition to experiments, numerical simulation would provide detailed structure of the Eigenmodes exhibited and their level of suppression with the aid of different baffle configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baffle" title="baffle">baffle</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket%20engine" title=" liquid rocket engine"> liquid rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20response%20of%20chamber" title=" pressure response of chamber"> pressure response of chamber</a> </p> <a href="https://publications.waset.org/abstracts/129395/study-of-acoustic-resonance-of-model-liquid-rocket-combustion-chamber-and-its-suppression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Impinging Acoustics Induced Combustion: An Alternative Technique to Prevent Thermoacoustic Instabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayantan%20Saha">Sayantan Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sambit%20Supriya%20Dash"> Sambit Supriya Dash</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Malhotra"> Vinayak Malhotra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient propulsive systems development is an area of major interest and concern in aerospace industry. Combustion forms the most reliable and basic form of propulsion for ground and space applications. The generation of large amount of energy from a small volume relates mostly to the flaming combustion. This study deals with instabilities associated with flaming combustion. Combustion is always accompanied by acoustics be it external or internal. Chemical propulsion oriented rockets and space systems are well known to encounter acoustic instabilities. Acoustic brings in changes in inter-energy conversion and alter the reaction rates. The modified heat fluxes, owing to wall temperature, reaction rates, and non-linear heat transfer are observed. The thermoacoustic instabilities significantly result in reduced combustion efficiency leading to uncontrolled liquid rocket engine performance, serious hazards to systems, assisted testing facilities, enormous loss of resources and every year a substantial amount of money is spent to prevent them. Present work attempts to fundamentally understand the mechanisms governing the thermoacoustic combustion in liquid rocket engine using a simplified experimental setup comprising a butane cylinder and an impinging acoustic source. Rocket engine produces sound pressure level in excess of 153 Db. The RL-10 engine generates noise of 180 Db at its base. Systematic studies are carried out for varying fuel flow rates, acoustic levels and observations are made on the flames. The work is expected to yield a good physical insight into the development of acoustic devices that when coupled with the present propulsive devices could effectively enhance combustion efficiency leading to better and safer missions. The results would be utilized to develop impinging acoustic devices that impinge sound on the combustion chambers leading to stable combustion thus, improving specific fuel consumption, specific impulse, reducing emissions, enhanced performance and fire safety. The results can be effectively applied to terrestrial and space application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20instability" title="combustion instability">combustion instability</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20safety" title=" fire safety"> fire safety</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20performance" title=" improved performance"> improved performance</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket%20engines" title=" liquid rocket engines"> liquid rocket engines</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustics" title=" thermoacoustics"> thermoacoustics</a> </p> <a href="https://publications.waset.org/abstracts/94874/impinging-acoustics-induced-combustion-an-alternative-technique-to-prevent-thermoacoustic-instabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Design and Implementation Guidance System of Guided Rocket RKX-200 Using Optimal Guidance Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amalia%20Sholihati">Amalia Sholihati</a>, <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Riyanto%20Trilaksono"> Bambang Riyanto Trilaksono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an island nation, is a necessity for the Republic of Indonesia to have a capable military defense on land, sea or air that the development of military weapons such as rockets for air defense becomes very important. RKX rocket-200 is one of the guided missiles which are developed by consortium Indonesia and coordinated by LAPAN that serve to intercept the target. RKX-200 is designed to have the speed of Mach 0.5-0.9. RKX rocket-200 belongs to the category two-stage rocket that control is carried out on the second stage when the rocket has separated from the booster. The requirement for better performance to intercept missiles with higher maneuverability continues to push optimal guidance law development, which is derived from non-linear equations. This research focused on the design and implementation of a guidance system based OGL on the rocket RKX-200 while considering the limitation of rockets such as aerodynamic rocket and actuator. Guided missile control system has three main parts, namely, guidance system, navigation system and autopilot systems. As for other parts such as navigation systems and other supporting simulated on MATLAB based on the results of previous studies. In addition to using the MATLAB simulation also conducted testing with hardware-based ARM TWR-K60D100M conjunction with a navigation system and nonlinear models in MATLAB using Hardware-in-the-Loop Simulation (HILS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RKX-200" title="RKX-200">RKX-200</a>, <a href="https://publications.waset.org/abstracts/search?q=guidance%20system" title=" guidance system"> guidance system</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20guidance%20law" title=" optimal guidance law"> optimal guidance law</a>, <a href="https://publications.waset.org/abstracts/search?q=Hils" title=" Hils"> Hils</a> </p> <a href="https://publications.waset.org/abstracts/57098/design-and-implementation-guidance-system-of-guided-rocket-rkx-200-using-optimal-guidance-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Onal">O. Onal</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Turan"> O. Turan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbofan" title="turbofan">turbofan</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a> </p> <a href="https://publications.waset.org/abstracts/51790/calculation-and-comparison-of-a-turbofan-engine-performance-parameters-with-various-definitions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Study of Dual Fuel Engine as Environmentally Friendly Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilam%20S.%20Octaviani">Nilam S. Octaviani</a>, <a href="https://publications.waset.org/abstracts/search?q=Semin"> Semin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine. However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO<sub>2</sub>) and particular metter (PM) emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel%20diesel%20engine" title=" dual fuel diesel engine"> dual fuel diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20reduction" title=" emission reduction"> emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20characteristics" title=" technical characteristics"> technical characteristics</a> </p> <a href="https://publications.waset.org/abstracts/61852/study-of-dual-fuel-engine-as-environmentally-friendly-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Soliman">Joseph Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Attia"> Youssef Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairy%20Megalla"> Khairy Megalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine" title="stirling engine">stirling engine</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20energy" title=" new energy"> new energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20motion" title=" dynamic motion"> dynamic motion</a> </p> <a href="https://publications.waset.org/abstracts/27285/ansys-investigation-on-stability-and-performance-of-a-solar-driven-inline-alpha-stirling-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Design and Development of Hybrid Rocket Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aniket%20Aaba%20Kadam">Aniket Aaba Kadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Mangesh%20Panchal"> Manish Mangesh Panchal</a>, <a href="https://publications.waset.org/abstracts/search?q=Roushan%20Ashit%20Sharma"> Roushan Ashit Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project focuses on the design and development of a lab-scale hybrid rocket motor to accurately determine the regression rate of a fuel/oxidizer combination consisting of solid paraffin and gaseous oxygen (GOX). Hybrid motors offer the advantage of on-demand thrust control over both solid and liquid systems in certain applications. The thermodynamic properties of the propellant combination were calculated using NASA CEA at different chamber pressures and corresponding O/F values to determine initial operating conditions with suitable peak temperatures and optimal O/F values. The project also includes the design of the injector orifice and the determination of the final design configurations of the motor casing, pressure control setup, and valve configuration. This research will be valuable in advancing the understanding of paraffin-based propulsion and improving the performance of hybrid rocket motors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20rocket" title="hybrid rocket">hybrid rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=NASA%20CEA" title=" NASA CEA"> NASA CEA</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20control" title=" thrust control"> thrust control</a> </p> <a href="https://publications.waset.org/abstracts/166470/design-and-development-of-hybrid-rocket-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> An Investigation of How Salad Rocket May Provide Its Own Defence Against Spoilage Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huda%20Aldossari">Huda Aldossari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Members of the Brassicaceae family, such as rocket species, have high concentrations of glucosinolates (GLSs). GSLs and isothiocyanates (ITCs), the product of GLSs hydrolysis, are the most influential compounds that affect flavour in rocket species. Aside from their contribution to the flavour, GSLs and ITCs are of particular interest due to their potential ability to inhibit the growth of human pathogenic bacteria such as E. coli O157. Quantitative and qualitative analysis of glucosinolate compounds in rocket extracts was obtained by Liquid Chromatography-Mass Spectrometry (LC–MS).Each individual component of non-volatile GLSs and ITCs was isolated by High-Performance Liquid Chromatography (HPLC) fractionation. The identity and purity of each fraction were confirmed using Ultra High-Performance Liquid Chromatography (UPLC). The separation of glucosinolates in the complex rocket extractions was performed by optimizing a HPLC fractionation method through changing the mobile phase composition, solvent gradient, and the flow rate. As a result, six glucosinolates compounds (Glucosativin, 4-Methoxyglucobrassicin, Glucotropaeolin GTP, Glucoiberin GIB, Diglucothiobenin, and Sinigrin) have been isolated, identified and quantified in the complex samples. This step aims to evaluate the antibacterial activity of glucosinolates and their enzymatic hydrolysis against bacterial growth of E.coli k12. Therefore, fractions from this study will be used to determine the most active compounds by investigating the efficacy of each component of GLSs and ITCs at inhibiting bacterial growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket" title="rocket">rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=glucosinolates" title=" glucosinolates"> glucosinolates</a>, <a href="https://publications.waset.org/abstracts/search?q=E.coli%20k12." title=" E.coli k12."> E.coli k12.</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC%20fractionatio" title=" HPLC fractionatio"> HPLC fractionatio</a> </p> <a href="https://publications.waset.org/abstracts/158926/an-investigation-of-how-salad-rocket-may-provide-its-own-defence-against-spoilage-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Calvin%20Antony">A. Calvin Antony</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakthi%20Kumar%20Arul%20Prakash"> Sakthi Kumar Arul Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-beta%20double%20piston%20stirling%20engine" title="alpha-beta double piston stirling engine ">alpha-beta double piston stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20stirling%20engine" title=" alpha stirling engine "> alpha stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20double%20piston%20stirling%20engine" title=" beta double piston stirling engine "> beta double piston stirling engine </a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20from%20stirling%20engine" title=" electricity from stirling engine"> electricity from stirling engine</a> </p> <a href="https://publications.waset.org/abstracts/35104/design-manufacture-and-testing-of-a-combined-alpha-beta-double-piston-stirling-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng-Tsai%20Weng">Feng-Tsai Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-%20Syuan%20Cai"> Dong- Syuan Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsochu-Lin"> Tsochu-Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-level%20gear%20oil" title="multi-level gear oil">multi-level gear oil</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20oil" title=" engine oil"> engine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasion" title=" abrasion"> abrasion</a> </p> <a href="https://publications.waset.org/abstracts/54824/lubrication-performance-of-multi-level-gear-oil-in-a-gasoline-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> Rollet vs Rocket: A New in-Space Propulsion Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Baraov">Arthur Baraov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nearly all rocket and spacecraft propulsion concepts in existence today can be linked one way or the other to one of the two ancient warfare devices: the gun and the sling. Chemical, thermoelectric, ion, nuclear thermal and electromagnetic rocket engines – all fall into the first group which, for obvious reasons, can be categorized as “hot” space propulsion concepts. Space elevator, orbital tower, rolling satellite, orbital skyhook, tether propulsion and gravitational assist – are examples of the second category which lends itself for the title “cold” space propulsion concepts. The “hot” space propulsion concepts skyrocketed – literally and figuratively – from the naïve ideas of Jules Verne to the manned missions to the Moon. On the other hand, with the notable exception of gravitational assist, hardly any of the “cold” space propulsion concepts made any progress in terms of practical application. Why is that? This article aims to show that the right answer to this question has the potential comparable by its implications and practical consequences to that of transition from Jules Verne’s stillborn and impractical conceptions of space flight to cogent and highly fertile ideas of Konstantin Tsiolkovsky and Yuri Kondratyuk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propulsion" title="propulsion">propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=rocket" title=" rocket"> rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=rollet" title=" rollet"> rollet</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/29858/rollet-vs-rocket-a-new-in-space-propulsion-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> A Novel Combustion Engine, Design and Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Effati">M. A. Effati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hojjati"> M. R. Hojjati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Razmdideh"> M. Razmdideh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20engine" title="combustion engine">combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%0D%0Aelement%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/33327/a-novel-combustion-engine-design-and-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">806</span> Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veena%20Chaudhary">Veena Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20P.%20Gakkhar"> Rakesh P. Gakkhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20destruction" title=" exergy destruction"> exergy destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/51552/determination-of-optimum-torque-of-an-internal-combustion-engine-by-exergy-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">805</span> High Thrust Upper Stage Solar Hydrogen Rocket Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20Assem%20Soliman%20Mossallam">Maged Assem Soliman Mossallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20propulsion" title="space propulsion">space propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20rocket" title=" hydrogen rocket"> hydrogen rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20impulse" title=" specific impulse "> specific impulse </a> </p> <a href="https://publications.waset.org/abstracts/128850/high-thrust-upper-stage-solar-hydrogen-rocket-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid-propellant%20rocket%20engine&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>