CINXE.COM

History of Lorentz transformations - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>History of Lorentz transformations - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"71ea7a87-0bd7-465a-8269-b3dec6b19695","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"History_of_Lorentz_transformations","wgTitle":"History of Lorentz transformations","wgCurRevisionId":1254912472,"wgRevisionId":1254912472,"wgArticleId":7058047,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles containing German-language text","CS1: long volume value","CS1 maint: DOI inactive as of November 2024","CS1 maint: location missing publisher","Equations","History of physics","Hendrik Lorentz","Historical treatment of quaternions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"History_of_Lorentz_transformations","wgRelevantArticleId":7058047,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q176851","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="History of Lorentz transformations - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/History_of_Lorentz_transformations"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/History_of_Lorentz_transformations"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-History_of_Lorentz_transformations rootpage-History_of_Lorentz_transformations skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=History+of+Lorentz+transformations" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=History+of+Lorentz+transformations" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=History+of+Lorentz+transformations" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=History+of+Lorentz+transformations" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Mathematical_prehistory" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mathematical_prehistory"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Mathematical prehistory</span> </div> </a> <ul id="toc-Mathematical_prehistory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electrodynamics_and_special_relativity" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Electrodynamics_and_special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Electrodynamics and special relativity</span> </div> </a> <button aria-controls="toc-Electrodynamics_and_special_relativity-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Electrodynamics and special relativity subsection</span> </button> <ul id="toc-Electrodynamics_and_special_relativity-sublist" class="vector-toc-list"> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Overview</span> </div> </a> <ul id="toc-Overview-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voigt_(1887)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Voigt_(1887)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Voigt (1887)</span> </div> </a> <ul id="toc-Voigt_(1887)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Heaviside_(1888),_Thomson_(1889),_Searle_(1896)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Heaviside_(1888),_Thomson_(1889),_Searle_(1896)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Heaviside (1888), Thomson (1889), Searle (1896)</span> </div> </a> <ul id="toc-Heaviside_(1888),_Thomson_(1889),_Searle_(1896)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lorentz_(1892,_1895)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lorentz_(1892,_1895)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Lorentz (1892, 1895)</span> </div> </a> <ul id="toc-Lorentz_(1892,_1895)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Larmor_(1897,_1900)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Larmor_(1897,_1900)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Larmor (1897, 1900)</span> </div> </a> <ul id="toc-Larmor_(1897,_1900)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lorentz_(1899,_1904)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lorentz_(1899,_1904)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Lorentz (1899, 1904)</span> </div> </a> <ul id="toc-Lorentz_(1899,_1904)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poincaré_(1900,_1905)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poincaré_(1900,_1905)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>Poincaré (1900, 1905)</span> </div> </a> <ul id="toc-Poincaré_(1900,_1905)-sublist" class="vector-toc-list"> <li id="toc-Local_time" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Local_time"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.1</span> <span>Local time</span> </div> </a> <ul id="toc-Local_time-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lorentz_transformation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Lorentz_transformation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7.2</span> <span>Lorentz transformation</span> </div> </a> <ul id="toc-Lorentz_transformation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Einstein_(1905)_–_Special_relativity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Einstein_(1905)_–_Special_relativity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8</span> <span>Einstein (1905) – Special relativity</span> </div> </a> <ul id="toc-Einstein_(1905)_–_Special_relativity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Minkowski_(1907–1908)_–_Spacetime" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Minkowski_(1907–1908)_–_Spacetime"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.9</span> <span>Minkowski (1907–1908) – Spacetime</span> </div> </a> <ul id="toc-Minkowski_(1907–1908)_–_Spacetime-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sommerfeld_(1909)_–_Spherical_trigonometry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sommerfeld_(1909)_–_Spherical_trigonometry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10</span> <span>Sommerfeld (1909) – Spherical trigonometry</span> </div> </a> <ul id="toc-Sommerfeld_(1909)_–_Spherical_trigonometry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Frank_(1909)_–_Hyperbolic_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Frank_(1909)_–_Hyperbolic_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.11</span> <span>Frank (1909) – Hyperbolic functions</span> </div> </a> <ul id="toc-Frank_(1909)_–_Hyperbolic_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bateman_and_Cunningham_(1909–1910)_–_Spherical_wave_transformation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bateman_and_Cunningham_(1909–1910)_–_Spherical_wave_transformation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.12</span> <span>Bateman and Cunningham (1909–1910) – Spherical wave transformation</span> </div> </a> <ul id="toc-Bateman_and_Cunningham_(1909–1910)_–_Spherical_wave_transformation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Herglotz_(1909/10)_–_Möbius_transformation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Herglotz_(1909/10)_–_Möbius_transformation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.13</span> <span>Herglotz (1909/10) – Möbius transformation</span> </div> </a> <ul id="toc-Herglotz_(1909/10)_–_Möbius_transformation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Varićak_(1910)_–_Hyperbolic_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Varićak_(1910)_–_Hyperbolic_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.14</span> <span>Varićak (1910) – Hyperbolic functions</span> </div> </a> <ul id="toc-Varićak_(1910)_–_Hyperbolic_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Plummer_(1910)_–_Trigonometric_Lorentz_boosts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Plummer_(1910)_–_Trigonometric_Lorentz_boosts"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.15</span> <span>Plummer (1910) – Trigonometric Lorentz boosts</span> </div> </a> <ul id="toc-Plummer_(1910)_–_Trigonometric_Lorentz_boosts-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ignatowski_(1910)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ignatowski_(1910)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.16</span> <span>Ignatowski (1910)</span> </div> </a> <ul id="toc-Ignatowski_(1910)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Noether_(1910),_Klein_(1910)_–_Quaternions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Noether_(1910),_Klein_(1910)_–_Quaternions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.17</span> <span>Noether (1910), Klein (1910) – Quaternions</span> </div> </a> <ul id="toc-Noether_(1910),_Klein_(1910)_–_Quaternions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conway_(1911),_Silberstein_(1911)_–_Quaternions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conway_(1911),_Silberstein_(1911)_–_Quaternions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.18</span> <span>Conway (1911), Silberstein (1911) – Quaternions</span> </div> </a> <ul id="toc-Conway_(1911),_Silberstein_(1911)_–_Quaternions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ignatowski_(1910/11),_Herglotz_(1911),_and_others_–_Vector_transformation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ignatowski_(1910/11),_Herglotz_(1911),_and_others_–_Vector_transformation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.19</span> <span>Ignatowski (1910/11), Herglotz (1911), and others – Vector transformation</span> </div> </a> <ul id="toc-Ignatowski_(1910/11),_Herglotz_(1911),_and_others_–_Vector_transformation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Borel_(1913–14)_–_Cayley–Hermite_parameter" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Borel_(1913–14)_–_Cayley–Hermite_parameter"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.20</span> <span>Borel (1913–14) – Cayley–Hermite parameter</span> </div> </a> <ul id="toc-Borel_(1913–14)_–_Cayley–Hermite_parameter-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gruner_(1921)_–_Trigonometric_Lorentz_boosts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gruner_(1921)_–_Trigonometric_Lorentz_boosts"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.21</span> <span>Gruner (1921) – Trigonometric Lorentz boosts</span> </div> </a> <ul id="toc-Gruner_(1921)_–_Trigonometric_Lorentz_boosts-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Historical_mathematical_sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Historical_mathematical_sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Historical mathematical sources</span> </div> </a> <ul id="toc-Historical_mathematical_sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Historical_relativity_sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Historical_relativity_sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Historical relativity sources</span> </div> </a> <ul id="toc-Historical_relativity_sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Secondary_sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Secondary_sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Secondary sources</span> </div> </a> <ul id="toc-Secondary_sources-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">History of Lorentz transformations</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 2 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-2" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">2 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Geschichte_der_Lorentz-Transformation" title="Geschichte der Lorentz-Transformation – German" lang="de" hreflang="de" data-title="Geschichte der Lorentz-Transformation" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Historia_de_las_transformaciones_de_Lorentz" title="Historia de las transformaciones de Lorentz – Spanish" lang="es" hreflang="es" data-title="Historia de las transformaciones de Lorentz" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q176851#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/History_of_Lorentz_transformations" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:History_of_Lorentz_transformations" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/History_of_Lorentz_transformations"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/History_of_Lorentz_transformations"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/History_of_Lorentz_transformations" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/History_of_Lorentz_transformations" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;oldid=1254912472" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=History_of_Lorentz_transformations&amp;id=1254912472&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHistory_of_Lorentz_transformations"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHistory_of_Lorentz_transformations"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=History_of_Lorentz_transformations&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q176851" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>The <b>history of <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformations</a></b> comprises the development of <a href="/wiki/Linear_map" title="Linear map">linear transformations</a> forming the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a> or <a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré group</a> preserving the <a href="/wiki/Lorentz_interval" class="mw-redirect" title="Lorentz interval">Lorentz interval</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -x_{0}^{2}+\cdots +x_{n}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -x_{0}^{2}+\cdots +x_{n}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeaaf19e649447ee32f924033e4c859955174c81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.144ex; height:3.176ex;" alt="{\displaystyle -x_{0}^{2}+\cdots +x_{n}^{2}}"></span> and the <a href="/wiki/Minkowski_inner_product" class="mw-redirect" title="Minkowski inner product">Minkowski inner product</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -x_{0}y_{0}+\cdots +x_{n}y_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -x_{0}y_{0}+\cdots +x_{n}y_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43fcbe32f1674bd50b4621db988d3de905a8f269" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.695ex; height:2.343ex;" alt="{\displaystyle -x_{0}y_{0}+\cdots +x_{n}y_{n}}"></span>. </p><p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, transformations equivalent to what was later known as Lorentz transformations in various dimensions were discussed in the 19th century in relation to the theory of <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic forms</a>, <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a>, <a href="/wiki/M%C3%B6bius_geometry" class="mw-redirect" title="Möbius geometry">Möbius geometry</a>, and <a href="/wiki/Spherical_wave_transformation" title="Spherical wave transformation">sphere geometry</a>, which is connected to the fact that the group of <a href="/wiki/Hyperbolic_motion" title="Hyperbolic motion">motions in hyperbolic space</a>, the <a href="/wiki/M%C3%B6bius_group" class="mw-redirect" title="Möbius group">Möbius group</a> or <a href="/wiki/Projective_special_linear_group" class="mw-redirect" title="Projective special linear group">projective special linear group</a>, and the <a href="/wiki/Spherical_wave_transformation#Transformation_by_reciprocal_directions" title="Spherical wave transformation">Laguerre group</a> are <a href="/wiki/Group_isomorphism" title="Group isomorphism">isomorphic</a> to the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a>. </p><p>In <a href="/wiki/Physics" title="Physics">physics</a>, Lorentz transformations became known at the beginning of the 20th century, when it was discovered that they exhibit the symmetry of <a href="/wiki/Maxwell%27s_equations" title="Maxwell&#39;s equations">Maxwell's equations</a>. Subsequently, they became fundamental to all of physics, because they formed the basis of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> in which they exhibit the symmetry of <a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a>, making the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a> invariant between different inertial frames. They relate the spacetime coordinates of two arbitrary <a href="/wiki/Inertial_frame_of_reference" title="Inertial frame of reference">inertial frames of reference</a> with constant relative speed <i>v</i>. In one frame, the position of an event is given by <i>x,y,z</i> and time <i>t</i>, while in the other frame the same event has coordinates <i>x′,y′,z′</i> and <i>t′</i>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Mathematical_prehistory">Mathematical prehistory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=1" title="Edit section: Mathematical prehistory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using the coefficients of a <a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric matrix</a> <b>A</b>, the associated <a href="/wiki/Bilinear_form" title="Bilinear form">bilinear form</a>, and a <a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">linear transformations</a> in terms of <a href="/wiki/Transformation_matrix" title="Transformation matrix">transformation matrix</a> <b>g</b>, the Lorentz transformation is given if the following conditions are satisfied: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\begin{aligned}-x_{0}^{2}+\cdots +x_{n}^{2}&amp;=-x_{0}^{\prime 2}+\dots +x_{n}^{\prime 2}\\-x_{0}y_{0}+\cdots +x_{n}y_{n}&amp;=-x_{0}^{\prime }y_{0}^{\prime }+\cdots +x_{n}^{\prime }y_{n}^{\prime }\end{aligned}}\\\hline {\begin{matrix}\mathbf {x} '=\mathbf {g} \cdot \mathbf {x} \\\mathbf {x} =\mathbf {g} ^{-1}\cdot \mathbf {x} '\end{matrix}}\\\hline {\begin{matrix}{\begin{aligned}\mathbf {A} \cdot \mathbf {g} ^{\mathrm {T} }\cdot \mathbf {A} &amp;=\mathbf {g} ^{-1}\\\mathbf {g} ^{\rm {T}}\cdot \mathbf {A} \cdot \mathbf {g} &amp;=\mathbf {A} \\\mathbf {g} \cdot \mathbf {A} \cdot \mathbf {g} ^{\mathrm {T} }&amp;=\mathbf {A} \end{aligned}}\end{matrix}}\\\hline \mathbf {A} ={\rm {diag}}(-1,1,\dots ,1)\\\det \mathbf {g} =\pm 1\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid solid solid none"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2032;</mo> </msup> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">g</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\begin{aligned}-x_{0}^{2}+\cdots +x_{n}^{2}&amp;=-x_{0}^{\prime 2}+\dots +x_{n}^{\prime 2}\\-x_{0}y_{0}+\cdots +x_{n}y_{n}&amp;=-x_{0}^{\prime }y_{0}^{\prime }+\cdots +x_{n}^{\prime }y_{n}^{\prime }\end{aligned}}\\\hline {\begin{matrix}\mathbf {x} '=\mathbf {g} \cdot \mathbf {x} \\\mathbf {x} =\mathbf {g} ^{-1}\cdot \mathbf {x} '\end{matrix}}\\\hline {\begin{matrix}{\begin{aligned}\mathbf {A} \cdot \mathbf {g} ^{\mathrm {T} }\cdot \mathbf {A} &amp;=\mathbf {g} ^{-1}\\\mathbf {g} ^{\rm {T}}\cdot \mathbf {A} \cdot \mathbf {g} &amp;=\mathbf {A} \\\mathbf {g} \cdot \mathbf {A} \cdot \mathbf {g} ^{\mathrm {T} }&amp;=\mathbf {A} \end{aligned}}\end{matrix}}\\\hline \mathbf {A} ={\rm {diag}}(-1,1,\dots ,1)\\\det \mathbf {g} =\pm 1\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1774f8b3f66a305a3158bad7e0b0854e22ea7d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.671ex; width:45.85ex; height:30.509ex;" alt="{\displaystyle {\begin{matrix}{\begin{aligned}-x_{0}^{2}+\cdots +x_{n}^{2}&amp;=-x_{0}^{\prime 2}+\dots +x_{n}^{\prime 2}\\-x_{0}y_{0}+\cdots +x_{n}y_{n}&amp;=-x_{0}^{\prime }y_{0}^{\prime }+\cdots +x_{n}^{\prime }y_{n}^{\prime }\end{aligned}}\\\hline {\begin{matrix}\mathbf {x} &#039;=\mathbf {g} \cdot \mathbf {x} \\\mathbf {x} =\mathbf {g} ^{-1}\cdot \mathbf {x} &#039;\end{matrix}}\\\hline {\begin{matrix}{\begin{aligned}\mathbf {A} \cdot \mathbf {g} ^{\mathrm {T} }\cdot \mathbf {A} &amp;=\mathbf {g} ^{-1}\\\mathbf {g} ^{\rm {T}}\cdot \mathbf {A} \cdot \mathbf {g} &amp;=\mathbf {A} \\\mathbf {g} \cdot \mathbf {A} \cdot \mathbf {g} ^{\mathrm {T} }&amp;=\mathbf {A} \end{aligned}}\end{matrix}}\\\hline \mathbf {A} ={\rm {diag}}(-1,1,\dots ,1)\\\det \mathbf {g} =\pm 1\end{matrix}}}"></span></dd></dl> <p>It forms an <a href="/wiki/Indefinite_orthogonal_group" title="Indefinite orthogonal group">indefinite orthogonal group</a> called the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a> O(1,n), while the case det <b>g</b>=+1 forms the restricted <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a> SO(1,n). The quadratic form becomes the <a href="/wiki/Lorentz_interval" class="mw-redirect" title="Lorentz interval">Lorentz interval</a> in terms of an <a href="/wiki/Indefinite_quadratic_form" class="mw-redirect" title="Indefinite quadratic form">indefinite quadratic form</a> of <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a> (being a special case of <a href="/wiki/Pseudo-Euclidean_space" title="Pseudo-Euclidean space">pseudo-Euclidean space</a>), and the associated bilinear form becomes the <a href="/wiki/Minkowski_inner_product" class="mw-redirect" title="Minkowski inner product">Minkowski inner product</a>.<sup id="cite_ref-ratcliffe_1-0" class="reference"><a href="#cite_note-ratcliffe-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Long before the advent of special relativity it was used in topics such as the <a href="/wiki/Cayley%E2%80%93Klein_metric" title="Cayley–Klein metric">Cayley–Klein metric</a>, <a href="/wiki/Hyperboloid_model" title="Hyperboloid model">hyperboloid model</a> and other models of <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a>, computations of <a href="/wiki/Elliptic_function" title="Elliptic function">elliptic functions</a> and integrals, transformation of <a href="/wiki/Indefinite_quadratic_form" class="mw-redirect" title="Indefinite quadratic form">indefinite quadratic forms</a>, <a href="/wiki/Squeeze_mapping" title="Squeeze mapping">squeeze mappings</a> of the hyperbola, <a href="/wiki/Group_theory" title="Group theory">group theory</a>, <a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">Möbius transformations</a>, <a href="/wiki/Spherical_wave_transformation" title="Spherical wave transformation">spherical wave transformation</a>, transformation of the <a href="/wiki/Sine-Gordon_equation" title="Sine-Gordon equation">Sine-Gordon equation</a>, <a href="/wiki/Biquaternion" title="Biquaternion">Biquaternion</a> algebra, <a href="/wiki/Split-complex_numbers" class="mw-redirect" title="Split-complex numbers">split-complex numbers</a>, <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a>, and others. </p> <div style="border:1px solid black"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> Learning materials from Wikiversity: <ul><li><span class="anchor" id="Lorgen"></span><i>The <a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(general)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (general)">Wikiversity: History of most general Lorentz transformations</a></i></li></ul> <dl><dd><dl><dd>includes contributions of <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a> (1818), <a href="/wiki/Carl_Gustav_Jacob_Jacobi" title="Carl Gustav Jacob Jacobi">Carl Gustav Jacob Jacobi</a> (1827, 1833/34), <a href="/wiki/Michel_Chasles" title="Michel Chasles">Michel Chasles</a> (1829), <a href="/wiki/Victor-Am%C3%A9d%C3%A9e_Lebesgue" title="Victor-Amédée Lebesgue">Victor-Amédée Lebesgue</a> (1837), <a href="/wiki/Thomas_Weddle" title="Thomas Weddle">Thomas Weddle</a> (1847), <a href="/wiki/Edmond_Bour" title="Edmond Bour">Edmond Bour</a> (1856), <a href="/wiki/Osip_Ivanovich_Somov" class="mw-redirect" title="Osip Ivanovich Somov">Osip Ivanovich Somov</a> (1863), <a href="/wiki/Wilhelm_Killing" title="Wilhelm Killing">Wilhelm Killing</a> (1878–1893), <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> (1881), <a href="/wiki/Homersham_Cox_(mathematician)" title="Homersham Cox (mathematician)">Homersham Cox</a> (1881–1883), <a href="/wiki/George_William_Hill" title="George William Hill">George William Hill</a> (1882), <a href="/wiki/%C3%89mile_Picard" title="Émile Picard">Émile Picard</a> (1882-1884), <a href="/wiki/Octave_Callandreau" title="Octave Callandreau">Octave Callandreau</a> (1885), <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a> (1885-1890), <a href="/w/index.php?title=Louis_G%C3%A9rard&amp;action=edit&amp;redlink=1" class="new" title="Louis Gérard (page does not exist)">Louis Gérard</a> (1892), <a href="/wiki/Felix_Hausdorff" title="Felix Hausdorff">Felix Hausdorff</a> (1899), <a href="/wiki/Frederick_S._Woods" title="Frederick S. Woods">Frederick S. Woods</a> (1901-05), <a href="/wiki/Heinrich_Liebmann" title="Heinrich Liebmann">Heinrich Liebmann</a> (1904/05).</dd></dl></dd></dl> <ul><li><span class="anchor" id="Lorimag"></span>The <i><a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(imaginary)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (imaginary)">Wikiversity: History of Lorentz transformations via imaginary orthogonal transformation</a></i></li></ul> <dl><dd><dl><dd>includes contributions of <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a> (1871), <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a> (1907–1908), <a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Arnold Sommerfeld</a> (1909).</dd></dl></dd></dl> <ul><li><span class="anchor" id="Lorhyp"></span>The <i><a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(hyperbolic)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (hyperbolic)">Wikiversity: History of Lorentz transformations via hyperbolic functions</a></i></li></ul> <dl><dd><dl><dd>includes contributions of <a href="/wiki/Vincenzo_Riccati" title="Vincenzo Riccati">Vincenzo Riccati</a> (1757), <a href="/wiki/Johann_Heinrich_Lambert" title="Johann Heinrich Lambert">Johann Heinrich Lambert</a> (1768–1770), <a href="/wiki/Franz_Taurinus" title="Franz Taurinus">Franz Taurinus</a> (1826), <a href="/wiki/Eugenio_Beltrami" title="Eugenio Beltrami">Eugenio Beltrami</a> (1868), <a href="/wiki/Charles-Ange_Laisant" title="Charles-Ange Laisant">Charles-Ange Laisant</a> (1874), <a href="/wiki/Gustav_von_Escherich" title="Gustav von Escherich">Gustav von Escherich</a> (1874), <a href="/wiki/James_Whitbread_Lee_Glaisher" title="James Whitbread Lee Glaisher">James Whitbread Lee Glaisher</a> (1878), <a href="/wiki/Siegmund_G%C3%BCnther" title="Siegmund Günther">Siegmund Günther</a> (1880/81), <a href="/wiki/Homersham_Cox_(mathematician)" title="Homersham Cox (mathematician)">Homersham Cox</a> (1881/82), <a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a> (1885/86), <a href="/wiki/Friedrich_Schur" title="Friedrich Schur">Friedrich Schur</a> (1885-1902), <a href="/wiki/Ferdinand_von_Lindemann" title="Ferdinand von Lindemann">Ferdinand von Lindemann</a> (1890–91), <a href="/w/index.php?title=Louis_G%C3%A9rard&amp;action=edit&amp;redlink=1" class="new" title="Louis Gérard (page does not exist)">Louis Gérard</a> (1892), <a href="/wiki/Wilhelm_Killing" title="Wilhelm Killing">Wilhelm Killing</a> (1893-97), <a href="/wiki/Alfred_North_Whitehead" title="Alfred North Whitehead">Alfred North Whitehead</a> (1897/98), <a href="/wiki/Edwin_Bailey_Elliott" title="Edwin Bailey Elliott">Edwin Bailey Elliott</a> (1903), <a href="/wiki/Frederick_S._Woods" title="Frederick S. Woods">Frederick S. Woods</a> (1903), <a href="/wiki/Heinrich_Liebmann" title="Heinrich Liebmann">Heinrich Liebmann</a> (1904/05), <a href="/wiki/Philipp_Frank" title="Philipp Frank">Philipp Frank</a> (1909), <a href="/wiki/Gustav_Herglotz" title="Gustav Herglotz">Gustav Herglotz</a> (1909/10), <a href="/wiki/Vladimir_Vari%C4%87ak" title="Vladimir Varićak">Vladimir Varićak</a> (1910).</dd></dl></dd></dl> <ul><li><span class="anchor" id="Lorconf"></span>The <i><a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(conformal)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (conformal)">Wikiversity: History of Lorentz transformations via sphere transformation</a></i></li></ul> <dl><dd><dl><dd>includes contributions of <a href="/wiki/Pierre_Ossian_Bonnet" title="Pierre Ossian Bonnet">Pierre Ossian Bonnet</a> (1856), <a href="/wiki/Albert_Ribaucour" title="Albert Ribaucour">Albert Ribaucour</a> (1870), <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a> (1871a), <a href="/wiki/Gaston_Darboux" class="mw-redirect" title="Gaston Darboux">Gaston Darboux</a> (1873-87), <a href="/wiki/Edmond_Laguerre" title="Edmond Laguerre">Edmond Laguerre</a> (1880), <a href="/wiki/Cyparissos_Stephanos" title="Cyparissos Stephanos">Cyparissos Stephanos</a> (1883), <a href="/wiki/Georg_Scheffers" title="Georg Scheffers">Georg Scheffers</a> (1899), <a href="/wiki/Percey_F._Smith" title="Percey F. Smith">Percey F. Smith</a> (1900), <a href="/wiki/Harry_Bateman" title="Harry Bateman">Harry Bateman</a> and <a href="/wiki/Ebenezer_Cunningham" title="Ebenezer Cunningham">Ebenezer Cunningham</a> (1909–1910).</dd></dl></dd></dl> <ul><li><span class="anchor" id="Lorcay"></span>The <i><a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(Cayley-Hermite)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (Cayley-Hermite)">Wikiversity: History of Lorentz transformations via Cayley–Hermite transformation</a></i></li></ul> <dl><dd><dl><dd>was used by <a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Arthur Cayley</a> (1846–1855), <a href="/wiki/Charles_Hermite" title="Charles Hermite">Charles Hermite</a> (1853, 1854), <a href="/wiki/Paul_Gustav_Heinrich_Bachmann" title="Paul Gustav Heinrich Bachmann">Paul Gustav Heinrich Bachmann</a> (1869), <a href="/wiki/Edmond_Laguerre" title="Edmond Laguerre">Edmond Laguerre</a> (1882), <a href="/wiki/Gaston_Darboux" class="mw-redirect" title="Gaston Darboux">Gaston Darboux</a> (1887), <a href="/wiki/Percey_F._Smith" title="Percey F. Smith">Percey F. Smith</a> (1900), <a href="/wiki/%C3%89mile_Borel" title="Émile Borel">Émile Borel</a> (1913).</dd></dl></dd></dl> <ul><li><span class="anchor" id="Lormoeb"></span>The <i><a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(M%C3%B6bius)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (Möbius)">Wikiversity: History of Lorentz transformations via Cayley–Klein parameters, Möbius and spin transformations</a></i></li></ul> <dl><dd><dl><dd>includes contributions of <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a> (1801/63), <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> (1871–97), <a href="/wiki/Eduard_Selling" title="Eduard Selling">Eduard Selling</a> (1873–74), <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> (1881), <a href="/wiki/Luigi_Bianchi" title="Luigi Bianchi">Luigi Bianchi</a> (1888-93), <a href="/wiki/Robert_Fricke" title="Robert Fricke">Robert Fricke</a> (1891–97), <a href="/wiki/Frederick_S._Woods" title="Frederick S. Woods">Frederick S. Woods</a> (1895), <a href="/wiki/Gustav_Herglotz" title="Gustav Herglotz">Gustav Herglotz</a> (1909/10).</dd></dl></dd></dl> <ul><li><span class="anchor" id="Lorqua"></span>The <i><a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(Quaternions)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (Quaternions)">Wikiversity: History of Lorentz transformations via quaternions and hyperbolic numbers</a></i></li></ul> <dl><dd><dl><dd>includes contributions of <a href="/wiki/James_Cockle" title="James Cockle">James Cockle</a> (1848), <a href="/wiki/Homersham_Cox_(mathematician)" title="Homersham Cox (mathematician)">Homersham Cox</a> (1882/83), <a href="/wiki/Cyparissos_Stephanos" title="Cyparissos Stephanos">Cyparissos Stephanos</a> (1883), <a href="/wiki/Arthur_Buchheim" title="Arthur Buchheim">Arthur Buchheim</a> (1884), <a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a> (1885/86), <a href="/wiki/Theodor_Vahlen" title="Theodor Vahlen">Theodor Vahlen</a> (1901/02), <a href="/wiki/Fritz_Noether" title="Fritz Noether">Fritz Noether</a> (1910), <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> (1910), <a href="/wiki/Arthur_W._Conway" title="Arthur W. Conway">Arthur W. Conway</a> (1911), <a href="/wiki/Ludwik_Silberstein" title="Ludwik Silberstein">Ludwik Silberstein</a> (1911).</dd></dl></dd></dl> <ul><li><span class="anchor" id="Lortrig"></span>The <i><a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(trigonometric)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (trigonometric)">Wikiversity: Lorentz transformation via trigonometric functions</a></i></li></ul> <dl><dd><dl><dd>includes contributions of <a href="/wiki/Luigi_Bianchi" title="Luigi Bianchi">Luigi Bianchi</a> (1886), <a href="/wiki/Gaston_Darboux" class="mw-redirect" title="Gaston Darboux">Gaston Darboux</a> (1891/94), <a href="/wiki/Georg_Scheffers" title="Georg Scheffers">Georg Scheffers</a> (1899), <a href="/wiki/Luther_Pfahler_Eisenhart" class="mw-redirect" title="Luther Pfahler Eisenhart">Luther Pfahler Eisenhart</a> (1905), <a href="/wiki/Vladimir_Vari%C4%87ak" title="Vladimir Varićak">Vladimir Varićak</a> (1910), <a href="/wiki/Henry_Crozier_Keating_Plummer" title="Henry Crozier Keating Plummer">Henry Crozier Keating Plummer</a> (1910), <a href="/wiki/Paul_Gruner" title="Paul Gruner">Paul Gruner</a> (1921).</dd></dl></dd></dl> <ul><li><span class="anchor" id="Lorsqu"></span>The <i><a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/Lorentz_transformation_(squeeze)" class="extiw" title="v:History of Topics in Special Relativity/Lorentz transformation (squeeze)">Wikiversity: History of Lorentz transformations via squeeze mappings</a></i></li></ul> <dl><dd><dl><dd>includes contributions of <a href="/wiki/Antoine_Andr%C3%A9_Louis_Reynaud" title="Antoine André Louis Reynaud">Antoine André Louis Reynaud</a> (1819), <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> (1871), <a href="/wiki/Charles-Ange_Laisant" title="Charles-Ange Laisant">Charles-Ange Laisant</a> (1874), <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a> (1879-84), <a href="/wiki/Siegmund_G%C3%BCnther" title="Siegmund Günther">Siegmund Günther</a> (1880/81), <a href="/wiki/Edmond_Laguerre" title="Edmond Laguerre">Edmond Laguerre</a> (1882), <a href="/wiki/Gaston_Darboux" class="mw-redirect" title="Gaston Darboux">Gaston Darboux</a> (1883–1891), <a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a> (1885/86), <a href="/wiki/Luigi_Bianchi" title="Luigi Bianchi">Luigi Bianchi</a> (1886–1894), <a href="/wiki/Ferdinand_von_Lindemann" title="Ferdinand von Lindemann">Ferdinand von Lindemann</a> (1890/91), <a href="/wiki/Mellen_W._Haskell" class="mw-redirect" title="Mellen W. Haskell">Mellen W. Haskell</a> (1895), <a href="/wiki/Percey_F._Smith" title="Percey F. Smith">Percey F. Smith</a> (1900), <a href="/wiki/Edwin_Bailey_Elliott" title="Edwin Bailey Elliott">Edwin Bailey Elliott</a> (1903), <a href="/wiki/Luther_Pfahler_Eisenhart" class="mw-redirect" title="Luther Pfahler Eisenhart">Luther Pfahler Eisenhart</a> (1905).</dd></dl></dd></dl></div> <div class="mw-heading mw-heading2"><h2 id="Electrodynamics_and_special_relativity">Electrodynamics and special relativity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=2" title="Edit section: Electrodynamics and special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Overview">Overview</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=3" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>, Lorentz transformations exhibit the symmetry of <a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a> by using a constant <i>c</i> as the <a href="/wiki/Speed_of_light" title="Speed of light">speed of light</a>, and a parameter <i>v</i> as the relative <a href="/wiki/Velocity" title="Velocity">velocity</a> between two <a href="/wiki/Inertial_reference_frames" class="mw-redirect" title="Inertial reference frames">inertial reference frames</a>. Using the above conditions, the Lorentz transformation in 3+1 dimensions assume the form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}-c^{2}t^{2}+x^{2}+y^{2}+z^{2}=-c^{2}t^{\prime 2}+x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\\\hline \left.{\begin{aligned}t'&amp;=\gamma \left(t-x{\frac {v}{c^{2}}}\right)\\x'&amp;=\gamma (x-vt)\\y'&amp;=y\\z'&amp;=z\end{aligned}}\right|{\begin{aligned}t&amp;=\gamma \left(t'+x{\frac {v}{c^{2}}}\right)\\x&amp;=\gamma (x'+vt')\\y&amp;=y'\\z&amp;=z'\end{aligned}}\end{matrix}}\Rightarrow {\begin{aligned}(ct'+x')&amp;=(ct+x){\sqrt {\frac {c+v}{c-v}}}\\(ct'-x')&amp;=(ct-x){\sqrt {\frac {c-v}{c+v}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>v</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>c</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>c</mi> <mo>+</mo> <mi>v</mi> </mrow> <mrow> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> </mrow> </mfrac> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>c</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> </mrow> <mrow> <mi>c</mi> <mo>+</mo> <mi>v</mi> </mrow> </mfrac> </msqrt> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}-c^{2}t^{2}+x^{2}+y^{2}+z^{2}=-c^{2}t^{\prime 2}+x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\\\hline \left.{\begin{aligned}t'&amp;=\gamma \left(t-x{\frac {v}{c^{2}}}\right)\\x'&amp;=\gamma (x-vt)\\y'&amp;=y\\z'&amp;=z\end{aligned}}\right|{\begin{aligned}t&amp;=\gamma \left(t'+x{\frac {v}{c^{2}}}\right)\\x&amp;=\gamma (x'+vt')\\y&amp;=y'\\z&amp;=z'\end{aligned}}\end{matrix}}\Rightarrow {\begin{aligned}(ct'+x')&amp;=(ct+x){\sqrt {\frac {c+v}{c-v}}}\\(ct'-x')&amp;=(ct-x){\sqrt {\frac {c-v}{c+v}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4ca20811b7bae58fc90314c7380db586cbae058" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.338ex; width:82.193ex; height:19.843ex;" alt="{\displaystyle {\begin{matrix}-c^{2}t^{2}+x^{2}+y^{2}+z^{2}=-c^{2}t^{\prime 2}+x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\\\hline \left.{\begin{aligned}t&#039;&amp;=\gamma \left(t-x{\frac {v}{c^{2}}}\right)\\x&#039;&amp;=\gamma (x-vt)\\y&#039;&amp;=y\\z&#039;&amp;=z\end{aligned}}\right|{\begin{aligned}t&amp;=\gamma \left(t&#039;+x{\frac {v}{c^{2}}}\right)\\x&amp;=\gamma (x&#039;+vt&#039;)\\y&amp;=y&#039;\\z&amp;=z&#039;\end{aligned}}\end{matrix}}\Rightarrow {\begin{aligned}(ct&#039;+x&#039;)&amp;=(ct+x){\sqrt {\frac {c+v}{c-v}}}\\(ct&#039;-x&#039;)&amp;=(ct-x){\sqrt {\frac {c-v}{c+v}}}\end{aligned}}}"></span></dd></dl> <p>In physics, analogous transformations have been introduced by <a href="#Voigt">Voigt (1887)</a> related to an incompressible medium, and by <a href="#Heaviside">Heaviside (1888), Thomson (1889), Searle (1896)</a> and <a href="#Lorentz1">Lorentz (1892, 1895)</a> who analyzed <a href="/wiki/Maxwell%27s_equations" title="Maxwell&#39;s equations">Maxwell's equations</a>. They were completed by <a href="#Larmor">Larmor (1897, 1900)</a> and <a href="#Lorentz2">Lorentz (1899, 1904)</a>, and brought into their modern form by <a href="#Poincare3">Poincaré (1905)</a> who gave the transformation the name of Lorentz.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Eventually, <a href="#Einstein">Einstein (1905)</a> showed in his development of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> that the transformations follow from the <a href="/wiki/Principle_of_relativity" title="Principle of relativity">principle of relativity</a> and constant light speed alone by modifying the traditional concepts of space and time, without requiring a <a href="/wiki/Lorentz_ether_theory" title="Lorentz ether theory">mechanical aether</a> in contradistinction to Lorentz and Poincaré.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <a href="#Minkowski">Minkowski (1907–1908)</a> used them to argue that space and time are inseparably connected as <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>. </p><p>Regarding special representations of the Lorentz transformations: <a href="#Minkowski">Minkowski (1907–1908)</a> and <a href="#Sommerfeld">Sommerfeld (1909)</a> used imaginary trigonometric functions, <a href="#Frank">Frank (1909)</a> and <a href="#Varicak">Varićak (1910)</a> used <a href="/wiki/Hyperbolic_function" class="mw-redirect" title="Hyperbolic function">hyperbolic functions</a>, <a href="#Bateman">Bateman and Cunningham (1909–1910)</a> used <a href="/wiki/Spherical_wave_transformation" title="Spherical wave transformation">spherical wave transformations</a>, <a href="#Herglotz1">Herglotz (1909–10)</a> used Möbius transformations, <a href="#Plummer">Plummer (1910)</a> and <a href="#Gruner">Gruner (1921)</a> used trigonometric Lorentz boosts, <a href="#Ignatowski">Ignatowski (1910)</a> derived the transformations without light speed postulate, <a href="#Noether">Noether (1910) and Klein (1910)</a> as well <a href="#Conway">Conway (1911) and Silberstein (1911)</a> used Biquaternions, <a href="#Herglotz2">Ignatowski (1910/11), Herglotz (1911), and others</a> used vector transformations valid in arbitrary directions, <a href="#Borel">Borel (1913–14)</a> used Cayley–Hermite parameter, </p> <div class="mw-heading mw-heading3"><h3 id="Voigt_(1887)"><span id="Voigt_.281887.29"></span><span class="anchor" id="Voigt"></span> Voigt (1887)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=4" title="Edit section: Voigt (1887)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a> (1887)<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>R 1<span class="cite-bracket">&#93;</span></a></sup> developed a transformation in connection with the <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a> and an incompressible medium, being in modern notation:<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pais_7-0" class="reference"><a href="#cite_note-pais-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}\xi _{1}&amp;=x_{1}-\varkappa t\\\eta _{1}&amp;=y_{1}q\\\zeta _{1}&amp;=z_{1}q\\\tau &amp;=t-{\frac {\varkappa x_{1}}{\omega ^{2}}}\\q&amp;={\sqrt {1-{\frac {\varkappa ^{2}}{\omega ^{2}}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;={\frac {y}{\gamma }}\\z^{\prime }&amp;={\frac {z}{\gamma }}\\t^{\prime }&amp;=t-{\frac {vx}{c^{2}}}\\{\frac {1}{\gamma }}&amp;={\sqrt {1-{\frac {v^{2}}{c^{2}}}}}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03F0;<!-- ϰ --></mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C4;<!-- τ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03F0;<!-- ϰ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03F0;<!-- ϰ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}\xi _{1}&amp;=x_{1}-\varkappa t\\\eta _{1}&amp;=y_{1}q\\\zeta _{1}&amp;=z_{1}q\\\tau &amp;=t-{\frac {\varkappa x_{1}}{\omega ^{2}}}\\q&amp;={\sqrt {1-{\frac {\varkappa ^{2}}{\omega ^{2}}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;={\frac {y}{\gamma }}\\z^{\prime }&amp;={\frac {z}{\gamma }}\\t^{\prime }&amp;=t-{\frac {vx}{c^{2}}}\\{\frac {1}{\gamma }}&amp;={\sqrt {1-{\frac {v^{2}}{c^{2}}}}}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c24680a99bce9e167c14aaf42f68b875b18ee6dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.838ex; width:36.901ex; height:30.843ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}\xi _{1}&amp;=x_{1}-\varkappa t\\\eta _{1}&amp;=y_{1}q\\\zeta _{1}&amp;=z_{1}q\\\tau &amp;=t-{\frac {\varkappa x_{1}}{\omega ^{2}}}\\q&amp;={\sqrt {1-{\frac {\varkappa ^{2}}{\omega ^{2}}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;={\frac {y}{\gamma }}\\z^{\prime }&amp;={\frac {z}{\gamma }}\\t^{\prime }&amp;=t-{\frac {vx}{c^{2}}}\\{\frac {1}{\gamma }}&amp;={\sqrt {1-{\frac {v^{2}}{c^{2}}}}}\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>If the right-hand sides of his equations are multiplied by γ they are the modern Lorentz transformation. In Voigt's theory the speed of light is invariant, but his transformations mix up a relativistic boost together with a rescaling of space-time. Optical phenomena in free space are <a href="/wiki/Scale_invariance" title="Scale invariance">scale</a>, <a href="/wiki/Conformal_map" title="Conformal map">conformal</a>, and <a href="/wiki/Lorentz_covariance" title="Lorentz covariance">Lorentz invariant</a>, so the combination is invariant too.<sup id="cite_ref-pais_7-1" class="reference"><a href="#cite_note-pais-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> For instance, Lorentz transformations can be extended by using factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}"></span>:<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>R 2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\prime }=\gamma l\left(x-vt\right),\quad y^{\prime }=ly,\quad z^{\prime }=lz,\quad t^{\prime }=\gamma l\left(t-x{\frac {v}{c^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="1em" /> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>l</mi> <mi>y</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>l</mi> <mi>z</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{\prime }=\gamma l\left(x-vt\right),\quad y^{\prime }=ly,\quad z^{\prime }=lz,\quad t^{\prime }=\gamma l\left(t-x{\frac {v}{c^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e66258e6a0efab322774ea0afa2bf9f8c0fb69b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:57.6ex; height:6.176ex;" alt="{\displaystyle x^{\prime }=\gamma l\left(x-vt\right),\quad y^{\prime }=ly,\quad z^{\prime }=lz,\quad t^{\prime }=\gamma l\left(t-x{\frac {v}{c^{2}}}\right)}"></span>.</dd></dl> <p><i>l</i>=1/γ gives the Voigt transformation, <i>l</i>=1 the Lorentz transformation. But scale transformations are not a symmetry of all the laws of nature, only of electromagnetism, so these transformations cannot be used to formulate a <a href="/wiki/Principle_of_relativity" title="Principle of relativity">principle of relativity</a> in general. It was demonstrated by Poincaré and Einstein that one has to set <i>l</i>=1 in order to make the above transformation symmetric and to form a group as required by the relativity principle, therefore the Lorentz transformation is the only viable choice. </p><p> Voigt sent his 1887 paper to Lorentz in 1908,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> and that was acknowledged in 1909: <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style></p><blockquote class="templatequote"><p>In a paper "Über das Doppler'sche Princip", published in 1887 (Gött. Nachrichten, p. 41) and which to my regret has escaped my notice all these years, Voigt has applied to equations of the form (7) (§ 3 of this book) [namely <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \Psi -{\tfrac {1}{c^{2}}}{\tfrac {\partial ^{2}\Psi }{\partial t^{2}}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \Psi -{\tfrac {1}{c^{2}}}{\tfrac {\partial ^{2}\Psi }{\partial t^{2}}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12f1513902f84ff6436d33cd8b8a9cdfe141f417" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:17.121ex; height:4.343ex;" alt="{\displaystyle \Delta \Psi -{\tfrac {1}{c^{2}}}{\tfrac {\partial ^{2}\Psi }{\partial t^{2}}}=0}"></span>] a transformation equivalent to the formulae (287) and (288) [namely <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\prime }=\gamma l\left(x-vt\right),\ y^{\prime }=ly,\ z^{\prime }=lz,\ t^{\prime }=\gamma l\left(t-{\tfrac {v}{c^{2}}}x\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>l</mi> <mi>y</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>l</mi> <mi>z</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>v</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{\prime }=\gamma l\left(x-vt\right),\ y^{\prime }=ly,\ z^{\prime }=lz,\ t^{\prime }=\gamma l\left(t-{\tfrac {v}{c^{2}}}x\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42fc2b1cdafcdd936f2a43d7eae674ed205c0aa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:51.211ex; height:4.843ex;" alt="{\displaystyle x^{\prime }=\gamma l\left(x-vt\right),\ y^{\prime }=ly,\ z^{\prime }=lz,\ t^{\prime }=\gamma l\left(t-{\tfrac {v}{c^{2}}}x\right)}"></span>]. The idea of the transformations used above (and in § 44) might therefore have been borrowed from Voigt and the proof that it does not alter the form of the equations for the <i>free</i> ether is contained in his paper.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>R 3<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p>Also <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a> said in 1908 that the transformations which play the main role in the principle of relativity were first examined by Voigt in 1887. Voigt responded in the same paper by saying that his theory was based on an elastic theory of light, not an electromagnetic one. However, he concluded that some results were actually the same.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>R 4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Heaviside_(1888),_Thomson_(1889),_Searle_(1896)"><span id="Heaviside_.281888.29.2C_Thomson_.281889.29.2C_Searle_.281896.29"></span><span class="anchor" id="Heaviside"></span> Heaviside (1888), Thomson (1889), Searle (1896)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=5" title="Edit section: Heaviside (1888), Thomson (1889), Searle (1896)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1888, <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>R 5<span class="cite-bracket">&#93;</span></a></sup> investigated the properties of <a href="/wiki/Relativistic_electromagnetism" title="Relativistic electromagnetism">charges in motion</a> according to Maxwell's electrodynamics. He calculated, among other things, anisotropies in the electric field of moving bodies represented by this formula:<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {E} =\left({\frac {q\mathrm {r} }{r^{2}}}\right)\left(1-{\frac {v^{2}\sin ^{2}\theta }{c^{2}}}\right)^{-3/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> </mrow> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {E} =\left({\frac {q\mathrm {r} }{r^{2}}}\right)\left(1-{\frac {v^{2}\sin ^{2}\theta }{c^{2}}}\right)^{-3/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54e9fcbd14a230da5a97b80a6fd86d84cd32f593" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.622ex; height:7.009ex;" alt="{\displaystyle \mathrm {E} =\left({\frac {q\mathrm {r} }{r^{2}}}\right)\left(1-{\frac {v^{2}\sin ^{2}\theta }{c^{2}}}\right)^{-3/2}}"></span>.</dd></dl> <p>Consequently, <a href="/wiki/Joseph_John_Thomson" class="mw-redirect" title="Joseph John Thomson">Joseph John Thomson</a> (1889)<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>R 6<span class="cite-bracket">&#93;</span></a></sup> found a way to substantially simplify calculations concerning moving charges by using the following mathematical transformation (like other authors such as Lorentz or Larmor, also Thomson implicitly used the <a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformation</a> <i>z-vt</i> in his equation<sup id="cite_ref-mil_15-0" class="reference"><a href="#cite_note-mil-15"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}z&amp;=\left\{1-{\frac {\omega ^{2}}{v^{2}}}\right\}^{\frac {1}{2}}z'\end{aligned}}\right|&amp;{\begin{aligned}z^{\ast }=z-vt&amp;={\frac {z'}{\gamma }}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}z&amp;=\left\{1-{\frac {\omega ^{2}}{v^{2}}}\right\}^{\frac {1}{2}}z'\end{aligned}}\right|&amp;{\begin{aligned}z^{\ast }=z-vt&amp;={\frac {z'}{\gamma }}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8eedecd26da05a9ce29fed0286c3b0bc409717c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:42.453ex; height:11.509ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}z&amp;=\left\{1-{\frac {\omega ^{2}}{v^{2}}}\right\}^{\frac {1}{2}}z&#039;\end{aligned}}\right|&amp;{\begin{aligned}z^{\ast }=z-vt&amp;={\frac {z&#039;}{\gamma }}\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>Thereby, <a href="/wiki/Inhomogeneous_electromagnetic_wave_equation" title="Inhomogeneous electromagnetic wave equation">inhomogeneous electromagnetic wave equations</a> are transformed into a <a href="/wiki/Poisson_equation" class="mw-redirect" title="Poisson equation">Poisson equation</a>.<sup id="cite_ref-mil_15-1" class="reference"><a href="#cite_note-mil-15"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Eventually, <a href="/wiki/George_Frederick_Charles_Searle" title="George Frederick Charles Searle">George Frederick Charles Searle</a><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>R 7<span class="cite-bracket">&#93;</span></a></sup> noted in (1896) that Heaviside's expression leads to a deformation of electric fields which he called "Heaviside-Ellipsoid" of <a href="/wiki/Axial_ratio" title="Axial ratio">axial ratio</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}&amp;{\sqrt {\alpha }}:1:1\\\alpha =&amp;1-{\frac {u^{2}}{v^{2}}}\end{aligned}}\right|&amp;{\begin{aligned}&amp;{\frac {1}{\gamma }}:1:1\\{\frac {1}{\gamma ^{2}}}&amp;=1-{\frac {v^{2}}{c^{2}}}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03B1;<!-- α --></mi> </msqrt> </mrow> <mo>:</mo> <mn>1</mn> <mo>:</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <mo>:</mo> <mn>1</mn> <mo>:</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}&amp;{\sqrt {\alpha }}:1:1\\\alpha =&amp;1-{\frac {u^{2}}{v^{2}}}\end{aligned}}\right|&amp;{\begin{aligned}&amp;{\frac {1}{\gamma }}:1:1\\{\frac {1}{\gamma ^{2}}}&amp;=1-{\frac {v^{2}}{c^{2}}}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f3552d590c3e8b76552177951f464a309c1b3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.671ex; width:33.935ex; height:16.509ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}&amp;{\sqrt {\alpha }}:1:1\\\alpha =&amp;1-{\frac {u^{2}}{v^{2}}}\end{aligned}}\right|&amp;{\begin{aligned}&amp;{\frac {1}{\gamma }}:1:1\\{\frac {1}{\gamma ^{2}}}&amp;=1-{\frac {v^{2}}{c^{2}}}\end{aligned}}\end{matrix}}}"></span><sup id="cite_ref-mil_15-2" class="reference"><a href="#cite_note-mil-15"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Lorentz_(1892,_1895)"><span id="Lorentz_.281892.2C_1895.29"></span><span class="anchor" id="Lorentz1"></span> Lorentz (1892, 1895)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=6" title="Edit section: Lorentz (1892, 1895)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In order to explain the <a href="/wiki/Aberration_of_light" class="mw-redirect" title="Aberration of light">aberration of light</a> and the result of the <a href="/wiki/Fizeau_experiment" title="Fizeau experiment">Fizeau experiment</a> in accordance with <a href="/wiki/Maxwell%27s_equations" title="Maxwell&#39;s equations">Maxwell's equations</a>, Lorentz in 1892 developed a model ("<a href="/wiki/Lorentz_ether_theory" title="Lorentz ether theory">Lorentz ether theory</a>") in which the aether is completely motionless, and the speed of light in the aether is constant in all directions. In order to calculate the optics of moving bodies, Lorentz introduced the following quantities to transform from the aether system into a moving system (it's unknown whether he was influenced by Voigt, Heaviside, and Thomson)<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>R 8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-milf_18-0" class="reference"><a href="#cite_note-milf-18"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}{\mathfrak {x}}&amp;={\frac {V}{\sqrt {V^{2}-p^{2}}}}x\\t'&amp;=t-{\frac {\varepsilon }{V}}{\mathfrak {x}}\\\varepsilon &amp;={\frac {p}{\sqrt {V^{2}-p^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma x^{\ast }=\gamma (x-vt)\\t^{\prime }&amp;=t-{\frac {\gamma ^{2}vx^{\ast }}{c^{2}}}=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\\\gamma {\frac {v}{c}}&amp;={\frac {v}{\sqrt {c^{2}-v^{2}}}}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">x</mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>V</mi> <msqrt> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B5;<!-- ε --></mi> <mi>V</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">x</mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B5;<!-- ε --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <msqrt> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>v</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}{\mathfrak {x}}&amp;={\frac {V}{\sqrt {V^{2}-p^{2}}}}x\\t'&amp;=t-{\frac {\varepsilon }{V}}{\mathfrak {x}}\\\varepsilon &amp;={\frac {p}{\sqrt {V^{2}-p^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma x^{\ast }=\gamma (x-vt)\\t^{\prime }&amp;=t-{\frac {\gamma ^{2}vx^{\ast }}{c^{2}}}=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\\\gamma {\frac {v}{c}}&amp;={\frac {v}{\sqrt {c^{2}-v^{2}}}}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c728d05117951ad354759065eeb78fbcd09e7a30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:57.13ex; height:22.176ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}{\mathfrak {x}}&amp;={\frac {V}{\sqrt {V^{2}-p^{2}}}}x\\t&#039;&amp;=t-{\frac {\varepsilon }{V}}{\mathfrak {x}}\\\varepsilon &amp;={\frac {p}{\sqrt {V^{2}-p^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma x^{\ast }=\gamma (x-vt)\\t^{\prime }&amp;=t-{\frac {\gamma ^{2}vx^{\ast }}{c^{2}}}=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\\\gamma {\frac {v}{c}}&amp;={\frac {v}{\sqrt {c^{2}-v^{2}}}}\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>where <i>x<sup>*</sup></i> is the <a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformation</a> <i>x-vt</i>. Except the additional γ in the time transformation, this is the complete Lorentz transformation.<sup id="cite_ref-milf_18-1" class="reference"><a href="#cite_note-milf-18"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> While <i>t</i> is the "true" time for observers resting in the aether, <i>t′</i> is an auxiliary variable only for calculating processes for moving systems. It is also important that Lorentz and later also Larmor formulated this transformation in two steps. At first an implicit Galilean transformation, and later the expansion into the "fictitious" electromagnetic system with the aid of the Lorentz transformation. In order to explain the negative result of the <a href="/wiki/Michelson%E2%80%93Morley_experiment" title="Michelson–Morley experiment">Michelson–Morley experiment</a>, he (1892b)<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>R 9<span class="cite-bracket">&#93;</span></a></sup> introduced the additional hypothesis that also intermolecular forces are affected in a similar way and introduced <a href="/wiki/Length_contraction" title="Length contraction">length contraction</a> in his theory (without proof as he admitted). The same hypothesis had been made previously by <a href="/wiki/George_Francis_FitzGerald" title="George Francis FitzGerald">George FitzGerald</a> in 1889 based on Heaviside's work. While length contraction was a real physical effect for Lorentz, he considered the time transformation only as a heuristic working hypothesis and a mathematical stipulation. </p><p>In 1895, Lorentz further elaborated on his theory and introduced the "theorem of corresponding states". This theorem states that a moving observer (relative to the ether) in his "fictitious" field makes the same observations as a resting observers in his "real" field for velocities to first order in <i>v/c</i>. Lorentz showed that the dimensions of electrostatic systems in the ether and a moving frame are connected by this transformation:<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>R 10<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;=x^{\prime }{\sqrt {1-{\frac {{\mathfrak {p}}^{2}}{V^{2}}}}}\\y&amp;=y^{\prime }\\z&amp;=z^{\prime }\\t&amp;=t^{\prime }\end{aligned}}\right|&amp;{\begin{aligned}x^{\ast }=x-vt&amp;={\frac {x^{\prime }}{\gamma }}\\y&amp;=y^{\prime }\\z&amp;=z^{\prime }\\t&amp;=t^{\prime }\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;=x^{\prime }{\sqrt {1-{\frac {{\mathfrak {p}}^{2}}{V^{2}}}}}\\y&amp;=y^{\prime }\\z&amp;=z^{\prime }\\t&amp;=t^{\prime }\end{aligned}}\right|&amp;{\begin{aligned}x^{\ast }=x-vt&amp;={\frac {x^{\prime }}{\gamma }}\\y&amp;=y^{\prime }\\z&amp;=z^{\prime }\\t&amp;=t^{\prime }\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29b578499966b24c77068a79a6e909977e860682" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.005ex; width:41.227ex; height:21.176ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;=x^{\prime }{\sqrt {1-{\frac {{\mathfrak {p}}^{2}}{V^{2}}}}}\\y&amp;=y^{\prime }\\z&amp;=z^{\prime }\\t&amp;=t^{\prime }\end{aligned}}\right|&amp;{\begin{aligned}x^{\ast }=x-vt&amp;={\frac {x^{\prime }}{\gamma }}\\y&amp;=y^{\prime }\\z&amp;=z^{\prime }\\t&amp;=t^{\prime }\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>For solving optical problems Lorentz used the following transformation, in which the modified time variable was called "local time" (<a href="/wiki/German_language" title="German language">German</a>: <i lang="de">Ortszeit</i>) by him:<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>R 11<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;=\mathrm {x} -{\mathfrak {p}}_{x}t\\y&amp;=\mathrm {y} -{\mathfrak {p}}_{y}t\\z&amp;=\mathrm {z} -{\mathfrak {p}}_{z}t\\t^{\prime }&amp;=t-{\frac {{\mathfrak {p}}_{x}}{V^{2}}}x-{\frac {{\mathfrak {p}}_{y}}{V^{2}}}y-{\frac {{\mathfrak {p}}_{z}}{V^{2}}}z\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-v_{x}t\\y^{\prime }&amp;=y-v_{y}t\\z^{\prime }&amp;=z-v_{z}t\\t^{\prime }&amp;=t-{\frac {v_{x}}{c^{2}}}x'-{\frac {v_{y}}{c^{2}}}y'-{\frac {v_{z}}{c^{2}}}z'\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">y</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">z</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>z</mi> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;=\mathrm {x} -{\mathfrak {p}}_{x}t\\y&amp;=\mathrm {y} -{\mathfrak {p}}_{y}t\\z&amp;=\mathrm {z} -{\mathfrak {p}}_{z}t\\t^{\prime }&amp;=t-{\frac {{\mathfrak {p}}_{x}}{V^{2}}}x-{\frac {{\mathfrak {p}}_{y}}{V^{2}}}y-{\frac {{\mathfrak {p}}_{z}}{V^{2}}}z\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-v_{x}t\\y^{\prime }&amp;=y-v_{y}t\\z^{\prime }&amp;=z-v_{z}t\\t^{\prime }&amp;=t-{\frac {v_{x}}{c^{2}}}x'-{\frac {v_{y}}{c^{2}}}y'-{\frac {v_{z}}{c^{2}}}z'\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7eafe4171180f77b9652763ffd04912851124e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.338ex; width:65.284ex; height:19.843ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;=\mathrm {x} -{\mathfrak {p}}_{x}t\\y&amp;=\mathrm {y} -{\mathfrak {p}}_{y}t\\z&amp;=\mathrm {z} -{\mathfrak {p}}_{z}t\\t^{\prime }&amp;=t-{\frac {{\mathfrak {p}}_{x}}{V^{2}}}x-{\frac {{\mathfrak {p}}_{y}}{V^{2}}}y-{\frac {{\mathfrak {p}}_{z}}{V^{2}}}z\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-v_{x}t\\y^{\prime }&amp;=y-v_{y}t\\z^{\prime }&amp;=z-v_{z}t\\t^{\prime }&amp;=t-{\frac {v_{x}}{c^{2}}}x&#039;-{\frac {v_{y}}{c^{2}}}y&#039;-{\frac {v_{z}}{c^{2}}}z&#039;\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>With this concept Lorentz could explain the <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler effect</a>, the <a href="/wiki/Aberration_of_light" class="mw-redirect" title="Aberration of light">aberration of light</a>, and the <a href="/wiki/Fizeau_experiment" title="Fizeau experiment">Fizeau experiment</a>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Larmor_(1897,_1900)"><span id="Larmor_.281897.2C_1900.29"></span><span class="anchor" id="Larmor"></span> Larmor (1897, 1900)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=7" title="Edit section: Larmor (1897, 1900)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1897, Larmor extended the work of Lorentz and derived the following transformation<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>R 12<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x_{1}&amp;=x\varepsilon ^{\frac {1}{2}}\\y_{1}&amp;=y\\z_{1}&amp;=z\\t^{\prime }&amp;=t-vx/c^{2}\\dt_{1}&amp;=dt^{\prime }\varepsilon ^{-{\frac {1}{2}}}\\\varepsilon &amp;=\left(1-v^{2}/c^{2}\right)^{-1}\end{aligned}}\right|&amp;{\begin{aligned}x_{1}&amp;=\gamma x^{\ast }=\gamma (x-vt)\\y_{1}&amp;=y\\z_{1}&amp;=z\\t^{\prime }&amp;=t-{\frac {vx^{\ast }}{c^{2}}}=t-{\frac {v(x-vt)}{c^{2}}}\\dt_{1}&amp;={\frac {dt^{\prime }}{\gamma }}\\\gamma ^{2}&amp;={\frac {1}{1-{\frac {v^{2}}{c^{2}}}}}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B5;<!-- ε --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x_{1}&amp;=x\varepsilon ^{\frac {1}{2}}\\y_{1}&amp;=y\\z_{1}&amp;=z\\t^{\prime }&amp;=t-vx/c^{2}\\dt_{1}&amp;=dt^{\prime }\varepsilon ^{-{\frac {1}{2}}}\\\varepsilon &amp;=\left(1-v^{2}/c^{2}\right)^{-1}\end{aligned}}\right|&amp;{\begin{aligned}x_{1}&amp;=\gamma x^{\ast }=\gamma (x-vt)\\y_{1}&amp;=y\\z_{1}&amp;=z\\t^{\prime }&amp;=t-{\frac {vx^{\ast }}{c^{2}}}=t-{\frac {v(x-vt)}{c^{2}}}\\dt_{1}&amp;={\frac {dt^{\prime }}{\gamma }}\\\gamma ^{2}&amp;={\frac {1}{1-{\frac {v^{2}}{c^{2}}}}}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e650cac6d7c4a7b431e401ac3023aaa04d188b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -16.005ex; width:58.086ex; height:33.009ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x_{1}&amp;=x\varepsilon ^{\frac {1}{2}}\\y_{1}&amp;=y\\z_{1}&amp;=z\\t^{\prime }&amp;=t-vx/c^{2}\\dt_{1}&amp;=dt^{\prime }\varepsilon ^{-{\frac {1}{2}}}\\\varepsilon &amp;=\left(1-v^{2}/c^{2}\right)^{-1}\end{aligned}}\right|&amp;{\begin{aligned}x_{1}&amp;=\gamma x^{\ast }=\gamma (x-vt)\\y_{1}&amp;=y\\z_{1}&amp;=z\\t^{\prime }&amp;=t-{\frac {vx^{\ast }}{c^{2}}}=t-{\frac {v(x-vt)}{c^{2}}}\\dt_{1}&amp;={\frac {dt^{\prime }}{\gamma }}\\\gamma ^{2}&amp;={\frac {1}{1-{\frac {v^{2}}{c^{2}}}}}\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>Larmor noted that if it is assumed that the constitution of molecules is electrical then the FitzGerald–Lorentz contraction is a consequence of this transformation, explaining the <a href="/wiki/Michelson%E2%80%93Morley_experiment" title="Michelson–Morley experiment">Michelson–Morley experiment</a>. It's notable that Larmor was the first who recognized that some sort of <a href="/wiki/Time_dilation" title="Time dilation">time dilation</a> is a consequence of this transformation as well, because "individual electrons describe corresponding parts of their orbits in times shorter for the [rest] system in the ratio 1/γ".<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> Larmor wrote his electrodynamical equations and transformations neglecting terms of higher order than <i>(v/c)</i><sup>2</sup> – when his 1897 paper was reprinted in 1929, Larmor added the following comment in which he described how they can be made valid to all orders of <i>v/c</i>:<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>R 13<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>Nothing need be neglected: the transformation is <i>exact</i> if <i>v/c</i><sup>2</sup> is replaced by <i>εv/c</i><sup>2</sup> in the equations and also in the change following from <i>t</i> to <i>t′</i>, as is worked out in <i>Aether and Matter</i> (1900), p. 168, and as Lorentz found it to be in 1904, thereby stimulating the modern schemes of intrinsic relational relativity.</p></blockquote> <p>In line with that comment, in his book Aether and Matter published in 1900, Larmor used a modified local time <i>t″=t′-εvx′/c<sup>2</sup></i> instead of the 1897 expression <i>t′=t-vx/c<sup>2</sup></i> by replacing <i>v/c</i><sup>2</sup> with <i>εv/c</i><sup>2</sup>, so that <i>t″</i> is now identical to the one given by Lorentz in 1892, which he combined with a Galilean transformation for the <i>x′, y′, z′, t′</i> coordinates:<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>R 14<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t\\t^{\prime \prime }&amp;=t^{\prime }-\varepsilon vx^{\prime }/c^{2}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t\\t^{\prime \prime }=t^{\prime }-{\frac {\gamma ^{2}vx^{\prime }}{c^{2}}}&amp;=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mi>v</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>v</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t\\t^{\prime \prime }&amp;=t^{\prime }-\varepsilon vx^{\prime }/c^{2}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t\\t^{\prime \prime }=t^{\prime }-{\frac {\gamma ^{2}vx^{\prime }}{c^{2}}}&amp;=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7227d2e50c18836dfd4d70febe00e3afcb64630" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.838ex; width:55.975ex; height:22.843ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t\\t^{\prime \prime }&amp;=t^{\prime }-\varepsilon vx^{\prime }/c^{2}\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=x-vt\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t\\t^{\prime \prime }=t^{\prime }-{\frac {\gamma ^{2}vx^{\prime }}{c^{2}}}&amp;=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>Larmor knew that the Michelson–Morley experiment was accurate enough to detect an effect of motion depending on the factor <i>(v/c)</i><sup>2</sup>, and so he sought the transformations which were "accurate to second order" (as he put it). Thus he wrote the final transformations (where <i>x′=x-vt</i> and <i>t″</i> as given above) as:<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>R 15<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x_{1}&amp;=\varepsilon ^{\frac {1}{2}}x^{\prime }\\y_{1}&amp;=y^{\prime }\\z_{1}&amp;=z^{\prime }\\dt_{1}&amp;=\varepsilon ^{-{\frac {1}{2}}}dt^{\prime \prime }=\varepsilon ^{-{\frac {1}{2}}}\left(dt^{\prime }-{\frac {v}{c^{2}}}\varepsilon dx^{\prime }\right)\\t_{1}&amp;=\varepsilon ^{-{\frac {1}{2}}}t^{\prime }-{\frac {v}{c^{2}}}\varepsilon ^{\frac {1}{2}}x^{\prime }\end{aligned}}\right|&amp;{\begin{aligned}x_{1}&amp;=\gamma x^{\prime }=\gamma (x-vt)\\y_{1}&amp;=y'=y\\z_{1}&amp;=z'=z\\dt_{1}&amp;={\frac {dt^{\prime \prime }}{\gamma }}={\frac {1}{\gamma }}\left(dt^{\prime }-{\frac {\gamma ^{2}vdx^{\prime }}{c^{2}}}\right)=\gamma \left(dt-{\frac {vdx}{c^{2}}}\right)\\t_{1}&amp;={\frac {t^{\prime }}{\gamma }}-{\frac {\gamma vx^{\prime }}{c^{2}}}=\gamma \left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>&#x03B5;<!-- ε --></mi> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>v</mi> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>d</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>v</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x_{1}&amp;=\varepsilon ^{\frac {1}{2}}x^{\prime }\\y_{1}&amp;=y^{\prime }\\z_{1}&amp;=z^{\prime }\\dt_{1}&amp;=\varepsilon ^{-{\frac {1}{2}}}dt^{\prime \prime }=\varepsilon ^{-{\frac {1}{2}}}\left(dt^{\prime }-{\frac {v}{c^{2}}}\varepsilon dx^{\prime }\right)\\t_{1}&amp;=\varepsilon ^{-{\frac {1}{2}}}t^{\prime }-{\frac {v}{c^{2}}}\varepsilon ^{\frac {1}{2}}x^{\prime }\end{aligned}}\right|&amp;{\begin{aligned}x_{1}&amp;=\gamma x^{\prime }=\gamma (x-vt)\\y_{1}&amp;=y'=y\\z_{1}&amp;=z'=z\\dt_{1}&amp;={\frac {dt^{\prime \prime }}{\gamma }}={\frac {1}{\gamma }}\left(dt^{\prime }-{\frac {\gamma ^{2}vdx^{\prime }}{c^{2}}}\right)=\gamma \left(dt-{\frac {vdx}{c^{2}}}\right)\\t_{1}&amp;={\frac {t^{\prime }}{\gamma }}-{\frac {\gamma vx^{\prime }}{c^{2}}}=\gamma \left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/122256e127b2213c117a432d0c9149425938fafa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.505ex; width:94.302ex; height:26.176ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x_{1}&amp;=\varepsilon ^{\frac {1}{2}}x^{\prime }\\y_{1}&amp;=y^{\prime }\\z_{1}&amp;=z^{\prime }\\dt_{1}&amp;=\varepsilon ^{-{\frac {1}{2}}}dt^{\prime \prime }=\varepsilon ^{-{\frac {1}{2}}}\left(dt^{\prime }-{\frac {v}{c^{2}}}\varepsilon dx^{\prime }\right)\\t_{1}&amp;=\varepsilon ^{-{\frac {1}{2}}}t^{\prime }-{\frac {v}{c^{2}}}\varepsilon ^{\frac {1}{2}}x^{\prime }\end{aligned}}\right|&amp;{\begin{aligned}x_{1}&amp;=\gamma x^{\prime }=\gamma (x-vt)\\y_{1}&amp;=y&#039;=y\\z_{1}&amp;=z&#039;=z\\dt_{1}&amp;={\frac {dt^{\prime \prime }}{\gamma }}={\frac {1}{\gamma }}\left(dt^{\prime }-{\frac {\gamma ^{2}vdx^{\prime }}{c^{2}}}\right)=\gamma \left(dt-{\frac {vdx}{c^{2}}}\right)\\t_{1}&amp;={\frac {t^{\prime }}{\gamma }}-{\frac {\gamma vx^{\prime }}{c^{2}}}=\gamma \left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>by which he arrived at the complete Lorentz transformation. Larmor showed that Maxwell's equations were invariant under this two-step transformation, "to second order in <i>v/c</i>" – it was later shown by Lorentz (1904) and Poincaré (1905) that they are indeed invariant under this transformation to all orders in <i>v/c</i>. </p><p>Larmor gave credit to Lorentz in two papers published in 1904, in which he used the term "Lorentz transformation" for Lorentz's first order transformations of coordinates and field configurations: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>p. 583: [..] Lorentz's transformation for passing from the field of activity of a stationary electrodynamic material system to that of one moving with uniform velocity of translation through the aether.<br /> p. 585: [..] the Lorentz transformation has shown us what is not so immediately obvious [..]<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>R 16<span class="cite-bracket">&#93;</span></a></sup> <br /> p. 622: [..] the transformation first developed by Lorentz: namely, each point in space is to have its own origin from which time is measured, its "local time" in Lorentz's phraseology, and then the values of the electric and magnetic vectors [..] at all points in the aether between the molecules in the system at rest, are the same as those of the vectors [..] at the corresponding points in the convected system at the same local times.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>R 17<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <div class="mw-heading mw-heading3"><h3 id="Lorentz_(1899,_1904)"><span id="Lorentz_.281899.2C_1904.29"></span><span class="anchor" id="Lorentz2"></span> Lorentz (1899, 1904)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=8" title="Edit section: Lorentz (1899, 1904)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Also Lorentz extended his theorem of corresponding states in 1899. First he wrote a transformation equivalent to the one from 1892 (again, <i>x</i>* must be replaced by <i>x-vt</i>):<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>R 18<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;={\frac {V}{\sqrt {V^{2}-{\mathfrak {p}}_{x}^{2}}}}x\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t-{\frac {{\mathfrak {p}}_{x}}{V^{2}-{\mathfrak {p}}_{x}^{2}}}x\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma x^{\ast }=\gamma (x-vt)\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t-{\frac {\gamma ^{2}vx^{\ast }}{c^{2}}}=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>V</mi> <msqrt> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>v</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;={\frac {V}{\sqrt {V^{2}-{\mathfrak {p}}_{x}^{2}}}}x\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t-{\frac {{\mathfrak {p}}_{x}}{V^{2}-{\mathfrak {p}}_{x}^{2}}}x\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma x^{\ast }=\gamma (x-vt)\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t-{\frac {\gamma ^{2}vx^{\ast }}{c^{2}}}=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85ade6b59a25e4f6601bb27173bcc77ac60f9d35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.005ex; width:57.876ex; height:23.176ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;={\frac {V}{\sqrt {V^{2}-{\mathfrak {p}}_{x}^{2}}}}x\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t-{\frac {{\mathfrak {p}}_{x}}{V^{2}-{\mathfrak {p}}_{x}^{2}}}x\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma x^{\ast }=\gamma (x-vt)\\y^{\prime }&amp;=y\\z^{\prime }&amp;=z\\t^{\prime }&amp;=t-{\frac {\gamma ^{2}vx^{\ast }}{c^{2}}}=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>Then he introduced a factor ε of which he said he has no means of determining it, and modified his transformation as follows (where the above value of <i>t′</i> has to be inserted):<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>R 19<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;={\frac {\varepsilon }{k}}x^{\prime \prime }\\y&amp;=\varepsilon y^{\prime \prime }\\z&amp;=\varepsilon x^{\prime \prime }\\t^{\prime }&amp;=k\varepsilon t^{\prime \prime }\\k&amp;={\frac {V}{\sqrt {V^{2}-{\mathfrak {p}}_{x}^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\ast }=x-vt&amp;={\frac {\varepsilon }{\gamma }}x^{\prime \prime }\\y&amp;=\varepsilon y^{\prime \prime }\\z&amp;=\varepsilon z^{\prime \prime }\\t^{\prime }=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)&amp;=\gamma \varepsilon t^{\prime \prime }\\\gamma &amp;={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B5;<!-- ε --></mi> <mi>k</mi> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B5;<!-- ε --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B5;<!-- ε --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>k</mi> <mi>&#x03B5;<!-- ε --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>V</mi> <msqrt> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B5;<!-- ε --></mi> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B5;<!-- ε --></mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B5;<!-- ε --></mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B5;<!-- ε --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;={\frac {\varepsilon }{k}}x^{\prime \prime }\\y&amp;=\varepsilon y^{\prime \prime }\\z&amp;=\varepsilon x^{\prime \prime }\\t^{\prime }&amp;=k\varepsilon t^{\prime \prime }\\k&amp;={\frac {V}{\sqrt {V^{2}-{\mathfrak {p}}_{x}^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\ast }=x-vt&amp;={\frac {\varepsilon }{\gamma }}x^{\prime \prime }\\y&amp;=\varepsilon y^{\prime \prime }\\z&amp;=\varepsilon z^{\prime \prime }\\t^{\prime }=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)&amp;=\gamma \varepsilon t^{\prime \prime }\\\gamma &amp;={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9160842cf2e8d25a9551c1f3efba2a95bc6d8520" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.505ex; width:53.476ex; height:30.176ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x&amp;={\frac {\varepsilon }{k}}x^{\prime \prime }\\y&amp;=\varepsilon y^{\prime \prime }\\z&amp;=\varepsilon x^{\prime \prime }\\t^{\prime }&amp;=k\varepsilon t^{\prime \prime }\\k&amp;={\frac {V}{\sqrt {V^{2}-{\mathfrak {p}}_{x}^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x^{\ast }=x-vt&amp;={\frac {\varepsilon }{\gamma }}x^{\prime \prime }\\y&amp;=\varepsilon y^{\prime \prime }\\z&amp;=\varepsilon z^{\prime \prime }\\t^{\prime }=\gamma ^{2}\left(t-{\frac {vx}{c^{2}}}\right)&amp;=\gamma \varepsilon t^{\prime \prime }\\\gamma &amp;={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>This is equivalent to the complete Lorentz transformation when solved for <i>x″</i> and <i>t″</i> and with ε=1. Like Larmor, Lorentz noticed in 1899<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>R 20<span class="cite-bracket">&#93;</span></a></sup> also some sort of time dilation effect in relation to the frequency of oscillating electrons <i>"that in </i>S<i> the time of vibrations be </i>kε<i> times as great as in </i>S<sub>0</sub><i>"</i>, where <i>S<sub>0</sub></i> is the aether frame.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1904 he rewrote the equations in the following form by setting <i>l</i>=1/ε (again, <i>x</i>* must be replaced by <i>x-vt</i>):<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>R 21<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;=klx\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t'&amp;={\frac {l}{k}}t-kl{\frac {w}{c^{2}}}x\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma lx^{\ast }=\gamma l(x-vt)\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t^{\prime }&amp;={\frac {lt}{\gamma }}-{\frac {\gamma lvx^{\ast }}{c^{2}}}=\gamma l\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>k</mi> <mi>l</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>l</mi> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>l</mi> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>l</mi> <mi>k</mi> </mfrac> </mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>w</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>l</mi> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>l</mi> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>l</mi> <mi>t</mi> </mrow> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <mi>v</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;=klx\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t'&amp;={\frac {l}{k}}t-kl{\frac {w}{c^{2}}}x\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma lx^{\ast }=\gamma l(x-vt)\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t^{\prime }&amp;={\frac {lt}{\gamma }}-{\frac {\gamma lvx^{\ast }}{c^{2}}}=\gamma l\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dc59798d652a3fc2d33e4d81fa92b4b11d50297" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.171ex; width:56.515ex; height:19.509ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{\prime }&amp;=klx\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t&#039;&amp;={\frac {l}{k}}t-kl{\frac {w}{c^{2}}}x\end{aligned}}\right|&amp;{\begin{aligned}x^{\prime }&amp;=\gamma lx^{\ast }=\gamma l(x-vt)\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t^{\prime }&amp;={\frac {lt}{\gamma }}-{\frac {\gamma lvx^{\ast }}{c^{2}}}=\gamma l\left(t-{\frac {vx}{c^{2}}}\right)\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>Under the assumption that <i>l=1</i> when <i>v</i>=0, he demonstrated that <i>l=1</i> must be the case at all velocities, therefore length contraction can only arise in the line of motion. So by setting the factor <i>l</i> to unity, Lorentz's transformations now assumed the same form as Larmor's and are now completed. Unlike Larmor, who restricted himself to show the covariance of Maxwell's equations to second order, Lorentz tried to widen its covariance to all orders in <i>v/c</i>. He also derived the correct formulas for the velocity dependence of <a href="/wiki/Electromagnetic_mass" title="Electromagnetic mass">electromagnetic mass</a>, and concluded that the transformation formulas must apply to all forces of nature, not only electrical ones.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>R 22<span class="cite-bracket">&#93;</span></a></sup> However, he didn't achieve full covariance of the transformation equations for charge density and velocity.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> When the 1904 paper was reprinted in 1913, Lorentz therefore added the following remark:<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>One will notice that in this work the transformation equations of Einstein’s Relativity Theory have not quite been attained. [..] On this circumstance depends the clumsiness of many of the further considerations in this work.</p></blockquote> <p>Lorentz's 1904 transformation was cited and used by <a href="/wiki/Alfred_Bucherer" title="Alfred Bucherer">Alfred Bucherer</a> in July 1904:<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>R 23<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\prime }={\sqrt {s}}x,\quad y^{\prime }=y,\quad z^{\prime }=z,\quad t'={\frac {t}{\sqrt {s}}}-{\sqrt {s}}{\frac {u}{v^{2}}}x,\quad s=1-{\frac {u^{2}}{v^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>s</mi> </msqrt> </mrow> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>z</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <msqrt> <mi>s</mi> </msqrt> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>s</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>u</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <mi>s</mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{\prime }={\sqrt {s}}x,\quad y^{\prime }=y,\quad z^{\prime }=z,\quad t'={\frac {t}{\sqrt {s}}}-{\sqrt {s}}{\frac {u}{v^{2}}}x,\quad s=1-{\frac {u^{2}}{v^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1096ae78b7c3d42c6dcd1789b2995316bf4a4d6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:65.067ex; height:6.676ex;" alt="{\displaystyle x^{\prime }={\sqrt {s}}x,\quad y^{\prime }=y,\quad z^{\prime }=z,\quad t&#039;={\frac {t}{\sqrt {s}}}-{\sqrt {s}}{\frac {u}{v^{2}}}x,\quad s=1-{\frac {u^{2}}{v^{2}}}}"></span></dd></dl> <p>or by <a href="/wiki/Wilhelm_Wien" title="Wilhelm Wien">Wilhelm Wien</a> in July 1904:<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>R 24<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=kx',\quad y=y',\quad z=z',\quad t'=kt-{\frac {v}{kc^{2}}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>k</mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mspace width="1em" /> <mi>y</mi> <mo>=</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mspace width="1em" /> <mi>z</mi> <mo>=</mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mspace width="1em" /> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>k</mi> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mrow> <mi>k</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=kx',\quad y=y',\quad z=z',\quad t'=kt-{\frac {v}{kc^{2}}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b48a75983639547637edac7f607dfaf4c728dc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:44.736ex; height:5.009ex;" alt="{\displaystyle x=kx&#039;,\quad y=y&#039;,\quad z=z&#039;,\quad t&#039;=kt-{\frac {v}{kc^{2}}}x}"></span></dd></dl> <p>or by <a href="/wiki/Emil_Cohn" title="Emil Cohn">Emil Cohn</a> in November 1904 (setting the speed of light to unity):<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>R 25<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {x_{0}}{k}},\quad y=y_{0},\quad z=z_{0},\quad t=kt_{0},\quad t_{1}=t_{0}-w\cdot r_{0},\quad k^{2}={\frac {1}{1-w^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>k</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>y</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi>t</mi> <mo>=</mo> <mi>k</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>w</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {x_{0}}{k}},\quad y=y_{0},\quad z=z_{0},\quad t=kt_{0},\quad t_{1}=t_{0}-w\cdot r_{0},\quad k^{2}={\frac {1}{1-w^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88147ce8eb68d49668899baf1f94b6832194bad1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:72.337ex; height:5.676ex;" alt="{\displaystyle x={\frac {x_{0}}{k}},\quad y=y_{0},\quad z=z_{0},\quad t=kt_{0},\quad t_{1}=t_{0}-w\cdot r_{0},\quad k^{2}={\frac {1}{1-w^{2}}}}"></span></dd></dl> <p>or by <a href="/wiki/Richard_Gans" title="Richard Gans">Richard Gans</a> in February 1905:<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>R 26<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\prime }=kx,\quad y^{\prime }=y,\quad z^{\prime }=z,\quad t'={\frac {t}{k}}-{\frac {kwx}{c^{2}}},\quad k^{2}={\frac {c^{2}}{c^{2}-w^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>k</mi> <mi>x</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>z</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mi>k</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mi>w</mi> <mi>x</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{\prime }=kx,\quad y^{\prime }=y,\quad z^{\prime }=z,\quad t'={\frac {t}{k}}-{\frac {kwx}{c^{2}}},\quad k^{2}={\frac {c^{2}}{c^{2}-w^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97a739e9a8d8db304539c72e1cb9a5f5584b5417" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:61.512ex; height:6.176ex;" alt="{\displaystyle x^{\prime }=kx,\quad y^{\prime }=y,\quad z^{\prime }=z,\quad t&#039;={\frac {t}{k}}-{\frac {kwx}{c^{2}}},\quad k^{2}={\frac {c^{2}}{c^{2}-w^{2}}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Poincaré_(1900,_1905)"><span id="Poincar.C3.A9_.281900.2C_1905.29"></span><span class="anchor" id="Poincare3"></span> Poincaré (1900, 1905)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=9" title="Edit section: Poincaré (1900, 1905)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Local_time">Local time</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=10" title="Edit section: Local time"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Neither Lorentz or Larmor gave a clear physical interpretation of the origin of local time. However, <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> in 1900 commented on the origin of Lorentz's "wonderful invention" of local time.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> He remarked that it arose when clocks in a moving reference frame are synchronised by exchanging signals which are assumed to travel with the same speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> in both directions, which lead to what is nowadays called <a href="/wiki/Relativity_of_simultaneity" title="Relativity of simultaneity">relativity of simultaneity</a>, although Poincaré's calculation does not involve length contraction or time dilation.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>R 27<span class="cite-bracket">&#93;</span></a></sup> In order to synchronise the clocks here on Earth (the <i>x*, t</i>* frame) a light signal from one clock (at the origin) is sent to another (at <i>x</i>*), and is sent back. It's supposed that the Earth is moving with speed <i>v</i> in the <i>x</i>-direction (= <i>x</i>*-direction) in some rest system (<i>x, t</i>) (<i>i.e.</i> the <a href="/wiki/Luminiferous_aether" title="Luminiferous aether">luminiferous aether</a> system for Lorentz and Larmor). The time of flight outwards is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta t_{a}={\frac {x^{\ast }}{\left(c-v\right)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> </mrow> <mo>)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta t_{a}={\frac {x^{\ast }}{\left(c-v\right)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5103b7fb49e84f95f3c04259dd37c54dae49021f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.709ex; height:6.176ex;" alt="{\displaystyle \delta t_{a}={\frac {x^{\ast }}{\left(c-v\right)}}}"></span></dd></dl> <p>and the time of flight back is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta t_{b}={\frac {x^{\ast }}{\left(c+v\right)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>v</mi> </mrow> <mo>)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta t_{b}={\frac {x^{\ast }}{\left(c+v\right)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bfc36778009287e792df422ce42fdc4fd4da2f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.545ex; height:6.176ex;" alt="{\displaystyle \delta t_{b}={\frac {x^{\ast }}{\left(c+v\right)}}}"></span>.</dd></dl> <p>The elapsed time on the clock when the signal is returned is <i>δt<sub>a</sub>+δt<sub>b</sub></i> and the time <i>t*=(δt<sub>a</sub>+δt<sub>b</sub>)/2</i> is ascribed to the moment when the light signal reached the distant clock. In the rest frame the time <i>t=δt<sub>a</sub></i> is ascribed to that same instant. Some algebra gives the relation between the different time coordinates ascribed to the moment of reflection. Thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{\ast }=t-{\frac {\gamma ^{2}vx^{*}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>v</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{\ast }=t-{\frac {\gamma ^{2}vx^{*}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5555b9fa5761eaacfb946db1060c5a63deda1a51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.354ex; height:6.009ex;" alt="{\displaystyle t^{\ast }=t-{\frac {\gamma ^{2}vx^{*}}{c^{2}}}}"></span></dd></dl> <p>identical to Lorentz (1892). By dropping the factor γ<sup>2</sup> under the assumption that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {v^{2}}{c^{2}}}\ll 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> <mo>&#x226A;<!-- ≪ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {v^{2}}{c^{2}}}\ll 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4fd33a1ba55784a33cae0ddf05f87ac167715b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.242ex; height:4.343ex;" alt="{\displaystyle {\tfrac {v^{2}}{c^{2}}}\ll 1}"></span>, Poincaré gave the result <i>t*=t-vx*/c<sup>2</sup></i>, which is the form used by Lorentz in 1895. </p><p>Similar physical interpretations of local time were later given by <a href="/wiki/Emil_Cohn" title="Emil Cohn">Emil Cohn</a> (1904)<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>R 28<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Max_Abraham" title="Max Abraham">Max Abraham</a> (1905).<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>R 29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Lorentz_transformation">Lorentz transformation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=11" title="Edit section: Lorentz transformation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On June 5, 1905 (published June 9) Poincaré formulated transformation equations which are algebraically equivalent to those of Larmor and Lorentz and gave them the modern form:<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>R 30<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x^{\prime }&amp;=kl(x+\varepsilon t)\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t'&amp;=kl(t+\varepsilon x)\\k&amp;={\frac {1}{\sqrt {1-\varepsilon ^{2}}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>k</mi> <mi>l</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>l</mi> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>l</mi> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>k</mi> <mi>l</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x^{\prime }&amp;=kl(x+\varepsilon t)\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t'&amp;=kl(t+\varepsilon x)\\k&amp;={\frac {1}{\sqrt {1-\varepsilon ^{2}}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e0e0f83e9688c531911f4233f6523b57d6a0503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.676ex; margin-bottom: -0.328ex; width:15.671ex; height:19.176ex;" alt="{\displaystyle {\begin{aligned}x^{\prime }&amp;=kl(x+\varepsilon t)\\y^{\prime }&amp;=ly\\z^{\prime }&amp;=lz\\t&#039;&amp;=kl(t+\varepsilon x)\\k&amp;={\frac {1}{\sqrt {1-\varepsilon ^{2}}}}\end{aligned}}}"></span>.</dd></dl> <p>Apparently Poincaré was unaware of Larmor's contributions, because he only mentioned Lorentz and therefore used for the first time the name "Lorentz transformation".<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Poincaré set the speed of light to unity, pointed out the group characteristics of the transformation by setting <i>l</i>=1, and modified/corrected Lorentz's derivation of the equations of electrodynamics in some details in order to fully satisfy the principle of relativity, <i>i.e.</i> making them fully Lorentz covariant.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>In July 1905 (published in January 1906)<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>R 31<span class="cite-bracket">&#93;</span></a></sup> Poincaré showed in detail how the transformations and electrodynamic equations are a consequence of the <a href="/wiki/Principle_of_least_action" class="mw-redirect" title="Principle of least action">principle of least action</a>; he demonstrated in more detail the group characteristics of the transformation, which he called <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a>, and he showed that the combination <i>x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>-t<sup>2</sup></i> is invariant. He noticed that the Lorentz transformation is merely a rotation in four-dimensional space about the origin by introducing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ct{\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ct{\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd666a0ffc00a10a7f354c27f17cbadf8368e320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.753ex; height:3.009ex;" alt="{\displaystyle ct{\sqrt {-1}}}"></span> as a fourth imaginary coordinate, and he used an early form of <a href="/wiki/Four-vector" title="Four-vector">four-vectors</a>. He also formulated the velocity addition formula, which he had already derived in unpublished letters to Lorentz from May 1905:<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>R 32<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi '={\frac {\xi +\varepsilon }{1+\xi \varepsilon }},\ \eta '={\frac {\eta }{k(1+\xi \varepsilon )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03BE;<!-- ξ --></mi> <mi>&#x03B5;<!-- ε --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>&#x03B7;<!-- η --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B7;<!-- η --></mi> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BE;<!-- ξ --></mi> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi '={\frac {\xi +\varepsilon }{1+\xi \varepsilon }},\ \eta '={\frac {\eta }{k(1+\xi \varepsilon )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be6cce0ed7830a33ab96bfb433ccb03f06e818ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.314ex; height:6.176ex;" alt="{\displaystyle \xi &#039;={\frac {\xi +\varepsilon }{1+\xi \varepsilon }},\ \eta &#039;={\frac {\eta }{k(1+\xi \varepsilon )}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Einstein_(1905)_–_Special_relativity"><span id="Einstein_.281905.29_.E2.80.93_Special_relativity"></span><span class="anchor" id="Einstein"></span> Einstein (1905) – Special relativity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=12" title="Edit section: Einstein (1905) – Special relativity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On June 30, 1905 (published September 1905) Einstein published what is now called <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> and gave a new derivation of the transformation, which was based only on the principle of relativity and the principle of the constancy of the speed of light. While Lorentz considered "local time" to be a mathematical stipulation device for explaining the Michelson-Morley experiment, Einstein showed that the coordinates given by the Lorentz transformation were in fact the inertial coordinates of relatively moving frames of reference. For quantities of first order in <i>v/c</i> this was also done by Poincaré in 1900, while Einstein derived the complete transformation by this method. Unlike Lorentz and Poincaré who still distinguished between real time in the aether and apparent time for moving observers, Einstein showed that the transformations applied to the kinematics of moving frames.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p><p>The notation for this transformation is equivalent to Poincaré's of 1905, except that Einstein didn't set the speed of light to unity:<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>R 33<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\tau &amp;=\beta \left(t-{\frac {v}{V^{2}}}x\right)\\\xi &amp;=\beta (x-vt)\\\eta &amp;=y\\\zeta &amp;=z\\\beta &amp;={\frac {1}{\sqrt {1-\left({\frac {v}{V}}\right)^{2}}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03C4;<!-- τ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03BE;<!-- ξ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B7;<!-- η --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B6;<!-- ζ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B2;<!-- β --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>V</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\tau &amp;=\beta \left(t-{\frac {v}{V^{2}}}x\right)\\\xi &amp;=\beta (x-vt)\\\eta &amp;=y\\\zeta &amp;=z\\\beta &amp;={\frac {1}{\sqrt {1-\left({\frac {v}{V}}\right)^{2}}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8f2dd647a5086633fddfde0f0a07a3f52ac2cc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.612ex; margin-bottom: -0.226ex; width:19.139ex; height:24.843ex;" alt="{\displaystyle {\begin{aligned}\tau &amp;=\beta \left(t-{\frac {v}{V^{2}}}x\right)\\\xi &amp;=\beta (x-vt)\\\eta &amp;=y\\\zeta &amp;=z\\\beta &amp;={\frac {1}{\sqrt {1-\left({\frac {v}{V}}\right)^{2}}}}\end{aligned}}}"></span></dd></dl> <p>Einstein also defined the velocity addition formula:<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>R 34<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}x={\frac {w_{\xi }+v}{1+{\frac {vw_{\xi }}{V^{2}}}}}t,\ y={\frac {\sqrt {1-\left({\frac {v}{V}}\right)^{2}}}{1+{\frac {vw_{\xi }}{V^{2}}}}}w_{\eta }t\\U^{2}=\left({\frac {dx}{dt}}\right)^{2}+\left({\frac {dy}{dt}}\right)^{2},\ w^{2}=w_{\xi }^{2}+w_{\eta }^{2},\ \alpha =\operatorname {arctg} {\frac {w_{y}}{w_{x}}}\\U={\frac {\sqrt {\left(v^{2}+w^{2}+2vw\cos \alpha \right)-\left({\frac {vw\sin \alpha }{V}}\right)^{2}}}{1+{\frac {vw\cos \alpha }{V^{2}}}}}\end{matrix}}\left|{\begin{matrix}{\frac {u_{x}-v}{1-{\frac {u_{x}v}{V^{2}}}}}=u_{\xi }\\{\frac {u_{y}}{\beta \left(1-{\frac {u_{x}v}{V^{2}}}\right)}}=u_{\eta }\\{\frac {u_{z}}{\beta \left(1-{\frac {u_{x}v}{V^{2}}}\right)}}=u_{\zeta }\end{matrix}}\right.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msub> <mo>+</mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msub> </mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mi>t</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>V</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msub> </mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> </mfrac> </mrow> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B7;<!-- η --></mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BE;<!-- ξ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B7;<!-- η --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>arctg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>U</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mrow> <mo>(</mo> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>v</mi> <mi>w</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>w</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <mi>V</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>w</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>v</mi> </mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>v</mi> </mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B7;<!-- η --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mrow> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>v</mi> </mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B6;<!-- ζ --></mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}x={\frac {w_{\xi }+v}{1+{\frac {vw_{\xi }}{V^{2}}}}}t,\ y={\frac {\sqrt {1-\left({\frac {v}{V}}\right)^{2}}}{1+{\frac {vw_{\xi }}{V^{2}}}}}w_{\eta }t\\U^{2}=\left({\frac {dx}{dt}}\right)^{2}+\left({\frac {dy}{dt}}\right)^{2},\ w^{2}=w_{\xi }^{2}+w_{\eta }^{2},\ \alpha =\operatorname {arctg} {\frac {w_{y}}{w_{x}}}\\U={\frac {\sqrt {\left(v^{2}+w^{2}+2vw\cos \alpha \right)-\left({\frac {vw\sin \alpha }{V}}\right)^{2}}}{1+{\frac {vw\cos \alpha }{V^{2}}}}}\end{matrix}}\left|{\begin{matrix}{\frac {u_{x}-v}{1-{\frac {u_{x}v}{V^{2}}}}}=u_{\xi }\\{\frac {u_{y}}{\beta \left(1-{\frac {u_{x}v}{V^{2}}}\right)}}=u_{\eta }\\{\frac {u_{z}}{\beta \left(1-{\frac {u_{x}v}{V^{2}}}\right)}}=u_{\zeta }\end{matrix}}\right.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d7882552d6a0aa90748fa9747c2706039a7539a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.005ex; width:69.523ex; height:23.176ex;" alt="{\displaystyle {\begin{matrix}x={\frac {w_{\xi }+v}{1+{\frac {vw_{\xi }}{V^{2}}}}}t,\ y={\frac {\sqrt {1-\left({\frac {v}{V}}\right)^{2}}}{1+{\frac {vw_{\xi }}{V^{2}}}}}w_{\eta }t\\U^{2}=\left({\frac {dx}{dt}}\right)^{2}+\left({\frac {dy}{dt}}\right)^{2},\ w^{2}=w_{\xi }^{2}+w_{\eta }^{2},\ \alpha =\operatorname {arctg} {\frac {w_{y}}{w_{x}}}\\U={\frac {\sqrt {\left(v^{2}+w^{2}+2vw\cos \alpha \right)-\left({\frac {vw\sin \alpha }{V}}\right)^{2}}}{1+{\frac {vw\cos \alpha }{V^{2}}}}}\end{matrix}}\left|{\begin{matrix}{\frac {u_{x}-v}{1-{\frac {u_{x}v}{V^{2}}}}}=u_{\xi }\\{\frac {u_{y}}{\beta \left(1-{\frac {u_{x}v}{V^{2}}}\right)}}=u_{\eta }\\{\frac {u_{z}}{\beta \left(1-{\frac {u_{x}v}{V^{2}}}\right)}}=u_{\zeta }\end{matrix}}\right.}"></span></dd></dl> <p>and the light aberration formula:<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>R 35<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \varphi '={\frac {\cos \varphi -{\frac {v}{V}}}{1-{\frac {v}{V}}\cos \varphi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>V</mi> </mfrac> </mrow> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>V</mi> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \varphi '={\frac {\cos \varphi -{\frac {v}{V}}}{1-{\frac {v}{V}}\cos \varphi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a23f9e3a1d82e46c760f4f920f587020b5339a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.146ex; height:7.509ex;" alt="{\displaystyle \cos \varphi &#039;={\frac {\cos \varphi -{\frac {v}{V}}}{1-{\frac {v}{V}}\cos \varphi }}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Minkowski_(1907–1908)_–_Spacetime"><span id="Minkowski_.281907.E2.80.931908.29_.E2.80.93_Spacetime"></span><span class="anchor" id="Minkowski"></span> Minkowski (1907–1908) – Spacetime</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=13" title="Edit section: Minkowski (1907–1908) – Spacetime"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The work on the principle of relativity by Lorentz, Einstein, <a href="/wiki/Max_Planck" title="Max Planck">Planck</a>, together with Poincaré's four-dimensional approach, were further elaborated and combined with the <a href="/wiki/Hyperboloid_model" title="Hyperboloid model">hyperboloid model</a> by <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a> in 1907 and 1908.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>R 36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>R 37<span class="cite-bracket">&#93;</span></a></sup> Minkowski particularly reformulated electrodynamics in a four-dimensional way (<a href="/wiki/Minkowski_spacetime" class="mw-redirect" title="Minkowski spacetime">Minkowski spacetime</a>).<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> For instance, he wrote <i>x, y, z, it</i> in the form <i>x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub></i>. By defining ψ as the angle of rotation around the <i>z</i>-axis, the Lorentz transformation assumes the form (with <i>c</i>=1):<sup id="cite_ref-mink1_62-0" class="reference"><a href="#cite_note-mink1-62"><span class="cite-bracket">&#91;</span>R 38<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x'_{1}&amp;=x_{1}\\x'_{2}&amp;=x_{2}\\x'_{3}&amp;=x_{3}\cos i\psi +x_{4}\sin i\psi \\x'_{4}&amp;=-x_{3}\sin i\psi +x_{4}\cos i\psi \\\cos i\psi &amp;={\frac {1}{\sqrt {1-q^{2}}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>i</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>i</mi> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>i</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>i</mi> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>i</mi> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x'_{1}&amp;=x_{1}\\x'_{2}&amp;=x_{2}\\x'_{3}&amp;=x_{3}\cos i\psi +x_{4}\sin i\psi \\x'_{4}&amp;=-x_{3}\sin i\psi +x_{4}\cos i\psi \\\cos i\psi &amp;={\frac {1}{\sqrt {1-q^{2}}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56f4ae3f891fb0dafe5a3fd9a012076419e1d9d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.034ex; margin-bottom: -0.304ex; width:31.227ex; height:19.843ex;" alt="{\displaystyle {\begin{aligned}x&#039;_{1}&amp;=x_{1}\\x&#039;_{2}&amp;=x_{2}\\x&#039;_{3}&amp;=x_{3}\cos i\psi +x_{4}\sin i\psi \\x&#039;_{4}&amp;=-x_{3}\sin i\psi +x_{4}\cos i\psi \\\cos i\psi &amp;={\frac {1}{\sqrt {1-q^{2}}}}\end{aligned}}}"></span></dd></dl> <p>Even though Minkowski used the imaginary number iψ, he for once<sup id="cite_ref-mink1_62-1" class="reference"><a href="#cite_note-mink1-62"><span class="cite-bracket">&#91;</span>R 38<span class="cite-bracket">&#93;</span></a></sup> directly used the <a href="/wiki/Tangens_hyperbolicus" class="mw-redirect" title="Tangens hyperbolicus">tangens hyperbolicus</a> in the equation for velocity </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i\tan i\psi ={\frac {e^{\psi }-e^{-\psi }}{e^{\psi }+e^{-\psi }}}=q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>i</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msup> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i\tan i\psi ={\frac {e^{\psi }-e^{-\psi }}{e^{\psi }+e^{-\psi }}}=q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be88eac93128db69233c66f748fcfc4e93215eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.053ex; height:6.176ex;" alt="{\displaystyle -i\tan i\psi ={\frac {e^{\psi }-e^{-\psi }}{e^{\psi }+e^{-\psi }}}=q}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ={\frac {1}{2}}\ln {\frac {1+q}{1-q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>q</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi ={\frac {1}{2}}\ln {\frac {1+q}{1-q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887b46cb8ea819708e3a3ff0c5741c31c04b42c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.232ex; height:5.843ex;" alt="{\displaystyle \psi ={\frac {1}{2}}\ln {\frac {1+q}{1-q}}}"></span>.</dd></dl> <p>Minkowski's expression can also by written as ψ=atanh(q) and was later called <a href="/wiki/Rapidity" title="Rapidity">rapidity</a>. He also wrote the Lorentz transformation in matrix form:<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>R 39<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=x_{1}^{\prime 2}+x_{2}^{\prime 2}+x_{3}^{\prime 2}+x_{4}^{\prime 2}\\\left(x_{1}^{\prime }=x',\ x_{2}^{\prime }=y',\ x_{3}^{\prime }=z',\ x_{4}^{\prime }=it'\right)\\-x^{2}-y^{2}-z^{2}+t^{2}=-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}+t^{\prime 2}\\\hline x_{h}=\alpha _{h1}x_{1}^{\prime }+\alpha _{h2}x_{2}^{\prime }+\alpha _{h3}x_{3}^{\prime }+\alpha _{h4}x_{4}^{\prime }\\\mathrm {A} =\mathrm {\left|{\begin{matrix}\alpha _{11},&amp;\alpha _{12},&amp;\alpha _{13},&amp;\alpha _{14}\\\alpha _{21},&amp;\alpha _{22},&amp;\alpha _{23},&amp;\alpha _{24}\\\alpha _{31},&amp;\alpha _{32},&amp;\alpha _{33},&amp;\alpha _{34}\\\alpha _{41},&amp;\alpha _{42},&amp;\alpha _{43},&amp;\alpha _{44}\end{matrix}}\right|,\ {\begin{aligned}{\bar {\mathrm {A} }}\mathrm {A} &amp;=1\\\left(\det \mathrm {A} \right)^{2}&amp;=1\\\det \mathrm {A} &amp;=1\\\alpha _{44}&amp;&gt;0\end{aligned}}} \end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none none solid none"> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo>=</mo> <mi>i</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mn>1</mn> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mn>2</mn> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mn>3</mn> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mn>4</mn> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>24</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>34</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>41</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>42</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>43</mn> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>44</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">A</mi> </mrow> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">A</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">A</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>44</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=x_{1}^{\prime 2}+x_{2}^{\prime 2}+x_{3}^{\prime 2}+x_{4}^{\prime 2}\\\left(x_{1}^{\prime }=x',\ x_{2}^{\prime }=y',\ x_{3}^{\prime }=z',\ x_{4}^{\prime }=it'\right)\\-x^{2}-y^{2}-z^{2}+t^{2}=-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}+t^{\prime 2}\\\hline x_{h}=\alpha _{h1}x_{1}^{\prime }+\alpha _{h2}x_{2}^{\prime }+\alpha _{h3}x_{3}^{\prime }+\alpha _{h4}x_{4}^{\prime }\\\mathrm {A} =\mathrm {\left|{\begin{matrix}\alpha _{11},&amp;\alpha _{12},&amp;\alpha _{13},&amp;\alpha _{14}\\\alpha _{21},&amp;\alpha _{22},&amp;\alpha _{23},&amp;\alpha _{24}\\\alpha _{31},&amp;\alpha _{32},&amp;\alpha _{33},&amp;\alpha _{34}\\\alpha _{41},&amp;\alpha _{42},&amp;\alpha _{43},&amp;\alpha _{44}\end{matrix}}\right|,\ {\begin{aligned}{\bar {\mathrm {A} }}\mathrm {A} &amp;=1\\\left(\det \mathrm {A} \right)^{2}&amp;=1\\\det \mathrm {A} &amp;=1\\\alpha _{44}&amp;&gt;0\end{aligned}}} \end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3a9c08b67ae1c546687e65165227f45d0ba2e1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.338ex; width:47.097ex; height:27.843ex;" alt="{\displaystyle {\begin{matrix}x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=x_{1}^{\prime 2}+x_{2}^{\prime 2}+x_{3}^{\prime 2}+x_{4}^{\prime 2}\\\left(x_{1}^{\prime }=x&#039;,\ x_{2}^{\prime }=y&#039;,\ x_{3}^{\prime }=z&#039;,\ x_{4}^{\prime }=it&#039;\right)\\-x^{2}-y^{2}-z^{2}+t^{2}=-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}+t^{\prime 2}\\\hline x_{h}=\alpha _{h1}x_{1}^{\prime }+\alpha _{h2}x_{2}^{\prime }+\alpha _{h3}x_{3}^{\prime }+\alpha _{h4}x_{4}^{\prime }\\\mathrm {A} =\mathrm {\left|{\begin{matrix}\alpha _{11},&amp;\alpha _{12},&amp;\alpha _{13},&amp;\alpha _{14}\\\alpha _{21},&amp;\alpha _{22},&amp;\alpha _{23},&amp;\alpha _{24}\\\alpha _{31},&amp;\alpha _{32},&amp;\alpha _{33},&amp;\alpha _{34}\\\alpha _{41},&amp;\alpha _{42},&amp;\alpha _{43},&amp;\alpha _{44}\end{matrix}}\right|,\ {\begin{aligned}{\bar {\mathrm {A} }}\mathrm {A} &amp;=1\\\left(\det \mathrm {A} \right)^{2}&amp;=1\\\det \mathrm {A} &amp;=1\\\alpha _{44}&amp;&gt;0\end{aligned}}} \end{matrix}}}"></span></dd></dl> <p>As a graphical representation of the Lorentz transformation he introduced the <a href="/wiki/Minkowski_diagram" class="mw-redirect" title="Minkowski diagram">Minkowski diagram</a>, which became a standard tool in textbooks and research articles on relativity:<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>R 40<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:Minkowski1.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Minkowski1.png/400px-Minkowski1.png" decoding="async" width="400" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Minkowski1.png/600px-Minkowski1.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/Minkowski1.png/800px-Minkowski1.png 2x" data-file-width="1328" data-file-height="464" /></a><figcaption>Original spacetime diagram by Minkowski in 1908.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Sommerfeld_(1909)_–_Spherical_trigonometry"><span id="Sommerfeld_.281909.29_.E2.80.93_Spherical_trigonometry"></span><span class="anchor" id="Sommerfeld"></span> Sommerfeld (1909) – Spherical trigonometry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=14" title="Edit section: Sommerfeld (1909) – Spherical trigonometry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using an imaginary rapidity such as Minkowski, <a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Arnold Sommerfeld</a> (1909) formulated the Lorentz boost and the relativistic velocity addition in terms of trigonometric functions and the <a href="/wiki/Spherical_law_of_cosines" title="Spherical law of cosines">spherical law of cosines</a>:<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>R 41<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\left.{\begin{array}{lrl}x'=&amp;x\ \cos \varphi +l\ \sin \varphi ,&amp;y'=y\\l'=&amp;-x\ \sin \varphi +l\ \cos \varphi ,&amp;z'=z\end{array}}\right\}\\\left(\operatorname {tg} \varphi =i\beta ,\ \cos \varphi ={\frac {1}{\sqrt {1-\beta ^{2}}}},\ \sin \varphi ={\frac {i\beta }{\sqrt {1-\beta ^{2}}}}\right)\\\hline \beta ={\frac {1}{i}}\operatorname {tg} \left(\varphi _{1}+\varphi _{2}\right)={\frac {1}{i}}{\frac {\operatorname {tg} \varphi _{1}+\operatorname {tg} \varphi _{2}}{1-\operatorname {tg} \varphi _{1}\operatorname {tg} \varphi _{2}}}={\frac {\beta _{1}+\beta _{2}}{1+\beta _{1}\beta _{2}}}\\\cos \varphi =\cos \varphi _{1}\cos \varphi _{2}-\sin \varphi _{1}\sin \varphi _{2}\cos \alpha \\v^{2}={\frac {v_{1}^{2}+v_{2}^{2}+2v_{1}v_{2}\cos \alpha -{\frac {1}{c^{2}}}v_{1}^{2}v_{2}^{2}\sin ^{2}\alpha }{\left(1+{\frac {1}{c^{2}}}v_{1}v_{2}\cos \alpha \right)^{2}}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none solid none"> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left right left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> </mtd> <mtd> <mi>x</mi> <mtext>&#xA0;</mtext> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mi>l</mi> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> </mtd> <mtd> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>l</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mi>l</mi> <mtext>&#xA0;</mtext> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> </mtd> <mtd> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>z</mi> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mi>tg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>i</mi> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <mi>&#x03B2;<!-- β --></mi> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>i</mi> </mfrac> </mrow> <mi>tg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>i</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>tg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>tg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>tg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mn>2</mn> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\left.{\begin{array}{lrl}x'=&amp;x\ \cos \varphi +l\ \sin \varphi ,&amp;y'=y\\l'=&amp;-x\ \sin \varphi +l\ \cos \varphi ,&amp;z'=z\end{array}}\right\}\\\left(\operatorname {tg} \varphi =i\beta ,\ \cos \varphi ={\frac {1}{\sqrt {1-\beta ^{2}}}},\ \sin \varphi ={\frac {i\beta }{\sqrt {1-\beta ^{2}}}}\right)\\\hline \beta ={\frac {1}{i}}\operatorname {tg} \left(\varphi _{1}+\varphi _{2}\right)={\frac {1}{i}}{\frac {\operatorname {tg} \varphi _{1}+\operatorname {tg} \varphi _{2}}{1-\operatorname {tg} \varphi _{1}\operatorname {tg} \varphi _{2}}}={\frac {\beta _{1}+\beta _{2}}{1+\beta _{1}\beta _{2}}}\\\cos \varphi =\cos \varphi _{1}\cos \varphi _{2}-\sin \varphi _{1}\sin \varphi _{2}\cos \alpha \\v^{2}={\frac {v_{1}^{2}+v_{2}^{2}+2v_{1}v_{2}\cos \alpha -{\frac {1}{c^{2}}}v_{1}^{2}v_{2}^{2}\sin ^{2}\alpha }{\left(1+{\frac {1}{c^{2}}}v_{1}v_{2}\cos \alpha \right)^{2}}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a78eb05c48ca4d302855f920e7793dcf0ce1e30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.671ex; width:48.193ex; height:32.509ex;" alt="{\displaystyle {\begin{matrix}\left.{\begin{array}{lrl}x&#039;=&amp;x\ \cos \varphi +l\ \sin \varphi ,&amp;y&#039;=y\\l&#039;=&amp;-x\ \sin \varphi +l\ \cos \varphi ,&amp;z&#039;=z\end{array}}\right\}\\\left(\operatorname {tg} \varphi =i\beta ,\ \cos \varphi ={\frac {1}{\sqrt {1-\beta ^{2}}}},\ \sin \varphi ={\frac {i\beta }{\sqrt {1-\beta ^{2}}}}\right)\\\hline \beta ={\frac {1}{i}}\operatorname {tg} \left(\varphi _{1}+\varphi _{2}\right)={\frac {1}{i}}{\frac {\operatorname {tg} \varphi _{1}+\operatorname {tg} \varphi _{2}}{1-\operatorname {tg} \varphi _{1}\operatorname {tg} \varphi _{2}}}={\frac {\beta _{1}+\beta _{2}}{1+\beta _{1}\beta _{2}}}\\\cos \varphi =\cos \varphi _{1}\cos \varphi _{2}-\sin \varphi _{1}\sin \varphi _{2}\cos \alpha \\v^{2}={\frac {v_{1}^{2}+v_{2}^{2}+2v_{1}v_{2}\cos \alpha -{\frac {1}{c^{2}}}v_{1}^{2}v_{2}^{2}\sin ^{2}\alpha }{\left(1+{\frac {1}{c^{2}}}v_{1}v_{2}\cos \alpha \right)^{2}}}\end{matrix}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Frank_(1909)_–_Hyperbolic_functions"><span id="Frank_.281909.29_.E2.80.93_Hyperbolic_functions"></span><span class="anchor" id="Frank"></span> Frank (1909) – Hyperbolic functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=15" title="Edit section: Frank (1909) – Hyperbolic functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Hyperbolic functions were used by <a href="/wiki/Philipp_Frank" title="Philipp Frank">Philipp Frank</a> (1909), who derived the Lorentz transformation using <i>ψ</i> as <a href="/wiki/Rapidity" title="Rapidity">rapidity</a>:<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>R 42<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}x'=x\varphi (a)\,{\rm {ch}}\,\psi +t\varphi (a)\,{\rm {sh}}\,\psi \\t'=-x\varphi (a)\,{\rm {sh}}\,\psi +t\varphi (a)\,{\rm {ch}}\,\psi \\\hline {\rm {th}}\,\psi =-a,\ {\rm {sh}}\,\psi ={\frac {a}{\sqrt {1-a^{2}}}},\ {\rm {ch}}\,\psi ={\frac {1}{\sqrt {1-a^{2}}}},\ \varphi (a)=1\\\hline x'={\frac {x-at}{\sqrt {1-a^{2}}}},\ y'=y,\ z'=z,\ t'={\frac {-ax+t}{\sqrt {1-a^{2}}}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none solid solid"> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>x</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mo>+</mo> <mi>t</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mo>+</mo> <mi>t</mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C8;<!-- ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>t</mi> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>t</mi> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}x'=x\varphi (a)\,{\rm {ch}}\,\psi +t\varphi (a)\,{\rm {sh}}\,\psi \\t'=-x\varphi (a)\,{\rm {sh}}\,\psi +t\varphi (a)\,{\rm {ch}}\,\psi \\\hline {\rm {th}}\,\psi =-a,\ {\rm {sh}}\,\psi ={\frac {a}{\sqrt {1-a^{2}}}},\ {\rm {ch}}\,\psi ={\frac {1}{\sqrt {1-a^{2}}}},\ \varphi (a)=1\\\hline x'={\frac {x-at}{\sqrt {1-a^{2}}}},\ y'=y,\ z'=z,\ t'={\frac {-ax+t}{\sqrt {1-a^{2}}}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/516dd77809c5f4c226c35e394156119181b7f336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.171ex; width:53.6ex; height:17.509ex;" alt="{\displaystyle {\begin{matrix}x&#039;=x\varphi (a)\,{\rm {ch}}\,\psi +t\varphi (a)\,{\rm {sh}}\,\psi \\t&#039;=-x\varphi (a)\,{\rm {sh}}\,\psi +t\varphi (a)\,{\rm {ch}}\,\psi \\\hline {\rm {th}}\,\psi =-a,\ {\rm {sh}}\,\psi ={\frac {a}{\sqrt {1-a^{2}}}},\ {\rm {ch}}\,\psi ={\frac {1}{\sqrt {1-a^{2}}}},\ \varphi (a)=1\\\hline x&#039;={\frac {x-at}{\sqrt {1-a^{2}}}},\ y&#039;=y,\ z&#039;=z,\ t&#039;={\frac {-ax+t}{\sqrt {1-a^{2}}}}\end{matrix}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Bateman_and_Cunningham_(1909–1910)_–_Spherical_wave_transformation"><span id="Bateman_and_Cunningham_.281909.E2.80.931910.29_.E2.80.93_Spherical_wave_transformation"></span><span class="anchor" id="Bateman"></span> Bateman and Cunningham (1909–1910) – Spherical wave transformation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=16" title="Edit section: Bateman and Cunningham (1909–1910) – Spherical wave transformation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In line with <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a>'s (1871) research on the relation between sphere transformations with an imaginary radius coordinate and 4D conformal transformations, it was pointed out by <a href="/wiki/Harry_Bateman" title="Harry Bateman">Bateman</a> and <a href="/wiki/Ebenezer_Cunningham" title="Ebenezer Cunningham">Cunningham</a> (1909–1910), that by setting <i>u=ict</i> as the imaginary fourth coordinates one can produce spacetime conformal transformations. Not only the quadratic form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \left(dx^{2}+dy^{2}+dz^{2}+du^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mo>(</mo> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>d</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>d</mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>d</mi> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \left(dx^{2}+dy^{2}+dz^{2}+du^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d415907036451775e6b010d5060aa065f0beb19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.384ex; height:3.343ex;" alt="{\displaystyle \lambda \left(dx^{2}+dy^{2}+dz^{2}+du^{2}\right)}"></span>, but also <a href="/wiki/Maxwells_equations" class="mw-redirect" title="Maxwells equations">Maxwells equations</a> are covariant with respect to these transformations, irrespective of the choice of λ. These variants of conformal or Lie sphere transformations were called <a href="/wiki/Spherical_wave_transformation" title="Spherical wave transformation">spherical wave transformations</a> by Bateman.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>R 43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>R 44<span class="cite-bracket">&#93;</span></a></sup> However, this covariance is restricted to certain areas such as electrodynamics, whereas the totality of natural laws in inertial frames is covariant under the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a>.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>R 45<span class="cite-bracket">&#93;</span></a></sup> In particular, by setting λ=1 the Lorentz group <span class="nowrap">SO(1,3)</span> can be seen as a 10-parameter subgroup of the 15-parameter spacetime conformal group <span class="nowrap">Con(1,3)</span>. </p><p>Bateman (1910–12)<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> also alluded to the identity between the <a href="/wiki/Spherical_wave_transformation" title="Spherical wave transformation">Laguerre inversion</a> and the Lorentz transformations. In general, the isomorphism between the Laguerre group and the Lorentz group was pointed out by <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a> (1912, 1915–55),<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>R 46<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> (1912–21)<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>R 47<span class="cite-bracket">&#93;</span></a></sup> and others. </p> <div class="mw-heading mw-heading3"><h3 id="Herglotz_(1909/10)_–_Möbius_transformation"><span id="Herglotz_.281909.2F10.29_.E2.80.93_M.C3.B6bius_transformation"></span><span class="anchor" id="Herglotz1"></span> Herglotz (1909/10) – Möbius transformation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=17" title="Edit section: Herglotz (1909/10) – Möbius transformation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Following <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> (1889–1897) and Fricke &amp; Klein (1897) concerning the Cayley absolute, hyperbolic motion and its transformation, <a href="/wiki/Gustav_Herglotz" title="Gustav Herglotz">Gustav Herglotz</a> (1909–10) classified the one-parameter Lorentz transformations as loxodromic, hyperbolic, parabolic and elliptic. The general case (on the left) and the hyperbolic case equivalent to Lorentz transformations or squeeze mappings are as follows:<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>R 48<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{\begin{matrix}z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-z_{4}^{2}=0\\z_{1}=x,\ z_{2}=y,\ z_{3}=z,\ z_{4}=t\\Z={\frac {z_{1}+iz_{2}}{z_{4}-z_{3}}}={\frac {x+iy}{t-z}},\ Z'={\frac {x'+iy'}{t'-z'}}\\Z={\frac {\alpha Z'+\beta }{\gamma Z'+\delta }}\end{matrix}}\right|{\begin{matrix}Z=Z'e^{\vartheta }\\{\begin{aligned}x&amp;=x',&amp;t-z&amp;=(t'-z')e^{\vartheta }\\y&amp;=y',&amp;t+z&amp;=(t'+z')e^{-\vartheta }\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>x</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mi>z</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>Z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> </mrow> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>Z</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>Z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B1;<!-- α --></mi> <msup> <mi>Z</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow> <mi>&#x03B3;<!-- γ --></mi> <msup> <mi>Z</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>Z</mi> <mo>=</mo> <msup> <mi>Z</mi> <mo>&#x2032;</mo> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D1;<!-- ϑ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> </mtd> <mtd> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D1;<!-- ϑ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> </mtd> <mtd> <mi>t</mi> <mo>+</mo> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03D1;<!-- ϑ --></mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.{\begin{matrix}z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-z_{4}^{2}=0\\z_{1}=x,\ z_{2}=y,\ z_{3}=z,\ z_{4}=t\\Z={\frac {z_{1}+iz_{2}}{z_{4}-z_{3}}}={\frac {x+iy}{t-z}},\ Z'={\frac {x'+iy'}{t'-z'}}\\Z={\frac {\alpha Z'+\beta }{\gamma Z'+\delta }}\end{matrix}}\right|{\begin{matrix}Z=Z'e^{\vartheta }\\{\begin{aligned}x&amp;=x',&amp;t-z&amp;=(t'-z')e^{\vartheta }\\y&amp;=y',&amp;t+z&amp;=(t'+z')e^{-\vartheta }\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58ea9638a18a72a819bbf483690fea998f8fc336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.444ex; margin-bottom: -0.227ex; width:65.207ex; height:16.509ex;" alt="{\displaystyle \left.{\begin{matrix}z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-z_{4}^{2}=0\\z_{1}=x,\ z_{2}=y,\ z_{3}=z,\ z_{4}=t\\Z={\frac {z_{1}+iz_{2}}{z_{4}-z_{3}}}={\frac {x+iy}{t-z}},\ Z&#039;={\frac {x&#039;+iy&#039;}{t&#039;-z&#039;}}\\Z={\frac {\alpha Z&#039;+\beta }{\gamma Z&#039;+\delta }}\end{matrix}}\right|{\begin{matrix}Z=Z&#039;e^{\vartheta }\\{\begin{aligned}x&amp;=x&#039;,&amp;t-z&amp;=(t&#039;-z&#039;)e^{\vartheta }\\y&amp;=y&#039;,&amp;t+z&amp;=(t&#039;+z&#039;)e^{-\vartheta }\end{aligned}}\end{matrix}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Varićak_(1910)_–_Hyperbolic_functions"><span id="Vari.C4.87ak_.281910.29_.E2.80.93_Hyperbolic_functions"></span><span class="anchor" id="Varicak"></span> Varićak (1910) – Hyperbolic functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=18" title="Edit section: Varićak (1910) – Hyperbolic functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Following <a href="#Sommerfeld">Sommerfeld (1909)</a>, hyperbolic functions were used by <a href="/wiki/Vladimir_Vari%C4%87ak" title="Vladimir Varićak">Vladimir Varićak</a> in several papers starting from 1910, who represented the equations of special relativity on the basis of <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a> in terms of Weierstrass coordinates. For instance, by setting <i>l=ct</i> and <i>v/c=tanh(u)</i> with <i>u</i> as rapidity he wrote the Lorentz transformation:<sup id="cite_ref-var1_74-0" class="reference"><a href="#cite_note-var1-74"><span class="cite-bracket">&#91;</span>R 49<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}l'&amp;=-x\operatorname {sh} u+l\operatorname {ch} u,\\x'&amp;=x\operatorname {ch} u-l\operatorname {sh} u,\\y'&amp;=y,\quad z'=z,\\\operatorname {ch} u&amp;={\frac {1}{\sqrt {1-\left({\frac {v}{c}}\right)^{2}}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>l</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> <mo>+</mo> <mi>l</mi> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mi>l</mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>z</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}l'&amp;=-x\operatorname {sh} u+l\operatorname {ch} u,\\x'&amp;=x\operatorname {ch} u-l\operatorname {sh} u,\\y'&amp;=y,\quad z'=z,\\\operatorname {ch} u&amp;={\frac {1}{\sqrt {1-\left({\frac {v}{c}}\right)^{2}}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a94a5a1f9ea78a1ac97f2a9e442146362cf3c10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.734ex; margin-bottom: -0.271ex; width:23.951ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}l&#039;&amp;=-x\operatorname {sh} u+l\operatorname {ch} u,\\x&#039;&amp;=x\operatorname {ch} u-l\operatorname {sh} u,\\y&#039;&amp;=y,\quad z&#039;=z,\\\operatorname {ch} u&amp;={\frac {1}{\sqrt {1-\left({\frac {v}{c}}\right)^{2}}}}\end{aligned}}}"></span></dd></dl> <p>and showed the relation of rapidity to the <a href="/wiki/Gudermannian_function" title="Gudermannian function">Gudermannian function</a> and the <a href="/wiki/Angle_of_parallelism" title="Angle of parallelism">angle of parallelism</a>:<sup id="cite_ref-var1_74-1" class="reference"><a href="#cite_note-var1-74"><span class="cite-bracket">&#91;</span>R 49<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {v}{c}}=\operatorname {th} u=\operatorname {tg} \psi =\sin \operatorname {gd} (u)=\cos \Pi (u)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>=</mo> <mi>th</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>u</mi> <mo>=</mo> <mi>tg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>gd</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {v}{c}}=\operatorname {th} u=\operatorname {tg} \psi =\sin \operatorname {gd} (u)=\cos \Pi (u)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dbc728756d1cbe3bfb026c9d0c59f1017e124d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.456ex; height:4.676ex;" alt="{\displaystyle {\frac {v}{c}}=\operatorname {th} u=\operatorname {tg} \psi =\sin \operatorname {gd} (u)=\cos \Pi (u)}"></span></dd></dl> <p>He also related the velocity addition to the <a href="/wiki/Hyperbolic_law_of_cosines" title="Hyperbolic law of cosines">hyperbolic law of cosines</a>:<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>R 50<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\operatorname {ch} {u}=\operatorname {ch} {u_{1}}\operatorname {c} h{u_{2}}+\operatorname {sh} {u_{1}}\operatorname {sh} {u_{2}}\cos \alpha \\\operatorname {ch} {u_{i}}={\frac {1}{\sqrt {1-\left({\frac {v_{i}}{c}}\right)^{2}}}},\ \operatorname {sh} {u_{i}}={\frac {v_{i}}{\sqrt {1-\left({\frac {v_{i}}{c}}\right)^{2}}}}\\v={\sqrt {v_{1}^{2}+v_{2}^{2}-\left({\frac {v_{1}v_{2}}{c}}\right)^{2}}}\ \left(a={\frac {\pi }{2}}\right)\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> <mo>=</mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mi mathvariant="normal">c</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>+</mo> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> </mtd> </mtr> <mtr> <mtd> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mtext>&#xA0;</mtext> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\operatorname {ch} {u}=\operatorname {ch} {u_{1}}\operatorname {c} h{u_{2}}+\operatorname {sh} {u_{1}}\operatorname {sh} {u_{2}}\cos \alpha \\\operatorname {ch} {u_{i}}={\frac {1}{\sqrt {1-\left({\frac {v_{i}}{c}}\right)^{2}}}},\ \operatorname {sh} {u_{i}}={\frac {v_{i}}{\sqrt {1-\left({\frac {v_{i}}{c}}\right)^{2}}}}\\v={\sqrt {v_{1}^{2}+v_{2}^{2}-\left({\frac {v_{1}v_{2}}{c}}\right)^{2}}}\ \left(a={\frac {\pi }{2}}\right)\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbe37d2758b200675b376b7866e69363e25679f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.005ex; width:37.419ex; height:15.176ex;" alt="{\displaystyle {\begin{matrix}\operatorname {ch} {u}=\operatorname {ch} {u_{1}}\operatorname {c} h{u_{2}}+\operatorname {sh} {u_{1}}\operatorname {sh} {u_{2}}\cos \alpha \\\operatorname {ch} {u_{i}}={\frac {1}{\sqrt {1-\left({\frac {v_{i}}{c}}\right)^{2}}}},\ \operatorname {sh} {u_{i}}={\frac {v_{i}}{\sqrt {1-\left({\frac {v_{i}}{c}}\right)^{2}}}}\\v={\sqrt {v_{1}^{2}+v_{2}^{2}-\left({\frac {v_{1}v_{2}}{c}}\right)^{2}}}\ \left(a={\frac {\pi }{2}}\right)\end{matrix}}}"></span></dd></dl> <p>Subsequently, other authors such as <a href="/wiki/E._T._Whittaker" title="E. T. Whittaker">E. T. Whittaker</a> (1910) or <a href="/wiki/Alfred_Robb" title="Alfred Robb">Alfred Robb</a> (1911, who coined the name rapidity) used similar expressions, which are still used in modern textbooks. </p> <div class="mw-heading mw-heading3"><h3 id="Plummer_(1910)_–_Trigonometric_Lorentz_boosts"><span id="Plummer_.281910.29_.E2.80.93_Trigonometric_Lorentz_boosts"></span><span class="anchor" id="Plummer"></span> Plummer (1910) – Trigonometric Lorentz boosts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=19" title="Edit section: Plummer (1910) – Trigonometric Lorentz boosts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Henry_Crozier_Keating_Plummer" title="Henry Crozier Keating Plummer">w:Henry Crozier Keating Plummer</a> (1910) defined the Lorentz boost in terms of trigonometric functions<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>R 51<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\tau =t\sec \beta -x\tan \beta /U\\\xi =x\sec \beta -Ut\tan \beta \\\eta =y,\ \zeta =z,\\\hline \sin \beta =v/U\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none none solid"> <mtr> <mtd> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mi>t</mi> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>U</mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03BE;<!-- ξ --></mi> <mo>=</mo> <mi>x</mi> <mi>sec</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>U</mi> <mi>t</mi> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B2;<!-- β --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B7;<!-- η --></mi> <mo>=</mo> <mi>y</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>&#x03B6;<!-- ζ --></mi> <mo>=</mo> <mi>z</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>U</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\tau =t\sec \beta -x\tan \beta /U\\\xi =x\sec \beta -Ut\tan \beta \\\eta =y,\ \zeta =z,\\\hline \sin \beta =v/U\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b9db28df209a5c085e94d20b3ac8f8b7dd3d599" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:25.418ex; height:13.843ex;" alt="{\displaystyle {\begin{matrix}\tau =t\sec \beta -x\tan \beta /U\\\xi =x\sec \beta -Ut\tan \beta \\\eta =y,\ \zeta =z,\\\hline \sin \beta =v/U\end{matrix}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Ignatowski_(1910)"><span id="Ignatowski_.281910.29"></span><span class="anchor" id="Ignatowski"></span> Ignatowski (1910)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=20" title="Edit section: Ignatowski (1910)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While earlier derivations and formulations of the Lorentz transformation relied from the outset on optics, electrodynamics, or the invariance of the speed of light, <a href="/wiki/Vladimir_Ignatowski" title="Vladimir Ignatowski">Vladimir Ignatowski</a> (1910) showed that it is possible to use the principle of relativity (and related <a href="/wiki/Group_theory" title="Group theory">group theoretical</a> principles) alone, in order to derive the following transformation between two inertial frames:<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>R 52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>R 53<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}dx'&amp;=p\ dx-pq\ dt\\dt'&amp;=-pqn\ dx+p\ dt\\p&amp;={\frac {1}{\sqrt {1-q^{2}n}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>d</mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>p</mi> <mtext>&#xA0;</mtext> <mi>d</mi> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mi>q</mi> <mtext>&#xA0;</mtext> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mi>q</mi> <mi>n</mi> <mtext>&#xA0;</mtext> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mi>p</mi> <mtext>&#xA0;</mtext> <mi>d</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}dx'&amp;=p\ dx-pq\ dt\\dt'&amp;=-pqn\ dx+p\ dt\\p&amp;={\frac {1}{\sqrt {1-q^{2}n}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8314622037b919fbc0dbfbc2bf33a4d668daa836" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:22.294ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}dx&#039;&amp;=p\ dx-pq\ dt\\dt&#039;&amp;=-pqn\ dx+p\ dt\\p&amp;={\frac {1}{\sqrt {1-q^{2}n}}}\end{aligned}}}"></span></dd></dl> <p>The variable <i>n</i> can be seen as a space-time constant whose value has to be determined by experiment or taken from a known physical law such as electrodynamics. For that purpose, Ignatowski used the above-mentioned Heaviside ellipsoid representing a contraction of electrostatic fields by <i>x</i>/γ in the direction of motion. It can be seen that this is only consistent with Ignatowski's transformation when <i>n=1/c</i><sup>2</sup>, resulting in <i>p</i>=γ and the Lorentz transformation. With <i>n</i>=0, no length changes arise and the Galilean transformation follows. Ignatowski's method was further developed and improved by <a href="/wiki/Philipp_Frank" title="Philipp Frank">Philipp Frank</a> and <a href="/wiki/Hermann_Rothe" title="Hermann Rothe">Hermann Rothe</a> (1911, 1912),<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>R 54<span class="cite-bracket">&#93;</span></a></sup> with various authors developing similar methods in subsequent years.<sup id="cite_ref-baccetti_80-0" class="reference"><a href="#cite_note-baccetti-80"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Noether_(1910),_Klein_(1910)_–_Quaternions"><span id="Noether_.281910.29.2C_Klein_.281910.29_.E2.80.93_Quaternions"></span><span class="anchor" id="Noether"></span> Noether (1910), Klein (1910) – Quaternions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=21" title="Edit section: Noether (1910), Klein (1910) – Quaternions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> (1908) described Cayley's (1854) 4D quaternion multiplications as "Drehstreckungen" (orthogonal substitutions in terms of rotations leaving invariant a quadratic form up to a factor), and pointed out that the modern principle of relativity as provided by Minkowski is essentially only the consequent application of such Drehstreckungen, even though he didn't provide details.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>R 55<span class="cite-bracket">&#93;</span></a></sup> </p><p>In an appendix to Klein's and Sommerfeld's "Theory of the top" (1910), <a href="/wiki/Fritz_Noether" title="Fritz Noether">Fritz Noether</a> showed how to formulate hyperbolic rotations using biquaternions with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ={\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4883f48f6d43ff56da45d4f697ff7339bb424934" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.451ex; height:3.009ex;" alt="{\displaystyle \omega ={\sqrt {-1}}}"></span>, which he also related to the speed of light by setting ω<sup>2</sup>=-<i>c</i><sup>2</sup>. He concluded that this is the principal ingredient for a rational representation of the group of Lorentz transformations:<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>R 56<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}V={\frac {Q_{1}vQ_{2}}{T_{1}T_{2}}}\\\hline X^{2}+Y^{2}+Z^{2}+\omega ^{2}S^{2}=x^{2}+y^{2}+z^{2}+\omega ^{2}s^{2}\\\hline {\begin{aligned}V&amp;=Xi+Yj+Zk+\omega S\\v&amp;=xi+yj+zk+\omega s\\Q_{1}&amp;=(+Ai+Bj+Ck+D)+\omega (A'i+B'j+C'k+D')\\Q_{2}&amp;=(-Ai-Bj-Ck+D)+\omega (A'i+B'j+C'k-D')\\T_{1}T_{2}&amp;=T_{1}^{2}=T_{2}^{2}=A^{2}+B^{2}+C^{2}+D^{2}+\omega ^{2}\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid solid"> <mtr> <mtd> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>v</mi> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>V</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>X</mi> <mi>i</mi> <mo>+</mo> <mi>Y</mi> <mi>j</mi> <mo>+</mo> <mi>Z</mi> <mi>k</mi> <mo>+</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>S</mi> </mtd> </mtr> <mtr> <mtd> <mi>v</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>i</mi> <mo>+</mo> <mi>y</mi> <mi>j</mi> <mo>+</mo> <mi>z</mi> <mi>k</mi> <mo>+</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>s</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>+</mo> <mi>A</mi> <mi>i</mi> <mo>+</mo> <mi>B</mi> <mi>j</mi> <mo>+</mo> <mi>C</mi> <mi>k</mi> <mo>+</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mi>i</mi> <mo>+</mo> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <mi>j</mi> <mo>+</mo> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> <mi>k</mi> <mo>+</mo> <msup> <mi>D</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mi>C</mi> <mi>k</mi> <mo>+</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mi>i</mi> <mo>+</mo> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <mi>j</mi> <mo>+</mo> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>D</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}V={\frac {Q_{1}vQ_{2}}{T_{1}T_{2}}}\\\hline X^{2}+Y^{2}+Z^{2}+\omega ^{2}S^{2}=x^{2}+y^{2}+z^{2}+\omega ^{2}s^{2}\\\hline {\begin{aligned}V&amp;=Xi+Yj+Zk+\omega S\\v&amp;=xi+yj+zk+\omega s\\Q_{1}&amp;=(+Ai+Bj+Ck+D)+\omega (A'i+B'j+C'k+D')\\Q_{2}&amp;=(-Ai-Bj-Ck+D)+\omega (A'i+B'j+C'k-D')\\T_{1}T_{2}&amp;=T_{1}^{2}=T_{2}^{2}=A^{2}+B^{2}+C^{2}+D^{2}+\omega ^{2}\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22bab7db4a02745ef02b54889f0f6186339ddf47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.838ex; width:72.63ex; height:24.843ex;" alt="{\displaystyle {\begin{matrix}V={\frac {Q_{1}vQ_{2}}{T_{1}T_{2}}}\\\hline X^{2}+Y^{2}+Z^{2}+\omega ^{2}S^{2}=x^{2}+y^{2}+z^{2}+\omega ^{2}s^{2}\\\hline {\begin{aligned}V&amp;=Xi+Yj+Zk+\omega S\\v&amp;=xi+yj+zk+\omega s\\Q_{1}&amp;=(+Ai+Bj+Ck+D)+\omega (A&#039;i+B&#039;j+C&#039;k+D&#039;)\\Q_{2}&amp;=(-Ai-Bj-Ck+D)+\omega (A&#039;i+B&#039;j+C&#039;k-D&#039;)\\T_{1}T_{2}&amp;=T_{1}^{2}=T_{2}^{2}=A^{2}+B^{2}+C^{2}+D^{2}+\omega ^{2}\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>Besides citing quaternion related standard works by <a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Arthur Cayley</a> (1854), Noether referred to the entries in Klein's encyclopedia by <a href="/wiki/Eduard_Study" title="Eduard Study">Eduard Study</a> (1899) and the French version by <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a> (1908).<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> Cartan's version contains a description of Study's <a href="/wiki/Dual_number" title="Dual number">dual numbers</a>, Clifford's biquaternions (including the choice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\sqrt {-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ={\sqrt {-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4883f48f6d43ff56da45d4f697ff7339bb424934" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.451ex; height:3.009ex;" alt="{\displaystyle \omega ={\sqrt {-1}}}"></span> for hyperbolic geometry), and Clifford algebra, with references to Stephanos (1883), Buchheim (1884–85), Vahlen (1901–02) and others. </p><p>Citing Noether, Klein himself published in August 1910 the following quaternion substitutions forming the group of Lorentz transformations:<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>R 57<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\begin{aligned}&amp;\left(i_{1}x'+i_{2}y'+i_{3}z'+ict'\right)\\&amp;\quad -\left(i_{1}x_{0}+i_{2}y_{0}+i_{3}z_{0}+ict_{0}\right)\end{aligned}}={\frac {\left[{\begin{aligned}&amp;\left(i_{1}(A+iA')+i_{2}(B+iB')+i_{3}(C+iC')+i_{4}(D+iD')\right)\\&amp;\quad \cdot \left(i_{1}x+i_{2}y+i_{3}z+ict\right)\\&amp;\quad \quad \cdot \left(i_{1}(A-iA')+i_{2}(B-iB')+i_{3}(C-iC')-(D-iD')\right)\end{aligned}}\right]}{\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)-\left(A^{2}+B^{2}+C^{2}+D^{2}\right)}}\\\hline {\text{where}}\\AA'+BB'+CC'+DD'=0\\A^{2}+B^{2}+C^{2}+D^{2}&gt;A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid none"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mrow> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>i</mi> <mi>c</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mi>c</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mrow> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>i</mi> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>i</mi> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>C</mi> <mo>+</mo> <mi>i</mi> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>D</mi> <mo>+</mo> <mi>i</mi> <msup> <mi>D</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>y</mi> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>z</mi> <mo>+</mo> <mi>i</mi> <mi>c</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mspace width="1em" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>C</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>D</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mi>D</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>where</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>B</mi> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>C</mi> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>D</mi> <msup> <mi>D</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&gt;</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\begin{aligned}&amp;\left(i_{1}x'+i_{2}y'+i_{3}z'+ict'\right)\\&amp;\quad -\left(i_{1}x_{0}+i_{2}y_{0}+i_{3}z_{0}+ict_{0}\right)\end{aligned}}={\frac {\left[{\begin{aligned}&amp;\left(i_{1}(A+iA')+i_{2}(B+iB')+i_{3}(C+iC')+i_{4}(D+iD')\right)\\&amp;\quad \cdot \left(i_{1}x+i_{2}y+i_{3}z+ict\right)\\&amp;\quad \quad \cdot \left(i_{1}(A-iA')+i_{2}(B-iB')+i_{3}(C-iC')-(D-iD')\right)\end{aligned}}\right]}{\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)-\left(A^{2}+B^{2}+C^{2}+D^{2}\right)}}\\\hline {\text{where}}\\AA'+BB'+CC'+DD'=0\\A^{2}+B^{2}+C^{2}+D^{2}&gt;A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92cea3d609ab839d9ee987b8da876b911afb25af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:81.189ex; height:22.176ex;" alt="{\displaystyle {\begin{matrix}{\begin{aligned}&amp;\left(i_{1}x&#039;+i_{2}y&#039;+i_{3}z&#039;+ict&#039;\right)\\&amp;\quad -\left(i_{1}x_{0}+i_{2}y_{0}+i_{3}z_{0}+ict_{0}\right)\end{aligned}}={\frac {\left[{\begin{aligned}&amp;\left(i_{1}(A+iA&#039;)+i_{2}(B+iB&#039;)+i_{3}(C+iC&#039;)+i_{4}(D+iD&#039;)\right)\\&amp;\quad \cdot \left(i_{1}x+i_{2}y+i_{3}z+ict\right)\\&amp;\quad \quad \cdot \left(i_{1}(A-iA&#039;)+i_{2}(B-iB&#039;)+i_{3}(C-iC&#039;)-(D-iD&#039;)\right)\end{aligned}}\right]}{\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)-\left(A^{2}+B^{2}+C^{2}+D^{2}\right)}}\\\hline {\text{where}}\\AA&#039;+BB&#039;+CC&#039;+DD&#039;=0\\A^{2}+B^{2}+C^{2}+D^{2}&gt;A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\end{matrix}}}"></span></dd></dl> <p>or in March 1911<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>R 58<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}g'={\frac {pg\pi }{M}}\\\hline {\begin{aligned}g&amp;={\sqrt {-1}}ct+ix+jy+kz\\g'&amp;={\sqrt {-1}}ct'+ix'+jy'+kz'\\p&amp;=(D+{\sqrt {-1}}D')+i(A+{\sqrt {-1}}A')+j(B+{\sqrt {-1}}B')+k(C+{\sqrt {-1}}C')\\\pi &amp;=(D-{\sqrt {-1}}D')-i(A-{\sqrt {-1}}A')-j(B-{\sqrt {-1}}B')-k(C-{\sqrt {-1}}C')\\M&amp;=\left(A^{2}+B^{2}+C^{2}+D^{2}\right)-\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)\\&amp;AA'+BB'+CC'+DD'=0\\&amp;A^{2}+B^{2}+C^{2}+D^{2}&gt;A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <msup> <mi>g</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mi>g</mi> <mi>&#x03C0;<!-- π --></mi> </mrow> <mi>M</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>g</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mi>c</mi> <mi>t</mi> <mo>+</mo> <mi>i</mi> <mi>x</mi> <mo>+</mo> <mi>j</mi> <mi>y</mi> <mo>+</mo> <mi>k</mi> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>g</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mi>c</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>j</mi> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>k</mi> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>D</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <msup> <mi>D</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>j</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>k</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C0;<!-- π --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>D</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <msup> <mi>D</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">(</mo> <mi>C</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>A</mi> <msup> <mi>A</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>B</mi> <msup> <mi>B</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>C</mi> <msup> <mi>C</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>D</mi> <msup> <mi>D</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&gt;</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}g'={\frac {pg\pi }{M}}\\\hline {\begin{aligned}g&amp;={\sqrt {-1}}ct+ix+jy+kz\\g'&amp;={\sqrt {-1}}ct'+ix'+jy'+kz'\\p&amp;=(D+{\sqrt {-1}}D')+i(A+{\sqrt {-1}}A')+j(B+{\sqrt {-1}}B')+k(C+{\sqrt {-1}}C')\\\pi &amp;=(D-{\sqrt {-1}}D')-i(A-{\sqrt {-1}}A')-j(B-{\sqrt {-1}}B')-k(C-{\sqrt {-1}}C')\\M&amp;=\left(A^{2}+B^{2}+C^{2}+D^{2}\right)-\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)\\&amp;AA'+BB'+CC'+DD'=0\\&amp;A^{2}+B^{2}+C^{2}+D^{2}&gt;A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b9006215fc75d2d66b67b1c8b1de581aad6ba7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.171ex; width:75.785ex; height:27.509ex;" alt="{\displaystyle {\begin{matrix}g&#039;={\frac {pg\pi }{M}}\\\hline {\begin{aligned}g&amp;={\sqrt {-1}}ct+ix+jy+kz\\g&#039;&amp;={\sqrt {-1}}ct&#039;+ix&#039;+jy&#039;+kz&#039;\\p&amp;=(D+{\sqrt {-1}}D&#039;)+i(A+{\sqrt {-1}}A&#039;)+j(B+{\sqrt {-1}}B&#039;)+k(C+{\sqrt {-1}}C&#039;)\\\pi &amp;=(D-{\sqrt {-1}}D&#039;)-i(A-{\sqrt {-1}}A&#039;)-j(B-{\sqrt {-1}}B&#039;)-k(C-{\sqrt {-1}}C&#039;)\\M&amp;=\left(A^{2}+B^{2}+C^{2}+D^{2}\right)-\left(A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\right)\\&amp;AA&#039;+BB&#039;+CC&#039;+DD&#039;=0\\&amp;A^{2}+B^{2}+C^{2}+D^{2}&gt;A^{\prime 2}+B^{\prime 2}+C^{\prime 2}+D^{\prime 2}\end{aligned}}\end{matrix}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Conway_(1911),_Silberstein_(1911)_–_Quaternions"><span id="Conway_.281911.29.2C_Silberstein_.281911.29_.E2.80.93_Quaternions"></span><span class="anchor" id="Conway"></span> Conway (1911), Silberstein (1911) – Quaternions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=22" title="Edit section: Conway (1911), Silberstein (1911) – Quaternions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Arthur_W._Conway" title="Arthur W. Conway">Arthur W. Conway</a> in February 1911 explicitly formulated quaternionic Lorentz transformations of various electromagnetic quantities in terms of velocity λ:<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>R 59<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\begin{aligned}{\mathtt {D}}&amp;=\mathbf {a} ^{-1}{\mathtt {D}}'\mathbf {a} ^{-1}\\{\mathtt {\sigma }}&amp;=\mathbf {a} {\mathtt {\sigma }}'\mathbf {a} ^{-1}\end{aligned}}\\e=\mathbf {a} ^{-1}e'\mathbf {a} ^{-1}\\\hline a=\left(1-hc^{-1}\lambda \right)^{\frac {1}{2}}\left(1+c^{-2}\lambda ^{2}\right)^{-{\frac {1}{4}}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="monospace">D</mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="monospace">D</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>e</mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mo>&#x2032;</mo> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>a</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>&#x03BB;<!-- λ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\begin{aligned}{\mathtt {D}}&amp;=\mathbf {a} ^{-1}{\mathtt {D}}'\mathbf {a} ^{-1}\\{\mathtt {\sigma }}&amp;=\mathbf {a} {\mathtt {\sigma }}'\mathbf {a} ^{-1}\end{aligned}}\\e=\mathbf {a} ^{-1}e'\mathbf {a} ^{-1}\\\hline a=\left(1-hc^{-1}\lambda \right)^{\frac {1}{2}}\left(1+c^{-2}\lambda ^{2}\right)^{-{\frac {1}{4}}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/557f926f4c05c62527600e01198596fb71a9f38f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:35.736ex; height:15.509ex;" alt="{\displaystyle {\begin{matrix}{\begin{aligned}{\mathtt {D}}&amp;=\mathbf {a} ^{-1}{\mathtt {D}}&#039;\mathbf {a} ^{-1}\\{\mathtt {\sigma }}&amp;=\mathbf {a} {\mathtt {\sigma }}&#039;\mathbf {a} ^{-1}\end{aligned}}\\e=\mathbf {a} ^{-1}e&#039;\mathbf {a} ^{-1}\\\hline a=\left(1-hc^{-1}\lambda \right)^{\frac {1}{2}}\left(1+c^{-2}\lambda ^{2}\right)^{-{\frac {1}{4}}}\end{matrix}}}"></span></dd></dl> <p>Also <a href="/wiki/Ludwik_Silberstein" title="Ludwik Silberstein">Ludwik Silberstein</a> in November 1911<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>R 60<span class="cite-bracket">&#93;</span></a></sup> as well as in 1914,<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> formulated the Lorentz transformation in terms of velocity <i>v</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}q'=QqQ\\\hline {\begin{aligned}q&amp;=\mathbf {r} +l=xi+yj+zk+\iota ct\\q&amp;'=\mathbf {r} '+l'=x'i+y'j+z'k+\iota ct'\\Q&amp;={\frac {1}{\sqrt {2}}}\left({\sqrt {1+\gamma }}+\mathrm {u} {\sqrt {1-\gamma }}\right)\\&amp;=\cos \alpha +\mathrm {u} \sin \alpha =e^{\alpha \mathrm {u} }\\&amp;\left\{\gamma =\left(1-v^{2}/c^{2}\right)^{-1/2},\ 2\alpha =\operatorname {arctg} \ \left(\iota {\frac {v}{c}}\right)\right\}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <msup> <mi>q</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>Q</mi> <mi>q</mi> <mi>Q</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>+</mo> <mi>l</mi> <mo>=</mo> <mi>x</mi> <mi>i</mi> <mo>+</mo> <mi>y</mi> <mi>j</mi> <mo>+</mo> <mi>z</mi> <mi>k</mi> <mo>+</mo> <mi>&#x03B9;<!-- ι --></mi> <mi>c</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>+</mo> <msup> <mi>l</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mi>i</mi> <mo>+</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mi>j</mi> <mo>+</mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mi>k</mi> <mo>+</mo> <mi>&#x03B9;<!-- ι --></mi> <mi>c</mi> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <mi>Q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> </msqrt> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">u</mi> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">u</mi> </mrow> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow> <mo>{</mo> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>2</mn> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>arctg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mtext>&#xA0;</mtext> <mrow> <mo>(</mo> <mrow> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}q'=QqQ\\\hline {\begin{aligned}q&amp;=\mathbf {r} +l=xi+yj+zk+\iota ct\\q&amp;'=\mathbf {r} '+l'=x'i+y'j+z'k+\iota ct'\\Q&amp;={\frac {1}{\sqrt {2}}}\left({\sqrt {1+\gamma }}+\mathrm {u} {\sqrt {1-\gamma }}\right)\\&amp;=\cos \alpha +\mathrm {u} \sin \alpha =e^{\alpha \mathrm {u} }\\&amp;\left\{\gamma =\left(1-v^{2}/c^{2}\right)^{-1/2},\ 2\alpha =\operatorname {arctg} \ \left(\iota {\frac {v}{c}}\right)\right\}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca64b0c599e38e7c493601846b337a2cf5366be9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.671ex; width:47.63ex; height:24.509ex;" alt="{\displaystyle {\begin{matrix}q&#039;=QqQ\\\hline {\begin{aligned}q&amp;=\mathbf {r} +l=xi+yj+zk+\iota ct\\q&amp;&#039;=\mathbf {r} &#039;+l&#039;=x&#039;i+y&#039;j+z&#039;k+\iota ct&#039;\\Q&amp;={\frac {1}{\sqrt {2}}}\left({\sqrt {1+\gamma }}+\mathrm {u} {\sqrt {1-\gamma }}\right)\\&amp;=\cos \alpha +\mathrm {u} \sin \alpha =e^{\alpha \mathrm {u} }\\&amp;\left\{\gamma =\left(1-v^{2}/c^{2}\right)^{-1/2},\ 2\alpha =\operatorname {arctg} \ \left(\iota {\frac {v}{c}}\right)\right\}\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>Silberstein cites Cayley (1854, 1855) and Study's encyclopedia entry (in the extended French version of Cartan in 1908), as well as the appendix of Klein's and Sommerfeld's book. </p> <div class="mw-heading mw-heading3"><h3 id="Ignatowski_(1910/11),_Herglotz_(1911),_and_others_–_Vector_transformation"><span id="Ignatowski_.281910.2F11.29.2C_Herglotz_.281911.29.2C_and_others_.E2.80.93_Vector_transformation"></span><span class="anchor" id="Herglotz2"></span> Ignatowski (1910/11), Herglotz (1911), and others – Vector transformation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=23" title="Edit section: Ignatowski (1910/11), Herglotz (1911), and others – Vector transformation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Lorentz_transformation#Vector_transformations" title="Lorentz transformation">Lorentz transformation §&#160;Vector transformations</a></div> <p><a href="/wiki/Vladimir_Ignatowski" title="Vladimir Ignatowski">Vladimir Ignatowski</a> (1910, published 1911) showed how to reformulate the Lorentz transformation in order to allow for arbitrary velocities and coordinates:<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>R 61<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\begin{matrix}{\mathfrak {v}}={\frac {{\mathfrak {v}}'+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {v}}'+pq{\mathfrak {c}}_{0}}{p\left(1+nq{\mathfrak {c}}_{0}{\mathfrak {v}}'\right)}}&amp;\left|{\begin{aligned}{\mathfrak {A}}'&amp;={\mathfrak {A}}+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {A}}-pqb{\mathfrak {c}}_{0}\\b'&amp;=pb-pqn{\mathfrak {A}}{\mathfrak {c}}_{0}\\\\{\mathfrak {A}}&amp;={\mathfrak {A}}'+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {A}}'+pqb'{\mathfrak {c}}_{0}\\b&amp;=pb'+pqn{\mathfrak {A}}'{\mathfrak {c}}_{0}\end{aligned}}\right.\end{matrix}}\\\left[{\mathfrak {v}}=\mathbf {u} ,\ {\mathfrak {A}}=\mathbf {x} ,\ b=t,\ {\mathfrak {c}}_{0}={\frac {\mathbf {v} }{v}},\ p=\gamma ,\ n={\frac {1}{c^{2}}}\right]\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">v</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">v</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">v</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>p</mi> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>n</mi> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">v</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mi>q</mi> <mi>b</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>p</mi> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mi>q</mi> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>p</mi> <mi>q</mi> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>p</mi> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>p</mi> <mi>q</mi> <mi>n</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">v</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">A</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>b</mi> <mo>=</mo> <mi>t</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">c</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mi>v</mi> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>p</mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\begin{matrix}{\mathfrak {v}}={\frac {{\mathfrak {v}}'+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {v}}'+pq{\mathfrak {c}}_{0}}{p\left(1+nq{\mathfrak {c}}_{0}{\mathfrak {v}}'\right)}}&amp;\left|{\begin{aligned}{\mathfrak {A}}'&amp;={\mathfrak {A}}+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {A}}-pqb{\mathfrak {c}}_{0}\\b'&amp;=pb-pqn{\mathfrak {A}}{\mathfrak {c}}_{0}\\\\{\mathfrak {A}}&amp;={\mathfrak {A}}'+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {A}}'+pqb'{\mathfrak {c}}_{0}\\b&amp;=pb'+pqn{\mathfrak {A}}'{\mathfrak {c}}_{0}\end{aligned}}\right.\end{matrix}}\\\left[{\mathfrak {v}}=\mathbf {u} ,\ {\mathfrak {A}}=\mathbf {x} ,\ b=t,\ {\mathfrak {c}}_{0}={\frac {\mathbf {v} }{v}},\ p=\gamma ,\ n={\frac {1}{c^{2}}}\right]\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bff07b58a3ef41af83b9007edbca88b912f2d58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.671ex; width:60.612ex; height:20.509ex;" alt="{\displaystyle {\begin{matrix}{\begin{matrix}{\mathfrak {v}}={\frac {{\mathfrak {v}}&#039;+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {v}}&#039;+pq{\mathfrak {c}}_{0}}{p\left(1+nq{\mathfrak {c}}_{0}{\mathfrak {v}}&#039;\right)}}&amp;\left|{\begin{aligned}{\mathfrak {A}}&#039;&amp;={\mathfrak {A}}+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {A}}-pqb{\mathfrak {c}}_{0}\\b&#039;&amp;=pb-pqn{\mathfrak {A}}{\mathfrak {c}}_{0}\\\\{\mathfrak {A}}&amp;={\mathfrak {A}}&#039;+(p-1){\mathfrak {c}}_{0}\cdot {\mathfrak {c}}_{0}{\mathfrak {A}}&#039;+pqb&#039;{\mathfrak {c}}_{0}\\b&amp;=pb&#039;+pqn{\mathfrak {A}}&#039;{\mathfrak {c}}_{0}\end{aligned}}\right.\end{matrix}}\\\left[{\mathfrak {v}}=\mathbf {u} ,\ {\mathfrak {A}}=\mathbf {x} ,\ b=t,\ {\mathfrak {c}}_{0}={\frac {\mathbf {v} }{v}},\ p=\gamma ,\ n={\frac {1}{c^{2}}}\right]\end{matrix}}}"></span></dd></dl> <p><a href="/wiki/Gustav_Herglotz" title="Gustav Herglotz">Gustav Herglotz</a> (1911)<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>R 62<span class="cite-bracket">&#93;</span></a></sup> also showed how to formulate the transformation in order to allow for arbitrary velocities and coordinates <b>v</b>=<i>(v<sub>x</sub>, v<sub>y</sub>, v<sub>z</sub>)</i> and <b>r</b>=<i>(x, y, z)</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{0}&amp;=x+\alpha u(ux+vy+wz)-\beta ut\\y^{0}&amp;=y+\alpha v(ux+vy+wz)-\beta vt\\z^{0}&amp;=z+\alpha w(ux+vy+wz)-\beta wt\\t^{0}&amp;=-\beta (ux+vy+wz)+\beta t\\&amp;\alpha ={\frac {1}{{\sqrt {1-s^{2}}}\left(1+{\sqrt {1-s^{2}}}\right)}},\ \beta ={\frac {1}{\sqrt {1-s^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x'&amp;=x+\alpha v_{x}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{x}t\\y'&amp;=y+\alpha v_{y}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{y}t\\z'&amp;=z+\alpha v_{z}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{z}t\\t'&amp;=-\gamma \left(v_{x}x+v_{y}y+v_{z}z\right)+\gamma t\\&amp;\alpha ={\frac {\gamma ^{2}}{\gamma +1}},\ \gamma ={\frac {1}{\sqrt {1-v^{2}}}}\end{aligned}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>original</mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>modern</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>u</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mi>x</mi> <mo>+</mo> <mi>v</mi> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>u</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>v</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mi>x</mi> <mo>+</mo> <mi>v</mi> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>v</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>w</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mi>x</mi> <mo>+</mo> <mi>v</mi> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>w</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mi>x</mi> <mo>+</mo> <mi>v</mi> <mi>y</mi> <mo>+</mo> <mi>w</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>y</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mi>y</mi> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{0}&amp;=x+\alpha u(ux+vy+wz)-\beta ut\\y^{0}&amp;=y+\alpha v(ux+vy+wz)-\beta vt\\z^{0}&amp;=z+\alpha w(ux+vy+wz)-\beta wt\\t^{0}&amp;=-\beta (ux+vy+wz)+\beta t\\&amp;\alpha ={\frac {1}{{\sqrt {1-s^{2}}}\left(1+{\sqrt {1-s^{2}}}\right)}},\ \beta ={\frac {1}{\sqrt {1-s^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x'&amp;=x+\alpha v_{x}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{x}t\\y'&amp;=y+\alpha v_{y}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{y}t\\z'&amp;=z+\alpha v_{z}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{z}t\\t'&amp;=-\gamma \left(v_{x}x+v_{y}y+v_{z}z\right)+\gamma t\\&amp;\alpha ={\frac {\gamma ^{2}}{\gamma +1}},\ \gamma ={\frac {1}{\sqrt {1-v^{2}}}}\end{aligned}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67229a3bbd3e7e5748fed75b552380205fedd21e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.171ex; width:92.719ex; height:25.509ex;" alt="{\displaystyle {\begin{matrix}{\text{original}}&amp;{\text{modern}}\\\hline \left.{\begin{aligned}x^{0}&amp;=x+\alpha u(ux+vy+wz)-\beta ut\\y^{0}&amp;=y+\alpha v(ux+vy+wz)-\beta vt\\z^{0}&amp;=z+\alpha w(ux+vy+wz)-\beta wt\\t^{0}&amp;=-\beta (ux+vy+wz)+\beta t\\&amp;\alpha ={\frac {1}{{\sqrt {1-s^{2}}}\left(1+{\sqrt {1-s^{2}}}\right)}},\ \beta ={\frac {1}{\sqrt {1-s^{2}}}}\end{aligned}}\right|&amp;{\begin{aligned}x&#039;&amp;=x+\alpha v_{x}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{x}t\\y&#039;&amp;=y+\alpha v_{y}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{y}t\\z&#039;&amp;=z+\alpha v_{z}\left(v_{x}x+v_{y}y+v_{z}z\right)-\gamma v_{z}t\\t&#039;&amp;=-\gamma \left(v_{x}x+v_{y}y+v_{z}z\right)+\gamma t\\&amp;\alpha ={\frac {\gamma ^{2}}{\gamma +1}},\ \gamma ={\frac {1}{\sqrt {1-v^{2}}}}\end{aligned}}\end{matrix}}}"></span></dd></dl> <p>This was simplified using vector notation by <a href="/wiki/Ludwik_Silberstein" title="Ludwik Silberstein">Ludwik Silberstein</a> (1911 on the left, 1914 on the right):<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>R 63<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c|c}{\begin{aligned}\mathbf {r} '&amp;=\mathbf {r} +(\gamma -1)(\mathbf {ru} )\mathbf {u} +i\beta \gamma lu\\l'&amp;=\gamma \left[l-i\beta (\mathbf {ru} )\right]\end{aligned}}&amp;{\begin{aligned}\mathbf {r} '&amp;=\mathbf {r} +\left[{\frac {\gamma -1}{v^{2}}}(\mathbf {vr} )-\gamma t\right]\mathbf {v} \\t'&amp;=\gamma \left[t-{\frac {1}{c^{2}}}(\mathbf {vr} )\right]\end{aligned}}\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center" rowspacing="4pt" columnspacing="1em" columnlines="solid"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> <mi mathvariant="bold">u</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>+</mo> <mi>i</mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>l</mi> <mi>u</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>l</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>[</mo> <mrow> <mi>l</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> <mi mathvariant="bold">u</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>+</mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mi>t</mi> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>[</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c|c}{\begin{aligned}\mathbf {r} '&amp;=\mathbf {r} +(\gamma -1)(\mathbf {ru} )\mathbf {u} +i\beta \gamma lu\\l'&amp;=\gamma \left[l-i\beta (\mathbf {ru} )\right]\end{aligned}}&amp;{\begin{aligned}\mathbf {r} '&amp;=\mathbf {r} +\left[{\frac {\gamma -1}{v^{2}}}(\mathbf {vr} )-\gamma t\right]\mathbf {v} \\t'&amp;=\gamma \left[t-{\frac {1}{c^{2}}}(\mathbf {vr} )\right]\end{aligned}}\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/490144e75ad5c53bbf948b49a3d834c3a8b62f0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:64.926ex; height:13.509ex;" alt="{\displaystyle {\begin{array}{c|c}{\begin{aligned}\mathbf {r} &#039;&amp;=\mathbf {r} +(\gamma -1)(\mathbf {ru} )\mathbf {u} +i\beta \gamma lu\\l&#039;&amp;=\gamma \left[l-i\beta (\mathbf {ru} )\right]\end{aligned}}&amp;{\begin{aligned}\mathbf {r} &#039;&amp;=\mathbf {r} +\left[{\frac {\gamma -1}{v^{2}}}(\mathbf {vr} )-\gamma t\right]\mathbf {v} \\t&#039;&amp;=\gamma \left[t-{\frac {1}{c^{2}}}(\mathbf {vr} )\right]\end{aligned}}\end{array}}}"></span></dd></dl> <p>Equivalent formulas were also given by <a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a> (1921),<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> with <a href="/wiki/Erwin_Madelung" title="Erwin Madelung">Erwin Madelung</a> (1922) providing the matrix form<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c|c|c|c|c}&amp;x&amp;y&amp;z&amp;t\\\hline x'&amp;1-{\frac {v_{x}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{x}v_{y}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{x}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{x}}{\sqrt {1-\beta ^{2}}}}\\y'&amp;-{\frac {v_{x}v_{y}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;1-{\frac {v_{y}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{y}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{y}}{\sqrt {1-\beta ^{2}}}}\\z'&amp;-{\frac {v_{x}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{y}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;1-{\frac {v_{z}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{z}}{\sqrt {1-\beta ^{2}}}}\\t'&amp;{\frac {-v_{x}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {-v_{y}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {-v_{z}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {1}{\sqrt {1-\beta ^{2}}}}\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center center" rowspacing="4pt" columnspacing="1em" rowlines="solid none" columnlines="solid solid solid solid"> <mtr> <mtd /> <mtd> <mi>x</mi> </mtd> <mtd> <mi>y</mi> </mtd> <mtd> <mi>z</mi> </mtd> <mtd> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c|c|c|c|c}&amp;x&amp;y&amp;z&amp;t\\\hline x'&amp;1-{\frac {v_{x}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{x}v_{y}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{x}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{x}}{\sqrt {1-\beta ^{2}}}}\\y'&amp;-{\frac {v_{x}v_{y}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;1-{\frac {v_{y}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{y}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{y}}{\sqrt {1-\beta ^{2}}}}\\z'&amp;-{\frac {v_{x}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{y}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;1-{\frac {v_{z}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{z}}{\sqrt {1-\beta ^{2}}}}\\t'&amp;{\frac {-v_{x}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {-v_{y}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {-v_{z}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {1}{\sqrt {1-\beta ^{2}}}}\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/862b9c40bc19e77249623828536d128eb676f465" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -16.338ex; width:83.055ex; height:33.843ex;" alt="{\displaystyle {\begin{array}{c|c|c|c|c}&amp;x&amp;y&amp;z&amp;t\\\hline x&#039;&amp;1-{\frac {v_{x}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{x}v_{y}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{x}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{x}}{\sqrt {1-\beta ^{2}}}}\\y&#039;&amp;-{\frac {v_{x}v_{y}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;1-{\frac {v_{y}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{y}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{y}}{\sqrt {1-\beta ^{2}}}}\\z&#039;&amp;-{\frac {v_{x}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;-{\frac {v_{y}v_{z}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;1-{\frac {v_{z}^{2}}{v^{2}}}\left(1-{\frac {1}{\sqrt {1-\beta ^{2}}}}\right)&amp;{\frac {-v_{z}}{\sqrt {1-\beta ^{2}}}}\\t&#039;&amp;{\frac {-v_{x}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {-v_{y}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {-v_{z}}{c^{2}{\sqrt {1-\beta ^{2}}}}}&amp;{\frac {1}{\sqrt {1-\beta ^{2}}}}\end{array}}}"></span></dd></dl> <p>These formulas were called "general Lorentz transformation without rotation" by <a href="/wiki/Christian_M%C3%B8ller" title="Christian Møller">Christian Møller</a> (1952),<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> who in addition gave an even more general Lorentz transformation in which the Cartesian axes have different orientations, using a <a href="/wiki/Three-dimensional_rotation_operator" class="mw-redirect" title="Three-dimensional rotation operator">rotation operator</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {D}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">D</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {D}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46c2461a0bd159fa416eeb2bd7a4ac0fed0262ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.934ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {D}}}"></span>. In this case, <b>v′</b>=<i>(v′<sub>x</sub>, v′<sub>y</sub>, v′<sub>z</sub>)</i> is not equal to -<b>v</b>=<i>(-v<sub>x</sub>, -v<sub>y</sub>, -v<sub>z</sub>)</i>, but the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} '=-{\mathfrak {D}}\mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">D</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} '=-{\mathfrak {D}}\mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb79e89dc87b9a1e59cfceb103d1e402a25ac08e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.347ex; height:2.676ex;" alt="{\displaystyle \mathbf {v} &#039;=-{\mathfrak {D}}\mathbf {v} }"></span> holds instead, with the result </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}{\begin{aligned}\mathbf {x} '&amp;={\mathfrak {D}}^{-1}\mathbf {x} -\mathbf {v} '\left\{\left(\gamma -1\right)(\mathbf {x\cdot v} )/v^{2}-\gamma t\right\}\\t'&amp;=\gamma \left(t-(\mathbf {v} \cdot \mathbf {x} )/c^{2}\right)\end{aligned}}\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">D</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2032;</mo> </msup> <mrow> <mo>{</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mi>t</mi> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}{\begin{aligned}\mathbf {x} '&amp;={\mathfrak {D}}^{-1}\mathbf {x} -\mathbf {v} '\left\{\left(\gamma -1\right)(\mathbf {x\cdot v} )/v^{2}-\gamma t\right\}\\t'&amp;=\gamma \left(t-(\mathbf {v} \cdot \mathbf {x} )/c^{2}\right)\end{aligned}}\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06235cd47920f955b21cc0eb7c578b1de6c55caa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:42.467ex; height:6.843ex;" alt="{\displaystyle {\begin{array}{c}{\begin{aligned}\mathbf {x} &#039;&amp;={\mathfrak {D}}^{-1}\mathbf {x} -\mathbf {v} &#039;\left\{\left(\gamma -1\right)(\mathbf {x\cdot v} )/v^{2}-\gamma t\right\}\\t&#039;&amp;=\gamma \left(t-(\mathbf {v} \cdot \mathbf {x} )/c^{2}\right)\end{aligned}}\end{array}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Borel_(1913–14)_–_Cayley–Hermite_parameter"><span id="Borel_.281913.E2.80.9314.29_.E2.80.93_Cayley.E2.80.93Hermite_parameter"></span><span class="anchor" id="Borel"></span> Borel (1913–14) – Cayley–Hermite parameter</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=24" title="Edit section: Borel (1913–14) – Cayley–Hermite parameter"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%C3%89mile_Borel" title="Émile Borel">Émile Borel</a> (1913) started by demonstrating Euclidean motions using Euler-Rodrigues parameter in three dimensions, and Cayley's (1846) parameter in four dimensions. Then he demonstrated the connection to indefinite quadratic forms expressing hyperbolic motions and Lorentz transformations. In three dimensions:<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>R 64<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}x^{2}+y^{2}-z^{2}-1=0\\\hline {\scriptstyle {\begin{aligned}\delta a&amp;=\lambda ^{2}+\mu ^{2}+\nu ^{2}-\rho ^{2},&amp;\delta b&amp;=2(\lambda \mu +\nu \rho ),&amp;\delta c&amp;=-2(\lambda \nu +\mu \rho ),\\\delta a'&amp;=2(\lambda \mu -\nu \rho ),&amp;\delta b'&amp;=-\lambda ^{2}+\mu ^{2}+\nu ^{2}-\rho ^{2},&amp;\delta c'&amp;=2(\lambda \rho -\mu \nu ),\\\delta a''&amp;=2(\lambda \nu -\mu \rho ),&amp;\delta b''&amp;=2(\lambda \rho +\mu \nu ),&amp;\delta c''&amp;=-\left(\lambda ^{2}+\mu ^{2}+\nu ^{2}+\rho ^{2}\right),\end{aligned}}}\\\left(\delta =\lambda ^{2}+\mu ^{2}-\rho ^{2}-\nu ^{2}\right)\\\lambda =\nu =0\rightarrow {\text{Hyperbolic rotation}}\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid none"> <mtr> <mtd> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B4;<!-- δ --></mi> <mi>a</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mtd> <mtd> <mi>&#x03B4;<!-- δ --></mi> <mi>b</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mi>&#x03B4;<!-- δ --></mi> <mi>c</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B4;<!-- δ --></mi> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mi>&#x03B4;<!-- δ --></mi> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mtd> <mtd> <mi>&#x03B4;<!-- δ --></mi> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B4;<!-- δ --></mi> <msup> <mi>a</mi> <mo>&#x2033;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mi>&#x03B4;<!-- δ --></mi> <msup> <mi>b</mi> <mo>&#x2033;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03C1;<!-- ρ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mi>&#x03B4;<!-- δ --></mi> <msup> <mi>c</mi> <mo>&#x2033;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mi>&#x03B4;<!-- δ --></mi> <mo>=</mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mi>&#x03BD;<!-- ν --></mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Hyperbolic rotation</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}x^{2}+y^{2}-z^{2}-1=0\\\hline {\scriptstyle {\begin{aligned}\delta a&amp;=\lambda ^{2}+\mu ^{2}+\nu ^{2}-\rho ^{2},&amp;\delta b&amp;=2(\lambda \mu +\nu \rho ),&amp;\delta c&amp;=-2(\lambda \nu +\mu \rho ),\\\delta a'&amp;=2(\lambda \mu -\nu \rho ),&amp;\delta b'&amp;=-\lambda ^{2}+\mu ^{2}+\nu ^{2}-\rho ^{2},&amp;\delta c'&amp;=2(\lambda \rho -\mu \nu ),\\\delta a''&amp;=2(\lambda \nu -\mu \rho ),&amp;\delta b''&amp;=2(\lambda \rho +\mu \nu ),&amp;\delta c''&amp;=-\left(\lambda ^{2}+\mu ^{2}+\nu ^{2}+\rho ^{2}\right),\end{aligned}}}\\\left(\delta =\lambda ^{2}+\mu ^{2}-\rho ^{2}-\nu ^{2}\right)\\\lambda =\nu =0\rightarrow {\text{Hyperbolic rotation}}\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47a8bc79f1f94a322c95d5e571461aa304f1665d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.505ex; width:62.138ex; height:20.176ex;" alt="{\displaystyle {\begin{matrix}x^{2}+y^{2}-z^{2}-1=0\\\hline {\scriptstyle {\begin{aligned}\delta a&amp;=\lambda ^{2}+\mu ^{2}+\nu ^{2}-\rho ^{2},&amp;\delta b&amp;=2(\lambda \mu +\nu \rho ),&amp;\delta c&amp;=-2(\lambda \nu +\mu \rho ),\\\delta a&#039;&amp;=2(\lambda \mu -\nu \rho ),&amp;\delta b&#039;&amp;=-\lambda ^{2}+\mu ^{2}+\nu ^{2}-\rho ^{2},&amp;\delta c&#039;&amp;=2(\lambda \rho -\mu \nu ),\\\delta a&#039;&#039;&amp;=2(\lambda \nu -\mu \rho ),&amp;\delta b&#039;&#039;&amp;=2(\lambda \rho +\mu \nu ),&amp;\delta c&#039;&#039;&amp;=-\left(\lambda ^{2}+\mu ^{2}+\nu ^{2}+\rho ^{2}\right),\end{aligned}}}\\\left(\delta =\lambda ^{2}+\mu ^{2}-\rho ^{2}-\nu ^{2}\right)\\\lambda =\nu =0\rightarrow {\text{Hyperbolic rotation}}\end{matrix}}}"></span></dd></dl> <p>In four dimensions:<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>R 65<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}F=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}-\left(t_{1}-t_{2}\right)^{2}\\\hline {\scriptstyle {\begin{aligned}&amp;\left(\mu ^{2}+\nu ^{2}-\alpha ^{2}\right)\cos \varphi +\left(\lambda ^{2}-\beta ^{2}-\gamma ^{2}\right)\operatorname {ch} {\theta }&amp;&amp;-(\alpha \beta +\lambda \mu )(\cos \varphi -\operatorname {ch} {\theta })-\nu \sin \varphi -\gamma \operatorname {sh} {\theta }\\&amp;-(\alpha \beta +\lambda \mu )(\cos \varphi -\operatorname {ch} {\theta })-\nu \sin \varphi +\gamma \operatorname {sh} {\theta }&amp;&amp;\left(\mu ^{2}+\nu ^{2}-\beta ^{2}\right)\cos \varphi +\left(\mu ^{2}-\alpha ^{2}-\gamma ^{2}\right)\operatorname {ch} {\theta }\\&amp;-(\alpha \gamma +\lambda \nu )(\cos \varphi -\operatorname {ch} {\theta })+\mu \sin \varphi -\beta \operatorname {sh} {\theta }&amp;&amp;-(\beta \mu +\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })+\lambda \sin \varphi +\alpha \operatorname {sh} {\theta }\\&amp;(\gamma \mu -\beta \nu )(\cos \varphi -\operatorname {ch} {\theta })+\alpha \sin \varphi -\lambda \operatorname {sh} {\theta }&amp;&amp;-(\alpha \nu -\lambda \gamma )(\cos \varphi -\operatorname {ch} {\theta })+\beta \sin \varphi -\mu \operatorname {sh} {\theta }\\\\&amp;\quad -(\alpha \gamma +\lambda \nu )(\cos \varphi -\operatorname {ch} {\theta })+\mu \sin \varphi +\beta \operatorname {sh} {\theta }&amp;&amp;\quad (\beta \nu -\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })+\alpha \sin \varphi -\lambda \operatorname {sh} {\theta }\\&amp;\quad -(\beta \mu +\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })-\lambda \sin \varphi -\alpha \operatorname {sh} {\theta }&amp;&amp;\quad (\lambda \gamma -\alpha \nu )(\cos \varphi -\operatorname {ch} {\theta })+\beta \sin \varphi -\mu \operatorname {sh} {\theta }\\&amp;\quad \left(\lambda ^{2}+\mu ^{2}-\gamma ^{2}\right)\cos \varphi +\left(\nu ^{2}-\alpha ^{2}-\beta ^{2}\right)\operatorname {ch} {\theta }&amp;&amp;\quad (\alpha \mu -\beta \lambda )(\cos \varphi -\operatorname {ch} {\theta })+\gamma \sin \varphi -\nu \operatorname {sh} {\theta }\\&amp;\quad (\beta \gamma -\alpha \mu )(\cos \varphi -\operatorname {ch} {\theta })+\gamma \sin \varphi -\nu \operatorname {sh} {\theta }&amp;&amp;\quad -\left(\alpha ^{2}+\beta ^{2}+\gamma ^{2}\right)\cos \varphi +\left(\lambda ^{2}+\mu ^{2}+\nu ^{2}\right)\operatorname {ch} {\theta }\end{aligned}}}\\\left(\alpha ^{2}+\beta ^{2}+\gamma ^{2}-\lambda ^{2}-\mu ^{2}-\nu ^{2}=-1\right)\end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid none"> <mtr> <mtd> <mi>F</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> <mtd /> <mtd> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> </mtr> <mtr> <mtd /> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mspace width="1em" /> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mi>sh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="1em" /> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>ch</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}F=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}-\left(t_{1}-t_{2}\right)^{2}\\\hline {\scriptstyle {\begin{aligned}&amp;\left(\mu ^{2}+\nu ^{2}-\alpha ^{2}\right)\cos \varphi +\left(\lambda ^{2}-\beta ^{2}-\gamma ^{2}\right)\operatorname {ch} {\theta }&amp;&amp;-(\alpha \beta +\lambda \mu )(\cos \varphi -\operatorname {ch} {\theta })-\nu \sin \varphi -\gamma \operatorname {sh} {\theta }\\&amp;-(\alpha \beta +\lambda \mu )(\cos \varphi -\operatorname {ch} {\theta })-\nu \sin \varphi +\gamma \operatorname {sh} {\theta }&amp;&amp;\left(\mu ^{2}+\nu ^{2}-\beta ^{2}\right)\cos \varphi +\left(\mu ^{2}-\alpha ^{2}-\gamma ^{2}\right)\operatorname {ch} {\theta }\\&amp;-(\alpha \gamma +\lambda \nu )(\cos \varphi -\operatorname {ch} {\theta })+\mu \sin \varphi -\beta \operatorname {sh} {\theta }&amp;&amp;-(\beta \mu +\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })+\lambda \sin \varphi +\alpha \operatorname {sh} {\theta }\\&amp;(\gamma \mu -\beta \nu )(\cos \varphi -\operatorname {ch} {\theta })+\alpha \sin \varphi -\lambda \operatorname {sh} {\theta }&amp;&amp;-(\alpha \nu -\lambda \gamma )(\cos \varphi -\operatorname {ch} {\theta })+\beta \sin \varphi -\mu \operatorname {sh} {\theta }\\\\&amp;\quad -(\alpha \gamma +\lambda \nu )(\cos \varphi -\operatorname {ch} {\theta })+\mu \sin \varphi +\beta \operatorname {sh} {\theta }&amp;&amp;\quad (\beta \nu -\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })+\alpha \sin \varphi -\lambda \operatorname {sh} {\theta }\\&amp;\quad -(\beta \mu +\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })-\lambda \sin \varphi -\alpha \operatorname {sh} {\theta }&amp;&amp;\quad (\lambda \gamma -\alpha \nu )(\cos \varphi -\operatorname {ch} {\theta })+\beta \sin \varphi -\mu \operatorname {sh} {\theta }\\&amp;\quad \left(\lambda ^{2}+\mu ^{2}-\gamma ^{2}\right)\cos \varphi +\left(\nu ^{2}-\alpha ^{2}-\beta ^{2}\right)\operatorname {ch} {\theta }&amp;&amp;\quad (\alpha \mu -\beta \lambda )(\cos \varphi -\operatorname {ch} {\theta })+\gamma \sin \varphi -\nu \operatorname {sh} {\theta }\\&amp;\quad (\beta \gamma -\alpha \mu )(\cos \varphi -\operatorname {ch} {\theta })+\gamma \sin \varphi -\nu \operatorname {sh} {\theta }&amp;&amp;\quad -\left(\alpha ^{2}+\beta ^{2}+\gamma ^{2}\right)\cos \varphi +\left(\lambda ^{2}+\mu ^{2}+\nu ^{2}\right)\operatorname {ch} {\theta }\end{aligned}}}\\\left(\alpha ^{2}+\beta ^{2}+\gamma ^{2}-\lambda ^{2}-\mu ^{2}-\nu ^{2}=-1\right)\end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/150b142b01117cc72b540148d8405408b3b59d40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -16.838ex; width:70.503ex; height:34.843ex;" alt="{\displaystyle {\begin{matrix}F=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}-\left(t_{1}-t_{2}\right)^{2}\\\hline {\scriptstyle {\begin{aligned}&amp;\left(\mu ^{2}+\nu ^{2}-\alpha ^{2}\right)\cos \varphi +\left(\lambda ^{2}-\beta ^{2}-\gamma ^{2}\right)\operatorname {ch} {\theta }&amp;&amp;-(\alpha \beta +\lambda \mu )(\cos \varphi -\operatorname {ch} {\theta })-\nu \sin \varphi -\gamma \operatorname {sh} {\theta }\\&amp;-(\alpha \beta +\lambda \mu )(\cos \varphi -\operatorname {ch} {\theta })-\nu \sin \varphi +\gamma \operatorname {sh} {\theta }&amp;&amp;\left(\mu ^{2}+\nu ^{2}-\beta ^{2}\right)\cos \varphi +\left(\mu ^{2}-\alpha ^{2}-\gamma ^{2}\right)\operatorname {ch} {\theta }\\&amp;-(\alpha \gamma +\lambda \nu )(\cos \varphi -\operatorname {ch} {\theta })+\mu \sin \varphi -\beta \operatorname {sh} {\theta }&amp;&amp;-(\beta \mu +\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })+\lambda \sin \varphi +\alpha \operatorname {sh} {\theta }\\&amp;(\gamma \mu -\beta \nu )(\cos \varphi -\operatorname {ch} {\theta })+\alpha \sin \varphi -\lambda \operatorname {sh} {\theta }&amp;&amp;-(\alpha \nu -\lambda \gamma )(\cos \varphi -\operatorname {ch} {\theta })+\beta \sin \varphi -\mu \operatorname {sh} {\theta }\\\\&amp;\quad -(\alpha \gamma +\lambda \nu )(\cos \varphi -\operatorname {ch} {\theta })+\mu \sin \varphi +\beta \operatorname {sh} {\theta }&amp;&amp;\quad (\beta \nu -\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })+\alpha \sin \varphi -\lambda \operatorname {sh} {\theta }\\&amp;\quad -(\beta \mu +\mu \nu )(\cos \varphi -\operatorname {ch} {\theta })-\lambda \sin \varphi -\alpha \operatorname {sh} {\theta }&amp;&amp;\quad (\lambda \gamma -\alpha \nu )(\cos \varphi -\operatorname {ch} {\theta })+\beta \sin \varphi -\mu \operatorname {sh} {\theta }\\&amp;\quad \left(\lambda ^{2}+\mu ^{2}-\gamma ^{2}\right)\cos \varphi +\left(\nu ^{2}-\alpha ^{2}-\beta ^{2}\right)\operatorname {ch} {\theta }&amp;&amp;\quad (\alpha \mu -\beta \lambda )(\cos \varphi -\operatorname {ch} {\theta })+\gamma \sin \varphi -\nu \operatorname {sh} {\theta }\\&amp;\quad (\beta \gamma -\alpha \mu )(\cos \varphi -\operatorname {ch} {\theta })+\gamma \sin \varphi -\nu \operatorname {sh} {\theta }&amp;&amp;\quad -\left(\alpha ^{2}+\beta ^{2}+\gamma ^{2}\right)\cos \varphi +\left(\lambda ^{2}+\mu ^{2}+\nu ^{2}\right)\operatorname {ch} {\theta }\end{aligned}}}\\\left(\alpha ^{2}+\beta ^{2}+\gamma ^{2}-\lambda ^{2}-\mu ^{2}-\nu ^{2}=-1\right)\end{matrix}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Gruner_(1921)_–_Trigonometric_Lorentz_boosts"><span id="Gruner_.281921.29_.E2.80.93_Trigonometric_Lorentz_boosts"></span><span class="anchor" id="Gruner"></span> Gruner (1921) – Trigonometric Lorentz boosts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=25" title="Edit section: Gruner (1921) – Trigonometric Lorentz boosts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In order to simplify the graphical representation of Minkowski space, <a href="/wiki/Paul_Gruner" title="Paul Gruner">Paul Gruner</a> (1921) (with the aid of Josef Sauter) developed what is now called <a href="/wiki/Loedel_diagram" class="mw-redirect" title="Loedel diagram">Loedel diagrams</a>, using the following relations:<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>R 66<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}v=\alpha \cdot c;\quad \beta ={\frac {1}{\sqrt {1-\alpha ^{2}}}}\\\sin \varphi =\alpha ;\quad \beta ={\frac {1}{\cos \varphi }};\quad \alpha \beta =\tan \varphi \\\hline x'={\frac {x}{\cos \varphi }}-t\cdot \tan \varphi ,\quad t'={\frac {t}{\cos \varphi }}-x\cdot \tan \varphi \end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none solid"> <mtr> <mtd> <mi>v</mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo>;</mo> <mspace width="1em" /> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>;</mo> <mspace width="1em" /> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>;</mo> <mspace width="1em" /> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}v=\alpha \cdot c;\quad \beta ={\frac {1}{\sqrt {1-\alpha ^{2}}}}\\\sin \varphi =\alpha ;\quad \beta ={\frac {1}{\cos \varphi }};\quad \alpha \beta =\tan \varphi \\\hline x'={\frac {x}{\cos \varphi }}-t\cdot \tan \varphi ,\quad t'={\frac {t}{\cos \varphi }}-x\cdot \tan \varphi \end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/889079c45643ce30c8deebc9e082d930b6cb8e48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:46.44ex; height:13.843ex;" alt="{\displaystyle {\begin{matrix}v=\alpha \cdot c;\quad \beta ={\frac {1}{\sqrt {1-\alpha ^{2}}}}\\\sin \varphi =\alpha ;\quad \beta ={\frac {1}{\cos \varphi }};\quad \alpha \beta =\tan \varphi \\\hline x&#039;={\frac {x}{\cos \varphi }}-t\cdot \tan \varphi ,\quad t&#039;={\frac {t}{\cos \varphi }}-x\cdot \tan \varphi \end{matrix}}}"></span></dd></dl> <p>In another paper Gruner used the alternative relations:<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>R 67<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\alpha ={\frac {v}{c}};\ \beta ={\frac {1}{\sqrt {1-\alpha ^{2}}}};\\\cos \theta =\alpha ={\frac {v}{c}};\ \sin \theta ={\frac {1}{\beta }};\ \cot \theta =\alpha \cdot \beta \\\hline x'={\frac {x}{\sin \theta }}-t\cdot \cot \theta ,\quad t'={\frac {t}{\sin \theta }}-x\cdot \cot \theta \end{matrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none solid"> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>;</mo> <mtext>&#xA0;</mtext> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>;</mo> <mtext>&#xA0;</mtext> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03B2;<!-- β --></mi> </mfrac> </mrow> <mo>;</mo> <mtext>&#xA0;</mtext> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03B2;<!-- β --></mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mspace width="1em" /> <msup> <mi>t</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\alpha ={\frac {v}{c}};\ \beta ={\frac {1}{\sqrt {1-\alpha ^{2}}}};\\\cos \theta =\alpha ={\frac {v}{c}};\ \sin \theta ={\frac {1}{\beta }};\ \cot \theta =\alpha \cdot \beta \\\hline x'={\frac {x}{\sin \theta }}-t\cdot \cot \theta ,\quad t'={\frac {t}{\sin \theta }}-x\cdot \cot \theta \end{matrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ab6b21b7631cfc21d9bd195e3c20724c68450fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:44.091ex; height:14.176ex;" alt="{\displaystyle {\begin{matrix}\alpha ={\frac {v}{c}};\ \beta ={\frac {1}{\sqrt {1-\alpha ^{2}}}};\\\cos \theta =\alpha ={\frac {v}{c}};\ \sin \theta ={\frac {1}{\beta }};\ \cot \theta =\alpha \cdot \beta \\\hline x&#039;={\frac {x}{\sin \theta }}-t\cdot \cot \theta ,\quad t&#039;={\frac {t}{\sin \theta }}-x\cdot \cot \theta \end{matrix}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=26" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Derivations_of_the_Lorentz_transformations" title="Derivations of the Lorentz transformations">Derivations of the Lorentz transformations</a></li> <li><a href="/wiki/History_of_special_relativity" title="History of special relativity">History of special relativity</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=27" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Historical_mathematical_sources">Historical mathematical sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=28" title="Edit section: Historical mathematical sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> Learning materials related to <a href="https://en.wikiversity.org/wiki/History_of_Topics_in_Special_Relativity/mathsource" class="extiw" title="v:History of Topics in Special Relativity/mathsource">History of Topics in Special Relativity/mathsource</a> at Wikiversity </p> <div class="mw-heading mw-heading3"><h3 id="Historical_relativity_sources">Historical relativity sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=29" title="Edit section: Historical relativity sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-3"> <ol class="references"> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Voigt (1887), p. 45</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Lorentz (1915/16), p. 197</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Lorentz (1915/16), p. 198</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Bucherer (1908), p. 762</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Heaviside (1888), p. 324</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Thomson (1889), p. 12</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">Searle (1886), p. 333</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">Lorentz (1892a), p. 141</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Lorentz (1892b), p. 141</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Lorentz (1895), p. 37</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Lorentz (1895), p. 49 for local time and p. 56 for spatial coordinates.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Larmor (1897), p. 229</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">Larmor (1897/1929), p. 39</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">Larmor (1900), p. 168</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">Larmor (1900), p. 174</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text">Larmor (1904a), p. 583, 585</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">Larmor (1904b), p. 622</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Lorentz (1899), p. 429</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Lorentz (1899), p. 439</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">Lorentz (1899), p. 442</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">Lorentz (1904), p. 812</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">Lorentz (1904), p. 826</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">Bucherer, p. 129; Definition of s on p. 32</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text">Wien (1904), p. 394</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">Cohn (1904a), pp. 1296-1297</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">Gans (1905), p. 169</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">Poincaré (1900), pp. 272–273</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">Cohn (1904b), p. 1408</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">Abraham (1905), § 42</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">Poincaré (1905), p. 1505</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text">Poincaré (1905/06), pp. 129ff</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">Poincaré (1905/06), p. 144</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">Einstein (1905), p. 902</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text">Einstein (1905), § 5 and § 9</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">Einstein (1905), § 7</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">Minkowski (1907/15), pp. 927ff</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text">Minkowski (1907/08), pp. 53ff</span> </li> <li id="cite_note-mink1-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-mink1_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mink1_62-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Minkowski (1907/08), p. 59</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text">Minkowski (1907/08), pp. 65–66, 81–82</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text">Minkowski (1908/09), p. 77</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text">Sommerfeld (1909), p. 826ff.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text">Frank (1909), pp. 423-425</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text">Bateman (1909/10), pp. 223ff</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text">Cunningham (1909/10), pp. 77ff</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text">Klein (1910)</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">Cartan (1912), p. 23</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">Poincaré (1912/21), p. 145</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">Herglotz (1909/10), pp. 404-408</span> </li> <li id="cite_note-var1-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-var1_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-var1_74-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Varićak (1910), p. 93</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text">Varićak (1910), p. 94</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text">Plummer (1910), p. 256</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text">Ignatowski (1910), pp. 973–974</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text">Ignatowski (1910/11), p. 13</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text">Frank &amp; Rothe (1911), pp. 825ff; (1912), p. 750ff.</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text">Klein (1908), p. 165</span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text">Noether (1910), pp. 939–943</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text">Klein (1910), p. 300</span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text">Klein (1911), pp. 602ff.</span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text">Conway (1911), p. 8</span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text">Silberstein (1911/12), p. 793</span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text">Ignatowski (1910/11a), p. 23; (1910/11b), p. 22</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text">Herglotz (1911), p. 497</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text">Silberstein (1911/12), p. 792; (1914), p. 123</span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text">Borel (1913/14), p. 39</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text">Borel (1913/14), p. 41</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text">Gruner (1921a),</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text">Gruner (1921b)</span> </li> </ol></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAbraham,_M.1905" class="citation book cs1">Abraham, M. (1905). <span class="cs1-ws-icon" title="s:de:Elektromagnetische Theorie der Strahlung (1905)"><a class="external text" href="https://en.wikisource.org/wiki/de:Elektromagnetische_Theorie_der_Strahlung_(1905)">"§ 42. Die Lichtzeit in einem gleichförmig bewegten System"&#160;</a></span>. <i>Theorie der Elektrizität: Elektromagnetische Theorie der Strahlung</i>. Leipzig: Teubner.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=%C2%A7+42.+Die+Lichtzeit+in+einem+gleichf%C3%B6rmig+bewegten+System&amp;rft.btitle=Theorie+der+Elektrizit%C3%A4t%3A+Elektromagnetische+Theorie+der+Strahlung&amp;rft.place=Leipzig&amp;rft.pub=Teubner&amp;rft.date=1905&amp;rft.au=Abraham%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBateman,_Harry1910" class="citation journal cs1">Bateman, Harry (1910) [1909]. <span class="cs1-ws-icon" title="s:en:The Transformation of the Electrodynamical Equations"><a class="external text" href="https://en.wikisource.org/wiki/en:The_Transformation_of_the_Electrodynamical_Equations">"The Transformation of the Electrodynamical Equations"&#160;</a></span>. <i>Proceedings of the London Mathematical Society</i>. <b>8</b>: 223–264. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fplms%2Fs2-8.1.223">10.1112/plms/s2-8.1.223</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+London+Mathematical+Society&amp;rft.atitle=The+Transformation+of+the+Electrodynamical+Equations&amp;rft.volume=8&amp;rft.pages=223-264&amp;rft.date=1910&amp;rft_id=info%3Adoi%2F10.1112%2Fplms%2Fs2-8.1.223&amp;rft.au=Bateman%2C+Harry&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBateman,_Harry1912" class="citation journal cs1">Bateman, Harry (1912) [1910]. <a rel="nofollow" class="external text" href="https://archive.org/details/jstor-2370223">"Some geometrical theorems connected with Laplace's equation and the equation of wave motion"</a>. <i>American Journal of Mathematics</i>. <b>34</b> (3): 325–360. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2370223">10.2307/2370223</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2370223">2370223</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Mathematics&amp;rft.atitle=Some+geometrical+theorems+connected+with+Laplace%27s+equation+and+the+equation+of+wave+motion&amp;rft.volume=34&amp;rft.issue=3&amp;rft.pages=325-360&amp;rft.date=1912&amp;rft_id=info%3Adoi%2F10.2307%2F2370223&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2370223%23id-name%3DJSTOR&amp;rft.au=Bateman%2C+Harry&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjstor-2370223&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorel,_Émile1914" class="citation book cs1">Borel, Émile (1914). <a rel="nofollow" class="external text" href="http://ebooks.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=04710001"><i>Introduction Geometrique à quelques Théories Physiques</i></a>. Paris: Gauthier-Villars.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+Geometrique+%C3%A0+quelques+Th%C3%A9ories+Physiques&amp;rft.place=Paris&amp;rft.pub=Gauthier-Villars&amp;rft.date=1914&amp;rft.au=Borel%2C+%C3%89mile&amp;rft_id=http%3A%2F%2Febooks.library.cornell.edu%2Fcgi%2Ft%2Ftext%2Ftext-idx%3Fc%3Dmath%3Bidno%3D04710001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrill,_J.1925" class="citation journal cs1">Brill, J. (1925). "Note on the Lorentz group". <i>Proceedings of the Cambridge Philosophical Society</i>. <b>22</b> (5): 630–632. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1925PCPS...22..630B">1925PCPS...22..630B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS030500410000949X">10.1017/S030500410000949X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121117536">121117536</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Cambridge+Philosophical+Society&amp;rft.atitle=Note+on+the+Lorentz+group&amp;rft.volume=22&amp;rft.issue=5&amp;rft.pages=630-632&amp;rft.date=1925&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121117536%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FS030500410000949X&amp;rft_id=info%3Abibcode%2F1925PCPS...22..630B&amp;rft.au=Brill%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBucherer,_A._H.1904" class="citation book cs1">Bucherer, A. H. (1904). <a rel="nofollow" class="external text" href="https://archive.org/details/mathematischeei02buchgoog"><i>Mathematische Einführung in die Elektronentheorie</i></a>. Leipzig: Teubner.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematische+Einf%C3%BChrung+in+die+Elektronentheorie&amp;rft.place=Leipzig&amp;rft.pub=Teubner&amp;rft.date=1904&amp;rft.au=Bucherer%2C+A.+H.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematischeei02buchgoog&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBucherer,_A._H.1908" class="citation cs2">Bucherer, A. H. (1908), "Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der Lorentz-Einsteinschen Theorie. (Measurements of Becquerel rays. The Experimental Confirmation of the Lorentz-Einstein Theory)", <i>Physikalische Zeitschrift</i>, <b>9</b> (22): 758–762</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=Messungen+an+Becquerelstrahlen.+Die+experimentelle+Best%C3%A4tigung+der+Lorentz-Einsteinschen+Theorie.+%28Measurements+of+Becquerel+rays.+The+Experimental+Confirmation+of+the+Lorentz-Einstein+Theory%29&amp;rft.volume=9&amp;rft.issue=22&amp;rft.pages=758-762&amp;rft.date=1908&amp;rft.au=Bucherer%2C+A.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span>. For Minkowski's and Voigt's statements see p.&#160;762.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCartan,_Élie1912" class="citation journal cs1">Cartan, Élie (1912). <a rel="nofollow" class="external text" href="https://archive.org/stream/bulletinsocit40soci#page/422/mode/2up">"Sur les groupes de transformation de contact et la Cinématique nouvelle"</a>. <i>Société de Mathématique the France – Comptes Rendus des Séances</i>: 23.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Soci%C3%A9t%C3%A9+de+Math%C3%A9matique+the+France+%E2%80%93+Comptes+Rendus+des+S%C3%A9ances&amp;rft.atitle=Sur+les+groupes+de+transformation+de+contact+et+la+Cin%C3%A9matique+nouvelle&amp;rft.pages=23&amp;rft.date=1912&amp;rft.au=Cartan%2C+%C3%89lie&amp;rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fbulletinsocit40soci%23page%2F422%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohn,_Emil1904a" class="citation cs2 cs1-prop-long-vol">Cohn, Emil (1904a), <a rel="nofollow" class="external text" href="https://archive.org/details/sitzungsberichte1904deut">"Zur Elektrodynamik bewegter Systeme I"</a> &#91;<a href="https://en.wikisource.org/wiki/Translation:On_the_Electrodynamics_of_Moving_Systems_I" class="extiw" title="s:Translation:On the Electrodynamics of Moving Systems I">On the Electrodynamics of Moving Systems I</a>&#93;, <i>Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften</i>, 1904/2 (40): 1294–1303</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sitzungsberichte+der+K%C3%B6niglich+Preussischen+Akademie+der+Wissenschaften&amp;rft.atitle=Zur+Elektrodynamik+bewegter+Systeme+I&amp;rft.volume=1904%2F2&amp;rft.issue=40&amp;rft.pages=1294-1303&amp;rft.date=1904&amp;rft.au=Cohn%2C+Emil&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsitzungsberichte1904deut&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohn,_Emil1904b" class="citation cs2 cs1-prop-long-vol">Cohn, Emil (1904b), <a rel="nofollow" class="external text" href="https://archive.org/details/sitzungsberichte1904deut">"Zur Elektrodynamik bewegter Systeme II"</a> &#91;<a href="https://en.wikisource.org/wiki/Translation:On_the_Electrodynamics_of_Moving_Systems_II" class="extiw" title="s:Translation:On the Electrodynamics of Moving Systems II">On the Electrodynamics of Moving Systems II</a>&#93;, <i>Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften</i>, 1904/2 (43): 1404–1416</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sitzungsberichte+der+K%C3%B6niglich+Preussischen+Akademie+der+Wissenschaften&amp;rft.atitle=Zur+Elektrodynamik+bewegter+Systeme+II&amp;rft.volume=1904%2F2&amp;rft.issue=43&amp;rft.pages=1404-1416&amp;rft.date=1904&amp;rft.au=Cohn%2C+Emil&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsitzungsberichte1904deut&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConway,_A._W.1911" class="citation journal cs1">Conway, A. W. (1911). <a rel="nofollow" class="external text" href="https://archive.org/download/proceedingsofro29roya">"On the application of quaternions to some recent developments of electrical theory"</a>. <i>Proceedings of the Royal Irish Academy, Section A</i>. <b>29</b>: 1–9.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Irish+Academy%2C+Section+A&amp;rft.atitle=On+the+application+of+quaternions+to+some+recent+developments+of+electrical+theory&amp;rft.volume=29&amp;rft.pages=1-9&amp;rft.date=1911&amp;rft.au=Conway%2C+A.+W.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdownload%2Fproceedingsofro29roya&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCunningham,_Ebenezer1910" class="citation journal cs1">Cunningham, Ebenezer (1910) [1909]. <span class="cs1-ws-icon" title="s:en:The principle of Relativity in Electrodynamics and an Extension Thereof"><a class="external text" href="https://en.wikisource.org/wiki/en:The_principle_of_Relativity_in_Electrodynamics_and_an_Extension_Thereof">"The principle of Relativity in Electrodynamics and an Extension Thereof"&#160;</a></span>. <i>Proceedings of the London Mathematical Society</i>. <b>8</b>: 77–98. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fplms%2Fs2-8.1.77">10.1112/plms/s2-8.1.77</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+London+Mathematical+Society&amp;rft.atitle=The+principle+of+Relativity+in+Electrodynamics+and+an+Extension+Thereof&amp;rft.volume=8&amp;rft.pages=77-98&amp;rft.date=1910&amp;rft_id=info%3Adoi%2F10.1112%2Fplms%2Fs2-8.1.77&amp;rft.au=Cunningham%2C+Ebenezer&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEinstein,_Albert1905" class="citation cs2">Einstein, Albert (1905), <a rel="nofollow" class="external text" href="http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf">"Zur Elektrodynamik bewegter Körper"</a> <span class="cs1-format">(PDF)</span>, <i>Annalen der Physik</i>, <b>322</b> (10): 891–921, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1905AnP...322..891E">1905AnP...322..891E</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19053221004">10.1002/andp.19053221004</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=Zur+Elektrodynamik+bewegter+K%C3%B6rper&amp;rft.volume=322&amp;rft.issue=10&amp;rft.pages=891-921&amp;rft.date=1905&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.19053221004&amp;rft_id=info%3Abibcode%2F1905AnP...322..891E&amp;rft.au=Einstein%2C+Albert&amp;rft_id=http%3A%2F%2Fwww.physik.uni-augsburg.de%2Fannalen%2Fhistory%2Feinstein-papers%2F1905_17_891-921.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span>. See also: <a rel="nofollow" class="external text" href="http://www.fourmilab.ch/etexts/einstein/specrel/">English translation</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrank,_Philipp1909" class="citation journal cs1">Frank, Philipp (1909). <a rel="nofollow" class="external text" href="http://hdl.handle.net/2027/mdp.39015073682224">"Die Stellung des Relativitätsprinzips im System der Mechanik und Elektrodynamik"</a>. <i>Wiener Sitzungsberichte IIA</i>. <b>118</b>: 373–446. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fmdp.39015073682224">2027/mdp.39015073682224</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Wiener+Sitzungsberichte+IIA&amp;rft.atitle=Die+Stellung+des+Relativit%C3%A4tsprinzips+im+System+der+Mechanik+und+Elektrodynamik&amp;rft.volume=118&amp;rft.pages=373-446&amp;rft.date=1909&amp;rft_id=info%3Ahdl%2F2027%2Fmdp.39015073682224&amp;rft.au=Frank%2C+Philipp&amp;rft_id=http%3A%2F%2Fhdl.handle.net%2F2027%2Fmdp.39015073682224&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrank,_PhilippRothe,_Hermann1911" class="citation journal cs1">Frank, Philipp; Rothe, Hermann (1911). <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k15337j/f845.table">"Über die Transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme"</a>. <i>Annalen der Physik</i>. <b>339</b> (5): 825–855. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1911AnP...339..825F">1911AnP...339..825F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19113390502">10.1002/andp.19113390502</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=%C3%9Cber+die+Transformation+der+Raum-Zeitkoordinaten+von+ruhenden+auf+bewegte+Systeme&amp;rft.volume=339&amp;rft.issue=5&amp;rft.pages=825-855&amp;rft.date=1911&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.19113390502&amp;rft_id=info%3Abibcode%2F1911AnP...339..825F&amp;rft.au=Frank%2C+Philipp&amp;rft.au=Rothe%2C+Hermann&amp;rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k15337j%2Ff845.table&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrank,_PhilippRothe,_Hermann1912" class="citation journal cs1">Frank, Philipp; Rothe, Hermann (1912). "Zur Herleitung der Lorentztransformation". <i>Physikalische Zeitschrift</i>. <b>13</b>: 750–753.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=Zur+Herleitung+der+Lorentztransformation&amp;rft.volume=13&amp;rft.pages=750-753&amp;rft.date=1912&amp;rft.au=Frank%2C+Philipp&amp;rft.au=Rothe%2C+Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGans,_Richard1905" class="citation cs2">Gans, Richard (1905), <a rel="nofollow" class="external text" href="https://archive.org/details/beibltterzudena18pockgoog">"H. A. Lorentz. Elektromagnetische Vorgänge"</a> &#91;<a href="https://en.wikisource.org/wiki/Translation:H.A._Lorentz:_Electromagnetic_Phenomena" class="extiw" title="s:Translation:H.A. Lorentz: Electromagnetic Phenomena">H.A. Lorentz: Electromagnetic Phenomena</a>&#93;, <i>Beiblätter zu den Annalen der Physik</i>, <b>29</b> (4): 168–170</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Beibl%C3%A4tter+zu+den+Annalen+der+Physik&amp;rft.atitle=H.+A.+Lorentz.+Elektromagnetische+Vorg%C3%A4nge&amp;rft.volume=29&amp;rft.issue=4&amp;rft.pages=168-170&amp;rft.date=1905&amp;rft.au=Gans%2C+Richard&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbeibltterzudena18pockgoog&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGruner,_PaulSauter,_Josef1921a" class="citation journal cs1">Gruner, Paul &amp; Sauter, Josef (1921a). <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k2991536/f295.image">"Représentation géométrique élémentaire des formules de la théorie de la relativité"</a> &#91;<a href="https://en.wikisource.org/wiki/en:Translation:Elementary_geometric_representation_of_the_formulas_of_the_special_theory_of_relativity" class="extiw" title="s:en:Translation:Elementary geometric representation of the formulas of the special theory of relativity">Elementary geometric representation of the formulas of the special theory of relativity</a>&#93;. <i>Archives des sciences physiques et naturelles</i>. 5. <b>3</b>: 295–296.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archives+des+sciences+physiques+et+naturelles&amp;rft.atitle=Repr%C3%A9sentation+g%C3%A9om%C3%A9trique+%C3%A9l%C3%A9mentaire+des+formules+de+la+th%C3%A9orie+de+la+relativit%C3%A9&amp;rft.volume=3&amp;rft.pages=295-296&amp;rft.date=1921&amp;rft.au=Gruner%2C+Paul&amp;rft.au=Sauter%2C+Josef&amp;rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k2991536%2Ff295.image&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGruner,_Paul1921b" class="citation journal cs1">Gruner, Paul (1921b). "Eine elementare geometrische Darstellung der Transformationsformeln der speziellen Relativitätstheorie" &#91;<a href="https://en.wikisource.org/wiki/Translation:An_elementary_geometrical_representation_of_the_transformation_formulas_of_the_special_theory_of_relativity" class="extiw" title="s:Translation:An elementary geometrical representation of the transformation formulas of the special theory of relativity">An elementary geometrical representation of the transformation formulas of the special theory of relativity</a>&#93;. <i>Physikalische Zeitschrift</i>. <b>22</b>: 384–385.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=Eine+elementare+geometrische+Darstellung+der+Transformationsformeln+der+speziellen+Relativit%C3%A4tstheorie&amp;rft.volume=22&amp;rft.pages=384-385&amp;rft.date=1921&amp;rft.au=Gruner%2C+Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeaviside,_Oliver1889" class="citation cs2">Heaviside, Oliver (1889), <a rel="nofollow" class="external text" href="https://zenodo.org/record/1431195">"On the Electromagnetic Effects due to the Motion of Electrification through a Dielectric"</a>, <i>Philosophical Magazine</i>, 5, <b>27</b> (167): 324–339, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786448908628362">10.1080/14786448908628362</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=On+the+Electromagnetic+Effects+due+to+the+Motion+of+Electrification+through+a+Dielectric&amp;rft.volume=27&amp;rft.issue=167&amp;rft.pages=324-339&amp;rft.date=1889&amp;rft_id=info%3Adoi%2F10.1080%2F14786448908628362&amp;rft.au=Heaviside%2C+Oliver&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1431195&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerglotz,_Gustav1910" class="citation cs2">Herglotz, Gustav (1910) [1909], <a rel="nofollow" class="external text" href="https://zenodo.org/record/1424161">"Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper"</a> &#91;Wikisource translation: <a href="https://en.wikisource.org/wiki/Translation:On_bodies_that_are_to_be_designated_as_%22rigid%22" class="extiw" title="s:Translation:On bodies that are to be designated as &quot;rigid&quot;">On bodies that are to be designated as "rigid" from the standpoint of the relativity principle</a>&#93;, <i>Annalen der Physik</i>, <b>336</b> (2): 393–415, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1910AnP...336..393H">1910AnP...336..393H</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19103360208">10.1002/andp.19103360208</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=%C3%9Cber+den+vom+Standpunkt+des+Relativit%C3%A4tsprinzips+aus+als+starr+zu+bezeichnenden+K%C3%B6rper&amp;rft.volume=336&amp;rft.issue=2&amp;rft.pages=393-415&amp;rft.date=1910&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.19103360208&amp;rft_id=info%3Abibcode%2F1910AnP...336..393H&amp;rft.au=Herglotz%2C+Gustav&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1424161&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerglotz,_G.1911" class="citation journal cs1">Herglotz, G. (1911). <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k153397.image.f509">"Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie"</a>. <i>Annalen der Physik</i>. <b>341</b> (13): 493–533. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1911AnP...341..493H">1911AnP...341..493H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19113411303">10.1002/andp.19113411303</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=%C3%9Cber+die+Mechanik+des+deformierbaren+K%C3%B6rpers+vom+Standpunkte+der+Relativit%C3%A4tstheorie&amp;rft.volume=341&amp;rft.issue=13&amp;rft.pages=493-533&amp;rft.date=1911&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.19113411303&amp;rft_id=info%3Abibcode%2F1911AnP...341..493H&amp;rft.au=Herglotz%2C+G.&amp;rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k153397.image.f509&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span>; English translation by David Delphenich: <a rel="nofollow" class="external text" href="http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/herglotz_-_rel._cont._mech..pdf">On the mechanics of deformable bodies from the standpoint of relativity theory</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIgnatowsky,_W._v.1910" class="citation journal cs1">Ignatowsky, W. v. (1910). <span class="cs1-ws-icon" title="s:de:Einige allgemeine Bemerkungen über das Relativitätsprinzip"><a class="external text" href="https://en.wikisource.org/wiki/de:Einige_allgemeine_Bemerkungen_%C3%BCber_das_Relativit%C3%A4tsprinzip">"Einige allgemeine Bemerkungen über das Relativitätsprinzip"&#160;</a></span>. <i>Physikalische Zeitschrift</i>. <b>11</b>: 972–976.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=Einige+allgemeine+Bemerkungen+%C3%BCber+das+Relativit%C3%A4tsprinzip&amp;rft.volume=11&amp;rft.pages=972-976&amp;rft.date=1910&amp;rft.au=Ignatowsky%2C+W.+v.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIgnatowski,_W._v.1911" class="citation journal cs1">Ignatowski, W. v. (1911) [1910]. <span class="cs1-ws-icon" title="s:de:Das Relativitätsprinzip (Ignatowski)"><a class="external text" href="https://en.wikisource.org/wiki/de:Das_Relativit%C3%A4tsprinzip_(Ignatowski)">"Das Relativitätsprinzip"&#160;</a></span>. <i>Archiv der Mathematik und Physik</i>. <b>18</b>: 17–40.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archiv+der+Mathematik+und+Physik&amp;rft.atitle=Das+Relativit%C3%A4tsprinzip&amp;rft.volume=18&amp;rft.pages=17-40&amp;rft.date=1911&amp;rft.au=Ignatowski%2C+W.+v.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIgnatowski,_W._v.1911" class="citation journal cs1">Ignatowski, W. v. (1911). <span class="cs1-ws-icon" title="s:de:Eine Bemerkung zu meiner Arbeit:"><a class="external text" href="https://en.wikisource.org/wiki/de:Eine_Bemerkung_zu_meiner_Arbeit:_%22Einige_allgemeine_Bemerkungen_zum_Relativit%C3%A4tsprinzip%22">"Eine Bemerkung zu meiner Arbeit: "Einige allgemeine Bemerkungen zum Relativitätsprinzip"<span class="cs1-kern-right"></span>"&#160;</a></span>. <i>Physikalische Zeitschrift</i>. <b>12</b>: 779.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=Eine+Bemerkung+zu+meiner+Arbeit%3A+%22Einige+allgemeine+Bemerkungen+zum+Relativit%C3%A4tsprinzip%22&amp;rft.volume=12&amp;rft.pages=779&amp;rft.date=1911&amp;rft.au=Ignatowski%2C+W.+v.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein,_F.1908" class="citation book cs1">Klein, F. (1908). Hellinger, E. (ed.). <a rel="nofollow" class="external text" href="https://archive.org/details/elementarmathem00kleigoog"><i>Elementarmethematik vom höheren Standpunkte aus. Teil I. Vorlesung gehalten während des Wintersemesters 1907-08</i></a>. Leipzig: Teubner.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementarmethematik+vom+h%C3%B6heren+Standpunkte+aus.+Teil+I.+Vorlesung+gehalten+w%C3%A4hrend+des+Wintersemesters+1907-08&amp;rft.place=Leipzig&amp;rft.pub=Teubner&amp;rft.date=1908&amp;rft.au=Klein%2C+F.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felementarmathem00kleigoog&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein,_Felix1921" class="citation book cs1">Klein, Felix (1921) [1910]. "Über die geometrischen Grundlagen der Lorentzgruppe". <span class="cs1-ws-icon" title="s:de:Über die geometrischen Grundlagen der Lorentzgruppe"><a class="external text" href="https://en.wikisource.org/wiki/de:%C3%9Cber_die_geometrischen_Grundlagen_der_Lorentzgruppe"><i>Gesammelte Mathematische Abhandlungen</i>&#160;</a></span>. Vol.&#160;1. pp.&#160;533–552. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-51960-4_31">10.1007/978-3-642-51960-4_31</a> (inactive 1 November 2024). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-51898-0" title="Special:BookSources/978-3-642-51898-0"><bdi>978-3-642-51898-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=%C3%9Cber+die+geometrischen+Grundlagen+der+Lorentzgruppe&amp;rft.btitle=Gesammelte+Mathematische+Abhandlungen&amp;rft.pages=533-552&amp;rft.date=1921&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-51960-4_31&amp;rft.isbn=978-3-642-51898-0&amp;rft.au=Klein%2C+Felix&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: DOI inactive as of November 2024 (<a href="/wiki/Category:CS1_maint:_DOI_inactive_as_of_November_2024" title="Category:CS1 maint: DOI inactive as of November 2024">link</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein,_F.Sommerfeld_A.1910" class="citation book cs1">Klein, F.; Sommerfeld A. (1910). Noether, Fr. (ed.). <a rel="nofollow" class="external text" href="https://archive.org/details/fkleinundasommer019696mbp"><i>Über die Theorie des Kreisels. Heft IV</i></a>. Leipzig: Teuber.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%C3%9Cber+die+Theorie+des+Kreisels.+Heft+IV&amp;rft.place=Leipzig&amp;rft.pub=Teuber&amp;rft.date=1910&amp;rft.au=Klein%2C+F.&amp;rft.au=Sommerfeld+A.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffkleinundasommer019696mbp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein,_F.1911" class="citation book cs1">Klein, F. (1911). Hellinger, E. (ed.). <i>Elementarmethematik vom höheren Standpunkte aus. Teil I (Second Edition). Vorlesung gehalten während des Wintersemesters 1907-08</i>. Leipzig: Teubner. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fmdp.39015068187817">2027/mdp.39015068187817</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementarmethematik+vom+h%C3%B6heren+Standpunkte+aus.+Teil+I+%28Second+Edition%29.+Vorlesung+gehalten+w%C3%A4hrend+des+Wintersemesters+1907-08&amp;rft.place=Leipzig&amp;rft.pub=Teubner&amp;rft.date=1911&amp;rft_id=info%3Ahdl%2F2027%2Fmdp.39015068187817&amp;rft.au=Klein%2C+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarmor,_Joseph1897" class="citation cs2">Larmor, Joseph (1897), <span class="cs1-ws-icon" title="s:Dynamical Theory of the Electric and Luminiferous Medium III"><a class="external text" href="https://en.wikisource.org/wiki/Dynamical_Theory_of_the_Electric_and_Luminiferous_Medium_III">"On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with material media"&#160;</a></span>, <i>Philosophical Transactions of the Royal Society</i>, <b>190</b>: 205–300, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1897RSPTA.190..205L">1897RSPTA.190..205L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1897.0020">10.1098/rsta.1897.0020</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society&amp;rft.atitle=On+a+Dynamical+Theory+of+the+Electric+and+Luminiferous+Medium%2C+Part+3%2C+Relations+with+material+media&amp;rft.volume=190&amp;rft.pages=205-300&amp;rft.date=1897&amp;rft_id=info%3Adoi%2F10.1098%2Frsta.1897.0020&amp;rft_id=info%3Abibcode%2F1897RSPTA.190..205L&amp;rft.au=Larmor%2C+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarmor,_Joseph1929" class="citation cs2">Larmor, Joseph (1929) [1897], "On a Dynamical Theory of the Electric and Luminiferous Medium. Part 3: Relations with material media", <i>Mathematical and Physical Papers: Volume II</i>, Cambridge University Press, pp.&#160;2–132, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-53640-1" title="Special:BookSources/978-1-107-53640-1"><bdi>978-1-107-53640-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=On+a+Dynamical+Theory+of+the+Electric+and+Luminiferous+Medium.+Part+3%3A+Relations+with+material+media&amp;rft.btitle=Mathematical+and+Physical+Papers%3A+Volume+II&amp;rft.pages=2-132&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1929&amp;rft.isbn=978-1-107-53640-1&amp;rft.au=Larmor%2C+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span> (Reprint of Larmor (1897) with new annotations by Larmor.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarmor,_Joseph1900" class="citation cs2">Larmor, Joseph (1900), <span class="cs1-ws-icon" title="s:Aether and Matter"><a class="external text" href="https://en.wikisource.org/wiki/Aether_and_Matter"><i>Aether and Matter</i>&#160;</a></span>, Cambridge University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Aether+and+Matter&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1900&amp;rft.au=Larmor%2C+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarmor,_Joseph1904a" class="citation journal cs1">Larmor, Joseph (1904a). <a rel="nofollow" class="external text" href="https://archive.org/details/londonedinburgh671904lond">"On the intensity of the natural radiation from moving bodies and its mechanical reaction"</a>. <i>Philosophical Magazine</i>. <b>7</b> (41): <a rel="nofollow" class="external text" href="https://archive.org/details/londonedinburgh671904lond/page/578">578</a>–586. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786440409463149">10.1080/14786440409463149</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=On+the+intensity+of+the+natural+radiation+from+moving+bodies+and+its+mechanical+reaction&amp;rft.volume=7&amp;rft.issue=41&amp;rft.pages=578-586&amp;rft.date=1904&amp;rft_id=info%3Adoi%2F10.1080%2F14786440409463149&amp;rft.au=Larmor%2C+Joseph&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flondonedinburgh671904lond&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLarmor,_Joseph1904b" class="citation journal cs1">Larmor, Joseph (1904b). <span class="cs1-ws-icon" title="s:en:Absence of Effects of Motion through the Aether"><a class="external text" href="https://en.wikisource.org/wiki/en:Absence_of_Effects_of_Motion_through_the_Aether">"On the ascertained Absence of Effects of Motion through the Aether, in relation to the Constitution of Matter, and on the FitzGerald-Lorentz Hypothesis"&#160;</a></span>. <i>Philosophical Magazine</i>. <b>7</b> (42): 621–625. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786440409463156">10.1080/14786440409463156</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=On+the+ascertained+Absence+of+Effects+of+Motion+through+the+Aether%2C+in+relation+to+the+Constitution+of+Matter%2C+and+on+the+FitzGerald-Lorentz+Hypothesis&amp;rft.volume=7&amp;rft.issue=42&amp;rft.pages=621-625&amp;rft.date=1904&amp;rft_id=info%3Adoi%2F10.1080%2F14786440409463156&amp;rft.au=Larmor%2C+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz,_Hendrik_Antoon1892a" class="citation cs2">Lorentz, Hendrik Antoon (1892a), <a rel="nofollow" class="external text" href="https://archive.org/details/lathorielectrom00loregoog">"La Théorie electromagnétique de Maxwell et son application aux corps mouvants"</a>, <i>Archives Néerlandaises des Sciences Exactes et Naturelles</i>, <b>25</b>: 363–552</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archives+N%C3%A9erlandaises+des+Sciences+Exactes+et+Naturelles&amp;rft.atitle=La+Th%C3%A9orie+electromagn%C3%A9tique+de+Maxwell+et+son+application+aux+corps+mouvants&amp;rft.volume=25&amp;rft.pages=363-552&amp;rft.date=1892&amp;rft.au=Lorentz%2C+Hendrik+Antoon&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flathorielectrom00loregoog&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz1892b" class="citation cs2">Lorentz, Hendrik Antoon (1892b), "De relatieve beweging van de aarde en den aether" &#91;<a href="https://en.wikisource.org/wiki/Translation:The_Relative_Motion_of_the_Earth_and_the_Aether" class="extiw" title="s:Translation:The Relative Motion of the Earth and the Aether">The Relative Motion of the Earth and the Aether</a>&#93;, <i>Zittingsverlag Akad. V. Wet.</i>, <b>1</b>: 74–79</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Zittingsverlag+Akad.+V.+Wet.&amp;rft.atitle=De+relatieve+beweging+van+de+aarde+en+den+aether&amp;rft.volume=1&amp;rft.pages=74-79&amp;rft.date=1892&amp;rft.aulast=Lorentz&amp;rft.aufirst=Hendrik+Antoon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz,_Hendrik_Antoon1895" class="citation cs2">Lorentz, Hendrik Antoon (1895), <span class="cs1-ws-icon" title="s:de:Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern"><a class="external text" href="https://en.wikisource.org/wiki/de:Versuch_einer_Theorie_der_electrischen_und_optischen_Erscheinungen_in_bewegten_K%C3%B6rpern"><i>Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern</i>&#160;</a></span> &#91;<i><a href="https://en.wikisource.org/wiki/Translation:Attempt_of_a_Theory_of_Electrical_and_Optical_Phenomena_in_Moving_Bodies" class="extiw" title="s:Translation:Attempt of a Theory of Electrical and Optical Phenomena in Moving Bodies">Attempt of a Theory of Electrical and Optical Phenomena in Moving Bodies</a></i>&#93;, Leiden: E.J. Brill</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Versuch+einer+Theorie+der+electrischen+und+optischen+Erscheinungen+in+bewegten+K%C3%B6rpern&amp;rft.place=Leiden&amp;rft.pub=E.J.+Brill&amp;rft.date=1895&amp;rft.au=Lorentz%2C+Hendrik+Antoon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz,_Hendrik_Antoon1899" class="citation cs2">Lorentz, Hendrik Antoon (1899), <span class="cs1-ws-icon" title="s:Simplified Theory of Electrical and Optical Phenomena in Moving Systems"><a class="external text" href="https://en.wikisource.org/wiki/Simplified_Theory_of_Electrical_and_Optical_Phenomena_in_Moving_Systems">"Simplified Theory of Electrical and Optical Phenomena in Moving Systems"&#160;</a></span>, <i>Proceedings of the Royal Netherlands Academy of Arts and Sciences</i>, <b>1</b>: 427–442, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1898KNAB....1..427L">1898KNAB....1..427L</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Netherlands+Academy+of+Arts+and+Sciences&amp;rft.atitle=Simplified+Theory+of+Electrical+and+Optical+Phenomena+in+Moving+Systems&amp;rft.volume=1&amp;rft.pages=427-442&amp;rft.date=1899&amp;rft_id=info%3Abibcode%2F1898KNAB....1..427L&amp;rft.au=Lorentz%2C+Hendrik+Antoon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz,_Hendrik_Antoon1904" class="citation cs2">Lorentz, Hendrik Antoon (1904), <span class="cs1-ws-icon" title="s:Electromagnetic phenomena"><a class="external text" href="https://en.wikisource.org/wiki/Electromagnetic_phenomena">"Electromagnetic phenomena in a system moving with any velocity smaller than that of light"&#160;</a></span>, <i>Proceedings of the Royal Netherlands Academy of Arts and Sciences</i>, <b>6</b>: 809–831, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1903KNAB....6..809L">1903KNAB....6..809L</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Netherlands+Academy+of+Arts+and+Sciences&amp;rft.atitle=Electromagnetic+phenomena+in+a+system+moving+with+any+velocity+smaller+than+that+of+light&amp;rft.volume=6&amp;rft.pages=809-831&amp;rft.date=1904&amp;rft_id=info%3Abibcode%2F1903KNAB....6..809L&amp;rft.au=Lorentz%2C+Hendrik+Antoon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorentz,_Hendrik_Antoon1916" class="citation cs2">Lorentz, Hendrik Antoon (1916) [1915], <a rel="nofollow" class="external text" href="https://archive.org/details/electronstheory00lorerich"><i>The theory of electrons and its applications to the phenomena of light and radiant heat</i></a>, Leipzig &amp; Berlin: B.G. Teubner</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+theory+of+electrons+and+its+applications+to+the+phenomena+of+light+and+radiant+heat&amp;rft.place=Leipzig+%26+Berlin&amp;rft.pub=B.G.+Teubner&amp;rft.date=1916&amp;rft.au=Lorentz%2C+Hendrik+Antoon&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felectronstheory00lorerich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMinkowski,_Hermann1915" class="citation cs2">Minkowski, Hermann (1915) [1907], <span class="cs1-ws-icon" title="s:de:Das Relativitätsprinzip (Minkowski)"><a class="external text" href="https://en.wikisource.org/wiki/de:Das_Relativit%C3%A4tsprinzip_(Minkowski)">"Das Relativitätsprinzip"&#160;</a></span>, <i>Annalen der Physik</i>, <b>352</b> (15): 927–938, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1915AnP...352..927M">1915AnP...352..927M</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19153521505">10.1002/andp.19153521505</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=Das+Relativit%C3%A4tsprinzip&amp;rft.volume=352&amp;rft.issue=15&amp;rft.pages=927-938&amp;rft.date=1915&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.19153521505&amp;rft_id=info%3Abibcode%2F1915AnP...352..927M&amp;rft.au=Minkowski%2C+Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMinkowski,_Hermann1908" class="citation cs2">Minkowski, Hermann (1908) [1907], <span class="cs1-ws-icon" title="s:Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern"><a class="external text" href="https://en.wikisource.org/wiki/Die_Grundgleichungen_f%C3%BCr_die_elektromagnetischen_Vorg%C3%A4nge_in_bewegten_K%C3%B6rpern">"Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern"&#160;</a></span> &#91;<a href="https://en.wikisource.org/wiki/Translation:The_Fundamental_Equations_for_Electromagnetic_Processes_in_Moving_Bodies" class="extiw" title="s:Translation:The Fundamental Equations for Electromagnetic Processes in Moving Bodies">The Fundamental Equations for Electromagnetic Processes in Moving Bodies</a>&#93;, <i>Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse</i>: 53–111</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nachrichten+von+der+Gesellschaft+der+Wissenschaften+zu+G%C3%B6ttingen%2C+Mathematisch-Physikalische+Klasse&amp;rft.atitle=Die+Grundgleichungen+f%C3%BCr+die+elektromagnetischen+Vorg%C3%A4nge+in+bewegten+K%C3%B6rpern&amp;rft.pages=53-111&amp;rft.date=1908&amp;rft.au=Minkowski%2C+Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMinkowski,_Hermann1909" class="citation cs2">Minkowski, Hermann (1909) [1908], <span class="cs1-ws-icon" title="s:Space and Time"><a class="external text" href="https://en.wikisource.org/wiki/Space_and_Time">"Space and Time"&#160;</a></span>, <i>Physikalische Zeitschrift</i>, <b>10</b>: 75–88</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=Space+and+Time&amp;rft.volume=10&amp;rft.pages=75-88&amp;rft.date=1909&amp;rft.au=Minkowski%2C+Hermann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüller,_Hans_Robert1948" class="citation journal cs1"><a href="/wiki/Hans_Robert_M%C3%BCller" title="Hans Robert Müller">Müller, Hans Robert</a> (1948). <a rel="nofollow" class="external text" href="http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN00246988X">"Zyklographische Betrachtung der Kinematik der speziellen Relativitätstheorie"</a>. <i>Monatshefte für Mathematik und Physik</i>. <b>52</b> (4): 337–353. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01525338">10.1007/BF01525338</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120150204">120150204</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monatshefte+f%C3%BCr+Mathematik+und+Physik&amp;rft.atitle=Zyklographische+Betrachtung+der+Kinematik+der+speziellen+Relativit%C3%A4tstheorie&amp;rft.volume=52&amp;rft.issue=4&amp;rft.pages=337-353&amp;rft.date=1948&amp;rft_id=info%3Adoi%2F10.1007%2FBF01525338&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120150204%23id-name%3DS2CID&amp;rft.au=M%C3%BCller%2C+Hans+Robert&amp;rft_id=http%3A%2F%2Fwww.digizeitschriften.de%2Fdms%2Fresolveppn%2F%3FPID%3DGDZPPN00246988X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlummer,_H.C.K.1910" class="citation cs2">Plummer, H.C.K. (1910), "On the Theory of Aberration and the Principle of Relativity", <i>Monthly Notices of the Royal Astronomical Society</i>, <b>40</b> (3): 252–266, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1910MNRAS..70..252P">1910MNRAS..70..252P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2F70.3.252">10.1093/mnras/70.3.252</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&amp;rft.atitle=On+the+Theory+of+Aberration+and+the+Principle+of+Relativity&amp;rft.volume=40&amp;rft.issue=3&amp;rft.pages=252-266&amp;rft.date=1910&amp;rft_id=info%3Adoi%2F10.1093%2Fmnras%2F70.3.252&amp;rft_id=info%3Abibcode%2F1910MNRAS..70..252P&amp;rft.au=Plummer%2C+H.C.K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoincaré,_Henri1900" class="citation cs2">Poincaré, Henri (1900), <span class="cs1-ws-icon" title="s:fr:La théorie de Lorentz et le principe de réaction"><a class="external text" href="https://en.wikisource.org/wiki/fr:La_th%C3%A9orie_de_Lorentz_et_le_principe_de_r%C3%A9action">"La théorie de Lorentz et le principe de réaction"&#160;</a></span>, <i>Archives Néerlandaises des Sciences Exactes et Naturelles</i>, <b>5</b>: 252–278</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archives+N%C3%A9erlandaises+des+Sciences+Exactes+et+Naturelles&amp;rft.atitle=La+th%C3%A9orie+de+Lorentz+et+le+principe+de+r%C3%A9action&amp;rft.volume=5&amp;rft.pages=252-278&amp;rft.date=1900&amp;rft.au=Poincar%C3%A9%2C+Henri&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span>. See also the <a rel="nofollow" class="external text" href="http://www.physicsinsights.org/poincare-1900.pdf">English translation</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoincaré,_Henri1906" class="citation cs2">Poincaré, Henri (1906) [1904], <span class="cs1-ws-icon" title="s:The Principles of Mathematical Physics"><a class="external text" href="https://en.wikisource.org/wiki/The_Principles_of_Mathematical_Physics">"The Principles of Mathematical Physics"&#160;</a></span>, <i>Congress of arts and science, universal exposition, St. Louis, 1904</i>, vol.&#160;1, Boston and New York: Houghton, Mifflin and Company, pp.&#160;604–622</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Principles+of+Mathematical+Physics&amp;rft.btitle=Congress+of+arts+and+science%2C+universal+exposition%2C+St.+Louis%2C+1904&amp;rft.place=Boston+and+New+York&amp;rft.pages=604-622&amp;rft.pub=Houghton%2C+Mifflin+and+Company&amp;rft.date=1906&amp;rft.au=Poincar%C3%A9%2C+Henri&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoincaré,_Henri1905" class="citation cs2">Poincaré, Henri (1905), <span class="cs1-ws-icon" title="s:fr:Sur la dynamique de l&#39;électron (juin)"><a class="external text" href="https://en.wikisource.org/wiki/fr:Sur_la_dynamique_de_l%27%C3%A9lectron_(juin)">"Sur la dynamique de l'électron"&#160;</a></span> &#91;<a href="https://en.wikisource.org/wiki/Translation:On_the_Dynamics_of_the_Electron_(June)" class="extiw" title="s:Translation:On the Dynamics of the Electron (June)">On the Dynamics of the Electron</a>&#93;, <i>Comptes Rendus</i>, <b>140</b>: 1504–1508</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comptes+Rendus&amp;rft.atitle=Sur+la+dynamique+de+l%27%C3%A9lectron&amp;rft.volume=140&amp;rft.pages=1504-1508&amp;rft.date=1905&amp;rft.au=Poincar%C3%A9%2C+Henri&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoincaré,_Henri1906" class="citation cs2">Poincaré, Henri (1906) [1905], <span class="cs1-ws-icon" title="s:fr:Sur la dynamique de l&#39;électron (juillet)"><a class="external text" href="https://en.wikisource.org/wiki/fr:Sur_la_dynamique_de_l%27%C3%A9lectron_(juillet)">"Sur la dynamique de l'électron"&#160;</a></span> &#91;<a href="https://en.wikisource.org/wiki/Translation:On_the_Dynamics_of_the_Electron_(July)" class="extiw" title="s:Translation:On the Dynamics of the Electron (July)">On the Dynamics of the Electron</a>&#93;, <i>Rendiconti del Circolo Matematico di Palermo</i>, <b>21</b>: 129–176, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1906RCMP...21..129P">1906RCMP...21..129P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03013466">10.1007/BF03013466</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027%2Fuiug.30112063899089">2027/uiug.30112063899089</a></span>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120211823">120211823</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Rendiconti+del+Circolo+Matematico+di+Palermo&amp;rft.atitle=Sur+la+dynamique+de+l%27%C3%A9lectron&amp;rft.volume=21&amp;rft.pages=129-176&amp;rft.date=1906&amp;rft_id=info%3Ahdl%2F2027%2Fuiug.30112063899089&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120211823%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF03013466&amp;rft_id=info%3Abibcode%2F1906RCMP...21..129P&amp;rft.au=Poincar%C3%A9%2C+Henri&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoincaré,_Henri1921" class="citation journal cs1">Poincaré, Henri (1921) [1912]. <a rel="nofollow" class="external text" href="https://archive.org/stream/actamathematica38upps#page/n153/mode/2up">"Rapport sur les travaux de M. Cartan (fait à la Faculté des sciences de l'Université de Paris)"</a>. <i>Acta Mathematica</i>. <b>38</b> (1): 137–145. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf02392064">10.1007/bf02392064</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Mathematica&amp;rft.atitle=Rapport+sur+les+travaux+de+M.+Cartan+%28fait+%C3%A0+la+Facult%C3%A9+des+sciences+de+l%27Universit%C3%A9+de+Paris%29&amp;rft.volume=38&amp;rft.issue=1&amp;rft.pages=137-145&amp;rft.date=1921&amp;rft_id=info%3Adoi%2F10.1007%2Fbf02392064&amp;rft.au=Poincar%C3%A9%2C+Henri&amp;rft_id=https%3A%2F%2Farchive.org%2Fstream%2Factamathematica38upps%23page%2Fn153%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span> Written by Poincaré in 1912, printed in Acta Mathematica in 1914 though belatedly published in 1921.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSearle,_George_Frederick_Charles1897" class="citation cs2">Searle, George Frederick Charles (1897), <span class="cs1-ws-icon" title="s:On the Steady Motion of an Electrified Ellipsoid"><a class="external text" href="https://en.wikisource.org/wiki/On_the_Steady_Motion_of_an_Electrified_Ellipsoid">"On the Steady Motion of an Electrified Ellipsoid"&#160;</a></span>, <i>Philosophical Magazine</i>, 5, <b>44</b> (269): 329–341, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786449708621072">10.1080/14786449708621072</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=On+the+Steady+Motion+of+an+Electrified+Ellipsoid&amp;rft.volume=44&amp;rft.issue=269&amp;rft.pages=329-341&amp;rft.date=1897&amp;rft_id=info%3Adoi%2F10.1080%2F14786449708621072&amp;rft.au=Searle%2C+George+Frederick+Charles&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilberstein,_L.1912" class="citation cs2">Silberstein, L. (1912) [1911], <a rel="nofollow" class="external text" href="https://archive.org/details/londonedinburg6231912lond">"Quaternionic form of relativity"</a>, <i>The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science</i>, <b>23</b> (137): 790–809, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786440508637276">10.1080/14786440508637276</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+London%2C+Edinburgh%2C+and+Dublin+Philosophical+Magazine+and+Journal+of+Science&amp;rft.atitle=Quaternionic+form+of+relativity&amp;rft.volume=23&amp;rft.issue=137&amp;rft.pages=790-809&amp;rft.date=1912&amp;rft_id=info%3Adoi%2F10.1080%2F14786440508637276&amp;rft.au=Silberstein%2C+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flondonedinburg6231912lond&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSommerfeld,_A.1909" class="citation cs2">Sommerfeld, A. (1909), "Über die Zusammensetzung der Geschwindigkeiten in der Relativtheorie" &#91;Wikisource translation: <a href="https://en.wikisource.org/wiki/Translation:On_the_Composition_of_Velocities_in_the_Theory_of_Relativity" class="extiw" title="s:Translation:On the Composition of Velocities in the Theory of Relativity">On the Composition of Velocities in the Theory of Relativity</a>&#93;, <i>Verh. Dtsch. Phys. Ges.</i>, <b>21</b>: 577–582</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Verh.+Dtsch.+Phys.+Ges.&amp;rft.atitle=%C3%9Cber+die+Zusammensetzung+der+Geschwindigkeiten+in+der+Relativtheorie&amp;rft.volume=21&amp;rft.pages=577-582&amp;rft.date=1909&amp;rft.au=Sommerfeld%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomson,_Joseph_John1889" class="citation cs2">Thomson, Joseph John (1889), <span class="cs1-ws-icon" title="s:On the Magnetic Effects produced by Motion in the Electric Field"><a class="external text" href="https://en.wikisource.org/wiki/On_the_Magnetic_Effects_produced_by_Motion_in_the_Electric_Field">"On the Magnetic Effects produced by Motion in the Electric Field"&#160;</a></span>, <i>Philosophical Magazine</i>, 5, <b>28</b> (170): 1–14, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F14786448908619821">10.1080/14786448908619821</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=On+the+Magnetic+Effects+produced+by+Motion+in+the+Electric+Field&amp;rft.volume=28&amp;rft.issue=170&amp;rft.pages=1-14&amp;rft.date=1889&amp;rft_id=info%3Adoi%2F10.1080%2F14786448908619821&amp;rft.au=Thomson%2C+Joseph+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVarićak,_V.1910" class="citation cs2">Varićak, V. (1910), <span class="cs1-ws-icon" title="s:de:Anwendung der Lobatschefskijschen Geometrie in der Relativtheorie"><a class="external text" href="https://en.wikisource.org/wiki/de:Anwendung_der_Lobatschefskijschen_Geometrie_in_der_Relativtheorie">"Anwendung der Lobatschefskijschen Geometrie in der Relativtheorie"&#160;</a></span> &#91;<a href="https://en.wikisource.org/wiki/Translation:Application_of_Lobachevskian_Geometry_in_the_Theory_of_Relativity" class="extiw" title="s:Translation:Application of Lobachevskian Geometry in the Theory of Relativity">Application of Lobachevskian Geometry in the Theory of Relativity</a>&#93;, <i>Physikalische Zeitschrift</i>, <b>11</b>: 93–6</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=Anwendung+der+Lobatschefskijschen+Geometrie+in+der+Relativtheorie&amp;rft.volume=11&amp;rft.pages=93-6&amp;rft.date=1910&amp;rft.au=Vari%C4%87ak%2C+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVaričak,_V.1912" class="citation cs2">Varičak, V. (1912), <span class="cs1-ws-icon" title="s:de:Über die nichteuklidische Interpretation der Relativtheorie"><a class="external text" href="https://en.wikisource.org/wiki/de:%C3%9Cber_die_nichteuklidische_Interpretation_der_Relativtheorie">"Über die nichteuklidische Interpretation der Relativtheorie"&#160;</a></span> &#91;<a href="https://en.wikisource.org/wiki/Translation:On_the_Non-Euclidean_Interpretation_of_the_Theory_of_Relativity" class="extiw" title="s:Translation:On the Non-Euclidean Interpretation of the Theory of Relativity">On the Non-Euclidean Interpretation of the Theory of Relativity</a>&#93;, <i>Jahresbericht der Deutschen Mathematiker-Vereinigung</i>, <b>21</b>: 103–127</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Jahresbericht+der+Deutschen+Mathematiker-Vereinigung&amp;rft.atitle=%C3%9Cber+die+nichteuklidische+Interpretation+der+Relativtheorie&amp;rft.volume=21&amp;rft.pages=103-127&amp;rft.date=1912&amp;rft.au=Vari%C4%8Dak%2C+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVoigt,_Woldemar1887" class="citation cs2">Voigt, Woldemar (1887), <span class="cs1-ws-icon" title="s:de:Ueber das Doppler&#39;sche Princip"><a class="external text" href="https://en.wikisource.org/wiki/de:Ueber_das_Doppler%27sche_Princip">"Ueber das Doppler'sche Princip"&#160;</a></span> &#91;<a href="https://en.wikisource.org/wiki/Translation:On_the_Principle_of_Doppler" class="extiw" title="s:Translation:On the Principle of Doppler">On the Principle of Doppler</a>&#93;, <i>Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen</i> (2): 41–51</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nachrichten+von+der+K%C3%B6nigl.+Gesellschaft+der+Wissenschaften+und+der+Georg-Augusts-Universit%C3%A4t+zu+G%C3%B6ttingen&amp;rft.atitle=Ueber+das+Doppler%27sche+Princip&amp;rft.issue=2&amp;rft.pages=41-51&amp;rft.date=1887&amp;rft.au=Voigt%2C+Woldemar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWien1904" class="citation journal cs1">Wien, Wilhelm (1904). <span class="cs1-ws-icon" title="s:de:Zur Elektronentheorie"><a class="external text" href="https://en.wikisource.org/wiki/de:Zur_Elektronentheorie">"Zur Elektronentheorie"&#160;</a></span>. <i><a href="/wiki/Physikalische_Zeitschrift" title="Physikalische Zeitschrift">Physikalische Zeitschrift</a></i>. <b>5</b> (14): 393–395.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physikalische+Zeitschrift&amp;rft.atitle=Zur+Elektronentheorie&amp;rft.volume=5&amp;rft.issue=14&amp;rft.pages=393-395&amp;rft.date=1904&amp;rft.aulast=Wien&amp;rft.aufirst=Wilhelm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Secondary_sources">Secondary sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=30" title="Edit section: Secondary sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width reflist-columns-3"> <ol class="references"> <li id="cite_note-ratcliffe-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-ratcliffe_1-0">^</a></b></span> <span class="reference-text">Ratcliffe (1994), 3.1 and Theorem 3.1.4 and Exercise 3.1</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Naimark (1964), 2 in four dimensions</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Miller (1981), chapter 1</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Miller (1981), chapter 4–7</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Miller (1981), 114–115</span> </li> <li id="cite_note-pais-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-pais_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pais_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Pais (1982), Kap. 6b</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeras2014" class="citation arxiv cs1">Heras, Ricardo (2014). "A review of Voigt's transformations in the framework of special relativity". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1411.2559">1411.2559</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/physics.hist-ph">physics.hist-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+review+of+Voigt%27s+transformations+in+the+framework+of+special+relativity&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1411.2559&amp;rft.aulast=Heras&amp;rft.aufirst=Ricardo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Brown (2003)</span> </li> <li id="cite_note-mil-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-mil_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mil_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-mil_15-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Miller (1981), 98–99</span> </li> <li id="cite_note-milf-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-milf_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-milf_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Miller (1982), 1.4 &amp; 1.5</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Janssen (1995), 3.1</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">Darrigol (2000), Chap. 8.5</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">Macrossan (1986)</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Jannsen (1995), Kap. 3.3</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">Miller (1981), Chap. 1.12.2</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">Jannsen (1995), Chap. 3.5.6</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">Darrigol (2005), Kap. 4</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text">Pais (1982), Chap. 6c</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">Katzir (2005), 280–288</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text">Miller (1981), Chap. 1.14</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text">Miller (1981), Chap. 6</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text">Pais (1982), Kap. 7</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">Darrigol (2005), Chap. 6</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text">Walter (1999a)</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">Bateman (1910/12), pp. 358–359</span> </li> <li id="cite_note-baccetti-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-baccetti_80-0">^</a></b></span> <span class="reference-text">Baccetti (2011), see references 1–25 therein.</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text">Cartan &amp; Study (1908), sections 35–36</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text">Silberstein (1914), p. 156</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text">Pauli (1921), p. 555</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text">Madelung (1921), p. 207</span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text">Møller (1952/55), pp. 41–43</span> </li> </ol></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaccetti,_ValentinaTate,_KyleVisser,_Matt2012" class="citation journal cs1">Baccetti, Valentina; Tate, Kyle; Visser, Matt (2012). "Inertial frames without the relativity principle". <i>Journal of High Energy Physics</i>. <b>2012</b> (5): 119. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1112.1466">1112.1466</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JHEP...05..119B">2012JHEP...05..119B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP05%282012%29119">10.1007/JHEP05(2012)119</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118695037">118695037</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+High+Energy+Physics&amp;rft.atitle=Inertial+frames+without+the+relativity+principle&amp;rft.volume=2012&amp;rft.issue=5&amp;rft.pages=119&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1112.1466&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118695037%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FJHEP05%282012%29119&amp;rft_id=info%3Abibcode%2F2012JHEP...05..119B&amp;rft.au=Baccetti%2C+Valentina&amp;rft.au=Tate%2C+Kyle&amp;rft.au=Visser%2C+Matt&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachmann,_P.1898" class="citation book cs1">Bachmann, P. (1898). <a rel="nofollow" class="external text" href="https://gallica.bnf.fr/ark:/12148/bpt6k994828"><i>Die Arithmetik der quadratischen Formen. Erste Abtheilung</i></a>. Leipzig: B.G. Teubner.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Die+Arithmetik+der+quadratischen+Formen.+Erste+Abtheilung&amp;rft.place=Leipzig&amp;rft.pub=B.G.+Teubner&amp;rft.date=1898&amp;rft.au=Bachmann%2C+P.&amp;rft_id=https%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k994828&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBachmann,_P.1923" class="citation book cs1">Bachmann, P. (1923). <a rel="nofollow" class="external text" href="https://archive.org/details/arithdquadrachen02bachrich"><i>Die Arithmetik der quadratischen Formen. Zweite Abtheilung</i></a>. Leipzig: B.G. Teubner.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Die+Arithmetik+der+quadratischen+Formen.+Zweite+Abtheilung&amp;rft.place=Leipzig&amp;rft.pub=B.G.+Teubner&amp;rft.date=1923&amp;rft.au=Bachmann%2C+P.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Farithdquadrachen02bachrich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarnett,_J._H.2004" class="citation journal cs1">Barnett, J. H. (2004). <a rel="nofollow" class="external text" href="https://www.maa.org/sites/default/files/pdf/cms_upload/321922717729.pdf.bannered.pdf">"Enter, stage center: The early drama of the hyperbolic functions"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics Magazine</i>. <b>77</b> (1): 15–30. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F0025570x.2004.11953223">10.1080/0025570x.2004.11953223</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121088132">121088132</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+Magazine&amp;rft.atitle=Enter%2C+stage+center%3A+The+early+drama+of+the+hyperbolic+functions&amp;rft.volume=77&amp;rft.issue=1&amp;rft.pages=15-30&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1080%2F0025570x.2004.11953223&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121088132%23id-name%3DS2CID&amp;rft.au=Barnett%2C+J.+H.&amp;rft_id=https%3A%2F%2Fwww.maa.org%2Fsites%2Fdefault%2Ffiles%2Fpdf%2Fcms_upload%2F321922717729.pdf.bannered.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBôcher,_Maxim1907" class="citation book cs1">Bôcher, Maxim (1907). <a rel="nofollow" class="external text" href="https://archive.org/details/cu31924002936536">"Quadratic forms"</a>. <i>Introduction to higher algebra</i>. New York: Macmillan.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Quadratic+forms&amp;rft.btitle=Introduction+to+higher+algebra&amp;rft.place=New+York&amp;rft.pub=Macmillan&amp;rft.date=1907&amp;rft.au=B%C3%B4cher%2C+Maxim&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcu31924002936536&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBondi1964" class="citation book cs1">Bondi, Hermann (1964). <a rel="nofollow" class="external text" href="https://archive.org/details/RelativityCommonSense"><i>Relativity and Common Sense</i></a>. New York: Doubleday &amp; Company.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relativity+and+Common+Sense&amp;rft.place=New+York&amp;rft.pub=Doubleday+%26+Company&amp;rft.date=1964&amp;rft.aulast=Bondi&amp;rft.aufirst=Hermann&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2FRelativityCommonSense&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBonola,_R.1912" class="citation book cs1">Bonola, R. (1912). <a rel="nofollow" class="external text" href="https://archive.org/details/noneuclideangeom00bono"><i>Non-Euclidean geometry: A critical and historical study of its development</i></a>. Chicago: Open Court.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Non-Euclidean+geometry%3A+A+critical+and+historical+study+of+its+development&amp;rft.place=Chicago&amp;rft.pub=Open+Court&amp;rft.date=1912&amp;rft.au=Bonola%2C+R.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnoneuclideangeom00bono&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrown,_Harvey_R.2001" class="citation cs2">Brown, Harvey R. (2001), <a rel="nofollow" class="external text" href="http://philsci-archive.pitt.edu/archive/00000218/">"The origins of length contraction: I. The FitzGerald-Lorentz deformation hypothesis"</a>, <i>American Journal of Physics</i>, <b>69</b> (10): 1044–1054, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/0104032">gr-qc/0104032</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001AmJPh..69.1044B">2001AmJPh..69.1044B</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.1379733">10.1119/1.1379733</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2945585">2945585</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Physics&amp;rft.atitle=The+origins+of+length+contraction%3A+I.+The+FitzGerald-Lorentz+deformation+hypothesis&amp;rft.volume=69&amp;rft.issue=10&amp;rft.pages=1044-1054&amp;rft.date=2001&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F0104032&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2945585%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1119%2F1.1379733&amp;rft_id=info%3Abibcode%2F2001AmJPh..69.1044B&amp;rft.au=Brown%2C+Harvey+R.&amp;rft_id=http%3A%2F%2Fphilsci-archive.pitt.edu%2Farchive%2F00000218%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span> See also "Michelson, FitzGerald and Lorentz: the origins of relativity revisited", <a rel="nofollow" class="external text" href="http://philsci-archive.pitt.edu/987/">Online</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCartan,_É.Study,_E.1908" class="citation journal cs1">Cartan, É.; Study, E. (1908). <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k2440f/f173.image">"Nombres complexes"</a>. <i>Encyclopédie des Sciences Mathématiques Pures et Appliquées</i>. <b>1</b> (1): 328–468.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Encyclop%C3%A9die+des+Sciences+Math%C3%A9matiques+Pures+et+Appliqu%C3%A9es&amp;rft.atitle=Nombres+complexes&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=328-468&amp;rft.date=1908&amp;rft.au=Cartan%2C+%C3%89.&amp;rft.au=Study%2C+E.&amp;rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k2440f%2Ff173.image&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCartan,_É.Fano,_G.1955" class="citation journal cs1">Cartan, É.; Fano, G. (1955) [1915]. <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k29100t/f194.image">"La théorie des groupes continus et la géométrie"</a>. <i>Encyclopédie des Sciences Mathématiques Pures et Appliquées</i>. <b>3</b> (1): 39–43.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Encyclop%C3%A9die+des+Sciences+Math%C3%A9matiques+Pures+et+Appliqu%C3%A9es&amp;rft.atitle=La+th%C3%A9orie+des+groupes+continus+et+la+g%C3%A9om%C3%A9trie&amp;rft.volume=3&amp;rft.issue=1&amp;rft.pages=39-43&amp;rft.date=1955&amp;rft.au=Cartan%2C+%C3%89.&amp;rft.au=Fano%2C+G.&amp;rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k29100t%2Ff194.image&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span> (Only pages 1–21 were published in 1915, the entire article including pp.&#160;39–43 concerning the groups of Laguerre and Lorentz was posthumously published in 1955 in Cartan's collected papers, and was reprinted in the Encyclopédie in 1991.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoolidge,_Julian1916" class="citation book cs1"><a href="/wiki/Julian_Coolidge" title="Julian Coolidge">Coolidge, Julian</a> (1916). <a href="/wiki/A_Treatise_on_the_Circle_and_the_Sphere" title="A Treatise on the Circle and the Sphere"><i>A treatise on the circle and the sphere</i></a>. Oxford: Clarendon Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+treatise+on+the+circle+and+the+sphere&amp;rft.place=Oxford&amp;rft.pub=Clarendon+Press&amp;rft.date=1916&amp;rft.au=Coolidge%2C+Julian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDarrigol,_Olivier2000" class="citation cs2">Darrigol, Olivier (2000), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/electrodynamicsf0000darr"><i>Electrodynamics from Ampère to Einstein</i></a></span>, Oxford: Oxford Univ. Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-850594-5" title="Special:BookSources/978-0-19-850594-5"><bdi>978-0-19-850594-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Electrodynamics+from+Amp%C3%A8re+to+Einstein&amp;rft.place=Oxford&amp;rft.pub=Oxford+Univ.+Press&amp;rft.date=2000&amp;rft.isbn=978-0-19-850594-5&amp;rft.au=Darrigol%2C+Olivier&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Felectrodynamicsf0000darr&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDarrigol,_Olivier2005" class="citation cs2">Darrigol, Olivier (2005), <a rel="nofollow" class="external text" href="http://www.bourbaphy.fr/darrigol2.pdf">"The Genesis of the theory of relativity"</a> <span class="cs1-format">(PDF)</span>, <i>Séminaire Poincaré</i>, <b>1</b>: 1–22, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006eins.book....1D">2006eins.book....1D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-7643-7436-5_1">10.1007/3-7643-7436-5_1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-7643-7435-8" title="Special:BookSources/978-3-7643-7435-8"><bdi>978-3-7643-7435-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=S%C3%A9minaire+Poincar%C3%A9&amp;rft.atitle=The+Genesis+of+the+theory+of+relativity&amp;rft.volume=1&amp;rft.pages=1-22&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1007%2F3-7643-7436-5_1&amp;rft_id=info%3Abibcode%2F2006eins.book....1D&amp;rft.isbn=978-3-7643-7435-8&amp;rft.au=Darrigol%2C+Olivier&amp;rft_id=http%3A%2F%2Fwww.bourbaphy.fr%2Fdarrigol2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickson,_L.E.1923" class="citation book cs1">Dickson, L.E. (1923). <a rel="nofollow" class="external text" href="https://archive.org/details/historyoftheoryo03dickuoft"><i>History of the theory of numbers, Volume III, Quadratic and higher forms</i></a>. Washington: Washington Carnegie Institution of Washington.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=History+of+the+theory+of+numbers%2C+Volume+III%2C+Quadratic+and+higher+forms&amp;rft.place=Washington&amp;rft.pub=Washington+Carnegie+Institution+of+Washington&amp;rft.date=1923&amp;rft.au=Dickson%2C+L.E.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryoftheoryo03dickuoft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFjelstad,_P.1986" class="citation journal cs1">Fjelstad, P. (1986). "Extending special relativity via the perplex numbers". <i>American Journal of Physics</i>. <b>54</b> (5): 416–422. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1986AmJPh..54..416F">1986AmJPh..54..416F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.14605">10.1119/1.14605</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Physics&amp;rft.atitle=Extending+special+relativity+via+the+perplex+numbers&amp;rft.volume=54&amp;rft.issue=5&amp;rft.pages=416-422&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1119%2F1.14605&amp;rft_id=info%3Abibcode%2F1986AmJPh..54..416F&amp;rft.au=Fjelstad%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGirard,_P._R.1984" class="citation journal cs1">Girard, P. R. (1984). "The quaternion group and modern physics". <i>European Journal of Physics</i>. <b>5</b> (1): 25–32. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1984EJPh....5...25G">1984EJPh....5...25G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0143-0807%2F5%2F1%2F007">10.1088/0143-0807/5/1/007</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250775753">250775753</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=European+Journal+of+Physics&amp;rft.atitle=The+quaternion+group+and+modern+physics&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=25-32&amp;rft.date=1984&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250775753%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F5%2F1%2F007&amp;rft_id=info%3Abibcode%2F1984EJPh....5...25G&amp;rft.au=Girard%2C+P.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGray,_J.1979" class="citation journal cs1">Gray, J. (1979). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0315-0860%2879%2990124-1">"Non-euclidean geometry—A re-interpretation"</a>. <i>Historia Mathematica</i>. <b>6</b> (3): 236–258. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0315-0860%2879%2990124-1">10.1016/0315-0860(79)90124-1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Non-euclidean+geometry%E2%80%94A+re-interpretation&amp;rft.volume=6&amp;rft.issue=3&amp;rft.pages=236-258&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1016%2F0315-0860%2879%2990124-1&amp;rft.au=Gray%2C+J.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0315-0860%252879%252990124-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGray,_J.Scott_W.1997" class="citation book cs1">Gray, J.; Scott W. (1997). <a rel="nofollow" class="external text" href="http://scottwalter.free.fr/papers/3supintro.pdf">"Introduction"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="http://henripoincarepapers.univ-lorraine.fr/chp/hp-pdf/hp1997tsa.pdf"><i>Trois suppléments sur la découverte des fonctions fuchsiennes</i></a> <span class="cs1-format">(PDF)</span>. Berlin. pp.&#160;7–28.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Introduction&amp;rft.btitle=Trois+suppl%C3%A9ments+sur+la+d%C3%A9couverte+des+fonctions+fuchsiennes&amp;rft.place=Berlin&amp;rft.pages=7-28&amp;rft.date=1997&amp;rft.au=Gray%2C+J.&amp;rft.au=Scott+W.&amp;rft_id=http%3A%2F%2Fscottwalter.free.fr%2Fpapers%2F3supintro.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHawkins,_Thomas2013" class="citation book cs1">Hawkins, Thomas (2013). "The Cayley–Hermite problem and matrix algebra". <i>The Mathematics of Frobenius in Context: A Journey Through 18th to 20th Century Mathematics</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1461463337" title="Special:BookSources/978-1461463337"><bdi>978-1461463337</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+Cayley%E2%80%93Hermite+problem+and+matrix+algebra&amp;rft.btitle=The+Mathematics+of+Frobenius+in+Context%3A+A+Journey+Through+18th+to+20th+Century+Mathematics&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft.isbn=978-1461463337&amp;rft.au=Hawkins%2C+Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJanssen,_Michel1995" class="citation cs2">Janssen, Michel (1995), <a rel="nofollow" class="external text" href="http://www.mpiwg-berlin.mpg.de/litserv/diss/janssen_diss/"><i>A Comparison between Lorentz's Ether Theory and Special Relativity in the Light of the Experiments of Trouton and Noble (Thesis)</i></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Comparison+between+Lorentz%27s+Ether+Theory+and+Special+Relativity+in+the+Light+of+the+Experiments+of+Trouton+and+Noble+%28Thesis%29&amp;rft.date=1995&amp;rft.au=Janssen%2C+Michel&amp;rft_id=http%3A%2F%2Fwww.mpiwg-berlin.mpg.de%2Flitserv%2Fdiss%2Fjanssen_diss%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKastrup,_H._A.2008" class="citation journal cs1">Kastrup, H. A. (2008). "On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics". <i>Annalen der Physik</i>. <b>520</b> (9–10): 631–690. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0808.2730">0808.2730</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008AnP...520..631K">2008AnP...520..631K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.200810324">10.1002/andp.200810324</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12020510">12020510</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annalen+der+Physik&amp;rft.atitle=On+the+advancements+of+conformal+transformations+and+their+associated+symmetries+in+geometry+and+theoretical+physics&amp;rft.volume=520&amp;rft.issue=9%E2%80%9310&amp;rft.pages=631-690&amp;rft.date=2008&amp;rft_id=info%3Aarxiv%2F0808.2730&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12020510%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fandp.200810324&amp;rft_id=info%3Abibcode%2F2008AnP...520..631K&amp;rft.au=Kastrup%2C+H.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatzir,_Shaul2005" class="citation cs2">Katzir, Shaul (2005), "Poincaré's Relativistic Physics: Its Origins and Nature", <i>Physics in Perspective</i>, <b>7</b> (3): 268–292, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005PhP.....7..268K">2005PhP.....7..268K</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00016-004-0234-y">10.1007/s00016-004-0234-y</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14751280">14751280</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+in+Perspective&amp;rft.atitle=Poincar%C3%A9%27s+Relativistic+Physics%3A+Its+Origins+and+Nature&amp;rft.volume=7&amp;rft.issue=3&amp;rft.pages=268-292&amp;rft.date=2005&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14751280%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00016-004-0234-y&amp;rft_id=info%3Abibcode%2F2005PhP.....7..268K&amp;rft.au=Katzir%2C+Shaul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein,_F.1897" class="citation book cs1">Klein, F. (1897) [1896]. <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicaltheo00kleiuoft"><i>The Mathematical Theory of the Top</i></a>. New York: Scribner.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Mathematical+Theory+of+the+Top&amp;rft.place=New+York&amp;rft.pub=Scribner&amp;rft.date=1897&amp;rft.au=Klein%2C+F.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicaltheo00kleiuoft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKlein,_FelixBlaschke,_Wilhelm1926" class="citation book cs1">Klein, Felix; Blaschke, Wilhelm (1926). <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?PPN373601816"><i>Vorlesungen über höhere Geometrie</i></a>. Berlin: Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vorlesungen+%C3%BCber+h%C3%B6here+Geometrie&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=1926&amp;rft.au=Klein%2C+Felix&amp;rft.au=Blaschke%2C+Wilhelm&amp;rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FPPN373601816&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Laue,_M.1921" class="citation book cs1">von Laue, M. (1921). <a rel="nofollow" class="external text" href="https://archive.org/details/dierelativitts01laueuoft"><i>Die Relativitätstheorie, Band 1</i></a> (fourth edition of "Das Relativitätsprinzip"&#160;ed.). Vieweg.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Die+Relativit%C3%A4tstheorie%2C+Band+1&amp;rft.edition=fourth+edition+of+%22Das+Relativit%C3%A4tsprinzip%22&amp;rft.pub=Vieweg&amp;rft.date=1921&amp;rft.au=von+Laue%2C+M.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdierelativitts01laueuoft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span>; First edition 1911, second expanded edition 1913, third expanded edition 1919.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLorente,_M.2003" class="citation journal cs1">Lorente, M. (2003). "Representations of classical groups on the lattice and its application to the field theory on discrete space-time". <i>Symmetries in Science</i>. <b>VI</b>: 437–454. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-lat/0312042">hep-lat/0312042</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003hep.lat..12042L">2003hep.lat..12042L</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Symmetries+in+Science&amp;rft.atitle=Representations+of+classical+groups+on+the+lattice+and+its+application+to+the+field+theory+on+discrete+space-time&amp;rft.volume=VI&amp;rft.pages=437-454&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fhep-lat%2F0312042&amp;rft_id=info%3Abibcode%2F2003hep.lat..12042L&amp;rft.au=Lorente%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacrossan,_M._N.1986" class="citation cs2">Macrossan, M. N. (1986), <a rel="nofollow" class="external text" href="http://espace.library.uq.edu.au/view/UQ:9560">"A Note on Relativity Before Einstein"</a>, <i>The British Journal for the Philosophy of Science</i>, <b>37</b> (2): 232–234, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.679.5898">10.1.1.679.5898</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbjps%2F37.2.232">10.1093/bjps/37.2.232</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+British+Journal+for+the+Philosophy+of+Science&amp;rft.atitle=A+Note+on+Relativity+Before+Einstein&amp;rft.volume=37&amp;rft.issue=2&amp;rft.pages=232-234&amp;rft.date=1986&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.679.5898%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1093%2Fbjps%2F37.2.232&amp;rft.au=Macrossan%2C+M.+N.&amp;rft_id=http%3A%2F%2Fespace.library.uq.edu.au%2Fview%2FUQ%3A9560&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMadelung,_E.1922" class="citation book cs1">Madelung, E. (1922). <a rel="nofollow" class="external text" href="https://archive.org/details/diemathematisch00madegoog"><i>Die mathematischen Hilfsmittel des Physikers</i></a>. Berlin: Springer.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Die+mathematischen+Hilfsmittel+des+Physikers&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=1922&amp;rft.au=Madelung%2C+E.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdiemathematisch00madegoog&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMajerník,_V.1986" class="citation journal cs1">Majerník, V. (1986). "Representation of relativistic quantities by trigonometric functions". <i>American Journal of Physics</i>. <b>54</b> (6): 536–538. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1986AmJPh..54..536M">1986AmJPh..54..536M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.14557">10.1119/1.14557</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Physics&amp;rft.atitle=Representation+of+relativistic+quantities+by+trigonometric+functions&amp;rft.volume=54&amp;rft.issue=6&amp;rft.pages=536-538&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1119%2F1.14557&amp;rft_id=info%3Abibcode%2F1986AmJPh..54..536M&amp;rft.au=Majern%C3%ADk%2C+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeyer,_W.F.1899" class="citation journal cs1">Meyer, W.F. (1899). <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?PPN360504671">"Invariantentheorie"</a>. <i>Encyclopädie der Mathematischen Wissenschaften</i>. <b>1</b> (1): 322–455.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Encyclop%C3%A4die+der+Mathematischen+Wissenschaften&amp;rft.atitle=Invariantentheorie&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=322-455&amp;rft.date=1899&amp;rft.au=Meyer%2C+W.F.&amp;rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FPPN360504671&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller,_Arthur_I.1981" class="citation cs2">Miller, Arthur I. (1981), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/alberteinsteinss0000mill"><i>Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911)</i></a></span>, Reading: Addison–Wesley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-04679-3" title="Special:BookSources/978-0-201-04679-3"><bdi>978-0-201-04679-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Albert+Einstein%27s+special+theory+of+relativity.+Emergence+%281905%29+and+early+interpretation+%281905%E2%80%931911%29&amp;rft.place=Reading&amp;rft.pub=Addison%E2%80%93Wesley&amp;rft.date=1981&amp;rft.isbn=978-0-201-04679-3&amp;rft.au=Miller%2C+Arthur+I.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falberteinsteinss0000mill&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMøller,_C.1955" class="citation book cs1">Møller, C. (1955) [1952]. <a rel="nofollow" class="external text" href="https://archive.org/details/theoryofrelativi029229mbp"><i>The theory of relativity</i></a>. Oxford Clarendon Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+theory+of+relativity&amp;rft.pub=Oxford+Clarendon+Press&amp;rft.date=1955&amp;rft.au=M%C3%B8ller%2C+C.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofrelativi029229mbp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMüller,_Emil1910" class="citation journal cs1 cs1-prop-long-vol"><a href="/wiki/Emil_M%C3%BCller_(mathematician)" title="Emil Müller (mathematician)">Müller, Emil</a> (1910). <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?PPN360609635">"Die verschiedenen Koordinatensysteme"</a>. <i>Encyclopädie der Mathematischen Wissenschaften</i>. 3.1.1: 596–770.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Encyclop%C3%A4die+der+Mathematischen+Wissenschaften&amp;rft.atitle=Die+verschiedenen+Koordinatensysteme&amp;rft.volume=3.1.1&amp;rft.pages=596-770&amp;rft.date=1910&amp;rft.au=M%C3%BCller%2C+Emil&amp;rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FPPN360609635&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMusen,_P.1970" class="citation journal cs1">Musen, P. (1970). "A Discussion of Hill's Method of Secular Perturbations...". <i>Celestial Mechanics</i>. <b>2</b> (1): 41–59. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1970CeMec...2...41M">1970CeMec...2...41M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01230449">10.1007/BF01230449</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2060%2F19700018328">2060/19700018328</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122335532">122335532</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Celestial+Mechanics&amp;rft.atitle=A+Discussion+of+Hill%27s+Method+of+Secular+Perturbations...&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=41-59&amp;rft.date=1970&amp;rft_id=info%3Ahdl%2F2060%2F19700018328&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122335532%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF01230449&amp;rft_id=info%3Abibcode%2F1970CeMec...2...41M&amp;rft.au=Musen%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNaimark,_M._A.2014" class="citation book cs1">Naimark, M. A. (2014) [1964]. <i>Linear Representations of the Lorentz Group</i>. Oxford. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1483184982" title="Special:BookSources/978-1483184982"><bdi>978-1483184982</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Linear+Representations+of+the+Lorentz+Group&amp;rft.place=Oxford&amp;rft.date=2014&amp;rft.isbn=978-1483184982&amp;rft.au=Naimark%2C+M.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPacheco,_R.2008" class="citation journal cs1">Pacheco, R. (2008). "Bianchi–Bäcklund transforms and dressing actions, revisited". <i>Geometriae Dedicata</i>. <b>146</b> (1): 85–99. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0808.4138">0808.4138</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10711-009-9427-5">10.1007/s10711-009-9427-5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14356965">14356965</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geometriae+Dedicata&amp;rft.atitle=Bianchi%E2%80%93B%C3%A4cklund+transforms+and+dressing+actions%2C+revisited.&amp;rft.volume=146&amp;rft.issue=1&amp;rft.pages=85-99&amp;rft.date=2008&amp;rft_id=info%3Aarxiv%2F0808.4138&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14356965%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10711-009-9427-5&amp;rft.au=Pacheco%2C+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPais,_Abraham1982" class="citation cs2">Pais, Abraham (1982), <i><a href="/wiki/Subtle_is_the_Lord:_The_Science_and_the_Life_of_Albert_Einstein" class="mw-redirect" title="Subtle is the Lord: The Science and the Life of Albert Einstein">Subtle is the Lord: The Science and the Life of Albert Einstein</a></i>, New York: Oxford University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-520438-4" title="Special:BookSources/978-0-19-520438-4"><bdi>978-0-19-520438-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Subtle+is+the+Lord%3A+The+Science+and+the+Life+of+Albert+Einstein&amp;rft.place=New+York&amp;rft.pub=Oxford+University+Press&amp;rft.date=1982&amp;rft.isbn=978-0-19-520438-4&amp;rft.au=Pais%2C+Abraham&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPauli,_Wolfgang1921" class="citation cs2"><a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Pauli, Wolfgang</a> (1921), <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?PPN360709672">"Die Relativitätstheorie"</a>, <i>Encyclopädie der Mathematischen Wissenschaften</i>, <b>5</b> (2): 539–776</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Encyclop%C3%A4die+der+Mathematischen+Wissenschaften&amp;rft.atitle=Die+Relativit%C3%A4tstheorie&amp;rft.volume=5&amp;rft.issue=2&amp;rft.pages=539-776&amp;rft.date=1921&amp;rft.au=Pauli%2C+Wolfgang&amp;rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FPPN360709672&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span> <br />In English: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPauli,_W.1981" class="citation book cs1">Pauli, W. (1981) [1921]. <i>Theory of Relativity</i>. Vol.&#160;165. Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-64152-2" title="Special:BookSources/978-0-486-64152-2"><bdi>978-0-486-64152-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Relativity&amp;rft.pub=Dover+Publications&amp;rft.date=1981&amp;rft.isbn=978-0-486-64152-2&amp;rft.au=Pauli%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPenrose,_R.Rindler_W.1984" class="citation cs2">Penrose, R.; Rindler W. (1984), <i>Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields</i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521337076" title="Special:BookSources/978-0521337076"><bdi>978-0521337076</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spinors+and+Space-Time%3A+Volume+1%2C+Two-Spinor+Calculus+and+Relativistic+Fields&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1984&amp;rft.isbn=978-0521337076&amp;rft.au=Penrose%2C+R.&amp;rft.au=Rindler+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlummer,_H._C.1910" class="citation cs2">Plummer, H. C. (1910), "On the Theory of Aberration and the Principle of Relativity", <i>Monthly Notices of the Royal Astronomical Society</i>, <b>70</b> (3): 252–266, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1910MNRAS..70..252P">1910MNRAS..70..252P</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmnras%2F70.3.252">10.1093/mnras/70.3.252</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&amp;rft.atitle=On+the+Theory+of+Aberration+and+the+Principle+of+Relativity&amp;rft.volume=70&amp;rft.issue=3&amp;rft.pages=252-266&amp;rft.date=1910&amp;rft_id=info%3Adoi%2F10.1093%2Fmnras%2F70.3.252&amp;rft_id=info%3Abibcode%2F1910MNRAS..70..252P&amp;rft.au=Plummer%2C+H.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRatcliffe,_J._G.1994" class="citation book cs1">Ratcliffe, J. G. (1994). <a rel="nofollow" class="external text" href="https://archive.org/details/foundationsofhyp0000ratc/page/56">"Hyperbolic geometry"</a>. <i>Foundations of Hyperbolic Manifolds</i>. New York. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/foundationsofhyp0000ratc/page/56">56–104</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0387943480" title="Special:BookSources/978-0387943480"><bdi>978-0387943480</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Hyperbolic+geometry&amp;rft.btitle=Foundations+of+Hyperbolic+Manifolds&amp;rft.place=New+York&amp;rft.pages=56-104&amp;rft.date=1994&amp;rft.isbn=978-0387943480&amp;rft.au=Ratcliffe%2C+J.+G.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffoundationsofhyp0000ratc%2Fpage%2F56&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReynolds,_W._F.1993" class="citation journal cs1">Reynolds, W. F. (1993). "Hyperbolic geometry on a hyperboloid". <i>The American Mathematical Monthly</i>. <b>100</b> (5): 442–455. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00029890.1993.11990430">10.1080/00029890.1993.11990430</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2324297">2324297</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:124088818">124088818</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=Hyperbolic+geometry+on+a+hyperboloid&amp;rft.volume=100&amp;rft.issue=5&amp;rft.pages=442-455&amp;rft.date=1993&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A124088818%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2324297%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1080%2F00029890.1993.11990430&amp;rft.au=Reynolds%2C+W.+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRindler,_W.2013" class="citation book cs1">Rindler, W. (2013) [1969]. <i>Essential Relativity: Special, General, and Cosmological</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1475711356" title="Special:BookSources/978-1475711356"><bdi>978-1475711356</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Essential+Relativity%3A+Special%2C+General%2C+and+Cosmological&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft.isbn=978-1475711356&amp;rft.au=Rindler%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinson,_E.A.1990" class="citation book cs1">Robinson, E.A. (1990). <i>Einstein's relativity in metaphor and mathematics</i>. Prentice Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780132464970" title="Special:BookSources/9780132464970"><bdi>9780132464970</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Einstein%27s+relativity+in+metaphor+and+mathematics&amp;rft.pub=Prentice+Hall&amp;rft.date=1990&amp;rft.isbn=9780132464970&amp;rft.au=Robinson%2C+E.A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRosenfeld,_B.A.1988" class="citation book cs1">Rosenfeld, B.A. (1988). <i>A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space</i>. New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1441986801" title="Special:BookSources/978-1441986801"><bdi>978-1441986801</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Non-Euclidean+Geometry%3A+Evolution+of+the+Concept+of+a+Geometric+Space&amp;rft.place=New+York&amp;rft.pub=Springer&amp;rft.date=1988&amp;rft.isbn=978-1441986801&amp;rft.au=Rosenfeld%2C+B.A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRothe,_H.1916" class="citation journal cs1 cs1-prop-long-vol">Rothe, H. (1916). <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?PPN360609767">"Systeme geometrischer Analyse"</a>. <i>Encyclopädie der Mathematischen Wissenschaften</i>. 3.1.1: 1282–1425.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Encyclop%C3%A4die+der+Mathematischen+Wissenschaften&amp;rft.atitle=Systeme+geometrischer+Analyse&amp;rft.volume=3.1.1&amp;rft.pages=1282-1425&amp;rft.date=1916&amp;rft.au=Rothe%2C+H.&amp;rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FPPN360609767&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchottenloher,_M.2008" class="citation book cs1">Schottenloher, M. (2008). <i>A Mathematical Introduction to Conformal Field Theory</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3540706908" title="Special:BookSources/978-3540706908"><bdi>978-3540706908</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Mathematical+Introduction+to+Conformal+Field+Theory&amp;rft.pub=Springer&amp;rft.date=2008&amp;rft.isbn=978-3540706908&amp;rft.au=Schottenloher%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilberstein,_L.1914" class="citation book cs1">Silberstein, L. (1914). <a rel="nofollow" class="external text" href="https://archive.org/details/theoryofrelativi00silbrich"><i>The Theory of Relativity</i></a>. London: Macmillan.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Relativity&amp;rft.place=London&amp;rft.pub=Macmillan&amp;rft.date=1914&amp;rft.au=Silberstein%2C+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofrelativi00silbrich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSobczyk,_G.1995" class="citation journal cs1">Sobczyk, G. (1995). "The Hyperbolic Number Plane". <i>The College Mathematics Journal</i>. <b>26</b> (4): 268–280. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2687027">10.2307/2687027</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2687027">2687027</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+College+Mathematics+Journal&amp;rft.atitle=The+Hyperbolic+Number+Plane&amp;rft.volume=26&amp;rft.issue=4&amp;rft.pages=268-280&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.2307%2F2687027&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2687027%23id-name%3DJSTOR&amp;rft.au=Sobczyk%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSommerville,_D._M._L._Y.1911" class="citation book cs1">Sommerville, D. M. L. Y. (1911). <a rel="nofollow" class="external text" href="https://archive.org/details/bibliographyofno00sommuoft"><i>Bibliography of non-Euclidean geometry</i></a>. London: London Pub. by Harrison for the University of St. Andrews.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bibliography+of+non-Euclidean+geometry&amp;rft.place=London&amp;rft.pub=London+Pub.+by+Harrison+for+the+University+of+St.+Andrews&amp;rft.date=1911&amp;rft.au=Sommerville%2C+D.+M.+L.+Y.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbibliographyofno00sommuoft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSynge,_J._L.1956" class="citation cs2">Synge, J. L. (1956), <i>Relativity: The Special Theory</i>, North Holland</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relativity%3A+The+Special+Theory&amp;rft.pub=North+Holland&amp;rft.date=1956&amp;rft.au=Synge%2C+J.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSynge,_J.L.1972" class="citation journal cs1">Synge, J.L. (1972). <a rel="nofollow" class="external text" href="http://repository.dias.ie/id/eprint/128">"Quaternions, Lorentz transformations, and the Conway–Dirac–Eddington matrices"</a>. <i>Communications of the Dublin Institute for Advanced Studies</i>. <b>21</b>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+of+the+Dublin+Institute+for+Advanced+Studies&amp;rft.atitle=Quaternions%2C+Lorentz+transformations%2C+and+the+Conway%E2%80%93Dirac%E2%80%93Eddington+matrices&amp;rft.volume=21&amp;rft.date=1972&amp;rft.au=Synge%2C+J.L.&amp;rft_id=http%3A%2F%2Frepository.dias.ie%2Fid%2Feprint%2F128&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTerng,_C._L.Uhlenbeck,_K.2000" class="citation journal cs1">Terng, C. L. &amp; Uhlenbeck, K. (2000). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/notices/200001/fea-terng.pdf">"Geometry of solitons"</a> <span class="cs1-format">(PDF)</span>. <i>Notices of the AMS</i>. <b>47</b> (1): 17–25.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=Geometry+of+solitons&amp;rft.volume=47&amp;rft.issue=1&amp;rft.pages=17-25&amp;rft.date=2000&amp;rft.au=Terng%2C+C.+L.&amp;rft.au=Uhlenbeck%2C+K.&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fnotices%2F200001%2Ffea-terng.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTouma,_J._R.Tremaine,_S.Kazandjian,_M._V.2009" class="citation journal cs1">Touma, J. R.; Tremaine, S. &amp; Kazandjian, M. V. (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2009.14409.x">"Gauss's method for secular dynamics, softened"</a>. <i>Monthly Notices of the Royal Astronomical Society</i>. <b>394</b> (2): 1085–1108. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.2812">0811.2812</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009MNRAS.394.1085T">2009MNRAS.394.1085T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2009.14409.x">10.1111/j.1365-2966.2009.14409.x</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14531003">14531003</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&amp;rft.atitle=Gauss%27s+method+for+secular+dynamics%2C+softened&amp;rft.volume=394&amp;rft.issue=2&amp;rft.pages=1085-1108&amp;rft.date=2009&amp;rft_id=info%3Aarxiv%2F0811.2812&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14531003%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1365-2966.2009.14409.x&amp;rft_id=info%3Abibcode%2F2009MNRAS.394.1085T&amp;rft.au=Touma%2C+J.+R.&amp;rft.au=Tremaine%2C+S.&amp;rft.au=Kazandjian%2C+M.+V.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-2966.2009.14409.x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVolk,_O.1976" class="citation journal cs1">Volk, O. (1976). <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/full/1976CeMec..14..365V">"Miscellanea from the history of celestial mechanics"</a>. <i>Celestial Mechanics</i>. <b>14</b> (3): 365–382. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976CeMec..14..365V">1976CeMec..14..365V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01228523">10.1007/bf01228523</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122955645">122955645</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Celestial+Mechanics&amp;rft.atitle=Miscellanea+from+the+history+of+celestial+mechanics&amp;rft.volume=14&amp;rft.issue=3&amp;rft.pages=365-382&amp;rft.date=1976&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122955645%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01228523&amp;rft_id=info%3Abibcode%2F1976CeMec..14..365V&amp;rft.au=Volk%2C+O.&amp;rft_id=http%3A%2F%2Fadsabs.harvard.edu%2Ffull%2F1976CeMec..14..365V&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWalter,_Scott_A.1999" class="citation book cs1">Walter, Scott A. (1999). <a rel="nofollow" class="external text" href="http://scottwalter.free.fr/papers/1999-mmm-walter.html">"Minkowski, mathematicians, and the mathematical theory of relativity"</a>. In H. Goenner; J. Renn; J. Ritter; T. Sauer (eds.). <i>The Expanding Worlds of General Relativity</i>. Einstein Studies. Vol.&#160;7. Boston: Birkhäuser. pp.&#160;45–86. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8176-4060-6" title="Special:BookSources/978-0-8176-4060-6"><bdi>978-0-8176-4060-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Minkowski%2C+mathematicians%2C+and+the+mathematical+theory+of+relativity&amp;rft.btitle=The+Expanding+Worlds+of+General+Relativity&amp;rft.place=Boston&amp;rft.series=Einstein+Studies&amp;rft.pages=45-86&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=1999&amp;rft.isbn=978-0-8176-4060-6&amp;rft.au=Walter%2C+Scott+A.&amp;rft_id=http%3A%2F%2Fscottwalter.free.fr%2Fpapers%2F1999-mmm-walter.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWalter,_Scott_A.1999b" class="citation book cs1">Walter, Scott A. (1999b). <a rel="nofollow" class="external text" href="http://scottwalter.free.fr/papers/1999-symbuniv-walter.html">"The non-Euclidean style of Minkowskian relativity"</a>. In J. Gray (ed.). <i>The Symbolic Universe: Geometry and Physics</i>. Oxford: Oxford University Press. pp.&#160;91–127.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+non-Euclidean+style+of+Minkowskian+relativity&amp;rft.btitle=The+Symbolic+Universe%3A+Geometry+and+Physics&amp;rft.place=Oxford&amp;rft.pages=91-127&amp;rft.pub=Oxford+University+Press&amp;rft.date=1999&amp;rft.au=Walter%2C+Scott+A.&amp;rft_id=http%3A%2F%2Fscottwalter.free.fr%2Fpapers%2F1999-symbuniv-walter.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWalter,_Scott_A.2018" class="citation book cs1">Walter, Scott A. (2018). <a rel="nofollow" class="external text" href="https://philpapers.org/rec/WALFOL-2">"Figures of Light in the Early History of Relativity (1905–1914)"</a>. In Rowe D.; Sauer T.; Walter S. (eds.). <i>Beyond Einstein</i>. Einstein Studies. Vol.&#160;14. New York: Birkhäuser. pp.&#160;3–50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4939-7708-6_1">10.1007/978-1-4939-7708-6_1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4939-7708-6" title="Special:BookSources/978-1-4939-7708-6"><bdi>978-1-4939-7708-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31840179">31840179</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Figures+of+Light+in+the+Early+History+of+Relativity+%281905%E2%80%931914%29&amp;rft.btitle=Beyond+Einstein&amp;rft.place=New+York&amp;rft.series=Einstein+Studies&amp;rft.pages=3-50&amp;rft.pub=Birkh%C3%A4user&amp;rft.date=2018&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31840179%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4939-7708-6_1&amp;rft.isbn=978-1-4939-7708-6&amp;rft.au=Walter%2C+Scott+A.&amp;rft_id=https%3A%2F%2Fphilpapers.org%2Frec%2FWALFOL-2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+Lorentz+transformations" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_Lorentz_transformations&amp;action=edit&amp;section=31" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Mathpages: <a rel="nofollow" class="external text" href="http://mathpages.com/rr/s1-04/1-04.htm">1.4 The Relativity of Light</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="History_of_physics_(timeline)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:History_of_physics" title="Template:History of physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:History_of_physics" title="Template talk:History of physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:History_of_physics" title="Special:EditPage/Template:History of physics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="History_of_physics_(timeline)" style="font-size:114%;margin:0 4em"><a href="/wiki/History_of_physics" title="History of physics">History of physics</a> (<a href="/wiki/Timeline_of_fundamental_physics_discoveries" title="Timeline of fundamental physics discoveries">timeline</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Classical_physics" title="Classical physics">Classical physics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_astronomy" title="History of astronomy">Astronomy</a> <ul><li><a href="/wiki/Timeline_of_astronomy" title="Timeline of astronomy">timeline</a></li></ul></li> <li><a href="/wiki/History_of_electromagnetic_theory" title="History of electromagnetic theory">Electromagnetism</a> <ul><li><a href="/wiki/Timeline_of_electromagnetism_and_classical_optics" title="Timeline of electromagnetism and classical optics">timeline</a></li> <li><a href="/wiki/History_of_electrical_engineering" title="History of electrical engineering">Electrical engineering</a></li> <li><a href="/wiki/History_of_Maxwell%27s_equations" title="History of Maxwell&#39;s equations">Maxwell's equations</a></li></ul></li> <li><a href="/wiki/History_of_fluid_mechanics" title="History of fluid mechanics">Fluid mechanics</a> <ul><li><a href="/wiki/Timeline_of_fluid_and_continuum_mechanics" title="Timeline of fluid and continuum mechanics">timeline</a></li> <li><a href="/wiki/History_of_aerodynamics" title="History of aerodynamics">Aerodynamics</a></li></ul></li> <li><a href="/wiki/History_of_classical_field_theory" title="History of classical field theory">Field theory</a></li> <li><a href="/wiki/History_of_gravitational_theory" title="History of gravitational theory">Gravitational theory</a> <ul><li><a href="/wiki/Timeline_of_gravitational_physics_and_relativity" title="Timeline of gravitational physics and relativity">timeline</a></li></ul></li> <li><a href="/wiki/History_of_materials_science" title="History of materials science">Material science</a> <ul><li><a href="/wiki/Timeline_of_materials_technology" title="Timeline of materials technology">timeline</a></li> <li><a href="/wiki/History_of_metamaterials" title="History of metamaterials">Metamaterials</a></li></ul></li> <li><a href="/wiki/History_of_classical_mechanics" title="History of classical mechanics">Mechanics</a> <ul><li><a href="/wiki/Timeline_of_classical_mechanics" title="Timeline of classical mechanics">timeline</a></li> <li><a href="/wiki/History_of_variational_principles_in_physics" title="History of variational principles in physics">Variational principles</a></li></ul></li> <li><a href="/wiki/History_of_optics" title="History of optics">Optics</a> <ul><li><a href="/wiki/History_of_spectroscopy" title="History of spectroscopy">Spectroscopy</a></li></ul></li> <li><a href="/wiki/History_of_thermodynamics" title="History of thermodynamics">Thermodynamics</a> <ul><li><a href="/wiki/Timeline_of_thermodynamics" title="Timeline of thermodynamics">timeline</a></li> <li><a href="/wiki/History_of_energy" title="History of energy">Energy</a></li> <li><a href="/wiki/History_of_entropy" title="History of entropy">Entropy</a></li> <li><a href="/wiki/History_of_perpetual_motion_machines" title="History of perpetual motion machines">Perpetual motion</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Modern_physics" title="Modern physics">Modern physics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Computational physics <ul><li><a href="/wiki/Timeline_of_computational_physics" title="Timeline of computational physics">timeline</a></li></ul></li> <li>Condensed matter <ul><li><a href="/wiki/Timeline_of_condensed_matter_physics" title="Timeline of condensed matter physics">timeline</a></li> <li><a href="/wiki/History_of_superconductivity" title="History of superconductivity">Superconductivity</a></li></ul></li> <li>Cosmology <ul><li><a href="/wiki/Timeline_of_cosmological_theories" title="Timeline of cosmological theories">timeline</a></li> <li><a href="/wiki/History_of_the_Big_Bang_theory" title="History of the Big Bang theory">Big Bang theory</a></li></ul></li> <li><a href="/wiki/History_of_general_relativity" title="History of general relativity">General relativity</a> <ul><li><a href="/wiki/Tests_of_general_relativity" title="Tests of general relativity">tests</a></li></ul></li> <li><a href="/wiki/History_of_geophysics" title="History of geophysics">Geophysics</a></li> <li>Nuclear physics <ul><li><a href="/wiki/Discovery_of_nuclear_fission" title="Discovery of nuclear fission">Fission</a></li> <li><a href="/wiki/History_of_nuclear_fusion" title="History of nuclear fusion">Fusion</a></li> <li><a href="/wiki/History_of_nuclear_power" title="History of nuclear power">Power</a></li> <li><a href="/wiki/History_of_nuclear_weapons" title="History of nuclear weapons">Weapons</a></li></ul></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">Quantum mechanics</a> <ul><li><a href="/wiki/Timeline_of_quantum_mechanics" title="Timeline of quantum mechanics">timeline</a></li> <li><a href="/wiki/History_of_atomic_theory" title="History of atomic theory">Atoms</a></li> <li><a href="/wiki/History_of_molecular_theory" title="History of molecular theory">Molecules</a></li> <li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">Quantum field theory</a></li></ul></li> <li><a href="/wiki/History_of_subatomic_physics" title="History of subatomic physics">Subatomic physics</a> <ul><li><a href="/wiki/Timeline_of_atomic_and_subatomic_physics" title="Timeline of atomic and subatomic physics">timeline</a></li></ul></li> <li><a href="/wiki/History_of_special_relativity" title="History of special relativity">Special relativity</a> <ul><li><a href="/wiki/Timeline_of_special_relativity_and_the_speed_of_light" title="Timeline of special relativity and the speed of light">timeline</a></li> <li><a class="mw-selflink selflink">Lorentz transformations</a></li> <li><a href="/wiki/Tests_of_special_relativity" title="Tests of special relativity">tests</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Recent developments</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Quantum information <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">timeline</a></li></ul></li> <li><a href="/wiki/History_of_loop_quantum_gravity" title="History of loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/History_of_nanotechnology" title="History of nanotechnology">Nanotechnology</a></li> <li><a href="/wiki/History_of_string_theory" title="History of string theory">String theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">On specific discoveries</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Discovery_of_cosmic_microwave_background_radiation" title="Discovery of cosmic microwave background radiation">Cosmic microwave background</a></li> <li><a href="/wiki/Discovery_of_graphene" title="Discovery of graphene">Graphene</a></li> <li><a href="/wiki/First_observation_of_gravitational_waves" title="First observation of gravitational waves">Gravitational waves</a></li> <li>Subatomic particles <ul><li><a href="/wiki/Timeline_of_particle_discoveries" title="Timeline of particle discoveries">timeline</a></li> <li><a href="/wiki/Search_for_the_Higgs_boson" title="Search for the Higgs boson">Higgs boson</a></li> <li><a href="/wiki/Discovery_of_the_neutron" title="Discovery of the neutron">Neutron</a></li></ul></li> <li><a href="/wiki/R%C3%B8mer%27s_determination_of_the_speed_of_light" title="Rømer&#39;s determination of the speed of light">Speed of light</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By periods</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Copernican_Revolution" title="Copernican Revolution">Copernican Revolution</a></li> <li><a href="/wiki/Golden_age_of_physics" title="Golden age of physics">Golden age of physics</a></li> <li><a href="/wiki/Golden_age_of_cosmology" title="Golden age of cosmology">Golden age of cosmology</a></li> <li><a href="/wiki/Physics_in_the_medieval_Islamic_world" title="Physics in the medieval Islamic world">Medieval Islamic world</a> <ul><li><a href="/wiki/Astronomy_in_the_medieval_Islamic_world" title="Astronomy in the medieval Islamic world">Astronomy</a></li></ul></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">Noisy intermediate-scale quantum era</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By groups</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Harvard_Computers" title="Harvard Computers">Harvard Computers</a></li> <li><a href="/wiki/The_Martians_(scientists)" title="The Martians (scientists)">The Martians</a></li> <li><a href="/wiki/Oxford_Calculators" title="Oxford Calculators">Oxford Calculators</a></li> <li><a href="/wiki/Via_Panisperna_boys" title="Via Panisperna boys">Via Panisperna boys</a></li> <li><a href="/wiki/Women_in_physics" title="Women in physics">Women in physics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scientific disputes</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bohr%E2%80%93Einstein_debates" title="Bohr–Einstein debates">Bohr–Einstein</a></li> <li><a href="/wiki/Chandrasekhar%E2%80%93Eddington_dispute" title="Chandrasekhar–Eddington dispute">Chandrasekhar–Eddington</a></li> <li><a href="/wiki/Galileo_affair" title="Galileo affair">Galileo affair</a></li> <li><a href="/wiki/Leibniz%E2%80%93Newton_calculus_controversy" title="Leibniz–Newton calculus controversy">Leibniz–Newton</a></li> <li><a href="/wiki/Mechanical_equivalent_of_heat" title="Mechanical equivalent of heat">Joule–von Mayer</a></li> <li><a href="/wiki/Great_Debate_(astronomy)" title="Great Debate (astronomy)">Shapley–Curtis</a></li> <li>Relativity priority <ul><li><a href="/wiki/Relativity_priority_dispute" title="Relativity priority dispute">Special relativity</a></li> <li><a href="/wiki/General_relativity_priority_dispute" title="General relativity priority dispute">General relativity</a></li></ul></li> <li><a href="/wiki/Transfermium_Wars" title="Transfermium Wars">Transfermium Wars</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:History_of_physics" title="Category:History of physics">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.eqiad.main‐7bc4c76c74‐dgh44 Cached time: 20241120160017 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.263 seconds Real time usage: 1.568 seconds Preprocessor visited node count: 6663/1000000 Post‐expand include size: 272386/2097152 bytes Template argument size: 18841/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 307913/5000000 bytes Lua time usage: 0.819/10.000 seconds Lua memory usage: 14676946/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1181.381 1 -total 22.72% 268.356 33 Template:Cite_book 17.24% 203.725 43 Template:Citation 16.68% 197.106 41 Template:Cite_journal 14.82% 175.097 1 Template:Langx 10.23% 120.896 1 Template:History_of_physics 7.89% 93.195 1 Template:Navbox 3.62% 42.748 29 Template:Anchor 3.26% 38.474 2 Template:Wikiversity_inline 3.18% 37.610 2 Template:Reflist --> <!-- Saved in parser cache with key enwiki:pcache:idhash:7058047-0!canonical and timestamp 20241120160017 and revision id 1254912472. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=History_of_Lorentz_transformations&amp;oldid=1254912472">https://en.wikipedia.org/w/index.php?title=History_of_Lorentz_transformations&amp;oldid=1254912472</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Equations" title="Category:Equations">Equations</a></li><li><a href="/wiki/Category:History_of_physics" title="Category:History of physics">History of physics</a></li><li><a href="/wiki/Category:Hendrik_Lorentz" title="Category:Hendrik Lorentz">Hendrik Lorentz</a></li><li><a href="/wiki/Category:Historical_treatment_of_quaternions" title="Category:Historical treatment of quaternions">Historical treatment of quaternions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_containing_German-language_text" title="Category:Articles containing German-language text">Articles containing German-language text</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_maint:_DOI_inactive_as_of_November_2024" title="Category:CS1 maint: DOI inactive as of November 2024">CS1 maint: DOI inactive as of November 2024</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 2 November 2024, at 08:27<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=History_of_Lorentz_transformations&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-z2b79","wgBackendResponseTime":154,"wgPageParseReport":{"limitreport":{"cputime":"1.263","walltime":"1.568","ppvisitednodes":{"value":6663,"limit":1000000},"postexpandincludesize":{"value":272386,"limit":2097152},"templateargumentsize":{"value":18841,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":307913,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1181.381 1 -total"," 22.72% 268.356 33 Template:Cite_book"," 17.24% 203.725 43 Template:Citation"," 16.68% 197.106 41 Template:Cite_journal"," 14.82% 175.097 1 Template:Langx"," 10.23% 120.896 1 Template:History_of_physics"," 7.89% 93.195 1 Template:Navbox"," 3.62% 42.748 29 Template:Anchor"," 3.26% 38.474 2 Template:Wikiversity_inline"," 3.18% 37.610 2 Template:Reflist"]},"scribunto":{"limitreport-timeusage":{"value":"0.819","limit":"10.000"},"limitreport-memusage":{"value":14676946,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.eqiad.main-7bc4c76c74-dgh44","timestamp":"20241120160017","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"History of Lorentz transformations","url":"https:\/\/en.wikipedia.org\/wiki\/History_of_Lorentz_transformations","sameAs":"http:\/\/www.wikidata.org\/entity\/Q176851","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q176851","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-09-19T07:52:38Z","dateModified":"2024-11-02T08:27:04Z","headline":"aspect of history"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10