CINXE.COM

Search results for: Pr doped ZnO

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Pr doped ZnO</title> <meta name="description" content="Search results for: Pr doped ZnO"> <meta name="keywords" content="Pr doped ZnO"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Pr doped ZnO" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Pr doped ZnO"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 555</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Pr doped ZnO</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Magnetization Studies and Vortex Phase Diagram of Oxygenated YBa₂Cu₃₋ₓAlₓO₆₊δ Single Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashna%20Babu">Ashna Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepshikha%20Jaiswal%20Nagar"> Deepshikha Jaiswal Nagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cuprate high-temperature superconductors (HTSCs) have been immensely studied during the past few decades because of their structure which is described as a superlattice of superconducting CuO₂ layers. In particular, YBa₂Cu₃O₆₊δ (YBCO), with its critical temperature of 93 K, has received the most attention due to its well-defined metal stoichiometry and variable oxygen content that determines the carrier doping level. Substitution of metal ions at the Cu site is known to increase the critical current density without destroying superconductivity in YBCO. The construction of vortex phase diagrams is very important for such doped YBCO materials both from a fundamental perspective as well as from a technological perspective. By measuring field-dependent magnetization on annealed single crystals of Al-doped YBCO, YBa₂Cu₃₋ₓAlₓO₆₊δ (Al-YBCO), we were able to observe a second magnetization peak anomaly (SMP) in a very large part of the phase diagram. We were also able to observe the SMP anomaly in temperature-dependent magnetization measurements, the first observation to our knowledge. Critical current densities were calculated using Bean’s critical state model, flux jumps associated with symmetry reorientation of vortex lattice were studied, the oxygen cluster distribution was also analysed, and by incorporating all observations, we made a vortex phase diagram for oxygenated Al-YBCO single crystal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxygen%20deficient%20clusters" title="oxygen deficient clusters">oxygen deficient clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20magnetization%20peak%20anomaly" title=" second magnetization peak anomaly"> second magnetization peak anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20jumps" title=" flux jumps"> flux jumps</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20phase%20diagram" title=" vortex phase diagram"> vortex phase diagram</a> </p> <a href="https://publications.waset.org/abstracts/160710/magnetization-studies-and-vortex-phase-diagram-of-oxygenated-yba2cu3alo6d-single-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Effect of Sr-Doping on Multiferroic Properties of Ca₁₋ₓSrₓMn₇O₁₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parul%20Jain">Parul Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Saha"> Jitendra Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Gupta"> L. C. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyabrata%20Patnaik"> Satyabrata Patnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20K.%20Ganguli"> Ashok K. Ganguli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnamala%20Chatterjee"> Ratnamala Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study shows how sensitively and drastically multiferroic properties of CaMn₇O₁₂ get modified by isovalent Sr-doping, namely, in Ca₁₋ₓSrₓMn₇O₁₂ for x as small as 0.01 and 0.02. CaMn₇O₁₂ is a type-II multiferroic, wherein polarization is caused by magnetic spin ordering. In this report magnetic and ferroelectric properties of Ca₁₋ₓSrₓMn₇O₁₂ (0 ≤ x ≤ 0.1) are investigated. Samples were prepared by wet sol gel technique using their respective nitrates; powders thus obtained were calcined and sintered in optimized conditions. The X-ray diffraction patterns of all samples doped with Sr concentrations in the range (0 ≤ x ≤ 10%) were found to be free from secondary phases. Magnetization versus temperature and magnetization versus field measurements were carried out using Quantum Design SQUID magnetometer. Pyroelectric current measurements were done for finding the polarization in the samples. Findings of the measurements are: (i) increase of Sr-doping in CaMn₇O₁₂ lattice i.e. for x ≤ 0.02, increases the polarization, whereas decreases the magnetization and the coercivity of the samples; (ii) the material with x = 0.02 exhibits ferroelectric polarization Ps which is more than double the Ps in the un-doped material and the magnetization M is reduced to less than half of that of the pure material; remarkably (iii) the modifications in Ps and M are reversed as x increases beyond x = 0.02 and for x = 0.10, Ps is reduced even below that for the pure sample; (iv) there is no visible change of the two magnetic transitions TN1 (90 K) and TN2 (48 K) of the pure material as a function of x. The strong simultaneous variations of Ps and M for x = 0.02 strongly suggest that either a basic modification of the magnetic structure of the material or a significant change of the coupling of P and M or possibly both. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferroelectric" title="ferroelectric">ferroelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=isovalent" title=" isovalent"> isovalent</a>, <a href="https://publications.waset.org/abstracts/search?q=multiferroic" title=" multiferroic"> multiferroic</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroelectric" title=" pyroelectric"> pyroelectric</a> </p> <a href="https://publications.waset.org/abstracts/52624/effect-of-sr-doping-on-multiferroic-properties-of-ca1srmn7o12" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feleke%20Terefe%20Fanta">Feleke Terefe Fanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title="waste water">waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20doped%20zeolite%20x" title=" copper doped zeolite x"> copper doped zeolite x</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20heavy%20metal" title=" adsorption heavy metal"> adsorption heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection" title=" disinfection"> disinfection</a> </p> <a href="https://publications.waset.org/abstracts/168687/design-and-synthesis-of-copper-doped-zeolite-composite-for-antimicrobial-activity-and-heavy-metal-removal-from-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Structural, Magnetic, Dielectric and Electrical Properties of Gd3+ Doped Cobalt Ferrite Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghvendra%20Singh%20Yadav">Raghvendra Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Ku%C5%99itka"> Ivo Kuřitka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarmila%20Vilcakova"> Jarmila Vilcakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaromir%20Havlica"> Jaromir Havlica</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Kalina"> Lukas Kalina</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Urb%C3%A1nek"> Pavel Urbánek</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Machovsky"> Michal Machovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Masa%C5%99"> Milan Masař</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Holek"> Martin Holek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, CoFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles are synthesized by sonochemical method. The structural properties and cation distribution are investigated using X-ray Diffraction (XRD), Raman Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray photoelectron spectroscopy. The morphology and elemental analysis are screened using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. The particle size measured by FE-SEM and XRD analysis confirm the formation of nanoparticles in the range of 7-10 nm. The electrical properties show that the Gd³⁺ doped cobalt ferrite (CoFe₂₋ₓGdₓO₄; x= 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.17 x 10⁻⁹ S/cm at 100 Hz). The complex impedance measurement study reveals that as Gd³⁺ doping concentration increases, the impedance Z’ and Z’ ’ decreases. The influence of Gd³⁺ doping in cobalt ferrite nanoparticles on the magnetic property is examined by using vibrating sample magnetometer. Magnetic property measurement reveal that the coercivity decreases with Gd³⁺ substitution from 234.32 Oe (x=0.00) to 12.60 Oe (x=0.05) and further increases from 12.60 Oe (x=0.05) to 68.62 Oe (x=0.20). The saturation magnetization decreases with Gd³⁺ substitution from 40.19 emu/g (x=0.00) to 21.58 emu/g (x=0.20). This decrease follows the three-sublattice model suggested by Yafet-Kittel (Y-K). The Y-K angle increases with the increase of Gd³⁺ doping in cobalt ferrite nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sonochemical%20method" title="sonochemical method">sonochemical method</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20property" title=" magnetic property"> magnetic property</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20property" title=" dielectric property"> dielectric property</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20property" title=" electrical property"> electrical property</a> </p> <a href="https://publications.waset.org/abstracts/67358/structural-magnetic-dielectric-and-electrical-properties-of-gd3-doped-cobalt-ferrite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> Selective Synthesis of Pyrrolic Nitrogen-Doped Carbon Nanotubes Its Physicochemical Properties and Application as Pd Nanoparticles Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Ombaka">L. M. Ombaka</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Oosthuizen"> R. S. Oosthuizen</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20G.%20Ndungu"> P. G. Ndungu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20O.%20Nyamori"> V. O. Nyamori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the role of nitrogen species on the catalytic properties of nitrogen-doped carbon nanotubes (N-CNTs) as catalysts supports is critical as nitrogen species influence the support’s properties. To evaluate the influence of pyrrolic nitrogen on the physicochemical properties and catalytic activity of N-CNTs supported Pd (Pd/N-CNTs); N-CNTs containing varying pyrrolic contents were synthesized. The catalysts were characterised by the use of transmission electron microscope (TEM), scanning electron microscope, X-ray photoelectron spectroscopy (XPS), X-ray diffraction, Fourier transform infrared spectroscopy, and temperature programmed reduction. TEM analysis showed that the Pd nanoparticles were mainly located along the defect sites on N-CNTs. XPS analysis revealed that the abundance of Pd0 decreased while that of Pd2+ increased as the quantity of pyrrolic nitrogen increased. The increase of Pd2+ species was accredited to the formation of stable Pd-N coordination complexes which prevented further reduction of Pd2+ to Pd0 during synthesis. The formed Pd-N complexes increased the stability and dispersion of Pd2+ nanoparticles. The selective hydrogenation of nitrobenzophenone to aminobenzophenone over Pd/N-CNTs was compared to that of Pd on carbon nanotubes (Pd/CNTs). Pd/N-CNTs showed a higher catalytic activity and selectivity compared with Pd/CNTs. Pyrrolic nitrogen functional groups significantly promoted the selectivity towards aminobenzophenone formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrrolic%20N-CNTs" title="pyrrolic N-CNTs">pyrrolic N-CNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions" title=" hydrogenation reactions"> hydrogenation reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapour%20deposition%20technique" title=" chemical vapour deposition technique "> chemical vapour deposition technique </a> </p> <a href="https://publications.waset.org/abstracts/19568/selective-synthesis-of-pyrrolic-nitrogen-doped-carbon-nanotubes-its-physicochemical-properties-and-application-as-pd-nanoparticles-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Effect of Nanoscale Bismuth Oxide on Radiation Shielding and Interaction Characteristics of Polyvinyl Alcohol-Based Polymer for Medical Apron Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Echeweozo">E. O. Echeweozo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated radiation shielding and interaction characteristics of polyvinyl alcohol (PVA) polymer separately doped with 10% and 20% nanoscale Bi₂O₃, respectively, for medical apron design and shielding special electronic installations. Prepared samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The EDS results showed that Carbon (C), Oxygen (O), and bismuth (Bi) elements were the predominant elements present in the prepared samples. The SEM result displaced surface irregularities due to a special bonding matrix between PVA and Bi₂O₃. Mass attenuation coefficient (MAC), effective atomic number (Zeff), Half value layer (HVL), Mean free path (MFP), Fast neutron removal cross-section (R), Total Mass Stopping Power (TSP), and photon Range (R) of the prepared polymer composites (PV-1Bi and PV-2Bi) were evaluated with XCOM and PHITS computer programs. Results showed that the MAC of the prepared polymer samples was significantly higher than some recently developed composites at 0.662MeV and 1.25MeV gamma energy. Therefore, polyvinyl alcohol (PVA) polymer doped with Bi₂O₃ should be deployed in medical apron design and shielding special electronic installations where flexibility and high adhesion ability are crucial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20alcohol%20%28PVA%29%3B" title="polyvinyl alcohol (PVA);">polyvinyl alcohol (PVA);</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite" title=" polymer composite"> polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-rays" title=" gamma-rays"> gamma-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20particles" title=" charged particles"> charged particles</a> </p> <a href="https://publications.waset.org/abstracts/191024/effect-of-nanoscale-bismuth-oxide-on-radiation-shielding-and-interaction-characteristics-of-polyvinyl-alcohol-based-polymer-for-medical-apron-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Ultrathin Tin-Silicalite 1 Zeolite Membrane in Ester Solvent Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Liang%20Ang">Kun Liang Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Toon%20Saw"> Eng Toon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20He"> Wei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuecheng%20Dong"> Xuecheng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ester solvents are widely used in pharmaceutical, printing and flavor industry due to their good miscibility, low toxicity, and high volatility. Through pervaporation, these ester solvents can be recovered from industrial wastewater. While metal-doped silicalite 1 zeolite membranes are commonly used in organic solvent recovery in the pervaporation process, these ceramic membranes suffer from low membrane permeation flux, mainly due to the high thickness of the metal-doped zeolite membrane. Herein, a simple method of fabricating an ultrathin tin-silicalite 1 membrane supported on alumina tube is reported. This ultrathin membrane is able to achieve high permeation flux and separation factor for an ester in a diluted aqueous solution. Nanosized tin-Silicalite 1 seeds which are smaller than 500nm has been formed through hydrothermal synthesis. The sn-Silicalite 1 seeds were then seeded onto alumina tube through dip coating, and the tin-Silicalite 1 membrane was then formed by hydrothermal synthesis in an autoclave through secondary growth method. Multiple membrane synthesis factors such as seed size, ceramic substrate surface pore size selection, and secondary growth conditions were studied for their effects on zeolite membrane growth. The microstructure, morphology and the membrane thickness of tin-Silicalite 1 zeolite membrane were examined. The membrane separation performance and stability will also be reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Sn-MFI%20zeolite" title=" Sn-MFI zeolite"> Sn-MFI zeolite</a> </p> <a href="https://publications.waset.org/abstracts/97044/ultrathin-tin-silicalite-1-zeolite-membrane-in-ester-solvent-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Djaaboube">H. Djaaboube</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Loucif"> I. Loucif</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Bouachiba"> Y. Bouachiba</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Aouati"> R. Aouati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maameri"> A. Maameri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Taabouche"> A. Taabouche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouabellou"> A. Bouabellou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barium" title="barium">barium</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/160203/effect-of-barium-doping-on-structural-morphological-optical-and-photocatalytic-properties-of-sprayed-zno-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Flame Spray Pyrolysis as a High-Throughput Method to Generate Gadolinium Doped Titania Nanoparticles for Augmented Radiotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20J.%20Rybak-Smith">Malgorzata J. Rybak-Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedicte%20Thiebaut"> Benedicte Thiebaut</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Johnson"> Simon Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Bishop"> Peter Bishop</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20E.%20Townley"> Helen E. Townley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gadolinium doped titania (TiO2:Gd) nanoparticles (NPs) can be activated by X-ray radiation to generate Reactive Oxygen Species (ROS), which can be effective in killing cancer cells. As such, treatment with these NPs can be used to enhance the efficacy of conventional radiotherapy. Incorporation of the NPs in to tumour tissue will permit the extension of radiotherapy to currently untreatable tumours deep within the body, and also reduce damage to neighbouring healthy cells. In an attempt to find a fast and scalable method for the synthesis of the TiO2:Gd NPs, the use of Flame Spray Pyrolysis (FSP) was investigated. A series of TiO2 NPs were generated with 1, 2, 5 and 7 mol% gadolinium dopant. Post-synthesis, the TiO2:Gd NPs were silica-coated to improve their biocompatibility. Physico-chemical characterisation was used to determine the size and stability in aqueous suspensions of the NPs. All analysed TiO2:Gd NPs were shown to have relatively high photocatalytic activity. Furthermore, the FSP synthesized silica-coated TiO2:Gd NPs generated enhanced ROS in chemico. Studies on rhabdomyosarcoma (RMS) cell lines (RD & RH30) demonstrated that in the absence of irradiation all TiO2:Gd NPs were inert. However, application of TiO2:Gd NPs to RMS cells, followed by irradiation, showed a significant decrease in cell proliferation. Consequently, our studies showed that the X-ray-activatable TiO2:Gd NPs can be prepared by a high-throughput scalable technique to provide a novel and affordable anticancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium" title=" gadolinium"> gadolinium</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=titania%20nanoparticles" title=" titania nanoparticles"> titania nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a> </p> <a href="https://publications.waset.org/abstracts/7506/flame-spray-pyrolysis-as-a-high-throughput-method-to-generate-gadolinium-doped-titania-nanoparticles-for-augmented-radiotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Hybrid Sol-Gel Coatings for Corrosion Protection of AA6111-T4 Aluminium Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shadatul%20Hanom%20Rashid">Shadatul Hanom Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaorong%20Zhou"> Xiaorong Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid sol-gel coatings are the blend of both advantages of inorganic and organic networks have been reported as environmentally friendly anti-corrosion surface pre-treatment for several metals, including aluminum alloys. In this current study, Si-Zr hybrid sol-gel coatings were synthesized from (3-glycidoxypropyl)trimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and zirconium(IV) propoxide (TPOZ) precursors and applied on AA6111 aluminum alloy by dip coating technique. The hybrid sol-gel coatings doped with different concentrations of cerium nitrate (Ce(NO3)3) as a corrosion inhibitor were also prepared and the effect of Ce(NO3)3 concentrations on the morphology and corrosion resistance of the coatings were examined. The surface chemistry and morphology of the hybrid sol-gel coatings were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of the coated aluminum alloy samples was evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that good corrosion resistance of hybrid sol-gel coatings were prepared from hydrolysis and condensation reactions of GPTMS, TEOS and TPOZ precursors deposited on AA6111 aluminum alloy. When the coating doped with cerium nitrate, the properties were improved significantly. The hybrid sol-gel coatings containing lower concentration of cerium nitrate offer the best inhibition performance. A proper doping concentration of Ce(NO3)3 can effectively improve the corrosion resistance of the alloy, while an excessive concentration of Ce(NO3)3 would reduce the corrosion protection properties, which is associated with defective morphology and instability of the sol-gel coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA6111" title="AA6111">AA6111</a>, <a href="https://publications.waset.org/abstracts/search?q=Ce%28NO3%293" title=" Ce(NO3)3"> Ce(NO3)3</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20sol-gel%20coatings" title=" hybrid sol-gel coatings"> hybrid sol-gel coatings</a> </p> <a href="https://publications.waset.org/abstracts/86720/hybrid-sol-gel-coatings-for-corrosion-protection-of-aa6111-t4-aluminium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> Influence of Nitrogen Doping on the Catalytic Activity of Ni-Incorporated Carbon Nanofibers for Alkaline Direct Methanol Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20El-Newehy">Mohamed H. El-Newehy</a>, <a href="https://publications.waset.org/abstracts/search?q=Badr%20M.%20Thamer"> Badr M. Thamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20M.%20Barakat"> Nasser A. M. Barakat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.Abdelkareem"> Mohammad A.Abdelkareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20S.%20Al-Deyab"> Salem S. Al-Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak%20Y.%20Kim"> Hak Y. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the influence of nitrogen doping on the electrocatalytic activity of carbon nanofibers with nickel nanoparticles toward methanol oxidation is introduced. The modified carbon nanofibers have been synthesized from calcination of electrospun nanofiber mats composed of nickel acetate tetrahydrate, poly(vinyl alcohol) and urea in argon atmosphere at 750oC. The utilized physicochemical characterizations indicated that the proposed strategy leads to form carbon nanofibers having nickel nanoparticles and doped by nitrogen. Moreover, due to the high-applied voltage during the electrospinning process, the utilized urea chemically bonds with the polymer matrix, which leads to form nitrogen-doped CNFs after the calcination process. Investigation of the electrocatalytic activity indicated that nitrogen doping NiCNFs strongly enhances the oxidation process of methanol as the current density increases from 52.5 to 198.5 mA/cm2 when the urea content in the original electrospun solution was 4 wt% urea. Moreover, the nanofibrous morphology exhibits distinct impact on the electrocatalytic activity. Also, nitrogen-doping enhanced the stability of the introduced Ni-based electrocatalyst. Overall, the present study introduces effective and simple strategy to modify the electrocatalytic activity of the nickel-based materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20electrooxidation" title=" methanol electrooxidation"> methanol electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen-doping" title=" nitrogen-doping"> nitrogen-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/16999/influence-of-nitrogen-doping-on-the-catalytic-activity-of-ni-incorporated-carbon-nanofibers-for-alkaline-direct-methanol-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthika%20Chandran">Karthika Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulkit%20Prakash"> Pulkit Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitabh%20Das"> Amitabh Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20P.%20N."> Santhosh P. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20powder%20diffraction" title="neutron powder diffraction">neutron powder diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20orthoferrites" title=" rare earth orthoferrites"> rare earth orthoferrites</a>, <a href="https://publications.waset.org/abstracts/search?q=Rietveld%20analysis" title=" Rietveld analysis"> Rietveld analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20reorientation" title=" spin reorientation"> spin reorientation</a> </p> <a href="https://publications.waset.org/abstracts/105883/magnetic-structure-and-transitions-in-45-mn-substituted-hofeo3-a-neutron-diffraction-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> A Comparative Study on the Synthesis, Characterizations and Biological (Antibacterial and Antifungal) Activities of Zinc Doped Silica Oxide Nanoparticles Based on Various Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad">Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Hussain%20Bhatti"> Ghulam Hussain Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qayyum"> Abdul Qayyum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc-doped silica oxide nanoparticles having size 7.93nm were synthesized by the deposition precipitation method by using different solvents (acetonitrile, n-hexane, isoamylalchol). Biological potential such as antibacterial activities against Bacillussubtilusand Escherichia coli, and antifungal activities against Candida parapsilosis and Aspergilusniger were also investigated by Disc diffusion method. Different characterizations techniques including Fournier Transmission Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermo-gravimeteric Analysis (TGA), Atomic forced microscopy (AFM), and Dynamic Light Scattering (DLS) were used. FT-IR characterization confirmed the presence of metal oxide bond (SiO2) while XRD showed the hexagonal structure. SEM and TEM characterization showed the morphology of nanoparticles. AFM study showed good particle size distribution as depicted by a histogram. DLS study showed the gradual decease in the size of nanoparticles from 24.86nm to 13.24 nm. Highest antibacterial activities revealed by acetonitrile solvents (6%and 4.5%) followed by isoamylalchol (3% and 2.4%) while n-hexane solvent showed the lowest activity (2%and 1%) respectively. Higher antifungal activities exhibited by n-hexane (0.34 % and 0.43%) followed by isoamylalchol (0.27% and 0.19%) solvent while acetonitrile (0.21% and 0.17%) showed least activity respectively. Statistical analysis by using one-way ANOVA also indicated the significant results of both biological activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20methods" title=" precipitation methods"> precipitation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=characterizations" title=" characterizations"> characterizations</a> </p> <a href="https://publications.waset.org/abstracts/73323/a-comparative-study-on-the-synthesis-characterizations-and-biological-antibacterial-and-antifungal-activities-of-zinc-doped-silica-oxide-nanoparticles-based-on-various-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20N.%20Pammi">S. V. N. Pammi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Gil%20Yoon"> Soon-Gil Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perovskite%20thin%20films" title="perovskite thin films">perovskite thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a> </p> <a href="https://publications.waset.org/abstracts/60232/fabrication-of-pure-and-doped-mapbi3-thin-films-by-one-step-chemical-vapor-deposition-method-for-energy-harvesting-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">301</span> Proposed Design of an Optimized Transient Cavity Picosecond Ultraviolet Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marilou%20Cadatal-Raduban">Marilou Cadatal-Raduban</a>, <a href="https://publications.waset.org/abstracts/search?q=Minh%20Hong%20Pham"> Minh Hong Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Duong%20Van%20Pham"> Duong Van Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%20Nguyen%20Xuan"> Tu Nguyen Xuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mui%20Viet%20Luong"> Mui Viet Luong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Yamanoi"> Kohei Yamanoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshihiko%20Shimizu"> Toshihiko Shimizu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuhiko%20Sarukura"> Nobuhiko Sarukura</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Dai%20Nguyen"> Hung Dai Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a great deal of interest in developing all-solid-state tunable ultrashort pulsed lasers emitting in the ultraviolet (UV) region for applications such as micromachining, investigation of charge carrier relaxation in conductors, and probing of ultrafast chemical processes. However, direct short-pulse generation is not as straight forward in solid-state gain media as it is for near-IR tunable solid-state lasers such as Ti:sapphire due to the difficulty of obtaining continuous wave laser operation, which is required for Kerr lens mode-locking schemes utilizing spatial or temporal Kerr type nonlinearity. In this work, the transient cavity method, which was reported to generate ultrashort laser pulses in dye lasers, is extended to a solid-state gain medium. Ce:LiCAF was chosen among the rare-earth-doped fluoride laser crystals emitting in the UV region because of its broad tunability (from 280 to 325 nm) and enough bandwidth to generate 3-fs pulses, sufficiently large effective gain cross section (6.0 x10⁻¹⁸ cm²) favorable for oscillators, and a high saturation fluence (115 mJ/cm²). Numerical simulations are performed to investigate the spectro-temporal evolution of the broadband UV laser emission from Ce:LiCAF, represented as a system of two homogeneous broadened singlet states, by solving the rate equations extended to multiple wavelengths. The goal is to find the appropriate cavity length and Q-factor to achieve the optimal photon cavity decay time and pumping energy for resonator transients that will lead to ps UV laser emission from a Ce:LiCAF crystal pumped by the fourth harmonics (266nm) of a Nd:YAG laser. Results show that a single ps pulse can be generated from a 1-mm, 1 mol% Ce³⁺-doped LiCAF crystal using an output coupler with 10% reflectivity (low-Q) and an oscillator cavity that is 2-mm long (short cavity). This technique can be extended to other fluoride-based solid-state laser gain media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare-earth-doped%20fluoride%20gain%20medium" title="rare-earth-doped fluoride gain medium">rare-earth-doped fluoride gain medium</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20cavity" title=" transient cavity"> transient cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrashort%20laser" title=" ultrashort laser"> ultrashort laser</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20laser" title=" ultraviolet laser"> ultraviolet laser</a> </p> <a href="https://publications.waset.org/abstracts/71437/proposed-design-of-an-optimized-transient-cavity-picosecond-ultraviolet-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">300</span> Apatite-Forming Ability of Doped-Ceria Coatings for Orthopedic Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayda%20Khosravanihaghighi">Ayda Khosravanihaghighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramod%20%20Koshy"> Pramod Koshy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bill%20Walsh"> Bill Walsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vedran%20Lovric"> Vedran Lovric</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Christopher%20Sorrell"> Charles Christopher Sorrell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing demand for orthopedic implants owing to the increasing numbers of the aging population. Titanium alloy (Ti6Al4V) is a common material used for orthopedic implants owing to its advantageous properties in terms of good corrosion resistance, minimal elastic modulus mismatch with bone, bio-inertness, and high mechanical strength. However, it is important to improve the bioactivity and osseointegration of the titanium alloy and this can be achieved by coating the implant surface with suitable ceramic materials. In the present work, pure and doped-ceria (CeO₂) coatings were deposited by spin coating on the titanium alloy surface in order to enhance the biological interactions between the surface of the implant and the surrounding tissue. In order to examine the bone-binding ability of an implant, simulated body fluid (SBF) tests were conducted in order to assess the capability of apatite layer formation on the surface and thus predict in vivo bone bioactivity. Characterization was done using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses to determine the extent of apatite formation. Preliminary tests showed that the CeO₂ coatings were biocompatible and that the extent of apatite formation and its characteristics can be enhanced by doping with suitable metal ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite%20layer" title="apatite layer">apatite layer</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=ceria" title=" ceria"> ceria</a>, <a href="https://publications.waset.org/abstracts/search?q=orthopaedic%20implant" title=" orthopaedic implant"> orthopaedic implant</a>, <a href="https://publications.waset.org/abstracts/search?q=SBF" title=" SBF"> SBF</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coater" title=" spin coater"> spin coater</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-implant" title=" Ti-implant"> Ti-implant</a> </p> <a href="https://publications.waset.org/abstracts/106523/apatite-forming-ability-of-doped-ceria-coatings-for-orthopedic-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">299</span> The Effect of Substrate Temperature on the Structural, Optical, and Electrical of Nano-Crystalline Tin Doped-Cadmium Telluride Thin Films for Photovoltaic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Alghamdi">Eman A. Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Aldhafiri"> A. M. Aldhafiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It was found that the induce an isolated dopant close to the middle of the bandgap by occupying the Cd position in the CdTe lattice structure is an efficient factor in reducing the nonradiative recombination rate and increasing the solar efficiency. According to our laboratory results, this work has been carried out to obtain the effect of substrate temperature on the CdTe0.6Sn0.4 prepared by thermal evaporation technique for photovoltaic application. Various substrate temperature (25°C, 100°C, 150°C, 200°C, 250°C and 300°C) was applied. Sn-doped CdTe thin films on a glass substrate at a different substrate temperature were made using CdTe and SnTe powders by the thermal evaporation technique. The structural properties of the prepared samples were determined using Raman, x-Ray Diffraction. Spectroscopic ellipsometry and spectrophotometric measurements were conducted to extract the optical constants as a function of substrate temperature. The structural properties of the grown films show hexagonal and cubic mixed structures and phase change has been reported. Scanning electron microscopy (SEM) reviled that a homogenous with a bigger grain size was obtained at 250°C substrate temperature. The conductivity measurements were recorded as a function of substrate temperatures. The open-circuit voltage was improved by controlling the substrate temperature due to the improvement of the fundamental material issues such as recombination and low carrier concentration. All the result was explained and discussed on the biases of the influences of the Sn dopant and the substrate temperature on the structural, optical and photovoltaic characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CdTe" title="CdTe">CdTe</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipsometry" title=" ellipsometry"> ellipsometry</a> </p> <a href="https://publications.waset.org/abstracts/149769/the-effect-of-substrate-temperature-on-the-structural-optical-and-electrical-of-nano-crystalline-tin-doped-cadmium-telluride-thin-films-for-photovoltaic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">298</span> Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Margiani">N. G. Margiani</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20G.%20Kvartskhava"> I. G. Kvartskhava</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Mumladze"> G. A. Mumladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Adamia"> Z. A. Adamia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO<sub>2</sub>)<sub>2</sub> for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi<sub>1.7</sub>Pb<sub>0.3</sub>Sr<sub>2-x</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>y</sub>[Sr(BO<sub>2</sub>)<sub>2</sub>]<sub>x</sub>, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 <sup>o</sup>C for 40 h. The resulting materials were pressed into pellets and annealed at 837 <sup>o</sup>C for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO<sub>2</sub>)<sub>2</sub>-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (&rho;) and transport critical current density (J<sub>c</sub>) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and J<sub>c</sub> studies have shown that the low level Sr(BO<sub>2</sub>)<sub>2 </sub>doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-T<sub>c </sub>phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field J<sub>c</sub> value was observed for this dopant amount (J<sub>c</sub>=340 A/cm<sup>2</sup>), compared to an undoped sample (J<sub>c</sub>=110 A/cm<sup>2</sup>). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-T<sub>c</sub> phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO<sub>2</sub>)<sub>2</sub> dopant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth-based%20superconductor" title="bismuth-based superconductor">bismuth-based superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20current%20density" title=" critical current density"> critical current density</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20formation" title=" phase formation"> phase formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Sr%28BO%E2%82%82%29%E2%82%82%20doping" title=" Sr(BO₂)₂ doping"> Sr(BO₂)₂ doping</a> </p> <a href="https://publications.waset.org/abstracts/89585/influence-of-srbo22-doping-on-superconducting-properties-of-bipb-2223-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">297</span> Photocatalysis with Fe/Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houria%20Rezala">Houria Rezala</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Luis%20Valverde"> Jose Luis Valverde</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaya%20Romero"> Amaya Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandra%20Molinari"> Alessandra Molinari</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Maldotti"> Andrea Maldotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pillared montmorillonite containing iron doped titania (Fe/Ti-PILC) has been prepared from a natural clay. This material has been characterized by X-ray diffraction, nitrogen adsorption, temperature programmed desorption of ammonia, inductively coupled plasma atomic emission spectroscopy, atomic absorption, and diffuse reflectance UV-VIS spectroscopy. The layer structure of Fe/Ti-PILC resulted to be ordered with an insertion of pillars, which caused a slight increase in the basal spacing of the clay. Its specific surface area was about three times larger than that of the parent Na-montmorillonite due principally to the creation of a remarkable microporous network. The doped material was a robust photocatalyst able to oxidize liquid alkyl aromatics to the corresponding carbonylic derivatives, using O2 as the oxidizing species, at mild pressure and temperature conditions. Accumulation of valuable carbonylic derivatives was possible since their over-oxidation to carbon dioxide was negligible. Fe/Ti-PILC was able to discriminate between toluene and cyclohexane in favor of the aromatic compound with an efficiency that is about three times higher than that of titanium pillared clays (Ti-PILC). It is likely that the addition of iron favored the formation of new acid sites able to interact with the aromatic substrate. Iron doping caused a significant TiO2 visible light-induced activity (wavelength > 400 nm) with only minor negative effects on its performance under UV-light irradiation (wavelength > 290 nm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkyl%20aromatics%20oxidation" title="alkyl aromatics oxidation">alkyl aromatics oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title=" heterogeneous photocatalysis"> heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20doping" title=" iron doping"> iron doping</a>, <a href="https://publications.waset.org/abstracts/search?q=pillared%20clays" title=" pillared clays "> pillared clays </a> </p> <a href="https://publications.waset.org/abstracts/28984/photocatalysis-with-feti-pillared-clays-for-the-oxofunctionalization-of-alkylaromatics-by-o2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">296</span> Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ramirez">J. Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maldonado"> A. Maldonado</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20de%20la%20L.%20Olvera"> M. de la L. Olvera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20spray" title=" chemical spray"> chemical spray</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=TCO" title=" TCO"> TCO</a> </p> <a href="https://publications.waset.org/abstracts/26274/influence-of-the-molar-concentration-and-substrate-temperature-on-fluorine-doped-zinc-oxide-thin-films-chemically-sprayed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">295</span> Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nabavi">Samaneh Nabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Shirzad"> Hadi Shirzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Ghoorchian"> Arash Ghoorchian</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Shanesaz"> Maryam Shanesaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Naderi"> Reza Naderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morphine%20detection" title="morphine detection">morphine detection</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=molecularly%20imprinted%20polymer" title=" molecularly imprinted polymer"> molecularly imprinted polymer</a> </p> <a href="https://publications.waset.org/abstracts/28071/fabrication-of-a-new-electrochemical-sensor-based-on-new-nanostructured-molecularly-imprinted-polypyrrole-for-selective-and-sensitive-determination-of-morphine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">294</span> Characteristic of Oxidation Resistant High-Entropy Alloys for Application in Zero-Emission Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20J.%20Nowak">Wojciech J. Nowak</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Maciaszek"> Natalia Maciaszek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Drajewicz"> Marcin Drajewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A constant requirement to reduce greenhouse gas emissions in combination with the desire to increase gas turbine efficiency results in a continuous trend to increase the operating temperature of gas turbines. An increase in operating temperature will result in lower fuel consumption, and a higher combustion temperature will result in lower pollution release. Moreover, there is a strong trend for hydrogen to be used as an alternative and clean fuel. However, using hydrogen or hydrogen-rich fuel results in a higher combustion temperature, as well as an increase in the water vapor content in the exhaust gases. Commonly used Ni-base alloys have their limits. Moreover, the presence of water vapor worsens the oxidation behavior of Ni-based alloys at a high temperature. Therefore, a new brand of materials is demanded to be used in gas turbines operated with hydrogen-rich fuel. High-entropy alloys (HEAs) seem to be very promising materials to replace commonly used Ni-based alloys. HEAs are the group of materials consisting of at least five main equiatomic elements. These alloys can be doped by other elements in amounts less than 5 at. % in total. Thus, in the present study, NiCoCrAlFe-X alloys are studied in terms of oxidation behavior during exposure to dry and wet atmospheres up to 1000 h. NiCoCrAlFe-X alloys are doped with minor alloying elements in amounts ranging from 1-5 at.%. The effect of the chemical composition on oxidation resistance in dry and wet atmospheres will be shown and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloys" title="high entropy alloys">high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20fuel" title=" hydrogen fuel"> hydrogen fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapor" title=" water vapor"> water vapor</a> </p> <a href="https://publications.waset.org/abstracts/186777/characteristic-of-oxidation-resistant-high-entropy-alloys-for-application-in-zero-emission-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">293</span> Effect of Barium Doping on Structural, Morphological, Optical, and Photocatalytic Properties of Sprayed ZnO Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halima%20Djaaboube">Halima Djaaboube</a>, <a href="https://publications.waset.org/abstracts/search?q=Redha%20Aouati"> Redha Aouati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibtissem%20Loucif"> Ibtissem Loucif</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Bouachiba"> Yassine Bouachiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouad%20Chettab"> Mouad Chettab</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Taabouche"> Adel Taabouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Sihem%20Abed"> Sihem Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Ouendadji"> Salima Ouendadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Bouabellou"> Abderrahmane Bouabellou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and therefore the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping, this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barium" title="barium">barium</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO." title=" ZnO."> ZnO.</a> </p> <a href="https://publications.waset.org/abstracts/167927/effect-of-barium-doping-on-structural-morphological-optical-and-photocatalytic-properties-of-sprayed-zno-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">292</span> Photoluminescence and Energy Transfer Studies of Dy3+ Ions Doped Lithium Lead Alumino Borate Glasses for W-LED and Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Deopa">Nisha Deopa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Rao"> A. S. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium Lead Alumino Borate (LiPbAlB) glasses doped with different Dy3+ ions concentration were synthesized to investigate their viability in solid state lighting (SSL) technology by melt quenching techniques. From the absorption spectra, bonding parameters (ð) were investigated to study the nature of bonding between Dy3+ ions and its surrounding ligands. Judd-Ofelt (J-O) intensity parameters (Ω = 2, 4, 6), estimated from the experimental oscillator strengths (fex) of the absorption spectral features were used to evaluate the radiative parameters of different transition levels. From the decay curves, experimental lifetime (τex) were measured and coupled with the radiative lifetime to evaluate the quantum efficiency of the as-prepared glasses. As Dy3+ ions concentration increases, decay profile changes from exponential to non-exponential through energy transfer mechanism (ETM) in turn decreasing experimental lifetime. In order to investigate the nature of ETM, non-exponential decay curves were fitted to Inkuti–Hirayama (I-H) model which further confirms dipole-dipole interaction. Among all the emission transition, 4F9/2  6H15/2 transition (483 nm) is best suitable for lasing potentialities. By exciting titled glasses in n-UV to blue regions, CIE chromaticity coordinates and Correlated Color Temperature (CCT) were calculated to understand their capability in cool white light generation. From the evaluated radiative parameters, CIE co-ordinates, quantum efficiency and confocal images it was observed that glass B (0.5 mol%) is a potential candidate for developing w-LEDs and lasers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title="energy transfer">energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=glasses" title=" glasses"> glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=J-O%20parameters" title=" J-O parameters"> J-O parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/68473/photoluminescence-and-energy-transfer-studies-of-dy3-ions-doped-lithium-lead-alumino-borate-glasses-for-w-led-and-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">291</span> Nickel Substituted Cobalt Ferrites via Ceramic Rout Approach: Exploration of Structural, Optical, Dielectric and Electrochemical Behavior for Pseudo-Capacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talat%20Zeeshan">Talat Zeeshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel doped cobalt ferrites 〖(Co〗_(1-x) Ni_x Fe_2 O_4) has been synthesized with the variation of Ni dopant (x=0.0, 0.25, 0.50, 0.75) by ball milling route at 150 RPM for 3hrs. The impact of nickel on Co ferrites has been investigated by using various approaches of characterization such as XRD (X-Ray diffraction), SEM (Scanning electron microscopy, FTIR (Fourier transform infrared spectroscopy), UV-Vis spectroscopy, LCR meter and CV (Cyclic voltammetry). The cubic structure of the nanoparticles confirmed by the XRD data, the increase in Ni dopant reduces the crystallite size. FTIR spectroscopy has been employed in order to analyze various functional groups. The agglomerated morphology of the particles has been observed by SEM images.. UV-Vis analysis reveals that the optical energy bandgap progressively rises with nickel doping, from 1.50 eV to 2.02 eV. The frequency range of 20 Hz to 20 MHz has been used for dielectric evaluation, where dielectric parameters such as AC conductivity, tan loss, and dielectric constant are examined. When the frequency of the applied AC field rises the AC conductivity increases, while the dielectric constant and tan loss constantly decrease. The pseudocapacitive behavior revealed by the CV curve showed that at high scan rates, specific capacitance values (Cs) are low, whereas at low scan rates, they are high. At the low scan rate of 10 mVs-1, the maximum specific capacitance of 244.4 Fg-1 has been attained at x = 0.75. Nickel doped cobalt ferrites electrodes have incredible electrochemical characteristics that make them a promising option for pseudo capacitor applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20parameters" title="lattice parameters">lattice parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallite%20size" title=" crystallite size"> crystallite size</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20capacitor" title=" pseudo capacitor"> pseudo capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=band%20gap%3A%20magnetic%20material" title=" band gap: magnetic material"> band gap: magnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20band%20gap" title=" energy band gap"> energy band gap</a> </p> <a href="https://publications.waset.org/abstracts/193130/nickel-substituted-cobalt-ferrites-via-ceramic-rout-approach-exploration-of-structural-optical-dielectric-and-electrochemical-behavior-for-pseudo-capacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">290</span> Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ye%20Ling">Ye Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Haihui"> Ruan Haihui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-ion%20hybrid%20supercapacitors" title="Zn-ion hybrid supercapacitors">Zn-ion hybrid supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20absorption%2Fdesorption%20reactions" title=" ion absorption/desorption reactions"> ion absorption/desorption reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20nitride" title=" titanium nitride"> titanium nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolitic%20imidazolate%20framework-8" title=" zeolitic imidazolate framework-8"> zeolitic imidazolate framework-8</a> </p> <a href="https://publications.waset.org/abstracts/186645/titanium-nitride-at-nitrogen-doped-carbon-nanocage-as-high-performance-cathodes-for-aqueous-zn-ion-hybrid-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">289</span> Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudip%20Kumar%20Sinha">Sudip Kumar Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Saptarshi%20Ghosh"> Saptarshi Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title="gas sensor">gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=HRTEM" title=" HRTEM"> HRTEM</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/70893/growth-mechanism-and-sensing-behaviour-of-sn-doped-zno-nanoprisms-prepared-by-thermal-evaporation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">288</span> Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Jelev">V. Jelev</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Petkov"> P. Petkov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Shindov"> P. Shindov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20film" title="metal oxide film">metal oxide film</a>, <a href="https://publications.waset.org/abstracts/search?q=SnO2%20film" title=" SnO2 film"> SnO2 film</a>, <a href="https://publications.waset.org/abstracts/search?q=position%20sensitive%20photodetectors%20%28PSD%29" title=" position sensitive photodetectors (PSD)"> position sensitive photodetectors (PSD)</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20photovoltaic%20effect" title=" lateral photovoltaic effect"> lateral photovoltaic effect</a> </p> <a href="https://publications.waset.org/abstracts/44966/preparation-and-characterization-of-transparent-and-conductive-sno2-thin-films-by-spray-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">287</span> Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feleke%20Terefe%20Fanta">Feleke Terefe Fanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WASTE%20WATER" title="WASTE WATER">WASTE WATER</a>, <a href="https://publications.waset.org/abstracts/search?q=COPPER%20DOPED%20ZEOITE%20X" title=" COPPER DOPED ZEOITE X"> COPPER DOPED ZEOITE X</a>, <a href="https://publications.waset.org/abstracts/search?q=ADSORPITION" title=" ADSORPITION"> ADSORPITION</a>, <a href="https://publications.waset.org/abstracts/search?q=HEAVY%20METAL" title=" HEAVY METAL"> HEAVY METAL</a>, <a href="https://publications.waset.org/abstracts/search?q=DISINFECTION" title=" DISINFECTION"> DISINFECTION</a>, <a href="https://publications.waset.org/abstracts/search?q=AKAKI%20RIVER" title=" AKAKI RIVER"> AKAKI RIVER</a> </p> <a href="https://publications.waset.org/abstracts/179364/design-and-synthesis-of-copper-zeolite-composite-for-antimicrobial-activity-and-heavy-metal-removal-from-waste-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> Thermoluminescence Characteristic of Nanocrystalline BaSO4 Doped with Europium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20S.%20Raheja">Kanika S. Raheja</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandey"> A. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaila%20Bahl"> Shaila Bahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Kumar"> Pratik Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Lochab"> S. P. Lochab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of undertaking for this paper is the study of BaSO4 nanophosphor doped with Europium in which mainly the concentration of the rare earth impurity Eu (0.05, 0.1, 0.2, 0.5, and 1 mol %) has been varied. A comparative study of the thermoluminescence(TL) properties of the given nanophosphor has also been done using a well-known standard dosimetry material i.e. TLD-100.Firstly, a number of samples were prepared successfully by the chemical co-precipitation method. The whole lot was then compared to a well established standard material (TLD-100) for its TL sensitivity property. BaSO4:Eu ( 0.2 mol%) showed the highest sensitivity out of the lot. It was also found that when compared to the standard TLD-100, BaSo4:Eu (0.2mol%) showed surprisingly high sensitivity for a large range of doses. The TL response curve for all prepared samples has also been studied over a wide range of doses i.e 10Gy to 2kGy for gamma radiation. Almost all the samples of BaSO4:Eu showed a remarkable linearity for a broad range of doses, which is a characteristic feature of a fine TL dosimeter. The graph remained linear even beyond 1kGy for gamma radiation. Thus, the given nanophosphor has been successfully optimised for the concentration of the dopant material to achieve its highest TL sensitivity. Further, the comparative study with the standard material revealed that the current optimised sample shows an astonishingly better TL sensitivity and a phenomenal linear response curve for an incredibly wide range of doses for gamma radiation (Co-60) as compared to the standard TLD-100, which makes the current optimised BaSo4:Eu quite promising as an efficient gamma radiation dosimeter. Lastly, the present phosphor has been optimised for its annealing temperature to acquire the best results while also studying its fading and reusability properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title="gamma radiation">gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dosimetry" title=" radiation dosimetry"> radiation dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence "> thermoluminescence </a> </p> <a href="https://publications.waset.org/abstracts/33558/thermoluminescence-characteristic-of-nanocrystalline-baso4-doped-with-europium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=8" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=8">8</a></li> <li class="page-item active"><span class="page-link">9</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=12">12</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Pr%20doped%20ZnO&amp;page=10" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10