CINXE.COM

Search results for: Riemannian manifolds

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Riemannian manifolds</title> <meta name="description" content="Search results for: Riemannian manifolds"> <meta name="keywords" content="Riemannian manifolds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Riemannian manifolds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Riemannian manifolds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Riemannian manifolds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Introduction of Para-Sasaki-Like Riemannian Manifolds and Construction of New Einstein Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mancho%20Manev">Mancho Manev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of almost paracontact Riemannian manifolds (abbr., apcR manifolds) was introduced by I. Sato in 1976 as an analogue of almost contact Riemannian manifolds. The notion of an apcR manifold of type (p,q) was defined by S. Sasaki in 1980, where p and q are respectively the numbers of the multiplicity of the structure eigenvalues 1 and -1. It also has a simple eigenvalue of 0. In our work, we consider (2n+1)-dimensional apcR manifolds of type (n,n), i.e., the paracontact distribution of the studied manifold can be considered as a 2n-dimensional almost paracomplex Riemannian distribution with almost paracomplex structure and structure group O(n) × O(n). The aim of the present study is to introduce a new class of apcR manifolds. Such a manifold is obtained using the construction of a certain Riemannian cone over it, and the resulting manifold is a paraholomorphic paracomplex Riemannian manifold (abbr., phpcR manifold). We call it a para-Sasaki-like Riemannian manifold (abbr., pSlR manifold) and give some explicit examples. We study the structure of pSlR spaces and find that the paracontact form η is closed and each pSlR manifold locally can be considered as a certain product of the real line with a phpcR manifold, which is locally a Riemannian product of two equidimensional Riemannian spaces. We also obtain that the curvature of the pSlR manifolds is completely determined by the curvature of the underlying local phpcR manifold. Moreover, the ξ-directed Ricci curvature is equal to -2n, while in the Sasaki case, it is 2n. Accordingly, the pSlR manifolds can be interpreted as the counterpart of the Sasaki manifolds; the skew-symmetric part of ∇η vanishes, while in the Sasaki case, the symmetric part vanishes. We define a hyperbolic extension of a (complete) phpcR manifold that resembles a certain warped product, and we indicate that it is a (complete) pSlR manifold. In addition, we consider the hyperbolic extension of a phpcR manifold and prove that if the initial manifold is a complete Einstein manifold with negative scalar curvature, then the resulting manifold is a complete Einstein pSlR manifold with negative scalar curvature. In this way, we produce new examples of a complete Einstein Riemannian manifold with negative scalar curvature. Finally, we define and study para contact conformal/homothetic deformations by deriving a subclass that preserves the para-Sasaki-like condition. We then find that if we apply a paracontact homothetic deformation of a pSlR space, we obtain that the Ricci tensor is invariant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=almost%20paracontact%20Riemannian%20manifolds" title="almost paracontact Riemannian manifolds">almost paracontact Riemannian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20manifolds" title=" Einstein manifolds"> Einstein manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=holomorphic%20product%20manifold" title=" holomorphic product manifold"> holomorphic product manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=warped%20product%20manifold" title=" warped product manifold"> warped product manifold</a> </p> <a href="https://publications.waset.org/abstracts/138178/introduction-of-para-sasaki-like-riemannian-manifolds-and-construction-of-new-einstein-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedehsomayeh%20Hosseini">Seyedehsomayeh Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riemannian%20manifolds" title="Riemannian manifolds">Riemannian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=nonsmooth%20optimization" title=" nonsmooth optimization"> nonsmooth optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20semicontinuous%20functions" title=" lower semicontinuous functions"> lower semicontinuous functions</a>, <a href="https://publications.waset.org/abstracts/search?q=subdifferential" title=" subdifferential"> subdifferential</a> </p> <a href="https://publications.waset.org/abstracts/35809/second-order-optimality-conditions-in-nonsmooth-analysis-on-riemannian-manifolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> [Keynote Talk]: Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20Wu">Lina Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Li"> Ye Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Liu"> Jia Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the <em>q</em>-energy for a function from finite in <em>L<sup>q</sup></em> space to infinite in non-<em>L<sup>q</sup></em> space by applying <em>p</em>-balanced technique where <em>q</em> = <em>p</em> = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The <em>p</em>-balanced technique in this algorithm provides a clue to success on the road of <em>q</em>-energy extension from finite to infinite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20forms" title="differential forms">differential forms</a>, <a href="https://publications.waset.org/abstracts/search?q=holder%20inequality" title=" holder inequality"> holder inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=Liouville-type%20problems" title=" Liouville-type problems"> Liouville-type problems</a>, <a href="https://publications.waset.org/abstracts/search?q=p-balanced%20growth" title=" p-balanced growth"> p-balanced growth</a>, <a href="https://publications.waset.org/abstracts/search?q=p-harmonic%20maps" title=" p-harmonic maps"> p-harmonic maps</a>, <a href="https://publications.waset.org/abstracts/search?q=q-energy%20growth" title=" q-energy growth"> q-energy growth</a>, <a href="https://publications.waset.org/abstracts/search?q=tests%20for%20series" title=" tests for series"> tests for series</a> </p> <a href="https://publications.waset.org/abstracts/76381/keynote-talk-applying-p-balanced-energy-technique-to-solve-liouville-type-problems-in-calculus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Inequality for Doubly Warped Product Manifolds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Faghfouri">Morteza Faghfouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we establish a general inequality involving the Laplacian of the warping functions and the squared mean curvature of any doubly warped product isometrically immersed in a Riemannian manifold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20submanifolds" title="integral submanifolds">integral submanifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=S-space%20forms" title=" S-space forms"> S-space forms</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20warped%20product" title=" doubly warped product"> doubly warped product</a>, <a href="https://publications.waset.org/abstracts/search?q=inequality" title=" inequality"> inequality</a> </p> <a href="https://publications.waset.org/abstracts/9822/inequality-for-doubly-warped-product-manifolds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Frobenius Manifolds Pairing and Invariant Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Al-Maamari">Zainab Al-Maamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassir%20Dinar"> Yassir Dinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invariant%20ring" title="invariant ring">invariant ring</a>, <a href="https://publications.waset.org/abstracts/search?q=Frobenius%20manifold" title=" Frobenius manifold"> Frobenius manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion" title=" inversion"> inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20theory" title=" representation theory"> representation theory</a> </p> <a href="https://publications.waset.org/abstracts/143099/frobenius-manifolds-pairing-and-invariant-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Einstein’s General Equation of the Gravitational Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benzian">A. Benzian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generalization of relativistic theory of gravity based essentially on the principle of equivalence stipulates that for all bodies, the grave mass is equal to the inert mass which leads us to believe that gravitation is not a property of the bodies themselves, but of space, and the conclusion that the gravitational field must curved space-time what allows the abandonment of Minkowski space (because Minkowski space-time being nonetheless null curvature) to adopt Riemannian geometry as a mathematical framework in order to determine the curvature. Therefore the work presented in this paper begins with the evolution of the concept of gravity then tensor field which manifests by Riemannian geometry to formulate the general equation of the gravitational field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertia" title="inertia">inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=principle%20of%20equivalence" title=" principle of equivalence"> principle of equivalence</a>, <a href="https://publications.waset.org/abstracts/search?q=tensors" title=" tensors"> tensors</a>, <a href="https://publications.waset.org/abstracts/search?q=Riemannian%20geometry" title=" Riemannian geometry"> Riemannian geometry</a> </p> <a href="https://publications.waset.org/abstracts/113632/einsteins-general-equation-of-the-gravitational-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Neural Network Approach for Solving Integral Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavini%20Pandya">Bhavini Pandya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers Hη: T2 → T2 the Perturbed Cerbelli-Giona map. That is a family of 2-dimensional nonlinear area-preserving transformations on the torus T2=[0,1]×[0,1]= ℝ2/ ℤ2. A single parameter η varies between 0 and 1, taking the transformation from a hyperbolic toral automorphism to the “Cerbelli-Giona” map, a system known to exhibit multifractal properties. Here we study the multifractal properties of the family of maps. We apply a box-counting method by defining a grid of boxes Bi(δ), where i is the index and δ is the size of the boxes, to quantify the distribution of stable and unstable manifolds of the map. When the parameter is in the range 0.51< η <0.58 and 0.68< η <1 the map is ergodic; i.e., the unstable and stable manifolds eventually cover the whole torus, although not in a uniform distribution. For accurate numerical results we require correspondingly accurate construction of the stable and unstable manifolds. Here we use the piecewise linearity of the map to achieve this, by computing the endpoints of line segments which define the global stable and unstable manifolds. This allows the generalized fractal dimension Dq, and spectrum of dimensions f(α), to be computed with accuracy. Finally, the intersection of the unstable and stable manifold of the map will be investigated, and compared with the distribution of periodic points of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feed%20forward" title="feed forward">feed forward</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20descent" title=" gradient descent"> gradient descent</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equation" title=" integral equation"> integral equation</a> </p> <a href="https://publications.waset.org/abstracts/139536/neural-network-approach-for-solving-integral-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Some Results for F-Minimal Hypersurfaces in Manifolds with Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdelmalek">M. Abdelmalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study the hypersurfaces of constant weighted mean curvature embedded in weighted manifolds. We give a condition about these hypersurfaces to be minimal. This condition is given by the ellipticity of the weighted Newton transformations. We especially prove that two compact hypersurfaces of constant weighted mean curvature embedded in space forms and with the intersection in at least a point of the boundary must be transverse. The method is based on the calculus of the matrix of the second fundamental form in a boundary point and then the matrix associated with the Newton transformations. By equality, we find the weighted elementary symmetric function on the boundary of the hypersurface. We give in the end some examples and applications. Especially in Euclidean space, we use the above result to prove the Alexandrov spherical caps conjecture for the weighted case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weighted%20mean%20curvature" title="weighted mean curvature">weighted mean curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20manifolds" title=" weighted manifolds"> weighted manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipticity" title=" ellipticity"> ellipticity</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20transformations" title=" Newton transformations"> Newton transformations</a> </p> <a href="https://publications.waset.org/abstracts/160174/some-results-for-f-minimal-hypersurfaces-in-manifolds-with-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Multifractal Behavior of the Perturbed Cerbelli-Giona Map: Numerical Computation of ω-Measure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Alsendid">Ibrahim Alsendid</a>, <a href="https://publications.waset.org/abstracts/search?q=Rob%20Sturman"> Rob Sturman</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Sharp"> Benjamin Sharp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a family of 2-dimensional nonlinear area-preserving transformations on the torus. A single parameter η varies between 0 and 1, taking the transformation from a hyperbolic toral automorphism to the “Cerbelli-Giona” map, a system known to exhibit multifractal properties. Here we study the multifractal properties of the family of maps. We apply a box-counting method by defining a grid of boxes Bi(δ), where i is the index and δ is the size of the boxes, to quantify the distribution of stable and unstable manifolds of the map. When the parameter is in the range 0.51< η <0.58 and 0.68< η <1 the map is ergodic; i.e., the unstable and stable manifolds eventually cover the whole torus, although not in a uniform distribution. For accurate numerical results, we require correspondingly accurate construction of the stable and unstable manifolds. Here we use the piecewise linearity of the map to achieve this, by computing the endpoints of line segments that define the global stable and unstable manifolds. This allows the generalized fractal dimension Dq, and spectrum of dimensions f(α), to be computed with accuracy. Finally, the intersection of the unstable and stable manifold of the map will be investigated and compared with the distribution of periodic points of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Discrete-time%20dynamical%20systems" title="Discrete-time dynamical systems">Discrete-time dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractal%20geometry" title=" Fractal geometry"> Fractal geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Multifractal%20behaviour%20of%20the%20Perturbed%20map" title=" Multifractal behaviour of the Perturbed map"> Multifractal behaviour of the Perturbed map</a>, <a href="https://publications.waset.org/abstracts/search?q=Multifractal%20of%20Dynamical%20systems" title=" Multifractal of Dynamical systems"> Multifractal of Dynamical systems</a> </p> <a href="https://publications.waset.org/abstracts/139556/multifractal-behavior-of-the-perturbed-cerbelli-giona-map-numerical-computation-of-o-measure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Prakash%20Singh">Jay Prakash Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient &alpha;. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n &gt; 3) with a constant coefficient &alpha; is an &eta;&minus;Einstein and in a quasi conformally flat LP-Sasakian manifold M (n &gt; 3) with a constant coefficient &alpha; if the scalar curvature tensor is constant then M is of constant curvature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LP-Sasakian%20manifolds" title="LP-Sasakian manifolds">LP-Sasakian manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-conformal%20curvature%20tensor" title=" quasi-conformal curvature tensor"> quasi-conformal curvature tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=concircular%20vector%20%0Cfield" title=" concircular vector field"> concircular vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=torse%20forming%20vector%20%0Cfield" title=" torse forming vector field"> torse forming vector field</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20manifold" title=" Einstein manifold"> Einstein manifold</a> </p> <a href="https://publications.waset.org/abstracts/50415/on-quasi-conformally-flat-lp-sasakian-manifolds-with-a-coefficient-a" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">792</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> The Structure of Invariant Manifolds after a Supercritical Hamiltonian Hopf Bifurcation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthaios%20Katsanikas">Matthaios Katsanikas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the structure of the invariant manifolds of complex unstable periodic orbits of a family of periodic orbits, in a 3D autonomous Hamiltonian system of galactic type, after a transition of this family from stability to complex instability (Hamiltonian Hopf bifurcation). We consider the case of a supercritical Hamiltonian Hopf bifurcation. The invariant manifolds of complex unstable periodic orbits have two kinds of structures. The first kind is represented by a disk confined structure on the 4D space of section. The second kind is represented by a complicated central tube structure that is associated with an extended network of tube structures, strips and flat structures of sheet type on the 4D space of section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems" title="dynamical systems">dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=galactic%20dynamics" title=" galactic dynamics"> galactic dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20space" title=" phase space"> phase space</a> </p> <a href="https://publications.waset.org/abstracts/125080/the-structure-of-invariant-manifolds-after-a-supercritical-hamiltonian-hopf-bifurcation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Tan">Ping Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaomeng%20Su"> Xiaomeng Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Shen"> Yi Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20filter%20banks" title="non-uniform filter banks">non-uniform filter banks</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20imagery" title=" motor imagery"> motor imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=brain-computer%20interface" title=" brain-computer interface"> brain-computer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20distance%20to%20Riemannian%20mean" title=" minimum distance to Riemannian mean"> minimum distance to Riemannian mean</a> </p> <a href="https://publications.waset.org/abstracts/162018/non-uniform-filter-banks-based-minimum-distance-to-riemannian-mean-classifition-in-motor-imagery-brain-computer-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zamurad%20Shah">M. Zamurad Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kemal%20Ozgoren"> M. Kemal Ozgoren</a>, <a href="https://publications.waset.org/abstracts/search?q=Raza%20Samar"> Raza Samar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title="unmanned aerial vehicles">unmanned aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20guidance" title=" 3D guidance"> 3D guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20sliding%20manifolds" title=" nonlinear sliding manifolds"> nonlinear sliding manifolds</a> </p> <a href="https://publications.waset.org/abstracts/14296/3d-guidance-of-unmanned-aerial-vehicles-using-sliding-mode-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20I.%20Loaiza%20Ossa">Gabriel I. Loaiza Ossa</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20Cadavid%20Moreno"> Carlos A. Cadavid Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20%20Arango%20Parra"> Juan C. Arango Parra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20of%20changes" title="base of changes">base of changes</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20geometry" title=" information geometry"> information geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20Gaussian%20distribution" title=" inverse Gaussian distribution"> inverse Gaussian distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20q-Gaussian%20distribution" title=" inverse q-Gaussian distribution"> inverse q-Gaussian distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20manifolds" title=" statistical manifolds"> statistical manifolds</a> </p> <a href="https://publications.waset.org/abstracts/138122/base-change-for-fisher-metrics-case-of-the-q-gaussian-inverse-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Finite Eigenstrains in Nonlinear Elastic Solid Wedges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Golgoon">Ashkan Golgoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhayl%20Sadik"> Souhayl Sadik</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Yavari"> Arash Yavari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20eigenstrains" title="finite eigenstrains">finite eigenstrains</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20mechanics" title=" geometric mechanics"> geometric mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion" title=" inclusion"> inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneity" title=" inhomogeneity"> inhomogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20elasticity" title=" nonlinear elasticity"> nonlinear elasticity</a> </p> <a href="https://publications.waset.org/abstracts/58993/finite-eigenstrains-in-nonlinear-elastic-solid-wedges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Some Classes of Lorentzian Alpha-Sasakian Manifolds with Respect to Quarter-Symmetric Metric Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santu%20Dey">Santu Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Bhattacharyya"> Arindam Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The object of the present paper is to study a quarter-symmetric metric connection in a Lorentzian α-Sasakian manifold. We study some curvature properties of Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. We investigate quasi-projectively at, Φ-symmetric, Φ-projectively at Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection. We also discuss Lorentzian α-Sasakian manifold admitting quartersymmetric metric connection satisfying P.S = 0, where P denote the projective curvature tensor with respect to quarter-symmetric metric connection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quarter-symmetric%20metric%20connection" title="quarter-symmetric metric connection">quarter-symmetric metric connection</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentzian%20alpha-Sasakian%20manifold" title=" Lorentzian alpha-Sasakian manifold"> Lorentzian alpha-Sasakian manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-projectively%20flat%20Lorentzian%20alpha-Sasakian%20manifold" title=" quasi-projectively flat Lorentzian alpha-Sasakian manifold"> quasi-projectively flat Lorentzian alpha-Sasakian manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=phi-symmetric%20manifold" title=" phi-symmetric manifold"> phi-symmetric manifold</a> </p> <a href="https://publications.waset.org/abstracts/66809/some-classes-of-lorentzian-alpha-sasakian-manifolds-with-respect-to-quarter-symmetric-metric-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Transport and Mixing Phenomena Developed by Vortex Formation in Flow around Airfoil Using Lagrangian Coherent Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riaz%20Ahmad">Riaz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiazhong%20Zhang"> Jiazhong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Farooqi"> Asma Farooqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, mass transport between separation bubbles and the flow around a two-dimensional airfoil are numerically investigated using Lagrangian Coherent Structures (LCSs). Finite Time Lyapunov Exponent (FTLE) technique is used for the computation to identify invariant manifolds and LCSs. Moreover, the Characteristic Base Split (CBS) scheme combined with dual time stepping technique is applied to simulate such transient flow at low Reynolds number. We then investigate the evolution of vortex structures during the transport process with the aid of LCSs. To explore the vortex formation at the surface of the airfoil, the dynamics of separatrix is also taken into account which is formed by the combination of stable-unstable manifolds. The Lagrangian analysis gives a detailed understanding of vortex dynamics and separation bubbles which plays a significant role to explore the performance of the unsteady flow generated by the airfoil. Transport process and flow separation phenomena are studied extensively to analyze the flow pattern by Lagrangian point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transport%20phenomena" title="transport phenomena">transport phenomena</a>, <a href="https://publications.waset.org/abstracts/search?q=CBS%20Method" title=" CBS Method"> CBS Method</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20formation" title=" vortex formation"> vortex formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20Coherent%20Structures" title=" Lagrangian Coherent Structures"> Lagrangian Coherent Structures</a> </p> <a href="https://publications.waset.org/abstracts/108807/transport-and-mixing-phenomena-developed-by-vortex-formation-in-flow-around-airfoil-using-lagrangian-coherent-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Study of Interplanetary Transfer Trajectories via Vicinity of Libration Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Xu">Zhe Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Li"> Jian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lvping%20Li"> Lvping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zezheng%20Dong"> Zezheng Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is to study an optimized transfer strategy of connecting Earth and Mars via the vicinity of libration points, which have been playing an increasingly important role in trajectory designing on a deep space mission, and can be used as an effective alternative solution for Earth-Mars direct transfer mission in some unusual cases. The use of vicinity of libration points of the sun-planet body system is becoming potential gateways for future interplanetary transfer missions. By adding fuel to cargo spaceships located in spaceports, the interplanetary round-trip exploration shuttle mission of such a system facility can also be a reusable transportation system. In addition, in some cases, when the S/C cruising through invariant manifolds, it can also save a large amount of fuel. Therefore, it is necessary to make an effort on looking for efficient transfer strategies using variant manifold about libration points. It was found that Earth L1/L2 Halo/Lyapunov orbits and Mars L2/L1 Halo/Lyapunov orbits could be connected with reasonable fuel consumption and flight duration with appropriate design. In the paper, the halo hopping method and coplanar circular method are briefly introduced. The former used differential corrections to systematically generate low ΔV transfer trajectories between interplanetary manifolds, while the latter discussed escape and capture trajectories to and from Halo orbits by using impulsive maneuvers at periapsis of the manifolds about libration points. In the following, designs of transfer strategies of the two methods are shown here. A comparative performance analysis of interplanetary transfer strategies of the two methods is carried out accordingly. Comparison of strategies is based on two main criteria: the total fuel consumption required to perform the transfer and the time of flight, as mentioned above. The numeric results showed that the coplanar circular method procedure has certain advantages in cost or duration. Finally, optimized transfer strategy with engineering constraints is searched out and examined to be an effective alternative solution for a given direct transfer mission. This paper investigated main methods and gave out an optimized solution in interplanetary transfer via the vicinity of libration points. Although most of Earth-Mars mission planners prefer to build up a direct transfer strategy for the mission due to its advantage in relatively short time of flight, the strategies given in the paper could still be regard as effective alternative solutions since the advantages mentioned above and longer departure window than direct transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20restricted%20three-body%20problem" title="circular restricted three-body problem">circular restricted three-body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=halo%2FLyapunov%20orbit" title=" halo/Lyapunov orbit"> halo/Lyapunov orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20manifolds" title=" invariant manifolds"> invariant manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=libration%20points" title=" libration points"> libration points</a> </p> <a href="https://publications.waset.org/abstracts/63162/study-of-interplanetary-transfer-trajectories-via-vicinity-of-libration-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Topology Optimization of Heat Exchanger Manifolds for Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjong%20Kim">Hanjong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changwan%20Han"> Changwan Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Seonghun%20Park"> Seonghun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold" title=" manifold"> manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/60709/topology-optimization-of-heat-exchanger-manifolds-for-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Vierus">Lukas Vierus</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Schuster"> Thomas Schuster</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuated%20refractive%20dynamic%20ray%20transform%20of%20tensor%20fields" title="attenuated refractive dynamic ray transform of tensor fields">attenuated refractive dynamic ray transform of tensor fields</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesics" title=" geodesics"> geodesics</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20equation" title=" transport equation"> transport equation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity%20solutions" title=" viscosity solutions"> viscosity solutions</a> </p> <a href="https://publications.waset.org/abstracts/184677/enhanced-tensor-tomographic-reconstruction-integrating-absorption-refraction-and-temporal-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Fractal Analysis of Some Bifurcations of Discrete Dynamical Systems in Higher Dimensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lana%20Horvat%20Dmitrovi%C4%87">Lana Horvat Dmitrović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to study the box dimension as fractal property of bifurcations of discrete dynamical systems in higher dimensions. The paper contains the fractal analysis of the orbits near the hyperbolic and non-hyperbolic fixed points in discrete dynamical systems. It is already known that in one-dimensional case the orbit near the hyperbolic fixed point has the box dimension equal to zero. On the other hand, the orbit near the non-hyperbolic fixed point has strictly positive box dimension which is connected to the non-degeneracy condition of certain bifurcation. One of the main results in this paper is the generalisation of results about box dimension near the hyperbolic and non-hyperbolic fixed points to higher dimensions. In the process of determining box dimension, the restriction of systems to stable, unstable and center manifolds, Lipschitz property of box dimension and the notion of projective box dimension are used. The analysis of the bifurcations in higher dimensions with one multiplier on the unit circle is done by using the normal forms on one-dimensional center manifolds. This specific change in box dimension of an orbit at the moment of bifurcation has already been explored for some bifurcations in one and two dimensions. It was shown that specific values of box dimension are connected to appropriate bifurcations such as fold, flip, cusp or Neimark-Sacker bifurcation. This paper further explores this connection of box dimension as fractal property to some specific bifurcations in higher dimensions, such as fold-flip and flip-Neimark-Sacker. Furthermore, the application of the results to the unit time map of continuous dynamical system near hyperbolic and non-hyperbolic singularities is presented. In that way, box dimensions which are specific for certain bifurcations of continuous systems can be obtained. The approach to bifurcation analysis by using the box dimension as specific fractal property of orbits can lead to better understanding of bifurcation phenomenon. It could also be useful in detecting the existence or nonexistence of bifurcations of discrete and continuous dynamical systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title="bifurcation">bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=box%20dimension" title=" box dimension"> box dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20manifold" title=" invariant manifold"> invariant manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=orbit%20near%20fixed%20point" title=" orbit near fixed point"> orbit near fixed point</a> </p> <a href="https://publications.waset.org/abstracts/52891/fractal-analysis-of-some-bifurcations-of-discrete-dynamical-systems-in-higher-dimensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> A General Approach to Define Adjoint of Linear and Non-linear Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jafari%20Matehkolaee">Mehdi Jafari Matehkolaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have obtained the adjoint of an arbitrary operator (linear and nonlinear) in Hilbert space by introducing an n-dimensional Riemannian manifold. This general formalism covers every linear operator (non – differential) in Hilbert space. In fact, our approach shows that instead of using the adjoint definition of an operator directly, it can be obtained directly by relying on a suitable generalized space according to the action of the operator in question. For the case of nonlinear operators, we have to change the definition of the linear operator adjoint. But here, we have obtained an adjoint of these operators with respect to the definition of the derivative of the operator. As a matter of fact, we have shown one of the straight applications of the ''Frechet derivative'' in the algebra of the operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjoint%20operator" title="adjoint operator">adjoint operator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20operator" title=" non-linear operator"> non-linear operator</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiable%20operator" title=" differentiable operator"> differentiable operator</a>, <a href="https://publications.waset.org/abstracts/search?q=manifold" title=" manifold"> manifold</a> </p> <a href="https://publications.waset.org/abstracts/166456/a-general-approach-to-define-adjoint-of-linear-and-non-linear-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Numerical Analysis of Charge Exchange in an Opposed-Piston Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czy%C5%BC">Zbigniew Czyż</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Majczak"> Adam Majczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski"> Lukasz Grabowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a description of geometric models, computational algorithms, and results of numerical analyses of charge exchange in a two-stroke opposed-piston engine. The research engine was a newly designed internal Diesel engine. The unit is characterized by three cylinders in which three pairs of opposed-pistons operate. The engine will generate a power output equal to 100 kW at a crankshaft rotation speed of 3800-4000 rpm. The numerical investigations were carried out using ANSYS FLUENT solver. Numerical research, in contrast to experimental research, allows us to validate project assumptions and avoid costly prototype preparation for experimental tests. This makes it possible to optimize the geometrical model in countless variants with no production costs. The geometrical model includes an intake manifold, a cylinder, and an outlet manifold. The study was conducted for a series of modifications of manifolds and intake and exhaust ports to optimize the charge exchange process in the engine. The calculations specified a swirl coefficient obtained under stationary conditions for a full opening of intake and exhaust ports as well as a CA value of 280° for all cylinders. In addition, mass flow rates were identified separately in all of the intake and exhaust ports to achieve the best possible uniformity of flow in the individual cylinders. For the models under consideration, velocity, pressure and streamline contours were generated in important cross sections. The developed models are designed primarily to minimize the flow drag through the intake and exhaust ports while the mass flow rate increases. Firstly, in order to calculate the swirl ratio [-], tangential velocity v [m/s] and then angular velocity ω [rad / s] with respect to the charge as the mean of each element were calculated. The paper contains comparative analyses of all the intake and exhaust manifolds of the designed engine. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20swirl" title=" engine swirl"> engine swirl</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title=" fluid mechanics"> fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rates" title=" mass flow rates"> mass flow rates</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=opposed-piston%20engine" title=" opposed-piston engine"> opposed-piston engine</a> </p> <a href="https://publications.waset.org/abstracts/81483/numerical-analysis-of-charge-exchange-in-an-opposed-piston-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Riemannain Geometries Of Visual Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Turski">Jacek Turski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The visual space geometries are constructed in the Riemannian geometry framework from simulated iso-disparity conics in the horizontalvisual plane of the binocular system with the asymmetric eyes (AEs). For the eyes fixating at the abathic distance, which depends on the AE’s parameters, the iso-disparity conics are frontal straight lines in physical space. For allother fixations, the iso-disparity conics consist of families of the ellipses or hyperbolas depending on both the AE’s parameters and the bifoveal fixation. However, the iso-disparity conic’s arcs are perceived in the gaze direction asthe frontal lines and are referred to as visual geodesics. Thus, geometriesof physical and visual spaces are different. A simple postulate that combines simulated iso-disparity conics with basic anatomy od the human visual system gives the relative depth for the fixation at the abathic distance that establishes the Riemann matric tensor. The resulting geodesics are incomplete in the gaze direction and, therefore, give thefinite distances to the horizon that depend on the AE’s parameters. Moreover, the curvature vanishes in this eyes posture such that visual space is flat. For all other fixations, only the sign of the curvature canbe inferred from the global behavior of the simulated iso-disparity conics: the curvature is positive for the elliptic iso-disparity curves and negative for the hyperbolic iso-disparity curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20eye%20model" title="asymmetric eye model">asymmetric eye model</a>, <a href="https://publications.waset.org/abstracts/search?q=iso-disparity%20conics" title=" iso-disparity conics"> iso-disparity conics</a>, <a href="https://publications.waset.org/abstracts/search?q=metric%20tensor" title=" metric tensor"> metric tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesics" title=" geodesics"> geodesics</a>, <a href="https://publications.waset.org/abstracts/search?q=curvature" title=" curvature"> curvature</a> </p> <a href="https://publications.waset.org/abstracts/144276/riemannain-geometries-of-visual-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Bound State Problems and Functional Differential Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Srednyak">S. Srednyak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study a class of functional partial differential equations(FPDEs). This class is suggested by Quantum Field Theory. We derive general properties of solutions to such equations. In particular, we demonstrate that they lead to systems of coupled integral equations with singular kernels. We show that solutions to such hierarchies can be sought among functions with regular singularities at a countable set of subvarieties of the physical space. We also develop a formal analogy of basic constructions of differential geometry on functional manifolds, as this is necessary for in depth study of FPDEs. We also consider the case of linear overdetermined systems of functional differential equations and show that it can be completely solved in terms of formal solutions of a functional equation that is a functional analogy of a system of determined algebraic equations. This development leads us to formally define the functional analogy of algebraic geometry, which we call functional algebraic geometry. We study basic properties of functional algebraic varieties. In particular, we investigate the case of a formally discrete set of solutions. We also define and study functional analogy of discriminants. In the case of fully determined systems such that the defining functionals have regular singularities, we demonstrate that formal solutions can be sought in the class of functions with regular singularities. This case provides a practical way to apply our results to physics problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20equations" title="functional equations">functional equations</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20field%20theory" title=" quantum field theory"> quantum field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=holomorphic%20functions" title=" holomorphic functions"> holomorphic functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Mills%20mass%20gap%20problem" title=" Yang Mills mass gap problem"> Yang Mills mass gap problem</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20chaos" title=" quantum chaos"> quantum chaos</a> </p> <a href="https://publications.waset.org/abstracts/173716/bound-state-problems-and-functional-differential-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Production Increase of C-Central Wells Baher Essalm-Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emed%20Krekshi">Emed Krekshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Ben%20Husein"> Walid Ben Husein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate.as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahr%20Essalam" title="Bahr Essalam">Bahr Essalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mellitah%20Oil%20and%20Gas" title=" Mellitah Oil and Gas"> Mellitah Oil and Gas</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20flow%20rates" title=" production flow rates"> production flow rates</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20and%20transient" title=" steady and transient"> steady and transient</a> </p> <a href="https://publications.waset.org/abstracts/181993/production-increase-of-c-central-wells-baher-essalm-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Production Increase of C-Central Wells Baher Essalm-Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Ben%20Husein">Walid Ben Husein</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Krekshi"> Emad Krekshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Malek%20Essnni"> Malek Essnni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahr%20Essalam" title="Bahr Essalam">Bahr Essalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mellitah%20Oil%20and%20Gas" title=" Mellitah Oil and Gas"> Mellitah Oil and Gas</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20flow%20rates" title=" production flow rates"> production flow rates</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a>, <a href="https://publications.waset.org/abstracts/search?q=OLGA." title=" OLGA."> OLGA.</a> </p> <a href="https://publications.waset.org/abstracts/194520/production-increase-of-c-central-wells-baher-essalm-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salihah%20Alghamdi">Salihah Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Ray"> Surajit Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irregularly%20shaped%20domain" title="irregularly shaped domain">irregularly shaped domain</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20boundray" title=" complex boundray"> complex boundray</a> </p> <a href="https://publications.waset.org/abstracts/92276/application-of-regularized-spatio-temporal-models-to-the-analysis-of-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Seismicity and Ground Response Analysis for MP Tourism Office in Indore, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepshikha%20Shukla">Deepshikha Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Solanki"> C. H. Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Desai"> Mayank Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few years, it has been observed that earthquake is proving a threat to the scientist across the world. With a large number of earthquakes occurring in day to day life, the threat to life and property has increased manifolds which call for an urgent attention of all the researchers globally to carry out the research in the field of Earthquake Engineering. Any hazard related to the earthquake and seismicity is considered to be seismic hazards. The common forms of seismic hazards are Ground Shaking, Structure Damage, Structural Hazards, Liquefaction, Landslides, Tsunami to name a few. Among all the natural hazards, the most devastating and damaging is the earthquake as all other hazards are triggered only after the occurrence of an earthquake. In order to quantify and estimate the seismicity and seismic hazards, many methods and approaches have been proposed in the past few years. Such approaches are Mathematical, Conventional and Computational. Convex Set Theory, Empirical Green’s Function are some of the Mathematical Approaches whereas the Deterministic and Probabilistic Approaches are the Conventional Approach for the estimation of the seismic Hazards. Ground response and Ground Shaking of a particular area or region plays an important role in the damage caused due to the earthquake. In this paper, seismic study using Deterministic Approach and 1 D Ground Response Analysis has been carried out for Madhya Pradesh Tourism Office in Indore Region in Madhya Pradesh in Central India. Indore lies in the seismic zone III (IS: 1893, 2002) in the Seismic Zoning map of India. There are various faults and lineament in this area and Narmada Some Fault and Gavilgadh fault are the active sources of earthquake in the study area. Deepsoil v6.1.7 has been used to perform the 1 D Linear Ground Response Analysis for the study area. The Peak Ground Acceleration (PGA) of the city ranges from 0.1g to 0.56g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismicity" title="seismicity">seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazards" title=" seismic hazards"> seismic hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic" title=" deterministic"> deterministic</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20methods" title=" probabilistic methods"> probabilistic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20response%20analysis" title=" ground response analysis"> ground response analysis</a> </p> <a href="https://publications.waset.org/abstracts/77022/seismicity-and-ground-response-analysis-for-mp-tourism-office-in-indore-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Rich 3-Tori Dynamics in Small-Aspect-Ratio Highly Counter-Rotating Taylor-Couette Flow with Reversal of Spiraling Vortices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Altmeyer">S. Altmeyer</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hof"> B. Hof</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Marques"> F. Marques</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Lopez"> J. M. Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present numerical simulations concerning the reversal of spiraling vortices in short highly counter-rotating cylinders. Increasing the differential cylinder rotation results in global flow-inversion is which develops various different and complex flow dynamics of several quasi-periodic solutions that differ in their number of vortex cells in the bulk. The dynamics change from being dominated of the inner cylinder boundary layer with ’passive’ only responding outer one to be dominated by the outer cylinder boundary layer with only responding inner one. Solutions exist on either two or three tori invariant manifolds whereby they appear as symmetric or asymmetric states. We find for either moderate and high inner cylinder rotation speed the quasiperiodic flow to consist of only two vortex cells but differ as the vortices has opposite spiraling direction. These both flows live on 2-tori but differ in number of symmetries. While for the quasi-periodic flow (q^a_2) at lower rotation speed a pair of symmetrically related 2-tori T2 exists the quasi-periodic flow (q^s_2) at higher rotation speeds is symmetric living on a single 2-torus T2. In addition these both flows differ due to their dominant azimuthal m modes. The first is dominated by m=1 whereas for the latter m=3 contribution is largest. The 2-tori states are separated by a further quasi-periodic flow (q^a_3) living on pair of symmetrically related 3-tori T3. This flow offers a ’periodical’ competition between a two and three vortex cell states in the bulk. This flow is also an m=1 solution as for the quasiperiodic flows living on the pair of symmetrically-related 2-tori states. Moreover we find hysteresis resulting in coexisting regions of different quasiperiodic flows q^s_2 and q^a_3 with increasing and decreasing the differential rotation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transition" title="transition">transition</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title=" bifurcation"> bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=torus" title=" torus"> torus</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetries" title=" symmetries"> symmetries</a> </p> <a href="https://publications.waset.org/abstracts/2661/rich-3-tori-dynamics-in-small-aspect-ratio-highly-counter-rotating-taylor-couette-flow-with-reversal-of-spiraling-vortices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Riemannian%20manifolds&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Riemannian%20manifolds&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10