CINXE.COM
Organic Lasers and Organic Photonics
<html> <link rel="stylesheet" type="text/css" media="screen" href="experiment-7.css"></link> <title>Organic Lasers and Organic Photonics</title> <center> <center><a href="http://www.tunablelasers.com"><img src = "http://www.tunablelasers.com/tunablelasers-7.jpg" align = leftt border = 0></a></center <center><h1>Organic Lasers and Organic Photonics</h2></center> <center><h2>F J Duarte (Ed) <i>Organic Lasers and Organic Photonics</i> 2nd Edn (Institute of Physics, Bristol, 2024)</h2></center> <h3>https://doi.org/10.1088/978-0-7503-5547-6</h3> <h3>ISBN: 978-0-7503-5545-2 (Print); 978-0-7503-5547-6 (On line)</h3> <br> <hr> <p><i>Organic Lasers and Organic Photonics</i>: 16 chapters, 161 figures, 36 tables, 350 equations, 18 schemes, 85 problems and approximately 2500 archival references in 481 pages.</p> <hr> <p>Contributing authors: <a href="http://www.tunablelasers.com/fjduarte.htm">F. J. Duarte</a>, <a href="https://www.biologie.hu-berlin.de/de/gruppenseiten/expbp/members-1/prof.-hegemann-peter">Peter Hegemann</a>, Suneel Kateriya, <a href="https://research.com/u/alfons-penzkofer">Alfons Penskofer</a>, <a href="https://kth.se/profile/sergeip">Sergei Popov</a>, <a href="http://www.tunablelasers.com/kmvaeth.htm">Kathleen M. Vaeth</a>, Elena Vasileva</p> <hr> <a href="https://doi.org/10.1088/978-0-7503-5547-6"><img src = "http://www.tunablelasers.com/FJ Duarte OLOP 2nd Edn 2024.jpg" align = right border = 0></a> <p><a href="http://iopscience.iop.org/book/edit/978-0-7503-5547-6"><i>Organic Lasers and Organic Photonics</i> (Institure of Physics, Bristol, 2024) at IoP</a></p> <p>Includes a cohesive, handbook style, theoretical compendium for the design and assessment of high-performance tunable narrow-linewidth laser oscillators (Chapter 6).</p> <p>Describes in detail the material science and physics of coherent electrically-pumped organic semicunductors (Chapter 11).</p> <p>Includes the world's most extensive and comprehensive cumulative review on organic molecules applied to optogenetics (Chapter 13).</p> <p>Includes, using quantum interference principles, the first transparent derivation of Born's rule (Chapter 16).</p> <h3>CONTENTS</h3> <ul> <p><h3>1 Introduction</h2> <p>1.1 Introduction <p>1.2 Laser linewidth <p>1.2.1 Laser linewidth in organic dye lasers <p>1.2.2 Narrow-linewidth landmarks in high-power pulsed organic dye lasers <p>1.2.3 Narrow-linewidth landmarks in CW organic dye lasers <p>1.2.4 CW organic dye laser developments for pulse compression <p>1.3 Solid-state organic lasers <p>1.3.1 Solid-state organic dye lasers <p>1.3.2 Further notable developments <p>1.3.3 Coherent emission from electrically-pumped organic semiconductors <p>1.4 Organic photonics <p>1.5 Organic lasers and organic photonics <p>1.6 Perspective <p>1.7 Organic Lasers and Organic Photonics (Second Edition) <p>References <p><h3>2 Organic laser dyes</h2> <p>2.1 Introduction <p>2.2 Organic laser dye molecules <p>2.2.1 Water solubility <p>2.2.2 Criticisms to organic dye as laser gain media <p>2.3 Organic laser dyes in the liquid-state and the solid-state <p>2.4 Literatute <p>2.5 Problems <p>References <p><h3>3 Energetics of organic laser dyes</h3> <p>3.1 Introduction <p>3.2 Rate equations for generalized multiple-level systems <p>3.2.1 Rate equations for single-energy levels <p>3.2.2 Applications of rate equations for single-energy levels <p>3.3 Quantum approach to transition cross sections <p>3.4 Amplified spontaneous emission (ASE) <p>3.5 Quantum energy <p>3.6 Problems <p>References <p><h3>4 Polymer matrices for lasers</h3> <p>4.1 Introduction <p>4.2 Physical parameters of PMMA <p>4.3 Polymer matrices for organic lasers <p>4.3.1 Excitation parameters for dye-doped polymer laser matrices <p>4.4 Longevity of polymer matrices for organic lasers <p>4.5 Problems <p>References <p><h3>5 Cavity and resonator architectures for high-performance organic laser oscillators</h3> <p>5.1 Introduction <p>5.2 Mirror杕irror cavities <p>5.3 Mirror-grating cavities <p>5.3.1 Littrow grating cavities <p>5.3.2 Grazing-incidence grating cavities <p>5.3.3 Open cavity versus closed cavity configurations <p>5.4 Output-coupler polarizer multiple-prism grating oscillators <p>5.4.1 Hybrid multiple-prism grazing-incidence (HMPGI) grating configurations <p>5.4.2 Multiple-prism Littrow (MPL) grating configurations <p>5.5 Linear and ring laser cavities <p>5.6 Unstable resonators as laser amplifiers <p>5.7 Laser-pumped amplifier stages <p>5.8 Distributed feedback configurations <p>5.9 Vertical cavity surface emitting lasers (VCSELs) <p>5.10 Perspective <p>5.11 Problems <p>References <p><h3>6 Mathematical-physics for tunable narrow-linewidth organic laser oscillators</h3> <p>6.1 Introduction <p>6.2 The generalized interferometric equations <p>6.2.1 The uncertainty principle in optics <p>6.2.2 Beam divergence <p>6.3 The cavity linewidth equation <p>6.4 The diffraction equations <p>6.5 The generalized multiple-prism equations <p>6.5.1 Return-pass multiple-prism intracavity dispersion <p>6.5.2 Multiple-return-pass multiple-prism intracavity dispersion <p>6.5.3 Multiple-return-pass cavity linewidth <p>6.5.4 Multiple-return-pass propagation matrix <p>6.5.5 Multiple-prism mathematical series <p>6.6 The generalized prismatic equations for laser pulse compression <p>6.6.1 Fundamentals of pulse compression <p>6.7 Distributed feedback <p>6.8 Longitudinal tuning in laser microcavities <p>6.9 Laser linewidth of microcavity emission <p>6.10 Linewidth equivalence <p>6.11 Problems <p>References <p><h3>7 Best performance of organic lasers</h3> <p>7.1 Introduction <p>7.2 Laser-pumped liquid organic dye lasers <p>7.2.1 Tunable narrow-linewidth laser oscillators <p>7.2.2 Master-oscillator power-amplifiers <p>7.2.3 CW lasers <p>7.2.4 Femtosecond pulse lasers <p>7.3 Flashlamp-pumped organic dye lasers <p>7.3.1 Tunable narrow-linewidth laser oscillators <p>7.3.2 Flashlamp-pumped master-oscillator forced-oscillators <p>7.4 Solid-state tunable organic dye lasers <p>7.4.1 Narrow-linewidth tunable solid-state laser oscillators <p>7.4.2 Long-pulse solid-state tunable laser oscillators <p>7.5 Additional solid-state organic lasers <p>7.5.1 Microcavity and optofluidic organic lasers <p>7.5.2 Organic fiber lasers <p>7.5.3 Solid-state distributed feedback organic lasers <p>7.5.4 Solid-state waveguide organic lasers <p>7.5.5 Solid-state microcavity organic lasers <p>7.5.6 Organic vertical cavity surface emitting lasers (VCSELs) <p>7.6 Problems <p>References <p><h3>8 Tunable organic lasers for directed energy</h3> <p>8.1 Introduction <p>8.1.1 Atmospheric propagation <p>8.2 Organic laser oscillators for directed energy <p>8.3 Organic master-oscilator forced-oscillator (MOFO) for directed energy <p>8.4 High-energy amplification stages <p>8.5 Further development for solid-state tunable organic lasers <p>8.6 Pulse average power versus CW power <p>8.7 Thermal dissipation <p>8.8 Problems <p>Acknowledgements <p>References <p><h3>9 Polymer杗anoparticle organic lasers </h3> <p>9.1 Introduction <p>9.2 Laser dye-doped polymer杗anoparticle gain media <p>9.3 Organic dye-doped polymer杗anoparticle tunable lasers <p>9.4 Interferometric interpretation on polymer杗anoparticle matrix homogeneity <p>9.5 Problems <p>References <p><h3>10 Compact and miniaturized organic dye lasers: from glass to bio-based gain media</h3> <p>10.1 Introduction: from liquid to solid gain media <p>10.2 Tunable solid-state dye lasers <p>10.2.1 VECSOLs <p>10.2.2 DFB organic lasers <p>10.2.3 Sol杇el silica organic lasers <p>10.2.4 Multi-prism SSDL and nanoparticle technology <p>10.3 Fixed-tuned lasers <p>10.3.1 Fiber based dye lasers <p>10.3.2 Whispering gallery mode lasers <p>10.4 Transparent wood as novel laser media <p>10.4.1 Optically transparent wood material <p>10.4.2 Transparent wood dye laser <p>References <p><h3>11 Electrically-pumped organic semiconductor laser emission</h3> <p>11.1 Introduction <p>11.2 Organic semiconductors <p>11.2.1 Energetics of organic semiconductors <p>11.2.2 High luminescence OLEDs <p>11.3 Electrical excitation of the tandem organic semiconductor active region <p>11.4 Integrated interferometric coherent emitter (IICE) <p>11.5 Energetics of the organic semiconductor IICE <p>11.6 Spatial coherence of the emission from the organic semiconductor IICE <p>11.6.1 Interferometrically determined transverse-mode structures <p>11.7 Spectral coherence of the emission from the organic semiconductor IICE <p>11.7.1 Emission linewidth from N-slit interferograms <p>11.8 On the origin of the coherent emission <p>11.9 Perspective on the literature <p>11.10 Quantum coherence <p>11.11 Miniaturization prospects <p>11.12 Conclusion <p>11.13 Problems <p>References <p><h3>12 Organic photonics </h3> <p>12.1 Introduction <p>12.2 Elements of organic photonics <p>12.2.1 Organic dyes <p>12.2.2 Polymers <p>12.2.3 Organic杋norganic composites <p>12.2.4 Organic lasers <p>12.2.5 Quantum dots <p>12.3 Organic optical elements <p>12.3.1 Organic lenses <p>12.3.2 Organic杋norganic prisms <p>12.3.3 Organic fibers <p>12.4 Applications <p>12.4.1 Communications <p>12.4.2 Directed energy <p>12.4.3 Industry <p>12.4.4 Medicine <p>12.4.5 Nonlinear optics <p>12.4.6 Science <p>12.4.7 Sensors <p>12.5 Perspective <p>12.6 Problems <p>References <p><h3>13 Organic dyes in optogenetics</h3> <p>13.1 Introduction <p>13.2 Characterization of organic dyes applied in optogenetics <p>13.2.1 Retinals <p>13.2.2 Flavins (isoalloxazine derivatives) <p>13.2.3 Folates <p>13.2.4 p-coumaric acid <p>13.2.5 Linear tetrapyrroles (phytochrome chromophores) <p>13.2.6 Corrinoid-based cyclic tetrapyrroles (chromophores of cobalamin-based photoreceptors) <p>13.2.7 Tryptophan (UVR8 chromophore) <p>13.2.8 Fluorescent probes <p>13.2.9 Fluorescent proteins <p>13.2.10 Nanomaterials <p>13.3 Action of the organic dyes in photoreceptors <p>13.3.1 Rodopsins <p>13.3.2 Flavoproteins <p>13.3.3 Xanthopsins (photoactive yellow proteins) <p>13.3.4 Phytochromes <p>13.3.5 Cobalamin-based photoreceptors CarH and AerR <p>13.3.6 UVR8 plant photoreceptors <p>13.3.7 Upconversion nanoparticle mediated optogenetics <p>13.4 Application of optogenetic tools <p>13.4.1 Application of optogenetic tools in neuroscience <p>13.4.2 Application of optogenetic tools in cell biology <p>13.5 Conclusions <p>13.6 Recent advances as to organic dyes applied in optogenetics <p>13.6.1 Introduction <p>13.6.2 Characterization of organic dyes applied in optogenetics <p>13.6.3 Action of organic dyes in photoreceptors <p>13.6.4 Applications of optogenetic tools <p>13.6.5 Conclusions <p>List of Abbreviations <p>Symbols <p>Acknowledgements <p>References <p><h3>14 Tunable organic lasers and organic molecules for medicine </h3> <p>14.1 Introduction <p>14.2 Organic lasers for medicine <p>14.2.1 High-performance solid-state organic lasers for medicine <p>14.2.2 Additional organic lasers for medicine <p>14.3 Light sheet microscopy illumination <p>14.3.1 Multiple-prism propagation matrix equations for extremely wide light sheets for microscopy <p>14.3.2 Propagation physics of the optics to generate extremely wide light sheets for microscopy <p>14.4 Organic dye molecules for photodynamic therapy <p>14.4.1 Additional organic molecules for photodynamic therapy <p>14.5 Dual laser system for diagnosis and photodynamic therapy <p>14.6 Conclusions <p>14.7 Problems <p>References <p><h3>15 Organic lasers for <i>N</i>-channel quantum entanglement</h3> <p>15.1 Introduction <p>15.2 Sources for quantum entanglement experiments <p>15.2.1 Parametric down conversion <p>15.2.2 CW organic dye lasers <p>15.2.3 Organic lasers for <i>N</i>-channel quantum entanglement <p>15.2.4 Entanglement of quantum indistinguishable ensembles <p>15.3 The physics of <i>N</i>-channel quantum entanglement <p>15.3.1 Background <p>15.3.2 Quantum entanglement probability amplitudes <p>15.3.3 Interferometric approach to quantum entanglement <p>15.3.4 Generalized quantum entanglement probability amplitudes <p>15.3.5 Alternative probability amplitude methodologies <p>15.4 The interferometric equation and quantum entropy <p>15.5 Implications for the interpretations of quantum mechanics <p>15.6 Perspective <p>15.7 Problems <p>References <p><h3>16 Intrinsic quantum coherence in electrically-pumped organic interferometric emitters: Diracian emission</h3> <p>16.1 Introduction <p>16.2 Quantum interferometric probabilities <p>16.3 Dirac's identities <p>16.4 Quantum coherence in electrically-pumped interferometric emitters <p>16.5 Born's rule <p>16.6 Discussion <p>16.7 Problems <p>References <p><h3>Index</h3></p> </ul> <br> <br> <br> <BODY LINK="#000066" VLINK="007766" ALINK="#000066"> <h3>F. J. Duarte (Ed), <i>Organic Lasers and Organic Photonics</i> (Institute of Physics, London, 2018)</h3> ISBN: 978-0-7503-1570-8 <br> <hr> <p><i>Organic Lasers and Organic Photonics</i>: 142 figures, 36 tables, 275 equations, 18 schemes, and more than 1700 archival references in 300 pages.</p> <hr> Contributing authors: <a href="http://www.tunablelasers.com/fjduarte.htm">F. J. Duarte</a>, <a href="https://www.biologie.hu-berlin.de/de/gruppenseiten/expbp/members/prof.-hegemann-peter">Peter Hegemann</a>, Suneel Kateriya, <a href="http://www.physik.uni-regensburg.de/forschung/penzkofer/">Alfons Penskofer</a>, Sergei Popov, <a href="http://www.tunablelasers.com/kmvaeth.htm">Kathleen M. Vaeth</a>, Elena Vasileva <hr> <a href="https://www.amazon.com/Organic-Lasers-Photonics-IPH001-dp-0750315709/dp/0750315709/ref=mt_hardcover?_encoding=UTF8&me=&qid="><img src = "http://www.tunablelasers.com/OLOP 2018.jpg" align = right border = 0></a> <p><a href="https://www.amazon.com/Organic-Lasers-Photonics-IPH001-dp-0750315709/dp/0750315709/ref=mt_hardcover?_encoding=UTF8&me=&qid="><i>Organic Lasers and Organic Photonics</i> (Institure of Physics, London, 2018) at Amazon</a></p> <p><a href="https://www.barnesandnoble.com/w/organic-lasers-and-organic-photonics-frank-duarte/1128698770?ean=9780750315722"><i>Organic Lasers and Organic Photonics</i> (Institure of Physics, London, 2018) at Barnes & Noble</a></p> <p><a href="http://iopscience.iop.org/book/978-0-7503-1572-2"><i>Organic Lasers and Organic Photonics</i> (Institure of Physics, London, 2018) at IoP</a></p> <h3>CONTENTS</h3> <ul> <p><h3>1 Introduction</h2> <p>1.1 Introduction <p>1.2 Laser linewidth <p>1.2.1 Laser linewidth in organic dye lasers <p>1.2.2 Narrow-linewidth landmarks in high-power pulsed organic dye lasers <p>1.2.3 Narrow-linewidth landmarks in CW organic dye lasers <p>1.2.4 CW organic dye laser developments for pulse compression <p>1.3 Solid-state organic lasers <p>1.3.1 Solid-state organic dye lasers <p>1.3.2 Further notable developments <p>1.3.3 Coherent emission from electrically-pumped organic semiconductors <p>1.4 Organic photonics <p>1.5 Organic lasers and organic photonics <p>1.6 Perspective <p>References <p><h3>2 Organic laser dyes</h2> <p>2.1 Introduction <p>2.2 Organic laser dye molecules <p>2.2.1 Water solubility <p>2.2.2 Criticisms to organic dye as laser gain media <p>2.3 Organic laser dyes in the liquid-state and the solid-state <p>References <p><h3>3 Energetics of organic laser dyes</h3> <p>3.1 Introduction <p>3.2 Rate equations for generalized multiple-level systems <p>3.2.1 Rate equations for single-energy levels <p>3.2.2 Applications of rate equations for single-energy levels <p>3.3 Quantum approach to transition cross sections <p>3.4 Amplified spontaneous emission (ASE) <p>References <p><h3>4 Polymer matrices for lasers</h3> <p>4.1 Introduction <p>4.2 Physical parameters of PMMA <p>4.3 Polymer matrices for organic lasers <p>4.3.1 Excitation parameters for dye-doped polymer laser matrices <p>References <p><h3>5 Cavity and resonator architectures for high-performance organic laser oscillators</h3> <p>5.1 Introduction <p>5.2 Mirror杕irror cavities <p>5.3 Mirror-grating cavities <p>5.3.1 Littrow grating cavities <p>5.3.2 Grazing-incidence grating cavities <p>5.3.3 Open cavity versus closed cavity configurations <p>5.4 Output-coupler polarizer multiple-prism grating oscillators <p>5.4.1 Hybrid multiple-prism grazing-incidence (HMPGI) grating configurations <p>5.4.2 Multiple-prism Littrow (MPL) grating configurations <p>5.5 Linear and ring laser cavities <p>5.6 Unstable resonators as laser amplifiers <p>5.7 Laser-pumped amplifier stages <p>5.8 Distributed feedback configurations <p>5.9 Vertical cavity surface emitting lasers (VCSELs) <p>References <p><h3>6 Mathematical-physics for tunable narrow-linewidth organic laser oscillators</h3> <p>6.1 Introduction <p>6.2 The generalized interferometric equations <p>6.2.1 The uncertainty principle in optics <p>6.2.2 Beam divergence <p>6.3 The cavity linewidth equation <p>6.4 The diffraction equations <p>6.5 The generalized multiple-prism equations <p>6.5.1 Return-pass multiple-prism intracavity dispersion <p>6.5.2 Multiple-return-pass multiple-prism intracavity dispersion <p>6.5.3 Multiple-return-pass cavity linewidth <p>6.5.4 Multiple-return-pass propagation matrix <p>6.5.5 Multiple-prism mathematical series <p>6.6 The generalized prismatic equations for laser pulse compression <p>6.6.1 Fundamentals of pulse compression <p>6.7 Distributed feedback <p>6.8 Longitudinal tuning in laser microcavities <p>6.9 Laser linewidth of microcavity emission <p>6.10 Linewidth equivalence <p>References <p><h3>7 Best performance of organic lasers</h3> <p>7.1 Introduction <p>7.2 Laser-pumped liquid organic dye lasers <p>7.2.1 Tunable narrow-linewidth laser oscillators <p>7.2.2 Master-oscillator power-amplifiers <p>7.2.3 CW lasers <p>7.2.4 Femtosecond pulse lasers <p>7.3 Flashlamp-pumped organic dye lasers <p>7.3.1 Tunable narrow-linewidth laser oscillators <p>7.3.2 Flashlamp-pumped master-oscillator forced-oscillators <p>7.4 Solid-state tunable organic dye lasers <p>7.4.1 Narrow-linewidth tunable solid-state laser oscillators <p>7.4.2 Long-pulse solid-state tunable laser oscillators <p>7.5 Additional solid-state organic lasers <p>7.5.1 Microcavity and optofluidic organic lasers <p>7.5.2 Organic fiber lasers <p>7.5.3 Solid-state distributed feedback organic lasers <p>7.5.4 Solid-state waveguide organic lasers <p>7.5.5 Solid-state microcavity organic lasers <p>7.5.6 Organic vertical cavity surface emitting lasers (VCSELs) <p>References <p><h3>8 Tunable organic lasers for directed energy</h3> <p>8.1 Introduction <p>8.1.1 Atmospheric propagation <p>8.1.2 Organic laser oscillators for directed energy <p>8.2 Organic master-oscillator forced-oscillator for directed energy <p>8.3 High-energy amplification stages <p>8.4 Outlook <p>References <p><h3>9 Polymer杗anoparticle organic lasers </h3> <p>9.1 Introduction <p>9.2 Laser dye-doped polymer杗anoparticle gain media <p>9.3 Organic dye-doped polymer杗anoparticle tunable lasers <p>9.4 Interferometric interpretation on polymer杗anoparticle matrix homogeneity <p>References <p><h3>10 Compact and miniaturized organic dye lasers: from glass to bio-based gain media</h3> <p>10.1 Introduction: from liquid to solid gain media <p>10.2 Tunable solid-state dye lasers <p>10.2.1 VECSOLs <p>10.2.2 DFB organic lasers <p>10.2.3 Sol杇el silica organic lasers <p>10.2.4 Multi-prism SSDL and nanoparticle technology <p>10.3 Fixed-tuned lasers <p>10.3.1 Fiber based dye lasers <p>10.3.2 Whispering gallery mode lasers <p>10.4 Transparent wood as novel laser media <p>10.4.1 Optically transparent wood material <p>10.4.2 Transparent wood dye laser <p>References <p><h3>11 Electrically-pumped organic semiconductor laser emission</h3> <p>11.1 Introduction <p>11.2 Organic semiconductors <p>11.2.1 Energetics of organic semiconductors <p>11.2.2 High luminescence OLEDs <p>11.3 Electrical excitation of the tandem organic semiconductor active region <p>11.4 Integrated interferometric coherent emitter (IICE) <p>11.5 Energetics of the organic semiconductor IICE <p>11.6 Spatial coherence of the emission from the organic semiconductor IICE <p>11.6.1 Interferometrically determined transverse-mode structures <p>11.7 Spectral coherence of the emission from the organic semiconductor IICE <p>11.7.1 Emission linewidth from N-slit interferograms <p>11.8 On the origin of the coherent emission <p>11.9 Perspective on the literature <p>11.10 Miniaturization prospects <p>11.11 Conclusion <p>References <p><h3>12 Organic photonics </h3> <p>12.1 Introduction <p>12.2 Elements of organic photonics <p>12.2.1 Organic dyes <p>12.2.2 Polymers <p>12.2.3 Organic杋norganic composites <p>12.2.4 Organic lasers <p>12.2.5 Quantum dots <p>12.3 Organic optical elements <p>12.3.1 Organic lenses <p>12.3.2 Organic杋norganic prisms <p>12.3.3 Organic fibers <p>12.4 Applications <p>12.4.1 Communications <p>12.4.2 Directed energy <p>12.4.3 Industry <p>12.4.4 Medicine <p>12.4.5 Nonlinear optics <p>12.4.6 Science <p>12.4.7 Sensors <p>12.5 Perspective <p>References <p><h3>13 Organic dyes in optogenetics</h3> <p>13.1 Introduction <p>13.2 Characterization of organic dyes applied in optogenetics <p>13.2.1 Retinals <p>13.2.2 Flavins (isoalloxazine derivatives) <p>13.2.3 Folates <p>13.2.4 p-coumaric acid <p>13.2.5 Linear tetrapyrroles (phytochrome chromophores) <p>13.2.6 Corrinoid-based cyclic tetrapyrroles (chromophores of cobalamin-based photoreceptors) <p>13.2.7 Tryptophan (UVR8 chromophore) <p>13.2.8 Fluorescent probes <p>13.2.9 Fluorescent proteins <p>13.2.10 Nanomaterials <p>13.3 Action of the organic dyes in photoreceptors <p>13.3.1 Rodopsins <p>13.3.2 Flavoproteins <p>13.3.3 Xanthopsins (photoactive yellow proteins) <p>13.3.4 Phytochromes <p>13.3.5 Cobalamin-based photoreceptors CarH and AerR <p>13.3.6 UVR8 plant photoreceptors <p>13.3.7 Upconversion nanoparticle mediated optogenetics <p>13.4 Application of optogenetic tools <p>13.4.1 Application of optogenetic tools in neuroscience <p>13.4.2 Application of optogenetic tools in cell biology <p>13.5 Conclusions <p>List of Abbreviations <p>Symbols <p>References <p><h3>14 Tunable organic lasers and organic molecules for medicine </h3> <p>14.1 Introduction <p>14.2 Organic lasers for medicine <p>14.2.1 High-performance solid-state organic lasers for medicine <p>14.2.2 Additional organic lasers for medicine <p>14.3 Organic dye molecules for photodynamic therapy <p>14.3.1 Additional organic molecules for photodynamic therapy <p>14.4 Dual laser system for diagnosis and photodynamic therapy <p>14.5 Light sheet microscopy illumination for large specimens <p>14.5.1 Propagation physics of the optics to generate extremely wide light sheets for microscopy <p>14.5.2 The multiple-prism propagation matrix equations extremely wide light sheets for microscopy <p>14.6 Outlook <p>References <p><h3>15 Organic lasers for <i>N</i>-channel quantum entanglement</h3> <p>15.1 Introduction <p>15.2 Sources for quantum entanglement experiments <p>15.2.1 Parametric down conversion <p>15.2.2 CW organic dye lasers <p>15.2.3 Solid-state organic dye lasers for N-channel quantum entanglement communications <p>15.3 The physics of <i>N</i>-channel quantum entanglement <p>15.3.1 Background <p>15.3.2 Quantum entanglement probability amplitudes <p>15.3.3 Interferometric approach to quantum entanglement <p>15.3.4 Generalized quantum entanglement probability amplitudes <p>15.3.5 Alternative methodologies <p>15.3.6 Implications for interpretations in quantum mechanics <p>15.3.7 The interferometric equation and quantum entropy <p>15.4 Perspective <p>References <p><h3>Index</h3></p> </ul> <br> <BODY LINK="#0000FF" VLINK="#000066" ALINK="#00FF00"> <h3>MORE BOOKS ON TUNABLE LASERS</h3> <ul> <li> <a href="http://www.tunablelasers.com/dlp.htm"><i>Dye Laser Principles</a></i> <li><a href="http://www.tunablelasers.com/hpdl.htm"><i>High Power Dye Lasers</a></i> <li><a href="http://www.tunablelasers.com/spie.htm"><i>Selected Papers on Dye Lasers</a></i> <li><a href="http://www.tunablelasers.com/tla.htm"><i>Tunable Laser Applications</a></i> <li><a href="http://www.tunablelasers.com/tlh.htm"><i>Tunable Lasers Handbook</a></i> <li><a href="http://www.tunablelaseroptics.com/"><i>Tunable Laser Optics</a></i> </ul> <center><h1><a href="http://www.opticsnews.com"><img src = "http://www.opticsnews.com/opticsnewscom1.jpg"></a></h1></center> <br> <center><a href="http://www.opticsjournal.com/OpticsJournal.htm"><img src = "http://www.tunablelasers.com/oj2.jpg"></a> <a href="http://www.tunablelasers.com"><img src = "http://www.tunablelasers.com/tll.jpg"></a> <a href="http://www.interferometricoptics.com"><img src = "http://www.tunablelasers.com/lasers33.jpg"></a> <center> <font size =1> <p>Page published on the <i>21st of January, 2019</i></p> <p>Updated on the <i>12th of July, 2024</i></p> </html>