CINXE.COM
Search results for: roof herb garden
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: roof herb garden</title> <meta name="description" content="Search results for: roof herb garden"> <meta name="keywords" content="roof herb garden"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="roof herb garden" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="roof herb garden"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 503</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: roof herb garden</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> Comfort in Green: Thermal Performance and Comfort Analysis of Sky Garden, SM City, North EDSA, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raul%20Chavez%20Jr.">Raul Chavez Jr.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roof's body of knowledge appears to be in its infancy stage in the Philippines. To contribute to its development, this study intends to answer the question: Does the existing green roof in Metro Manila perform well in providing thermal comfort and satisfaction to users? Relatively, this study focuses on thermal sensation and satisfaction of users, surface temperature comparison, weather data comparison of the site (Sky Garden) and local weather station (PAG-ASA), and its thermal resistance capacity. Initially, the researcher conducted a point-in-time survey in parallel with weather data gathering from PAG-ASA and Sky Garden. In line with these, ambient and surface temperature are conducted through the use of a digital anemometer, with humidity and temperature, and non-contact infrared thermometer respectively. Furthermore, to determine the Sky Garden's overall thermal resistance, materials found on site were identified and tabulated based on specified locations. It revealed that the Sky Garden can be considered comfortable based from PMV-PPD Model of ASHRAE Standard 55 having similar results from thermal comfort and thermal satisfaction survey, which is contrary to the actual condition of the Sky Garden by means of a psychrometric chart which falls beyond the contextualized comfort zone. In addition, ground floor benefited the most in terms of lower average ambient temperature and humidity compared to the Sky Garden. Lastly, surface temperature data indicates that the green roof portion obtained the highest average temperature yet performed well in terms of heat resistance compared to other locations. These results provided the researcher valuable baseline information of the actual performance of a certain green roof in Metro Manila that could be vital in locally enhancing the system even further and for future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%20Roof" title="Green Roof">Green Roof</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Analysis" title=" Thermal Analysis"> Thermal Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Comfort" title=" Thermal Comfort"> Thermal Comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Performance" title=" Thermal Performance"> Thermal Performance</a> </p> <a href="https://publications.waset.org/abstracts/116271/comfort-in-green-thermal-performance-and-comfort-analysis-of-sky-garden-sm-city-north-edsa-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Comparative Life Cycle Assessment of an Extensive Green Roof with a Traditional Gravel-Asphalted Roof: An Application for the Lebanese Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makram%20El%20Bachawati">Makram El Bachawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Manneh"> Rima Manneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Dandres"> Thomas Dandres</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Nassab"> Carla Nassab</a>, <a href="https://publications.waset.org/abstracts/search?q=Henri%20El%20Zakhem"> Henri El Zakhem</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Belarbi"> Rafik Belarbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A vegetative roof, also called a garden roof, is a "roofing system that endorses the growth of plants on a rooftop". Garden roofs serve several purposes for a building, such as embellishing the roofing system, enhancing the water management, and reducing the energy consumption and heat island effects. Lebanon is a Middle East country that lacks the use of a sustainable energy system. It imports 98% of its non-renewable energy from neighboring countries and suffers flooding during heavy rains. The objective of this paper is to determine if the implementation of vegetative roofs is effectively better than the traditional roofs for the Lebanese context. A Life Cycle Assessment (LCA) is performed in order to compare an existing extensive green roof to a traditional gravel-asphalted roof. The life cycle inventory (LCI) was established and modeled using the SimaPro 8.0 software, while the environmental impacts were classified using the IMPACT 2002+ methodology. Results indicated that, for the existing extensive green roof, the waterproofing membrane and the growing medium were the highest contributors to the potential environmental impacts. When comparing the vegetative to the traditional roof, results showed that, for all impact categories, the extensive green roof had the less environmental impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roofs" title=" green roofs"> green roofs</a>, <a href="https://publications.waset.org/abstracts/search?q=vegatative%20roof" title=" vegatative roof"> vegatative roof</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/23142/comparative-life-cycle-assessment-of-an-extensive-green-roof-with-a-traditional-gravel-asphalted-roof-an-application-for-the-lebanese-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Elmazek">Eman M. Elmazek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20walls" title=" green walls"> green walls</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20farming" title=" urban farming"> urban farming</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden" title=" roof herb garden"> roof herb garden</a> </p> <a href="https://publications.waset.org/abstracts/46610/agriroofs-and-agriwalls-applications-of-food-production-in-green-roofs-and-green-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Ganji%20Morad">Mina Ganji Morad</a>, <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Azadisoleimanieh"> Maziar Azadisoleimanieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Ganji%20Morad"> Sina Ganji Morad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20energy%20consumption" title=" reducing energy consumption"> reducing energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=mountainous%20areas" title=" mountainous areas"> mountainous areas</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a> </p> <a href="https://publications.waset.org/abstracts/23008/effect-of-green-roofs-to-prevent-the-dissipation-of-energy-in-mountainous-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Temperature Control and Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Ming%20Su">Ying-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Shu%20Huang"> Mei-Shu Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To mitigate the urban heat island effect has become a global issue facing the challenge of climate change. Through literature reviews, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect relatively. Because there are not enough open space and park, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary school is asked priority to build green roof and important educational place to promote green roof concept. Testo 175-H1 recording device was used to record the temperature and humidity difference between roof surface and interior space below roof with and without green roof for the long-term. We also use questionnaire to investigate the awareness of comfort level of green roof and sensation of teachers and students of the elementary school. The results indicated the temperature of roof without greening was higher than that with greening about 2°C. But sometimes during noontime, the temperature of green roof was higher than that of non-green roof related to the character of the accumulation and dissipation of heat of greening probably. The temperature of interior space below green roof was normally lower than that without green roof about 1°C showed that green roof could lower the temperature. The humidity of the green roof was higher than the one without greening also indicated that green roof retained water better. Teachers liked to combine green roof concept in the curriculum, students wished all classes can take turns to maintain the green roof. Teachers and students that school had integrated green roof concept in the curriculum were more willing to participate in the maintenance work of green roof. Teachers and students who may access and touch the green roof can be more aware of the green roof benefit. We suggest architect to increase the accessibility and visibility of green roof, such as a part of the activity space. This idea can be a reference of the green roof curriculum design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort%20level" title="comfort level">comfort level</a>, <a href="https://publications.waset.org/abstracts/search?q=elementary%20school" title=" elementary school"> elementary school</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title=" green roof"> green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20island%20effect" title=" heat island effect"> heat island effect</a> </p> <a href="https://publications.waset.org/abstracts/24797/temperature-control-and-comfort-level-of-elementary-school-building-with-green-roof-in-new-taipei-city-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> The Determination of Heavy Metal in Herb Used in Dusit Community to Develop a Sustainable Quality of Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinnawat%20Satsananan">Chinnawat Satsananan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to find amount of heavy metal in herb used in Dusit community and compare of heavy metal in each part by quantity in herb and standard determination in Thai herb books to develop a sustainable quality of life, the result of study in 14 herbs do not find sample of heavy metal., by quantity of heavy contamination of 4 kinds: Cd, Co, Fe and Pb have lower than standard of 2 organizations: Thai herb standard, and World Health Organization, from the test 14 herbs have Fe in every part of herbs and all 14 kinds has Fe that is necessary for our health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=herbs%20plants" title="herbs plants">herbs plants</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dusit%20district" title=" Dusit district"> Dusit district</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20quality%20of%20life" title=" sustainable quality of life"> sustainable quality of life</a> </p> <a href="https://publications.waset.org/abstracts/9431/the-determination-of-heavy-metal-in-herb-used-in-dusit-community-to-develop-a-sustainable-quality-of-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">497</span> Persian Garden Design and Climate Case Studies: Shahzadeh-Mahan and Shah Garden</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raheleh%20Saifiabolhassan">Raheleh Saifiabolhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gardens symbolize human effort to bring Eden to earth and are defined as the purest pleasures and the greatest inspiration for men. According to Persian mythology, a garden called "Paris" is a magical, perfumed place populated by beautiful and angelic creatures. "Pardis" comes from the word "paridaiza," which means "walled garden." Gardening has always been a worldwide attraction due to the abundance of green space, and desert gardens are no exception. Because most historical garden designs use a similar pattern, such as Chahar-Bagh, climate effects have not been considered. The purpose of studying these general designs was to determine whether location and weather conditions are affecting them. So, two gardens were chosen for comparison: a desert (Shahzadeh-Mahan) and a humid garden (Shah) and compared their geometry, irrigation system, entrances, and pavilions. The findings of the study revealed that there are several notable differences among their architectural principles. For example, the desert garden design is introverted with transparent surfaces and a single focal point, while the moderate garden is extraverted with high complexity and multiple perspectives. In conclusion, the study recognizes the richness and significance of the Persian garden concept, which can be applied in many different contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardis" title="Pardis">Pardis</a>, <a href="https://publications.waset.org/abstracts/search?q=Chahar-bagh" title=" Chahar-bagh"> Chahar-bagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20garden" title=" Persian garden"> Persian garden</a>, <a href="https://publications.waset.org/abstracts/search?q=temperate" title=" temperate"> temperate</a>, <a href="https://publications.waset.org/abstracts/search?q=humid%20climate" title=" humid climate"> humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry" title=" geometry"> geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pavilion" title=" pavilion"> pavilion</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigations" title=" irrigations"> irrigations</a>, <a href="https://publications.waset.org/abstracts/search?q=culture" title=" culture"> culture</a> </p> <a href="https://publications.waset.org/abstracts/138857/persian-garden-design-and-climate-case-studies-shahzadeh-mahan-and-shah-garden" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">496</span> Soil Organic Carbon and Nutrients in Smallholding Land Uses in Southern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekdes%20Lulu">Mekdes Lulu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assessed the soil organic C (SOC) and soil nutrients in smallholding home garden, woodlot, grazing land, and cropland at two soil depths and two sites in Wolaita Zone, southern Ethiopia. The results showed that soil properties were significantly influenced by land use. The home garden had significantly higher (p < 0.05) SOC and soil nutrients when compared to the cropland. When the home garden was compared to the woodlot and grazing land uses, it had significantly higher (p < 0.05) values except in SOC, total N (TN), cation exchange capacity (CEC), and exchangeable Ca. Cropland, in comparison with grazing land and woodlot, had a non-significant difference except TN. The SOC stock (0–40 cm) in the home garden, woodlot, grazing land and cropland was 79.5, 68.0, 65.0, and 58.1 Mg ha–1, respectively. Home garden significantly differed (p <0.05) in SOC only from cropland, and this was attributed not only to the relatively higher organic input in the home garden but also to the little organic matter input and frequently tillage of the cropland. The similar SOC among the home garden, woodlot and grazing lands may imply that the balance between inputs and outputs could be nearly similar for the land uses. Soil TN and CEC had a nearly similar pattern of difference as in SOC among the land uses because of their close relationship with SOC. In general, the land use influence on soil nutrients can be in the order: home garden > wood land » grazing land » cropland, with home garden showing the least difference from the woodlot and the greatest from the cropland. In the agroecosystem, in general, the influence of smallholding home garden on SOC and soil nutrient was marginally different from Eucalyptus woodlot and grazing lands but evidently different from cropland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cropland" title="cropland">cropland</a>, <a href="https://publications.waset.org/abstracts/search?q=grazing%20land" title=" grazing land"> grazing land</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20garden" title=" home garden"> home garden</a>, <a href="https://publications.waset.org/abstracts/search?q=soc%20stock" title=" soc stock"> soc stock</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20nutrients" title=" soil nutrients"> soil nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=woodlot" title=" woodlot"> woodlot</a> </p> <a href="https://publications.waset.org/abstracts/190065/soil-organic-carbon-and-nutrients-in-smallholding-land-uses-in-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">495</span> Thermal Behavior of Green Roof: Case Study at Seoul National University Retentive Green Roof</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theresia%20Gita%20Hapsari">Theresia Gita Hapsari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been major concern about urban heating as urban clusters emerge and population migration from rural to urban areas continues. Green roof has been one of the main practice for urban heat island mitigation for the past decades, thus, this study was conducted to predict the cooling potential of retentive green roof in mitigating urban heat island. Retentive green roof was developed by Han in 2010. It has 320 mm height of retention wall surrounding the vegetation and 65mm depth of retention board underneath the soil, while most conventional green roof doesn’t have any retention wall and only maximum of 25 mm depth of drainage board. Seoul National University retentive green roof significantly reduced sensible heat movement towards the air by 0.5 kWh/m2, and highly enhanced the evaporation process as much as 0.5 – 5.4 kg/m2 which equals to 0.3 – 3.6 kWh/m2 of latent heat flux. These results indicate that with design enhancement, serving as a viable alternate for conventional green roof, retentive green roof contributes to overcome the limitation of conventional green roof which is the main solution for mitigating urban heat island. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20impact%20development" title=" low impact development"> low impact development</a>, <a href="https://publications.waset.org/abstracts/search?q=retention%20board" title=" retention board"> retention board</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behavior" title=" thermal behavior"> thermal behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island" title=" urban heat island"> urban heat island</a> </p> <a href="https://publications.waset.org/abstracts/76640/thermal-behavior-of-green-roof-case-study-at-seoul-national-university-retentive-green-roof" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Taherzadeh">Ebrahim Taherzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmi%20Z.%20M.%20Shafri"> Helmi Z. M. Shafri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaveh%20Shahi"> Kaveh Shahi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object-based" title="object-based">object-based</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20material" title=" roof material"> roof material</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20tile" title=" concrete tile"> concrete tile</a>, <a href="https://publications.waset.org/abstracts/search?q=WorldView-2" title=" WorldView-2"> WorldView-2</a> </p> <a href="https://publications.waset.org/abstracts/13685/roof-material-detection-based-on-object-based-approach-using-worldview-2-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> Garden City in the Age of ICT: A Case Study of Dali</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luojie%20Tang">Luojie Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Libin%20Ouyang"> Libin Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yihang%20Gao"> Yihang Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural landscape and urban-rural structure, with their attractiveness in the Dali area around Erhai Lake, exhibit striking similarities with Howard's Garden City. With the emergence of the unique phenomenon of the first large-scale gathering of digital nomads in China in Dali, an analysis of Dali's natural, economic, and cultural representations and structures reveals that the Garden City model can no longer fully explain the current overall human living environment in Dali. By interpreting the bottom-up local construction process in Dali based on landscape identity, the transformation of production and lifestyle under new technologies such as ICT(Information and Communication Technology), and the values and lifestyle reshaping embodied in the "reverse urbanization" phenomenon of the middle class in Dali, it is believed that Dali has moved towards a "contemporary garden city influenced by new technology." The article summarizes the characteristics and connotations of this Garden City and provides corresponding strategies for its continued healthy development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dali" title="dali">dali</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT" title=" ICT"> ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=rural-urban%20relationship" title=" rural-urban relationship"> rural-urban relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=garden%20city%20model" title=" garden city model"> garden city model</a> </p> <a href="https://publications.waset.org/abstracts/165369/garden-city-in-the-age-of-ict-a-case-study-of-dali" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> Thermal Behavior of the Extensive Green Roofs in Riyadh City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Muharam">Ashraf Muharam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Al-Hemiddi"> Nasser Al-Hemiddi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Sayed%20Amer"> El Sayed Amer </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roof is one of sustainable practice for reducing the environmental impact of a building. Green roofs are vegetation roofs that are partially or completely covered building's roof. It can provide multiple environmental benefits such as mitigation of urban heat island effect and protecting buildings against solar radiation. In Riyadh city buildings consume about 70 % of the total energy used in the building for cooling and heating because of the Riyadh's harsh and tropical climate. So, the study aim was identifying the thermal performance of extensive green roof and comparing its performance with concrete roof performance during summer season. The experimental validations results indicated that the extensive green roofs system was better than concrete roof system for lowering the indoor air temperature. It could reduce the indoor air temperature from 2°C to 5.5°C compared to the concrete roof system. Also, the finding of this study demonstrated that extensive green roof system could reduce 12% to 33% of energy consumption of air conditioning in Riyadh city during summer seasons by using environmentally friendly insulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title="thermal performance">thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roof%20system" title=" green roof system"> green roof system</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20roof%20system" title=" concrete roof system"> concrete roof system</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20climatic" title=" tropical climatic"> tropical climatic</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20temperatures" title=" internal temperatures"> internal temperatures</a> </p> <a href="https://publications.waset.org/abstracts/24331/thermal-behavior-of-the-extensive-green-roofs-in-riyadh-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Young%20Jung"> Woo Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20Simulation" title="Monte Carlo Simulation">Monte Carlo Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20cladding" title=" roof cladding"> roof cladding</a>, <a href="https://publications.waset.org/abstracts/search?q=screw%20pull-out%20strength" title=" screw pull-out strength"> screw pull-out strength</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20fragility" title=" wind fragility"> wind fragility</a> </p> <a href="https://publications.waset.org/abstracts/80016/wind-fragility-for-honeycomb-roof-cladding-panels-using-screw-pull-out-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> Mitigation of Wind Loads on a Building Using Small Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Chowdhury">Arindam Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Andres%20Tremante"> Andres Tremante</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadtaghi%20Moravej"> Mohammadtaghi Moravej</a>, <a href="https://publications.waset.org/abstracts/search?q=Bodhisatta%20Hajra"> Bodhisatta Hajra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Zisis"> Ioannis Zisis</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Irwin"> Peter Irwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extreme wind events, such as hurricanes, have caused significant damage to buildings, resulting in losses worth millions of dollars. The roof of a building is most vulnerable to wind-induced damage due to the high suctions experienced by the roof in extreme wind conditions. Wind turbines fitted to buildings can help generate energy, but to our knowledge, their application to wind load mitigation is not well known. This paper presents results from an experimental study to assess the effect of small wind turbines (developed and patented by the first and second authors) on the wind loads on a low rise building roof. The tests were carried out for an open terrain at the Wall of Wind (WOW) experimental facility at Florida International University (FIU), Miami, Florida, USA, for three cases – bare roof, roof fitted with wind turbines placed closer to the roof edges, and roof with wind turbines placed away from the roof edges. Results clearly indicate that the presence of the wind turbines reduced the mean and peak pressure coefficients (less suction) on the roof when compared to the bare deck case. Furthermore, the peak pressure coefficients were found to be lower (less suction) when the wind turbines were placed closer to the roof, than away from the roof. Flow visualization studies using smoke and gravel clearly showed that the presence of the turbines disrupted the formation of vortices formed by cornering winds, thereby reducing roof suctions and preventing lift off of roof coverings. This study shows that the wind turbines besides generating wind energy, can be used for mitigating wind induced damage to the building roof. Future research must be directed towards understanding the effect of these wind turbines on other roof geometries (e.g. hip/gable) in different terrain conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wall%20of%20wind" title="wall of wind">wall of wind</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20loads" title=" wind loads"> wind loads</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a> </p> <a href="https://publications.waset.org/abstracts/76245/mitigation-of-wind-loads-on-a-building-using-small-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">489</span> Effect of Cellulase Pretreatment for n-Hexane Extraction of Oil from Garden Cress Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boutemak%20Khalida">Boutemak Khalida</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahmani%20Siham"> Dahmani Siham </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Garden cress (Lepidium Sativum L.) belonging to the family Brassicaceae, is edible growing annual herb. Its various parts (roots, leaves and seeds) have been used to treat various human ailments. Its seed extracts have been screened for various biological activities like hypotensive, antimicrobial, bronchodilator, hypoglycaemic and antianemic. The aim of the present study is to optimize the process parameters (cellulase concentration and incubation time) of enzymatic pre-treatment of the garden cress seeds and to evaluate the effect of cellulase pre-treatment of the crushed seeds on the oil yield, physico-chemical properties and antibacterial activity and comparing to non-enzymatic method. The optimum parameters of cellulase pre-treatment were as follows: cellulase of 0,1% w/w and incubation time of 2h. After enzymatic pre-treatment, the oil was extracted by n-hexane for 1.5 h, the oil yield was 4,01% for cellulase pre-treatment as against 10,99% in the control sample. The decrease in yield might be caused a result of mucilage. Garden cress seeds are covered with a layer of mucilage which gels on contact with water. At the same time, the antibacterial activity was carried out using agar diffusion method against 4 food-borne pathogens (Escherichia coli, Salmonella typhi,Staphylococcus aureus, Bacillus subtilis). The results showed that bacterial strains are very sensitive to the oil with cellulase pre-treatment. Staphylococcus aureus is extremely sensitive with the largest zone of inhibition (40 mm), Escherichia coli and salmonella typhi had a very sensitive to the oil with a zone of inhibition (26 mm). Bacillus subtilizes is averagely sensitive which gave an inhibition of 16 mm. But it does not exhibit sensivity to the oil without enzymatic pre-treatment with a zone inhibition (< 8 mm). Enzymatic pre-treatment could be useful for antimicrobial activity of the oil, and hold a good potential for use in food and pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lepidium%20sativum%20L." title="Lepidium sativum L.">Lepidium sativum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20pretreatment" title=" enzymatic pretreatment"> enzymatic pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity." title=" antibacterial activity."> antibacterial activity.</a> </p> <a href="https://publications.waset.org/abstracts/17468/effect-of-cellulase-pretreatment-for-n-hexane-extraction-of-oil-from-garden-cress-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">488</span> CFD Modelling and Thermal Performance Analysis of Ventilated Double Skin Roof Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Idris">A. O. Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Virgone"> J. Virgone</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Ibrahim"> A. I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20David"> D. David</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Vergnault"> E. Vergnault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hot countries, the major challenge is the air conditioning. The increase in energy consumption by air conditioning stems from the need to live in more comfortable buildings, which is understandable. But in Djibouti, one of the countries with the most expensive electricity in the world, this need is exacerbated by an architecture that is inappropriate and unsuitable for climatic conditions. This paper discusses the design of the roof which is the surface receiving the most solar radiation. The roof determines the general behavior of the building. The study presents Computational Fluid Dynamics (CFD) modeling and analysis of the energy performance of a double skin ventilated roof. The particularity of this study is that it considers the climate of Djibouti characterized by hot and humid conditions in winter and very hot and humid in summer. Roof simulations are carried out using the Ansys Fluent software to characterize the flow and the heat transfer induced in the ventilated roof in steady state. This modeling is carried out by comparing the influence of several parameters such as the internal emissivity of the upper surface, the thickness of the insulation of the roof and the thickness of the ventilated channel on heat gain through the roof. The energy saving potential compared to the current construction in Djibouti is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20roof" title=" double skin roof"> double skin roof</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-fluid%20analysis" title=" thermo-fluid analysis"> thermo-fluid analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/76124/cfd-modelling-and-thermal-performance-analysis-of-ventilated-double-skin-roof-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Irrigation and Thermal Buffering Mathematical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yara%20Elborolosy">Yara Elborolosy</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsho%20Sanyal"> Harsho Sanyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Cataldo"> Joseph Cataldo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two methods of irrigation, drip and sprinkler, were studied to determine the response of the Javits green roof to irrigation. The control study were dry unirrigated plots. Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout, and sprinkler irrigation used a sprinkler system to irrigate the green roof from above. In all cases, the irrigated roofs had increased the soil moisture, reduced temperatures of both the upper and lower surfaces, reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof. The buffered temperature fluctuations were also studied via air conditioner energy consumption. There was a 28% reductionin air conditioner energy consumption and 33% reduction in overall energy consumption between dry and irrigated plots. Values of thermal resistance or S were determined for accuracy, and for this study, there was little change which is ideal. A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum. It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title="green infrastructure">green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20roof" title=" black roof"> black roof</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20buffering" title=" thermal buffering"> thermal buffering</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a> </p> <a href="https://publications.waset.org/abstracts/169589/irrigation-and-thermal-buffering-mathematical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Introduction of a Medicinal Plants Garden to Revitalize a Botany Curriculum for Non-Science Majors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosa%20M.%20Gambier">Rosa M. Gambier</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20L.%20Carlson"> Jennifer L. Carlson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to revitalize the science curriculum for botany courses for non-science majors, we have introduced the use of the medicinal plants into a first-year botany course. We have connected the use of scientific method, scientific inquiry and active learning in the classroom with the study of Western Traditional Medical Botany. The students have researched models of Botanical medicine and have designed a sustainable medicinal plants garden using native medicinal plants from the northeast. Through the semester, the students have researched their chosen species, planted seeds in the college greenhouse, collected germination ratios, growth ratios and have successfully produced a beginners medicinal plant garden. Phase II of the project will be to tie in SCCCs community outreach goals by involving the public in the expanded development of the garden as a way of sharing learning about medicinal plants and traditional medicine outside the classroom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant%20garden" title="medicinal plant garden">medicinal plant garden</a>, <a href="https://publications.waset.org/abstracts/search?q=botany%20curriculum" title=" botany curriculum"> botany curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20learning" title=" active learning"> active learning</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20outreach" title=" community outreach"> community outreach</a> </p> <a href="https://publications.waset.org/abstracts/51779/introduction-of-a-medicinal-plants-garden-to-revitalize-a-botany-curriculum-for-non-science-majors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">485</span> Development and Mineral Profile Analysis of Fruit, Vegetable and Wild Herb Based Juices to Be Consumed in Elderly Centres in Durban, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mkhize%20Xolile">Mkhize Xolile</a>, <a href="https://publications.waset.org/abstracts/search?q=Davies%20Theopheluis"> Davies Theopheluis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study was to develop a variety of fruit, vegetable and indigenous wild herb (amaranth) based juices, which can increase mineral consumption (of Ca, Fe, K, Mg, Zn). Ten samples of juice varieties were developed. The concentration range for the standards was between 10 and 150 ppm. Standards and samples were analysed using Perkin Elmer Atomic Absorption Spectrophotometer and the AAnalyst 400 model was used. The indigenous herb based juice was the most nutritious than all the other varieties developed. Mg and Fe could contribute significantly in improving cardio vascular health, bone functionality and immunity of elderly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minerals" title="minerals">minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=juice" title=" juice"> juice</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertension" title=" hypertension"> hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=intervention" title=" intervention"> intervention</a> </p> <a href="https://publications.waset.org/abstracts/7534/development-and-mineral-profile-analysis-of-fruit-vegetable-and-wild-herb-based-juices-to-be-consumed-in-elderly-centres-in-durban-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">484</span> Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Odeh">Saad Odeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20panel" title="PV panel">PV panel</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20shading" title=" roof shading"> roof shading</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/78592/studying-the-effect-of-shading-by-rooftop-pv-panels-on-dwellings-thermal-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">483</span> Feasibility of Implementing Zero Energy Buildings in Iran and Examining Its Economic and Technical Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Siyami">Maryam Siyami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zero energy buildings refer to buildings that have zero annual energy consumption and do not produce carbon emissions. In today's world, considering the limited resources of fossil fuels, buildings, industries and other organizations have moved towards using other available energies. The idea and principle of net zero energy consumption has attracted a lot of attention because the use of renewable energy is a means and a solution to eliminate pollutants and greenhouse gases. Due to the increase in the cost of fossil fuels and their destructive effects on the environment and disrupting the ecological balance, today the plans related to zero energy principles have become very practical and have gained particular popularity. In this research, building modeling has been done in the Design Builder software environment. Based on the changes in the required energy throughout the year in different roof thickness conditions, it has been observed that with the increase in roof thickness, the amount of heating energy required has a downward trend, from 6730 kilowatt hours in the roof thickness of 10 cm to 6408 kilowatt hours in the roof thickness condition. 20 cm is reached, which represents a reduction of about 4.7% in energy if the roof thickness is doubled. Also, with the increase in the thickness of the roof throughout the year, the amount of cooling energy required has a gentle downward trend and has reached from 4964 kilowatt hours in the case of a roof thickness of 10 cm to 4859 kilowatt hours in the case of a roof thickness of 20 cm, which is a decrease equal to It displays 2%. It can be seen that the trend of changes in the energy required for cooling and heating is not much affected by the thickness of the roof (with an effect of 98%) and therefore there is no technical and economic recommendation to increase the thickness of the roof in this sector. Finally, based on the changes in the carbon dioxide produced in different states of the roof thickness, it has been observed that with the increase in the roof thickness, energy consumption and consequently the production of carbon dioxide has decreased. By increasing the thickness of the roof from 10 cm to 20 cm, the amount of carbon dioxide produced by heating the building has decreased by 27%. Also, this amount of reduction has been obtained based on the cooling system and for different amounts of roof thickness equal to 19%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20builder" title=" design builder"> design builder</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP" title=" AHP"> AHP</a> </p> <a href="https://publications.waset.org/abstracts/191532/feasibility-of-implementing-zero-energy-buildings-in-iran-and-examining-its-economic-and-technical-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">482</span> A Review on the Development and Challenges of Green Roof Systems in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Chow">M. F. Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Abu%20Bakar"> M. F. Abu Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roof system is considered a relatively new concept in Malaysia even though it has been implemented widely in the developed countries. Generally, green roofs provide many benefits such as enhancing aesthetical quality of the built environment, reduce urban heat island effect, reduce energy consumption, improve stormwater attenuation, and reduce noise pollution. A better understanding on the implementation of green roof system in Malaysia is crucial, as Malaysia’s climate is different if compared with the climate in temperate countries where most of the green roof studies have been conducted. This study has concentrated on the technical aspect of green roof system which focuses on i) types of plants and method of planting; ii) engineering design for green roof system; iii) its hydrological performance on reducing stormwater runoff; and iv) benefits of green roofs with respect to energy. Literature review has been conducted to identify the development and obstacles associated with green roofs systems in Malaysia. The study had identified the challenges and potentials of green roofs development in Malaysia. This study also provided the recommendations on standard design and strategies on the implementation of green roofs in Malaysia in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engineering%20design" title="engineering design">engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title=" green roof"> green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20countries" title=" tropical countries"> tropical countries</a> </p> <a href="https://publications.waset.org/abstracts/35264/a-review-on-the-development-and-challenges-of-green-roof-systems-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Garden Culture in Islamic Civilization: A Glance at the Birth, Development and Current Situation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20G%C3%B6ker">Parisa Göker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the birth of Islam, the definitions of paradise in Quran have spread across three continents since 7<sup>th</sup> century, showing itself in the palace gardens as a reflection of Islamic Culture. The design characteristics of Islamic gardens come forth with the influence of religious beliefs, as well as taking its form as per the cultural, climatic and soil characteristics of its geography, and showing its difference. It is possible to see these differences from the garden examples that survived to present time from the civilizations in the lands of Islamic proliferation. The main material of this research is the Islamic gardens in Iran and Spain. Field study was carried out in Alhambra Palace in Spain, Granada and Shah Goli garden in Iran, Tabriz. In this study, the birth of Islamic gardens, spatial perception of paradise, design principles, spatial structure, along with the structural/plantation materials used are examined. Also the characteristics and differentiation of the gardens examined in different cultures and geographies have been revealed. In the conclusion section, Iran and Spain Islamic garden samples were evaluated and their properties were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islamic%20civilization" title="Islamic civilization">Islamic civilization</a>, <a href="https://publications.waset.org/abstracts/search?q=Islamic%20architecture" title=" Islamic architecture"> Islamic architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20landscape" title=" cultural landscape"> cultural landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=Islamic%20garden" title=" Islamic garden "> Islamic garden </a> </p> <a href="https://publications.waset.org/abstracts/117251/garden-culture-in-islamic-civilization-a-glance-at-the-birth-development-and-current-situation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> The Study of Groundcover for Heat Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Winai%20Mankhatitham">Winai Mankhatitham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1) Types of groundcover affecting heat reduction, 2) The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane, 3) Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20reduction" title=" heat reduction"> heat reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=groundcover" title=" groundcover"> groundcover</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a> </p> <a href="https://publications.waset.org/abstracts/8082/the-study-of-groundcover-for-heat-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> Recommending Appropriate Type of Green Roof Considering Urban Typology and Climatic Zoning in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazal%20Raheb">Ghazal Raheb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Population growth in big cities of Iran has led to limitation of land resources, more consumption of non-renewable sources of energy and many environmental problems. Emerging of overbuilt urban areas and decreasing amount of green spaces cause the appearance of an undesirable landscape in the cities. Green roof technology is a solution to improve environmental concerns in urban areas which combines green spaces with buildings as the private or semi-private spaces. Successful implementation in different areas definitely depends on accommodation of green roof type with the environment and urban and building typology in Iran. This paper is aiming to provide some recommendation for selecting appropriate type of green roof and executive solutions considering to climatic zoning and urban situation in Iran. Two main aspects which have been considered are environmental and urban typology factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20typology" title=" urban typology"> urban typology</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20zone" title=" climate zone"> climate zone</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape" title=" landscape"> landscape</a> </p> <a href="https://publications.waset.org/abstracts/10813/recommending-appropriate-type-of-green-roof-considering-urban-typology-and-climatic-zoning-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Herb's Market Development for Capability Poverty Alleviation: Case Study of Bagh- E- Narges Village under Komak Charity's Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Afsoon%20Mohseni">Seyedeh Afsoon Mohseni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of the approach to the poverty definition is revealed regarding to it’s effect on the nature of planning poverty alleviation programs. This research employs the capability deprivation approach to alleviate rural poverty and seeks to develop herb’s market to alleviate capability poverty with an NGO’s intervene, Komak charity foundation. This research has employed qualitative approach; the data were collected through field observations, review of documents and interviews. Subsequently they were analyses by thematic analysis method. According to the findings, Komak charity can provide the least sustenance of the rural poor and alleviate capability poverty emergence through Herb’s market development of the village. Employing the themes, the market development is planned in two phases of empirical production and product development. Komak charity can intervene as a facilitator by providing micro credits, cooperative and supervising. Furthermore, planning on education and raising participation are prerequisites for the efficiency of the plan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capability%20poverty" title="capability poverty">capability poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=Herb%27s%20market%20development" title=" Herb's market development"> Herb's market development</a>, <a href="https://publications.waset.org/abstracts/search?q=NGO" title=" NGO"> NGO</a>, <a href="https://publications.waset.org/abstracts/search?q=Komak%20charity%20foundation" title=" Komak charity foundation"> Komak charity foundation</a> </p> <a href="https://publications.waset.org/abstracts/18193/herbs-market-development-for-capability-poverty-alleviation-case-study-of-bagh-e-narges-village-under-komak-charitys-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Mohamed">F. M. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Abdelaziz"> A. Y. Abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof%20tank" title=" floating roof tank"> floating roof tank</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection%20system" title=" lightning protection system"> lightning protection system</a> </p> <a href="https://publications.waset.org/abstracts/67175/protection-of-floating-roof-petroleum-storage-tanks-against-lightning-strokes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">476</span> Meanings and Construction: Evolution of Inheriting the Traditions in Chinese Modern Architecture in the 1980s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wang">Wei Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Queli Hotel, Xixi Scenery Spot Reception and Square Pagoda Garden are three important landmarks of localized Chinese modern architecture (LCMA) in the architectural design context of "Inheriting the Traditions in Modern Architecture" in the 1980s. As the most representative cases of LCMA in the 1980s, they interpret the traditions of Chinese garden and imperial roof from different perspectives. Based on the research text, conceptual drawings, construction drawings and site investigation, this paper extracts two groups of prominent contradictions in practice ("Pattern-Material-Structure" and "Type-Topography-Body") for keyword-based analysis to compare and examine different choices and balances by architects. Based on this, this paper attempts to indicate that the ideographic form derived from macro-narrative and the innovative investigation in construction is a pair of inevitable contradictions that must be handled and coordinated in these practices. The collision of the contradictions under specific conditions results in three cognitive attitudes and practical strategies towards traditions: Formal symbolism, spatial abstraction and construction-based narrative. These differentiated thoughts about Localization and Chineseness reflect various professional ideologies and value standpoints in the transition of Chinese Architecture discipline in the 1980s. The great variety in this particular circumstance suggests tremendous potential and possibilities of the future LCMA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=meaning" title=" meaning"> meaning</a>, <a href="https://publications.waset.org/abstracts/search?q=Queli%20Hotel" title=" Queli Hotel"> Queli Hotel</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20pagoda%20garden" title=" square pagoda garden"> square pagoda garden</a>, <a href="https://publications.waset.org/abstracts/search?q=tradition" title=" tradition"> tradition</a>, <a href="https://publications.waset.org/abstracts/search?q=Xixi%20scenery%20spot%20reception" title=" Xixi scenery spot reception"> Xixi scenery spot reception</a> </p> <a href="https://publications.waset.org/abstracts/131053/meanings-and-construction-evolution-of-inheriting-the-traditions-in-chinese-modern-architecture-in-the-1980s" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">475</span> Study of the Performance of Metal Tanks with a Floating Roof</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rezki%20Akkouche">Rezki Akkouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work exposes metal tanks in general and floating roofs in particular by listing the codes and standards which study this kind of structure. Initial research discusses the types of tanks, how they are designed, and the disadvantages and advantages that each type has. Then, in-depth research was carried out carefully in order to popularize the floating roof tank and the principles of its design and operation while defining the different types of this kind of roof, how and what they are designed, naming the main installation accessories for these roofs and the dangers that a malfunction of these accessories would cause, also exposing the problems likely to be encountered on these roofs and the considerable and important advantages that floating roof tanks bring. A simplification of the two API 650 and Eurocode 3 regulations - Tanks part - has been made by explaining and mentioning the design rules and laws of this type of structure. Thus a comparison of the two regulations is accomplished by exemplifying this with a study of an actual project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tanks%20of%20metal" title="tanks of metal">tanks of metal</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof" title=" floating roof"> floating roof</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a> </p> <a href="https://publications.waset.org/abstracts/167127/study-of-the-performance-of-metal-tanks-with-a-floating-roof" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">474</span> Comparative Life Cycle Assessment of Roofing System for Abu Dhabi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyasu%20Eibedingil">Iyasu Eibedingil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry is one of the major factors responsible for causing a negative impact on the environment. It has the largest share in the use of natural resources including land use, material extraction, and greenhouse gases emissions. For this reason, it is imperative to reduce its environmental impact through the construction of sustainable buildings with less impact. These days, it is possible to measure the environmental impact by using different tools such as the life cycle assessment (LCA) approach. Given this premise, this study explored the environmental impact of two types of roofing systems through comparative life cycle assessment approach. The tiles were analyzed to select the most environmentally friendly roofing system for the villa at Khalifa City A, Abu Dhabi, United Arab Emirates. These products are available in various forms; however, in this study concrete roof tiles and clay roof tiles were considered. The results showed that concrete roof tiles have lower environmental impact. In all scenarios considered, manufacturing the roof tiles locally, using recovered fuels for firing clay tiles, and using renewable energy (electricity from PV plant) showed that the concrete roof tiles were found to be excellent in terms of its embodied carbon, embodied the energy and various other environmental performance indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20roof%20tile" title="clay roof tile">clay roof tile</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20roof%20tile" title=" concrete roof tile"> concrete roof tile</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/47746/comparative-life-cycle-assessment-of-roofing-system-for-abu-dhabi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>