CINXE.COM
Search results for: interface shape
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: interface shape</title> <meta name="description" content="Search results for: interface shape"> <meta name="keywords" content="interface shape"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="interface shape" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="interface shape"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3589</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: interface shape</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3529</span> Mechanical Prosthesis Controlled by Brain-Computer Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianyu%20Cao">Tianyu Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=KIRA%20%28Ruizhi%20Zhao%29"> KIRA (Ruizhi Zhao)</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of our research is to study the possibility of people with physical disabilities manipulating mechanical prostheses through brain-computer interface (BCI) technology. The brain-machine interface (BCI) of the neural prosthesis records signals from neurons and uses mathematical modeling to decode them, converting desired movements into body movements. In order to improve the patient's neural control, the prosthesis is given a natural feeling. It records data from sensitive areas from the body to the prosthetic limb and encodes signals in the form of electrical stimulation to the brain. In our research, the brain-computer interface (BCI) is a bridge connecting patients’ cognition and the real world, allowing information to interact with each other. The efficient work between the two is achieved through external devices. The flow of information is controlled by BCI’s ability to record neuronal signals and decode signals, which are converted into device control. In this way, we could encode information and then send it to the brain through electrical stimulation, which has significant medical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title="biomedical engineering">biomedical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=brain-computer%20interface" title=" brain-computer interface"> brain-computer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthesis" title=" prosthesis"> prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20control" title=" neural control"> neural control</a> </p> <a href="https://publications.waset.org/abstracts/138055/mechanical-prosthesis-controlled-by-brain-computer-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3528</span> From Modeling of Data Structures towards Automatic Programs Generating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentin%20P.%20Velikov">Valentin P. Velikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic program generation saves time, human resources, and allows receiving syntactically clear and logically correct modules. The 4-th generation programming languages are related to drawing the data and the processes of the subject area, as well as, to obtain a frame of the respective information system. The application can be separated in interface and business logic. That means, for an interactive generation of the needed system to be used an already existing toolkit or to be created a new one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title="computer science">computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20user%20interface" title=" graphical user interface"> graphical user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20dialog%20interface" title=" user dialog interface"> user dialog interface</a>, <a href="https://publications.waset.org/abstracts/search?q=dialog%20frames" title=" dialog frames"> dialog frames</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20modeling" title=" data modeling"> data modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=subject%20area%20modeling" title=" subject area modeling"> subject area modeling</a> </p> <a href="https://publications.waset.org/abstracts/41471/from-modeling-of-data-structures-towards-automatic-programs-generating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3527</span> FACTS Based Stabilization for Smart Grid Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel.%20M.%20Sharaf">Adel. M. Sharaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Foad%20H.%20Gandoman"> Foad H. Gandoman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AC%20FACTS" title="AC FACTS">AC FACTS</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=PV-battery%20storage" title=" PV-battery storage"> PV-battery storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Switched%20Filter-Compensation%20%28SFC%29" title=" Switched Filter-Compensation (SFC)"> Switched Filter-Compensation (SFC)</a> </p> <a href="https://publications.waset.org/abstracts/16162/facts-based-stabilization-for-smart-grid-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3526</span> Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok-Hyeon%20Park">Seok-Hyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Mok-Tan-Ahn"> Mok-Tan-Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Hun%20Ha"> Seong-Hun Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clad%20pipe" title="clad pipe">clad pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20drawing" title=" hot drawing"> hot drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding%20pressure" title=" bonding pressure"> bonding pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mold%20shape" title=" mold shape"> mold shape</a> </p> <a href="https://publications.waset.org/abstracts/77162/optimal-design-of-shape-for-increasing-the-bonding-pressure-drawing-of-hot-clad-pipes-by-finite-element-method-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3525</span> The Richtmyer-Meshkov Instability Impacted by the Interface with Different Components Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Bo%20Zhang">Sheng-Bo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huan-Hao%20Zhang"> Huan-Hao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Hua%20Chen"> Zhi-Hua Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun%20Zheng"> Chun Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Richtmyer-Meshkov instability has been studied numerically by using the high-resolution Roe scheme based on the two-dimensional unsteady Euler equation, which was caused by the interaction between shock wave and the helium circular light gas cylinder with different component distributions. The numerical results further discuss the deformation process of the gas cylinder, the wave structure of the flow field and quantitatively analyze the characteristic dimensions (length, height, and central axial width) of the gas cylinder, the volume compression ratio of the cylinder over time. In addition, the flow mechanism of shock-driven interface gas mixing is analyzed from multiple perspectives by combining it with the flow field pressure, velocity, circulation, and gas mixing rate. Then the effects of different initial component distribution conditions on interface instability are investigated. The results show when the diffusion interface transit to the sharp interface, the reflection coefficient gradually increases on both sides of the interface. When the incident shock wave interacts with the cylinder, the transmission of the shock wave will transit from conventional transmission to unconventional transmission. At the same time, the reflected shock wave is gradually strengthened, and the transmitted shock wave is gradually weakened, which leads to an increase in the Richtmyer-Meshkov instability. Moreover, the Atwood number on both sides of the interface also increases as the diffusion interface transit to the sharp interface, which leads to an increase in the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability. Therefore, the increase in instability will lead to an increase the circulation, resulting in an increase in the growth rate of gas mixing rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title="shock wave">shock wave</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20light%20cylinder" title=" He light cylinder"> He light cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=Richtmyer-Meshkov%20instability" title=" Richtmyer-Meshkov instability"> Richtmyer-Meshkov instability</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20distribution" title=" Gaussian distribution"> Gaussian distribution</a> </p> <a href="https://publications.waset.org/abstracts/164153/the-richtmyer-meshkov-instability-impacted-by-the-interface-with-different-components-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3524</span> Modeling and Shape Prediction for Elastic Kinematic Chains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiun%20Jeon">Jiun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung-Ju%20Yi"> Byung-Ju Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20kinematic%20chain" title="elastic kinematic chain">elastic kinematic chain</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20prediction" title=" shape prediction"> shape prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=colonoscopy" title=" colonoscopy"> colonoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/4177/modeling-and-shape-prediction-for-elastic-kinematic-chains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3523</span> A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhaladhuli%20Pranavi">Dhaladhuli Pranavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirtham%20Rajagopal"> Amirtham Rajagopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal" title=" nonlocal"> nonlocal</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20field" title=" phase field"> phase field</a> </p> <a href="https://publications.waset.org/abstracts/132562/a-phase-field-approach-to-model-crack-interface-interaction-in-ceramic-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3522</span> Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zh.%20M.%20Blednova">Zh. M. Blednova</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20O.%20Rusinov"> P. O. Rusinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20metallization" title="diffusion metallization">diffusion metallization</a>, <a href="https://publications.waset.org/abstracts/search?q=nikelid%20titanium%20surface%20layers" title=" nikelid titanium surface layers"> nikelid titanium surface layers</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20effect" title=" shape memory effect"> shape memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/9419/formation-of-nanostructured-surface-layers-of-a-material-with-tini-based-shape-memory-by-diffusion-metallization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3521</span> Characterization and Calibration of a Fluxgate Magnetometer Sensor 539</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luz%20Yoali%20Alfaro%20Luna">Luz Yoali Alfaro Luna</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Hern%C3%A1ndez%20Rayas"> Angélica Hernández Rayas</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodoro%20C%C3%B3rdova%20Fraga"> Teodoro Córdova Fraga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work characterizes and calibrates a fluxgate 539 magnetometer sensor, implementing a real-time monitoring interface to measure magnetic fields with high precision. The objective is to develop an innovative prototype integrating the Fluxgate 539 sensor, a WX-DC2412 power supply, and an Arduino UNO. Methods include interface programming and data conversion to Gauss units. The results show accurate measurements after calibrating the sensor, establishing a foundation for further research in magnetobiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=fluxgate%20539" title=" fluxgate 539"> fluxgate 539</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetobiology" title=" magnetobiology"> magnetobiology</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20measurement" title=" magnetic field measurement"> magnetic field measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20interface" title=" monitoring interface"> monitoring interface</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20characterization" title=" sensor characterization"> sensor characterization</a> </p> <a href="https://publications.waset.org/abstracts/193322/characterization-and-calibration-of-a-fluxgate-magnetometer-sensor-539" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3520</span> Analytical Study on the Shape of T-Type Girder Modular Bridge Connection by Using Parametric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park">Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoong%20Choi"> Jinwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Kyung%20Kye"> Seung-Kyung Kye</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, to cope with the rapidly changing construction trend because of aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape examination of the transverse connection of T-type girder newly developed between the segmented modules is not performed. Therefore, the investigation of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verification of model for transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20bridge" title="modular bridge">modular bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20transverse%20shape" title=" optimal transverse shape"> optimal transverse shape</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter" title=" parameter"> parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/13686/analytical-study-on-the-shape-of-t-type-girder-modular-bridge-connection-by-using-parametric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">650</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3519</span> Improving Carbon Fiber Structural Battery Performance with Polymer Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kathleen%20Moyer">Kathleen Moyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Ait%20Boucherbil"> Nora Ait Boucherbil</a>, <a href="https://publications.waset.org/abstracts/search?q=Murtaza%20Zohair"> Murtaza Zohair</a>, <a href="https://publications.waset.org/abstracts/search?q=Janna%20Eaves-Rathert"> Janna Eaves-Rathert</a>, <a href="https://publications.waset.org/abstracts/search?q=Cary%20Pint"> Cary Pint</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20performance" title=" electrochemical performance"> electrochemical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20interface" title=" polymer interface"> polymer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20batteries" title=" structural batteries"> structural batteries</a> </p> <a href="https://publications.waset.org/abstracts/153279/improving-carbon-fiber-structural-battery-performance-with-polymer-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3518</span> Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivine%20Abbas">Nivine Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Lagomarsino"> Sergio Lagomarsino</a>, <a href="https://publications.waset.org/abstracts/search?q=Serena%20Cattari"> Serena Cattari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil-foundation%20interface" title="soil-foundation interface">soil-foundation interface</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mechanism" title=" sliding mechanism"> sliding mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20shearing" title=" soil shearing"> soil shearing</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20domain" title=" resistance domain"> resistance domain</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20shallow%20foundation" title=" rigid shallow foundation"> rigid shallow foundation</a> </p> <a href="https://publications.waset.org/abstracts/28877/effect-of-the-soil-foundation-interface-condition-in-the-determination-of-the-resistance-domain-of-rigid-shallow-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3517</span> Marketing–Operations Alignment: A Systematic Literature and Citation Network Analysis Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kedwadee%20Sombultawee">Kedwadee Sombultawee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakun%20Boon-Itt"> Sakun Boon-Itt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research demonstrates a systematic literature review of 62 peer-reviewed articles published in academic journals from 2000-2016 focusing on the operation and marketing interface area. The findings show the three major clusters of recent research domains, which is a review of the alignment between operations and marketing, identification of variables that impact the company and analysis of the effect of interface. Moreover, the Main Path Analysis (MPA) is mapped to show the knowledge structure of the operation and marketing interface issue. Most of the empirical research focused on company performance and new product development then analyzed the data by the structural equation model or regression. Whereas, some scholars studied the conflict of these two functions and proposed the requirement or step for alignment. Finally, the gaps in the literature are provided for future research directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operations%20management" title="operations management">operations management</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing" title=" marketing"> marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20literature%20review" title=" systematic literature review"> systematic literature review</a> </p> <a href="https://publications.waset.org/abstracts/56696/marketing-operations-alignment-a-systematic-literature-and-citation-network-analysis-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3516</span> An Assistive Robotic Arm for Defence and Rescue Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Harrison%20Kurunathan">J. Harrison Kurunathan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jayaparvathy"> R. Jayaparvathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> "Assistive Robotics" is the field that deals with the study of robots that helps in human motion and also empowers human abilities by interfacing the robotic systems to be manipulated by human motion. The proposed model is a robotic arm that works as a haptic interface on the basis on accelerometers and DC motors that will function with respect to the movement of the human muscle. The proposed model would effectively work as a haptic interface that would reduce human effort in the field of defense and rescue. This can be used in very critical conditions like fire accidents to avoid causalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerometers" title="accelerometers">accelerometers</a>, <a href="https://publications.waset.org/abstracts/search?q=haptic%20interface" title=" haptic interface"> haptic interface</a>, <a href="https://publications.waset.org/abstracts/search?q=servo%20motors" title=" servo motors"> servo motors</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/6771/an-assistive-robotic-arm-for-defence-and-rescue-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3515</span> Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gichun%20Cha">Gichun Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoungjoon%20Yu"> Byoungjoon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihwan%20Park"> Jihwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Minsoo%20Park"> Minsoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghyun%20Im"> Junghyun Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehwan%20Park"> Sehwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujung%20Sin"> Sujung Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanning" title="terrestrial laser scanning">terrestrial laser scanning</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud" title=" point cloud"> point cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20information%20model" title=" shape information model"> shape information model</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20measurement" title=" displacement measurement"> displacement measurement</a> </p> <a href="https://publications.waset.org/abstracts/92768/development-of-a-shape-based-estimation-technology-using-terrestrial-laser-scanning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3514</span> Interface Problems in Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Puti%20F.%20Marzuki">Puti F. Marzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrianto%20Oktavianus"> Adrianto Oktavianus</a>, <a href="https://publications.waset.org/abstracts/search?q=Almerinda%20Regina"> Almerinda Regina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interface problems among interacting parties in Indonesian construction projects have most often led to low productivity and completion delay. In the midst of this country’s needs to accelerate construction of public infrastructure providing connectivity among regions and supporting economic growth as well as better living quality, project delays have to be seriously addressed. This paper identifies potential causes factors of interface problems experienced by construction projects in Indonesia. Data are collected through a survey involving the main actors of six important public infrastructure construction projects including railway, LRT, sports stadiums, apartment, and education building construction projects. Five of these projects adopt the design-build project delivery method and one applies the design-bid-build scheme. Interface problems’ potential causes are categorized into contract, management, technical experience, coordination, financial, and environmental factors. Research results reveal that, especially in railway and LRT projects, potential causes of interface problems are mainly technical and managerial in nature. These relate to complex construction execution in highly congested areas. Meanwhile, coordination cause factors are mainly found in the education building construction project with loan from a foreign donor. All of the six projects have to resolve interface problems caused by incomplete or low-quality contract documents. This research also shows that the design-bid-build delivery method involving more parties in construction projects tends to induce more interface problem cause factors than the design-build scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cause%20factors" title="cause factors">cause factors</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20delays" title=" construction delays"> construction delays</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20delivery%20method" title=" project delivery method"> project delivery method</a>, <a href="https://publications.waset.org/abstracts/search?q=contract%20documents" title=" contract documents"> contract documents</a> </p> <a href="https://publications.waset.org/abstracts/86489/interface-problems-in-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3513</span> Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Ru">Jiahe Ru</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Pang"> Yan Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomiao%20Liu"> Zhaomiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neck%20interface" title="neck interface">neck interface</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20coupling" title=" interface coupling"> interface coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=janus%20droplets" title=" janus droplets"> janus droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/163142/neck-thinning-dynamics-of-janus-droplets-under-multiphase-interface-coupling-in-cross-junction-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3512</span> The Experimental Investigation of Temperature Influence on the Oscillations of Particles on Liquid Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathish%20K.%20Gurupatham">Sathish K. Gurupatham</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Sayedzada"> Farhad Sayedzada</a>, <a href="https://publications.waset.org/abstracts/search?q=Naji%20Dauk"> Naji Dauk</a>, <a href="https://publications.waset.org/abstracts/search?q=Valmiki%20Sooklal"> Valmiki Sooklal</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Ruhala"> Laura Ruhala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It was shown recently that small particles and powders spontaneously disperse on liquid surfaces when they come into contact with the interface for the first time. This happens due to the combined effect of the capillary force, buoyant weight of the particle and the viscous drag that the particle experiences in the liquid. The particle undergoes oscillations normal to the interface before it comes to rest on the interface. These oscillations, in turn, induce a flow on the interface which disperses the particles radially outward. This phenomenon has a significant role in the pollination of sea plants such as Ruppia in which the formation of ‘pollen rafts’ is the first step. This paper investigates, experimentally, the influence of the temperature of the liquid on which this dispersion occurs. It was observed that the frequency of oscillations of the particles decreased with the increase in the temperature of the liquid. It is because the magnitude of capillary force also decreased when the temperature of the liquid increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20dispersion" title="particle dispersion">particle dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20force" title=" capillary force"> capillary force</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20drag" title=" viscous drag"> viscous drag</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillations" title=" oscillations"> oscillations</a> </p> <a href="https://publications.waset.org/abstracts/62666/the-experimental-investigation-of-temperature-influence-on-the-oscillations-of-particles-on-liquid-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3511</span> Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuzman%20Yusoff">Yuzman Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Noor%20Harun"> Siti Noor Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Shelida%20Salleh"> Noor Shelida Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Kong%20Yew"> Tan Kong Yew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=readout%20interface%20circuit%20%28ROIC%29" title="readout interface circuit (ROIC)">readout interface circuit (ROIC)</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20interface%20circuit" title=" analog interface circuit"> analog interface circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20sensitive%20field%20effect%20transistor%20%28ISFET%29" title=" ion sensitive field effect transistor (ISFET)"> ion sensitive field effect transistor (ISFET)</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20selective%20electrode%20%28ISE%29" title=" ion selective electrode (ISE)"> ion selective electrode (ISE)</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20sensor%20electronics" title=" ion sensor electronics"> ion sensor electronics</a> </p> <a href="https://publications.waset.org/abstracts/1577/design-and-characterization-of-cmos-readout-circuit-for-isfet-and-ise-based-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3510</span> Approximating a Funicular Shape with a Translational Surface, Example of a Glass Canopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rapha%C3%ABl%20Menard">Raphaël Menard</a>, <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Fayette"> Etienne Fayette</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Azzopardi"> Paul Azzopardi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the method to generate the geometry of an actual glass canopy project in Rennes, France, by architect Bruno Gaudin, with aim to achieve the best structural efficiency possible using only quadrangle meshing. The paper includes equation of the translational surface generated, the level of accuracy in approximating the funicular shape and the method of constructive implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=funicular%20shape" title="funicular shape">funicular shape</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20canopy" title=" glass canopy"> glass canopy</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20panels" title=" glass panels"> glass panels</a>, <a href="https://publications.waset.org/abstracts/search?q=lowered%20arches" title=" lowered arches"> lowered arches</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics" title=" mathematics"> mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=penalization" title=" penalization"> penalization</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20structure" title=" shell structure"> shell structure</a> </p> <a href="https://publications.waset.org/abstracts/7194/approximating-a-funicular-shape-with-a-translational-surface-example-of-a-glass-canopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3509</span> Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Gupta">Priyanka Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Bipin%20Kumar"> Bipin Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knitting" title="knitting">knitting</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20filament" title=" memory filament"> memory filament</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory" title=" shape memory"> shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20textiles" title=" smart textiles"> smart textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20cycle" title=" thermo-mechanical cycle"> thermo-mechanical cycle</a> </p> <a href="https://publications.waset.org/abstracts/156641/temperature-responsive-shape-memory-polymer-filament-integrated-smart-polyester-knitted-fabric-featuring-memory-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3508</span> Analyse of User Interface Design in Mobile Teaching Apps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Ashoul">Asma Ashoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, smartphones are playing a major role in our lives, by communicating with family, friends or using them to learn different things in life. Using smartphones to learn and teach today is something common to see in places like schools or colleges. Therefore, thinking about developing an app that teaches Arabic language may help some categories in society to learn a second language. For example, kids under the age of five or older would learn fast by using smartphones. The problem is based on the Arabic language, which is most like to be not used anymore. The developer assumed to develop an app that would help the younger generation on their learning the Arabic language. A research was completed about user interface design to help the developer choose appropriate layouts and designs. Developing the artefact contained different stages. First, analyzing the requirements with the client, which is needed to be developed. Secondly, designing the user interface design based on the literature review. Thirdly, developing and testing the application after it is completed contacting all the tools that have been used. Lastly, evaluation and future recommendation, which contained the overall view about the application followed by the client’s feedback. Gathering the requirements after having client meetings based on the interface design. The project was done following an agile development methodology. Therefore, this methodology helped the developer to manage to finish the work on time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=developer" title="developer">developer</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20design" title=" interface design"> interface design</a>, <a href="https://publications.waset.org/abstracts/search?q=layout" title=" layout"> layout</a>, <a href="https://publications.waset.org/abstracts/search?q=Agile" title=" Agile"> Agile</a>, <a href="https://publications.waset.org/abstracts/search?q=client" title=" client"> client</a> </p> <a href="https://publications.waset.org/abstracts/146297/analyse-of-user-interface-design-in-mobile-teaching-apps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3507</span> Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ploysook">N. Ploysook</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rugsaj"> R. Rugsaj</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Suvanjumrat"> C. Suvanjumrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/abstracts/search?q=bottle" title=" bottle"> bottle</a>, <a href="https://publications.waset.org/abstracts/search?q=die%20shaping" title=" die shaping"> die shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/16970/suitable-die-shaping-for-a-rectangular-shape-bottle-by-application-of-fem-and-ai-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3506</span> The Effect of Adhesion on the Frictional Hysteresis Loops at a Rough Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bazrafshan">M. Bazrafshan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20de%20Rooij"> M. B. de Rooij</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Schipper"> D. J. Schipper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frictional hysteresis is the phenomenon in which mechanical contacts are subject to small (compared to contact area) oscillating tangential displacements. In the presence of adhesion at the interface, the contact repulsive force increases leading to a higher static friction force and pre-sliding displacement. This paper proposes a boundary element model (BEM) for the adhesive frictional hysteresis contact at the interface of two contacting bodies of arbitrary geometries. In this model, adhesion is represented by means of a Dugdale approximation of the total work of adhesion at local areas with a very small gap between the two bodies. The frictional contact is divided into sticking and slipping regions in order to take into account the transition from stick to slip (pre-sliding regime). In the pre-sliding regime, the stick and slip regions are defined based on the local values of shear stress and normal pressure. In the studied cases, a fixed normal force is applied to the interface and the friction force varies in such a way to start gross sliding in one direction reciprocally. For the first case, the problem is solved at the smooth interface between a ball and a flat for different values of work of adhesion. It is shown that as the work of adhesion increases, both static friction and pre-sliding distance increase due to the increase in the contact repulsive force. For the second case, the rough interface between a glass ball against a silicon wafer and a DLC (Diamond-Like Carbon) coating is considered. The work of adhesion is assumed to be identical for both interfaces. As adhesion depends on the interface roughness, the corresponding contact repulsive force is different for these interfaces. For the smoother interface, a larger contact repulsive force and consequently, a larger static friction force and pre-sliding distance are observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20model" title="boundary element model">boundary element model</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20hysteresis" title=" frictional hysteresis"> frictional hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-sliding" title=" pre-sliding"> pre-sliding</a> </p> <a href="https://publications.waset.org/abstracts/98974/the-effect-of-adhesion-on-the-frictional-hysteresis-loops-at-a-rough-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3505</span> Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibyendu%20Das">Dibyendu Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Kumar%20Pal"> Santanu Kumar Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endotoxin" title="endotoxin">endotoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=lactoferrin" title=" lactoferrin"> lactoferrin</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopolysaccharide" title=" lipopolysaccharide"> lipopolysaccharide</a> </p> <a href="https://publications.waset.org/abstracts/81658/design-of-liquid-crystal-based-interface-to-study-the-interaction-of-gram-negative-bacterial-endotoxin-with-milk-protein-lactoferrin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3504</span> 3D Shape Knitting: Loop Alignment on a Surface with Positive Gaussian Curvature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Cheung">C. T. Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20P.%20Ng"> R. K. P. Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Lo"> T. Y. Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Jinyun"> Zhou Jinyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at manipulating loop alignment in knitting a three-dimensional (3D) shape by its geometry. Two loop alignment methods are introduced to handle a surface with positive Gaussian curvature. As weft knitting is a two-dimensional (2D) knitting mechanism that the knitting cam carrying the feeders moves in two directions only, left and right, the knitted fabric generated grows in width and length but not in depth. Therefore, a 3D shape is required to be flattened to a 2D plane with surface area preserved for knitting. On this flattened plane, dimensional measurements are taken for loop alignment. The way these measurements being taken derived two different loop alignment methods. In this paper, only plain knitted structure was considered. Each knitted loop was taken as a basic unit for loop alignment in order to achieve the required geometric dimensions, without the inclusion of other stitches which give textural dimensions to the fabric. Two loop alignment methods were experimented and compared. Only one of these two can successfully preserve the dimensions of the shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20knitting" title="3D knitting">3D knitting</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20shape" title=" 3D shape"> 3D shape</a>, <a href="https://publications.waset.org/abstracts/search?q=loop%20alignment" title=" loop alignment"> loop alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20Gaussian%20curvature" title=" positive Gaussian curvature"> positive Gaussian curvature</a> </p> <a href="https://publications.waset.org/abstracts/46772/3d-shape-knitting-loop-alignment-on-a-surface-with-positive-gaussian-curvature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3503</span> A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjit%20Singh">Gurjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurmail%20Singh"> Gurmail Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel%20heat%20sink" title=" microchannel heat sink"> microchannel heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=chape%20of%20microchannel" title=" chape of microchannel"> chape of microchannel</a> </p> <a href="https://publications.waset.org/abstracts/163605/a-review-of-the-relation-between-thermofludic-properties-of-the-fluid-in-micro-channel-based-cooling-solutions-and-the-shape-of-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3502</span> Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suguru%20Miyauchi">Suguru Miyauchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiyuki%20Hayase"> Toshiyuki Hayase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title=" level set method"> level set method</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20permeability" title=" membrane permeability"> membrane permeability</a> </p> <a href="https://publications.waset.org/abstracts/57272/development-of-numerical-method-for-mass-transfer-across-the-moving-membrane-with-selective-permeability-approximation-of-the-membrane-shape-by-level-set-method-for-numerical-integral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3501</span> 3-D Strain Imaging of Nanostructures Synthesized via CVD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sohini%20Manna">Sohini Manna</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Woo%20Kim"> Jong Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Shpyrko"> Oleg Shpyrko</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20E.%20Fullerton"> Eric E. Fullerton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CVD" title="CVD">CVD</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=CXRD" title=" CXRD"> CXRD</a> </p> <a href="https://publications.waset.org/abstracts/47185/3-d-strain-imaging-of-nanostructures-synthesized-via-cvd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3500</span> Functional and Stimuli Implementation and Verification of Programmable Peripheral Interface (PPI) Protocol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Joshi">N. N. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Singh"> G. K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the stimuli implementation and verification of a Programmable Peripheral Interface (PPI) 8255. It involves a designing and verification of configurable intellectual property (IP) module of PPI protocol using Verilog HDL for implementation part and System Verilog for verification. The overview of the PPI-8255 presented then the design specification implemented for the work following the functional description and pin configuration of PPI-8255. The coverage report of design shows that our design and verification environment covered 100% functionality in accordance with the design specification generated by the Questa Sim 10.0b. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Programmable%20Peripheral%20Interface%20%28PPI%29" title="Programmable Peripheral Interface (PPI)">Programmable Peripheral Interface (PPI)</a>, <a href="https://publications.waset.org/abstracts/search?q=verilog%20HDL" title=" verilog HDL"> verilog HDL</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20verilog" title=" system verilog"> system verilog</a>, <a href="https://publications.waset.org/abstracts/search?q=questa%20sim" title=" questa sim "> questa sim </a> </p> <a href="https://publications.waset.org/abstracts/21194/functional-and-stimuli-implementation-and-verification-of-programmable-peripheral-interface-ppi-protocol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=2" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=2">2</a></li> <li class="page-item active"><span class="page-link">3</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interface%20shape&page=4" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>