CINXE.COM

Search results for: immunofluorescent

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: immunofluorescent</title> <meta name="description" content="Search results for: immunofluorescent"> <meta name="keywords" content="immunofluorescent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="immunofluorescent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="immunofluorescent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: immunofluorescent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Garcia%20Bernal">Salvador Garcia Bernal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Zheng"> Chi Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Keqi%20Zhang"> Keqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Mao"> Lei Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29" title="Circulating Tumor Cells (CTC)">Circulating Tumor Cells (CTC)</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20analysis" title=" cell analysis"> cell analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunofluorescent" title=" immunofluorescent"> immunofluorescent</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20image%20analysis" title=" medical image analysis"> medical image analysis</a> </p> <a href="https://publications.waset.org/abstracts/81401/an-improved-circulating-tumor-cells-analysis-method-for-identifying-tumorous-blood-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> A Bioinspired Anti-Fouling Coating for Implantable Medical Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Riley">Natalie Riley</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Quigley"> Anita Quigley</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20I.%20Kapsa"> Robert M. I. Kapsa</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20W.%20Greene"> George W. Greene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the fields of medicine and bionics grow rapidly in technological advancement, the future and success of it depends on the ability to effectively interface between the artificial and the biological worlds. The biggest obstacle when it comes to implantable, electronic medical devices, is maintaining a ‘clean’, low noise electrical connection that allows for efficient sharing of electrical information between the artificial and biological systems. Implant fouling occurs with the adhesion and accumulation of proteins and various cell types as a result of the immune response to protect itself from the foreign object, essentially forming an electrical insulation barrier that often leads to implant failure over time. Lubricin (LUB) functions as a major boundary lubricant in articular joints, a unique glycoprotein with impressive anti-adhesive properties that self-assembles to virtually any substrate to form a highly ordered, ‘telechelic’ polymer brush. LUB does not passivate electroactive surfaces which makes it ideal, along with its innate biocompatibility, as a coating for implantable bionic electrodes. It is the aim of the study to investigate LUB’s anti-fouling properties and its potential as a safe, bioinspired material for coating applications to enhance the performance and longevity of implantable medical devices as well as reducing the frequency of implant replacement surgeries. Native, bovine-derived LUB (N-LUB) and recombinant LUB (R-LUB) were applied to gold-coated mylar surfaces. Fibroblast, chondrocyte and neural cell types were cultured and grown on the coatings under both passive and electrically stimulated conditions to test the stability and anti-adhesive property of the LUB coating in the presence of an electric field. Lactate dehydrogenase (LDH) assays were conducted as a directly proportional cell population count on each surface along with immunofluorescent microscopy to visualize cells. One-way analysis of variance (ANOVA) with post-hoc Tukey’s test was used to test for statistical significance. Under both passive and electrically stimulated conditions, LUB significantly reduced cell attachment compared to bare gold. Comparing the two coating types, R-LUB reduced cell attachment significantly compared to its native counterpart. Immunofluorescent micrographs visually confirmed LUB’s antiadhesive property, R-LUB consistently demonstrating significantly less attached cells for both fibroblasts and chondrocytes. Preliminary results investigating neural cells have so far demonstrated that R-LUB has little effect on reducing neural cell attachment; the study is ongoing. Recombinant LUB coatings demonstrated impressive anti-adhesive properties, reducing cell attachment in fibroblasts and chondrocytes. These findings and the availability of recombinant LUB brings into question the results of previous experiments conducted using native-derived LUB, its potential not adequately represented nor realized due to unknown factors and impurities that warrant further study. R-LUB is stable and maintains its anti-fouling property under electrical stimulation, making it suitable for electroactive surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-fouling" title="anti-fouling">anti-fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinspired" title=" bioinspired"> bioinspired</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20attachment" title=" cell attachment"> cell attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricin" title=" lubricin"> lubricin</a> </p> <a href="https://publications.waset.org/abstracts/111652/a-bioinspired-anti-fouling-coating-for-implantable-medical-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xian-Peng%20Jiang">Xian-Peng Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20C.%20Baucom"> Catherine C. Baucom</a>, <a href="https://publications.waset.org/abstracts/search?q=Toby%20Jiang"> Toby Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20L.%20Elliott"> Robert L. Elliott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HLA-G" title="HLA-G">HLA-G</a>, <a href="https://publications.waset.org/abstracts/search?q=Breast%20carcinoma" title=" Breast carcinoma"> Breast carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=NK%20cells" title=" NK cells"> NK cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Immunosuppressive%20checkpoint" title=" Immunosuppressive checkpoint"> Immunosuppressive checkpoint</a> </p> <a href="https://publications.waset.org/abstracts/161283/hla-g-a-neglected-immunosuppressive-checkpoint-for-breast-cancer-immunotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Role of Inflammasomes for aβ Microglia Phagocytosis in Alzheimer Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20La%20Rosa">Francesca La Rosa </a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Saresella"> Marina Saresella</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Clerici"> Mario Clerici</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Heneka"> Michael Heneka </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroinflammation plays a key role in the modulation of the pathogenesis of neurodegenerative disorder such as Alzheimer's Disease (AD). Microglia, the main immune effector of the brain, are able to migrate to sites of Amyloid-beta (Aβ) deposition to eliminate Aβ phagocytosis upon activation by multiple receptors: Toll like receptors and scavenger receptors. The issue of whether microglia are able to eliminate pathological lesions such as neurofibrillary tangles or senile plaques from AD brain still remains the matter of controversy. Recent data suggest that the Nod Like Receptor 3 (NLRP3), multiprotein inflammasome complexes, plays a role in AD, as its activation in the microglia by Aβ triggers. IL-1β is produced as a biologically inactive pro-form and requires caspase-1 for activation and secretion. Caspase-1 activity is controlled by inflammasomes. We investigate about the importance of inflammasomes complex in the Aβ phagocytosis and its degradation. The preliminary results of phagocytosis assay and immunofluorescent experiment on primary Microglia cells to lipopolysaccharide (LPS) an Aβ exposure show that a previous treatment with LPS reduce Aβ phagocytosis. Different results were obtained in Primary Microglia wild type, NLRP3 and ASC Knockout suggesting a real inflammasomes involvement in Alzheimer's pathology. Inflammasomes inactivation reduces the production of inflammatory cytokines prolonging the protective activity of microglia and Aβ clearance, featuring a typical microglia phenotype of the early stage of AD disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%20disease" title="Alzheimer disease">Alzheimer disease</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunity" title=" innate immunity"> innate immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=NLRP3" title=" NLRP3"> NLRP3</a> </p> <a href="https://publications.waset.org/abstracts/30475/the-role-of-inflammasomes-for-av-microglia-phagocytosis-in-alzheimer-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Anti-Viral Activity of Ethanolic Extract Derived from Chlorella sp. AARL G049 on Inhibition of Dengue Virus Serotype 2 Infection in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suthida%20Panwong">Suthida Panwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeeraporn%20Pekkoh"> Jeeraporn Pekkoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingmanee%20Tragoolpua"> Yingmanee Tragoolpua</a>, <a href="https://publications.waset.org/abstracts/search?q=Aussara%20Panya"> Aussara Panya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dengue virus (DENV) infection is a major public health problem in many countries, especially in tropical and subtropical countries. DENV infection causes dengue fever that can progress to serious conditions of dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), relevant to a high risk of mortality. However, there are no effective treatments available against the manifestation and fatalities. Currently, natural extracts have been widely used for the treatment of infectious diseases due to their safety, non-accumulation in the body, or lower side effects. Chlorella spp. is a microalgae with anti-viral activity, but there is not much report to support its ability to inhibit DENV infection. Thus, this study aimed to investigate the inhibitory effect of ethanolic extract from Chlorella sp. AARL G049, which was explored in Thailand on inhibition of DENV-2 infection. The inhibitory effect on viral infection was assessed using a foci-forming assay (FFA), which revealed that a concentration of 125 µg/mL could inhibit viral infection in Vero cells by 75.45±8.06% when treated at the same time as DENV-2 infection. Moreover, the extract at an equal concentration effectively reduced viral protein synthesis by 90.51±5.48% when assessed in human cell lines using enzyme-linked immunosorbent assay (ELISA). Concordantly, the number of infected cells after treatment was reduced as measured by immunofluorescent assay (IFA). Therefore, the finding of this study supports the potential use of Chlorella sp. extract to suppress DENV infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viral%20infection" title="viral infection">viral infection</a>, <a href="https://publications.waset.org/abstracts/search?q=flavivirus" title=" flavivirus"> flavivirus</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20extract" title=" natural extract"> natural extract</a> </p> <a href="https://publications.waset.org/abstracts/188355/anti-viral-activity-of-ethanolic-extract-derived-from-chlorella-sp-aarl-g049-on-inhibition-of-dengue-virus-serotype-2-infection-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Localization and Function of p38α Mitogen-Activated Protein Kinase (MAPK) in Rat Oocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shifu%20Hu">Shifu Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiong%20Yu"> Qiong Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xia"> Wei Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Changhong%20Zhu"> Changhong Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: P38α MAPK, which is a member of the canonical MAPK family, is activated in response to various extracellular stresses and plays a role in multiple cellular processes. It is well known that p38α MAPK play vital roles in oocyte maturation, but the localization and functional roles of p38α MAPK during the meiotic maturation of rat oocytes remain unknown. Study Design: In this study, western-blot and immunofluorescent staining were used to investigate the expression and subcellular localization of p38α MAPK during the meiotic maturation of rat oocytes. SB203580, a specific inhibitor of p38α MAPK, was used to study the roles of p38α MAPK in the meiotic cell cycle of rat oocytes. Results: The results found that p38α MAPK phosphorylation (p-p38α MAPK, indicative of p38α MAPK activation) was low at the germinal vesicle (GV) stage, increased 3 h after germinal vesicle breakdown (GVBD), and maintained its maximum at MI (metaphase I) or M II (metaphase II). The p-p38α MAPK mainly accumulated in the germinal vesicle and had no obvious expression in the nucleus. From GVBD to M II, p-p38α MAPK was distributed in the cytoplasm around either the chromosomes or the spindle. We used SB203580, an inhibitor of p38α MAPK, to investigate the possible functional role of p38α MAPK during rat oocyte meiotic maturation. Treatment of GV stage oocytes with 20 μM SB203580 blocked p-p38α MAPK activity, and the spindles appeared abnormal. Additionally, the rate of GVBD after 3h of culture with 20 μM SB203580 (58.8%) was significantly inhibited compared with the control (82.5%, p < 0.05), and the polar body extrusion rate after 12 h of culture with SB203580 was also significantly decreased compared with the control (40.1 vs. 73.3%, p < 0.05). Conclusions: These data indicate that p38α MAPK may play a vital role in rat oocyte meiotic maturation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meiotic%20maturation" title="meiotic maturation">meiotic maturation</a>, <a href="https://publications.waset.org/abstracts/search?q=oocyte" title=" oocyte"> oocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=p38%CE%B1%20MAPK" title=" p38α MAPK"> p38α MAPK</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle" title=" spindle"> spindle</a> </p> <a href="https://publications.waset.org/abstracts/87813/the-localization-and-function-of-p38a-mitogen-activated-protein-kinase-mapk-in-rat-oocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Suggested Role for Neutrophil Extracellular Traps Formation in Ewing Sarcoma Immune Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Shukrun">Rachel Shukrun</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Baron"> Szilvia Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Fidel"> Victoria Fidel</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Shusterman"> Anna Shusterman</a>, <a href="https://publications.waset.org/abstracts/search?q=Osnat%20Sher"> Osnat Sher</a>, <a href="https://publications.waset.org/abstracts/search?q=Netanya%20Kollender"> Netanya Kollender</a>, <a href="https://publications.waset.org/abstracts/search?q=Dror%20Levin"> Dror Levin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yair%20Peled"> Yair Peled</a>, <a href="https://publications.waset.org/abstracts/search?q=Yair%20Gortzak"> Yair Gortzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoav%20Ben-Shahar"> Yoav Ben-Shahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Revital%20Caspi"> Revital Caspi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagi%20Gordon"> Sagi Gordon</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Manisterski"> Michal Manisterski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronit%20Elhasid"> Ronit Elhasid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ewing sarcoma (EWS) is a highly aggressive cancer with a survival rate of 70–80% for patients with localized disease and under 30% for those with metastatic disease. Tumor-infiltrating neutrophils (TIN) can generate extracellular net-like DNA structures known as neutrophil extracellular traps (NETs). However, little is known about the presence and prognostic significance of tumor-infiltrating NETs in EWS. Herein, we investigated 46 patients diagnosed with EWS and treated in the Tel Aviv Medical Center between 2010 and 2021. TINs and NETs were identified in diagnostic biopsies of EWS by immunofluorescent. In addition, NETs were investigated in neutrophils isolated from peripheral blood samples of EWS patients at diagnosis and following neoadjuvant chemotherapy. The relationships between the presence of TINs and NETs, pathological and clinical features, and outcomes were analyzed. Our results demonstrate that TIN and NETs at diagnosis were higher in EWS patients with metastatic disease compared to those with local disease. High NETs formation at diagnosis predicted poor response to neo-adjuvant chemotherapy, relapse, and death from disease (P < .05). NETs formation in peripheral blood samples at diagnosis was significantly elevated among patients with EWS compared to pediatric controls and decreased significantly following neoadjuvant chemotherapy. In conclusion, NETs formation seems to have a role in the EWS immune microenvironment. Their presence can refine risk stratification, predict chemotherapy resistance and survival, and serve as a therapeutic target in patients with EWS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewing%20sarcoma" title="Ewing sarcoma">Ewing sarcoma</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil%20extracellular%20traps%20%28NETs%29" title=" neutrophil extracellular traps (NETs)"> neutrophil extracellular traps (NETs)</a>, <a href="https://publications.waset.org/abstracts/search?q=prognosis" title=" prognosis"> prognosis</a> </p> <a href="https://publications.waset.org/abstracts/177507/suggested-role-for-neutrophil-extracellular-traps-formation-in-ewing-sarcoma-immune-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> IL4/IL13 STAT6 Mediated Macrophage Polarization During Acute and Chronic Pancreatitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hager%20Elsheikh">Hager Elsheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliane%20Glaubitz"> Juliane Glaubitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Ulrich%20Weiss"> Frank Ulrich Weiss</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Sendler"> Matthias Sendler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Acute pancreatitis (AP) and chronic pancreatitis (CP) are both accompanied by a prominent immune response which influences the course of disease. Whereas during AP the pro-inflammatory immune response dominates, during CP a fibroinflammatory response regulates organ remodeling. The transcription factor signal transducer and activator of transcription 6 (STAT6) is a crucial part of the Type 2 immune response. Here we investigate the role of STAT6 in a mouse model of AP and CP. Material and Methods: AP was induced by hourly repetitive i.p. injections of caerulein (50µg/kg/bodyweight) in C57Bl/6 J and STAT6-/- mice. CP was induced by repetitive caerulein injections 6 times a day, 3 days a week over 4 weeks. Disease severity was evaluated by serum amylase/lipase measurement, H&E staining of pancreas. Pancreatic infiltrate was characterized by immunofluorescent labeling of CD68, CD206, CCR2, CD4 and CD8. Pancreas fibrosis was evaluated by Azan blue staining. qRT-PCR was performed of Arg1, Nos2, Il6, Il1b, Col3a, Socs3 and Ym1. Affymetrix chip array analyses were done to illustrate the IL4/IL13/STAT6 signaling in bone marrow derived macrophages. Results: AP severity is mitigated in STAT6-/- mice, as shown by decreased serum amylase and lipase, as well as histological damage. CP mice surprisingly showed only slightly reduced fibrosis of the pancreas. Also staining of CD206 a classical marker of alternatively activated macrophages showed no decrease of M2-like polarization in the absence of STAT6. In contrast, transcription profile analysis in BMDM showed complete blockade of the IL4/IL13 pathway in STAT6-/- animals. Conclusion: STAT6 signaling pathway is protective during AP and mitigates the pancreatic damage. During chronic pancreatitis the IL4/IL13 – STAT6 axisis involved in organ fibrogenesis. Notably, fibrosis is not dependent on a single signaling pathway, and alternative macrophage activation is also complex and involves different subclasses (M2a, M2b, M2c and M2d) which could be independent of the IL4/IL13 STAT6 axis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20pancreatitis" title="chronic pancreatitis">chronic pancreatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophages" title=" macrophages"> macrophages</a>, <a href="https://publications.waset.org/abstracts/search?q=IL4%2FIL13" title=" IL4/IL13"> IL4/IL13</a>, <a href="https://publications.waset.org/abstracts/search?q=Type%20immune%20response" title=" Type immune response"> Type immune response</a> </p> <a href="https://publications.waset.org/abstracts/183291/il4il13-stat6-mediated-macrophage-polarization-during-acute-and-chronic-pancreatitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Matejka">Roman Matejka</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Prochazka"> Vaclav Prochazka</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibor%20Izak"> Tibor Izak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Stepanovska"> Jana Stepanovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Travnickova"> Martina Travnickova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Kromka"> Alexander Kromka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-impedance%20measuring" title="bio-impedance measuring">bio-impedance measuring</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cultivation" title=" cell cultivation"> cell cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20layer" title=" diamond layer"> diamond layer</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20interdigitated%20electrodes" title=" gold interdigitated electrodes"> gold interdigitated electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/57716/bioreactor-for-cell-based-impedance-measuring-with-diamond-coated-gold-interdigitated-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Impaired Transient Receptor Potential Vanilloid 4-Mediated Dilation of Mesenteric Arteries in Spontaneously Hypertensive Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Boudaka">Ammar Boudaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Al-Suleimani"> Maryam Al-Suleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajar%20BaOmar"> Hajar BaOmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Intisar%20Al-Lawati"> Intisar Al-Lawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Zadjali"> Fahad Zadjali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hypertension is increasingly becoming a matter of medical and public health importance. The maintenance of normal blood pressure requires a balance between cardiac output and total peripheral resistance. The endothelium, through the release of vasodilating factors, plays an important role in the control of total peripheral resistance and hence blood pressure homeostasis. Transient Receptor Potential Vanilloid type 4 (TRPV4) is a mechanosensitive non-selective cation channel that is expressed on the endothelium and contributes to endothelium-mediated vasodilation. So far, no data are available about the morphological and functional status of this channel in hypertensive cases. Objectives: This study aimed to investigate whether there is any difference in the morphological and functional features of TRPV4 in the mesenteric artery of normotensive and hypertensive rats. Methods: Functional feature of TRPV4 in four experimental animal groups: young and adult Wistar-Kyoto rats (WKY-Y and WKY-A), young and adult spontaneously hypertensive rats (SHR-Y and SHR-A), was studied by adding 5 µM 4αPDD (TRPV4 agonist) to mesenteric arteries mounted in a four-chamber wire myograph and pre-contracted with 4 µM phenylephrine. The 4αPDD-induced response was investigated in the presence and absence of 1 µM HC067047 (TRPV4 antagonist), 100 µM L-NAME (nitric oxide synthase inhibitor), and endothelium. The morphological distribution of TRPV4 in the wall of rat mesenteric arteries was investigated by immunostaining. Real-time PCR was used in order to investigate mRNA expression level of TRPV4 in the mesenteric arteries of the four groups. The collected data were expressed as mean ± S.E.M. with n equal to the number of animals used (one vessel was taken from each rat). To determine the level of significance, statistical comparisons were performed using the student’s t-test and considered to be significantly different at p<0.05. Results: 4αPDD induced a relaxation response in the mesenteric arterial preparations (WKY-Y: 85.98% ± 4.18; n = 5) that was markedly inhibited by HC067047 (18.30% ± 2.86; n= 5; p<0.05), endothelium removal (19.93% ± 1.50; n = 5; p<0.05) and L-NAME (28.18% ± 3.09; n = 5; p<0.05). The 4αPDD-induced relaxation was significantly lower in SHR-Y compared to WKY-Y (SHR-Y: 70.96% ± 3.65; n = 6, WKY-Y: 85.98% ± 4.18; n = 5-6, p<0.05. Moreover, the 4αPDD-induced response was significantly lower in WKY-A than WKY-Y (WKY-A: 75.58 ± 1.30; n = 5, WKY-Y: 85.98% ± 4.18; n = 5, p<0.05). Immunostaining study showed immunofluorescent signal confined to the endothelial layer of the mesenteric arteries. The expression of TRPV4 mRNA in SHR-Y was significantly lower than in WKY-Y (SHR-Y; 0.67RU ± 0.34; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Furthermore, TRPV4 mRNA expression in WKY-A was lower than its expression in WKY-Y (WKY-A: 0.62RU ± 0.37; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Conclusion: Stimulation of TRPV4, which is expressed on the endothelium of rat mesenteric artery, triggers an endothelium-mediated relaxation response that markedly decreases with hypertension and growing up changes due to downregulation of TRPV4 expression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension" title="hypertension">hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=endothelium" title=" endothelium"> endothelium</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenteric%20artery" title=" mesenteric artery"> mesenteric artery</a>, <a href="https://publications.waset.org/abstracts/search?q=TRPV4" title=" TRPV4"> TRPV4</a> </p> <a href="https://publications.waset.org/abstracts/57690/impaired-transient-receptor-potential-vanilloid-4-mediated-dilation-of-mesenteric-arteries-in-spontaneously-hypertensive-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Modeling Taxane-Induced Peripheral Neuropathy Ex Vivo Using Patient-Derived Neurons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Cunningham">G. Cunningham</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Cantor"> E. Cantor</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Wu"> X. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Shen"> F. Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Jiang"> G. Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Philips"> S. Philips</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Bales"> C. Bales</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Xiao"> Y. Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Cummins"> T. R. Cummins</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Fehrenbacher"> J. C. Fehrenbacher</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20P.%20Schneider"> B. P. Schneider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Taxane-induced peripheral neuropathy (TIPN) is the most devastating survivorship issue for patients receiving therapy. Dose reductions due to TIPN in the curative setting lead to inferior outcomes for African American patients, as prior research has shown that this group is more susceptible to developing severe neuropathy. The mechanistic underpinnings of TIPN, however, have not been entirely elucidated. While it would be appealing to use primary tissue to study the development of TIPN, procuring nerves from patients is not realistically feasible, as nerve biopsies are painful and may result in permanent damage. Therefore, our laboratory has investigated paclitaxel-induced neuronal morphological and molecular changes using an ex vivo model of human-induced pluripotent stem cell (iPSC)-derived neurons. Methods: iPSCs are undifferentiated and endlessly dividing cells that can be generated from a patient’s somatic cells, such as peripheral blood mononuclear cells (PBMCs). We successfully reprogrammed PBMCs into iPSCs using the Erythroid Progenitor Reprograming Kit (STEMCell Technologiesᵀᴹ); pluripotency was verified by flow cytometry analysis. iPSCs were then induced into neurons using a differentiation protocol that bypasses the neural progenitor stage and uses selected small-molecule modulators of key signaling pathways (SMAD, Notch, FGFR1 inhibition, and Wnt activation). Results: Flow cytometry analysis revealed expression of core pluripotency transcription factors Nanog, Oct3/4 and Sox2 in iPSCs overlaps with commercially purchased pluripotent cell line UCSD064i-20-2. Trilineage differentiation of iPSCs was confirmed with immunofluorescent imaging with germ-layer-specific markers; Sox17 and ExoA2 for ectoderm, Nestin, and Pax6 for mesoderm, and Ncam and Brachyury for endoderm. Sensory neuron markers, β-III tubulin, and Peripherin were applied to stain the cells for the maturity of iPSC-derived neurons. Patch-clamp electrophysiology and calcitonin gene-related peptide (CGRP) release data supported the functionality of the induced neurons and provided insight into the timing for which downstream assays could be performed (week 4 post-induction). We have also performed a cell viability assay and fluorescence-activated cell sorting (FACS) using four cell-surface markers (CD184, CD44, CD15, and CD24) to select a neuronal population. At least 70% of the cells were viable in the isolated neuron population. Conclusion: We have found that these iPSC-derived neurons recapitulate mature neuronal phenotypes and demonstrate functionality. Thus, this represents a patient-derived ex vivo neuronal model to investigate the molecular mechanisms of clinical TIPN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemotherapy" title="chemotherapy">chemotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=iPSC-derived%20neurons" title=" iPSC-derived neurons"> iPSC-derived neurons</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20neuropathy" title=" peripheral neuropathy"> peripheral neuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=taxane" title=" taxane"> taxane</a>, <a href="https://publications.waset.org/abstracts/search?q=paclitaxel" title=" paclitaxel"> paclitaxel</a> </p> <a href="https://publications.waset.org/abstracts/117612/modeling-taxane-induced-peripheral-neuropathy-ex-vivo-using-patient-derived-neurons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Pluripotent Stem Cells as Therapeutic Tools for Limbal Stem Cell Deficiencies and Drug Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aberdam%20Edith">Aberdam Edith</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangari%20Linda"> Sangari Linda</a>, <a href="https://publications.waset.org/abstracts/search?q=Petit%20Isabelle"> Petit Isabelle</a>, <a href="https://publications.waset.org/abstracts/search?q=Aberdam%20Daniel"> Aberdam Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Rationale: Transparent avascularised cornea is essential for normal vision and depends on limbal stem cells (LSC) that reside between the cornea and the conjunctiva. Ocular burns or injuries may destroy the limbus, causing limbal stem cell deficiency (LSCD). The cornea becomes vascularised by invaded conjunctival cells, the stroma is scarring, resulting in corneal opacity and loss of vision. Grafted autologous limbus or cultivated autologous LCS can restore the vision, unless the two eyes are affected. Alternative cellular sources have been tested in the last decades, including oral mucosa or hair follicle epithelial cells. However, only partial success has been achieved by the use of these cells since they were not able to uniformly commit into corneal epithelial cells. Human pluripotent stem cells (iPSC) display both unlimited growth capacity and ability to differentiate into any cell type. Our goal was to design a standardized and reproducible protocol to produce transplantable autologous LSC from patients through cell reprogramming technology. Methodology: First, keratinocyte primary culture was established from a small number of plucked hair follicles of healthy donors. The resulting epithelial cells were reprogrammed into induced pluripotent stem cells (iPSCs) and further differentiate into corneal epithelial cells (CEC), according to a robust protocol that recapitulates the main step of corneal embryonic development. qRT-PCR analysis and immunofluorescent staining during the course of differentiation confirm the expression of stage specific markers of corneal embryonic lineage. First appear ectodermal progenitor-specific cytokeratins K8/K18, followed at day 7 by limbal-specific PAX6, TP63 and cytokeratins K5/K14. At day 15, K3/K12+-corneal cells are present. To amplify the iPSC-derived LSC (named COiPSC), intact small epithelial colonies were detached and cultivated in limbal cell-specific medium. In that culture conditions, the COiPSC can be frozen and thaw at any passage, while retaining their corneal characteristics for at least eight passages. To evaluate the potential of COiPSC as an alternative ocular toxicity model, COiPSC were treated at passage P0 to P4 with increasing amounts of SDS and Benzalkonium. Cell proliferation and apoptosis of treated cells was compared to LSC and the SV40-immortalized human corneal epithelial cell line (HCE) routinely used by cosmetological industrials. Of note, HCE are more resistant to toxicity than LSC. At P0, COiPSC were systematically more resistant to chemical toxicity than LSC and even to HCE. Remarkably, this behavior changed with passage since COiPSC at P2 became identical to LSC and thus closer to physiology than HCE. Comparative transcriptome analysis confirmed that COiPSC from P2 are similar to a mixture of LSC and CEC. Finally, by organotypic reconstitution assay, we demonstrated the ability of COiPSC to produce a 3D corneal epithelium on a stromal equivalent made of keratocytes. Conclusion: COiPSC could become valuable for two main applications: (1) an alternative robust tool to perform, in a reproducible and physiological manner, toxicity assays for cosmetic products and pharmacological tests of drugs. (2). COiPSC could become an alternative autologous source for cornea transplantation for LSCD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Limbal%20stem%20cell%20deficiency" title="Limbal stem cell deficiency">Limbal stem cell deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=iPSC" title=" iPSC"> iPSC</a>, <a href="https://publications.waset.org/abstracts/search?q=cornea" title=" cornea"> cornea</a>, <a href="https://publications.waset.org/abstracts/search?q=limbal%20stem%20cells" title=" limbal stem cells"> limbal stem cells</a> </p> <a href="https://publications.waset.org/abstracts/28642/pluripotent-stem-cells-as-therapeutic-tools-for-limbal-stem-cell-deficiencies-and-drug-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Seroprevalence of Middle East Respiratory Syndrome Coronavirus (MERS-Cov) Infection among Healthy and High Risk Individuals in Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raham%20El-Kahlout">Raham El-Kahlout</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Yassin"> Hadi Yassin</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20Athani"> Asmaa Athani</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwan%20Abou%20Madi"> Marwan Abou Madi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheyath%20Nasrallah"> Gheyath Nasrallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Since its first isolation in September 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has diffused across 27 countries infecting more than two thousand individuals with a high case fatality rate. MERS-CoV–specific antibodies are widely found in Dromedary camel along with viral shedding of similar viruses detected in human at same region, suggesting that MERS epidemiology may be central role by camel. Interestingly, MERS-CoV has also been also reported to be asymptomatic or to cause influenza-like mild illnesses. Therefore, in a country like Qatar (bordered Saudi Arabia), where camels are widely spread, serological surveys are important to explore the role of camels in MERS-CoV transmission. However, widespread strategic serological surveillances of MERS-CoV among populations, particularly in endemic country, are infrequent. In the absence of clear epidemiological view, cross-sectional MERS antibody surveillances in human populations are of global concern. Method: We performed a comparative serological screening of 4719 healthy blood donors, 135 baseline case contacts (high risk individual), and four MERS confirmed patients (by PCR) for the presence of anti-MERS IgG. Initially, samples were screened using Euroimmune anti- MERS-CoV IgG ELISA kit, the only commercial kit available in the market and recommended by the CDC as a screening kit. To confirm ELISA test results, farther serological testing was performed for all borderline and positive samples using two assays; the anti MERS-CoV IgG and IgM Euroimmune indirect immunofluorescent test (IIFT) and pseudoviral particle neutralizing assay (PPNA). Additionally, to test cross reactivity of anti-MERS-CoV antibody with other family members of coronavirus, borderline and positive samples were tested for the presence of the of IgG antibody of the following viruses; SARS, HCoV-229E, HKU1 using the Euroimmune IIFT for SARS and HCoV-229E and ELISA for HKU1. Results: In all of 4858 screened 15 samples [10 donors (0.21%, 10/4719), 1 case contact (0.77 %, 1/130), 3 patients (75%, 3/4)] anti-MERS IgG reactive/borderline samples were seen in ELISA. However, only 7 (0.14%) of them gave positive with in IIFT and only 3 (0.06%) was confirmed by the specific anti-MERS PPNA. One of the interesting findings was, a donor, who was selected in the control group as a negative anti-MERS IgG ELISA, yield reactive for anti-MERS IgM IIFT and was confirmed with the PPNA. Further, our preliminary results showed that there was a strong cross reactivity between anti- MERS-COV IgG with both HCoV-229E or anti-HKU1 IgG, yet, no cross reactivity of SARS were found. Conclusions: Our findings suggest that MERS-CoV is not heavily circulated among the population of Qatar and this is also indicated by low number of confirmed cases (only 18) since 2012. Additionally, the presence of antibody of other pathogenic human coronavirus may cause false positive results of both ELISA and IIFT, which stress the need for more evaluation studies for the available serological assays. Conclusion: this study provides an insight about the epidemiological view for MERS-CoV in Qatar population. It also provides a performance evaluation for the available serologic tests for MERS-CoV in a view of serologic status to other human coronaviruses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seroprevalence" title="seroprevalence">seroprevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=MERS-CoV" title=" MERS-CoV"> MERS-CoV</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20individuals" title=" healthy individuals"> healthy individuals</a>, <a href="https://publications.waset.org/abstracts/search?q=Qatar" title=" Qatar"> Qatar</a> </p> <a href="https://publications.waset.org/abstracts/60947/seroprevalence-of-middle-east-respiratory-syndrome-coronavirus-mers-cov-infection-among-healthy-and-high-risk-individuals-in-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10