CINXE.COM
Search results for: partial purification
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: partial purification</title> <meta name="description" content="Search results for: partial purification"> <meta name="keywords" content="partial purification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="partial purification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="partial purification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1684</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: partial purification</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1684</span> Application of Three Phase Partitioning (TPP) for the Purification of Serratiopeptidase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20V.%20Pakhale">Swapnil V. Pakhale</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20S.%20Bhagwat"> Sunil S. Bhagwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three phase partitioning (TPP) an efficient bioseparation technique integrates the concentration and partial purification step of downstream processing of a biomolecule. Three Phase Partitioning is reported here for the first time for purification of Serratiopeptidase from fermentation broths of Serratia marcescens NRRL B-23112. The influence of various salts and solvents, Concentration of ammonium sulphate (20-60% w/v), Crude extract to t-butanol ratio (1:0.5-1:2.5) and system pH on Serratiopeptidase partitioning were investigated and optimum conditions for TPP were obtained in order to enhance the degree of purification and activity recovery of Serratiopeptidase. Under the optimal conditions of TPP, serratiopeptidase has been efficiently separated and concentrated with maximum recovery and degree of purification of 95.70% and 4.95 fold respectively. The present study shows TPP as an attractive downstream process for the purification of serratiopeptidase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three%20phase%20partitioning" title="three phase partitioning">three phase partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=serratiopeptidase" title=" serratiopeptidase"> serratiopeptidase</a>, <a href="https://publications.waset.org/abstracts/search?q=serratia%20marcescens%20NRRL%20B-23112" title=" serratia marcescens NRRL B-23112"> serratia marcescens NRRL B-23112</a>, <a href="https://publications.waset.org/abstracts/search?q=t-butanol" title=" t-butanol"> t-butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=bioseparation" title=" bioseparation"> bioseparation</a> </p> <a href="https://publications.waset.org/abstracts/19531/application-of-three-phase-partitioning-tpp-for-the-purification-of-serratiopeptidase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1683</span> Water Purification By Novel Nanocomposite Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Johal">E. S. Johal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Saini"> M. S. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Jha"> M. K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, 1.1 billion people are at risk due to lack of clean water and about 35 % of people in the developed world die from water related problem. To alleviate these problems water purification technology requires new approaches for effective management and conservation of water resources. Electrospun nanofibres membrane has a potential for water purification due to its high large surface area and good mechanical strength. In the present study PAMAM dendrimers composite nynlon-6 nanofibres membrane was prepared by crosslinking method using Glutaraldehyde. Further, the efficacy of the modified membrane can be renewed by mere exposure of the saturated membrane with the solution having acidic pH. The modified membrane can be used as an effective tool for water purification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title="dendrimer">dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20membrane" title=" nanocomposite membrane"> nanocomposite membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/9638/water-purification-by-novel-nanocomposite-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1682</span> Parametric Studies of Ethylene Dichloride Purification Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Arzani">Sh. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kazemi%20Esfeh"> H. Kazemi Esfeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galeh%20Zadeh"> Y. Galeh Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Akbari"> V. Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene dichloride is a colorless liquid with a smell like chloroform. EDC is classified in the simple hydrocarbon group which is obtained from chlorinating ethylene gas. Its chemical formula is C2H2Cl2 which is used as the main mediator in VCM production. Therefore, the purification process of EDC is important in the petrochemical process. In this study, the purification unit of EDC was simulated, and then validation was performed. Finally, the impact of process parameter was studied for the degree of EDC purity. The results showed that by increasing the feed flow, the reflux impure combinations increase and result in an EDC purity decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20dichloride" title="ethylene dichloride">ethylene dichloride</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=edc" title=" edc"> edc</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/35735/parametric-studies-of-ethylene-dichloride-purification-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1681</span> Bacteriocinogenic Strains of Bacillus thuringiensis Isolated from Soil at Northern of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Gounina-Allouane">R. Gounina-Allouane</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Moussaoui"> I. Moussaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boukahel"> N. Boukahel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title="antimicrobial peptides">antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20thuringiensis" title=" Bacillus thuringiensis"> Bacillus thuringiensis</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriocin" title=" bacteriocin"> bacteriocin</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20purification" title=" partial purification"> partial purification</a> </p> <a href="https://publications.waset.org/abstracts/20467/bacteriocinogenic-strains-of-bacillus-thuringiensis-isolated-from-soil-at-northern-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1680</span> Powerful Bacteriocins Produced by Bacillus thuringiensis Strains Isolated from Soil at Northern of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Gounina-Allouane">R. Gounina-Allouane</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Moussaoui"> I. Moussaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boukahel"> N. Boukahel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern of Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title="antimicrobial peptides">antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20thuringiensis" title=" Bacillus thuringiensis"> Bacillus thuringiensis</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriocin" title=" bacteriocin"> bacteriocin</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20purification" title=" partial purification"> partial purification</a> </p> <a href="https://publications.waset.org/abstracts/17937/powerful-bacteriocins-produced-by-bacillus-thuringiensis-strains-isolated-from-soil-at-northern-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1679</span> Control of Fungal Growth in Sweet Orange and Mango Juices by Justica flava and Afromomum melegueta Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adferotimi%20Banso">Adferotimi Banso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A laboratory investigation was conducted to determine the effect of Justica flava and Aframonium melegueta on the growth of Aspergillus niger, Rhizopus stolonifer and Fusarium species in sweet orange and mango juices. Aqueous extract (3%v/v) of Justica flava and Aframonium melegueta reduced the growth of the fungi, a combination of 2% (v/v) each of Justica flava and Aframonium melegueta extracts reduced the growth better. Partial purification of aqueous extracts of Justica flava and Aframonium melegueta showed that ethyl acetate fraction of the extracts exhibited the highest level of inhibition of growth of the test fungi compared with diethyl ether and n-hexane fractions. The results suggest that extracts of Justica flava and Aframonium melegueta may be important substitutes for conventional chemical preservatives in the processing of fruit juices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous" title="aqueous">aqueous</a>, <a href="https://publications.waset.org/abstracts/search?q=fraction" title=" fraction"> fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=mango" title=" mango"> mango</a>, <a href="https://publications.waset.org/abstracts/search?q=orange" title=" orange"> orange</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet" title=" sweet"> sweet</a> </p> <a href="https://publications.waset.org/abstracts/38518/control-of-fungal-growth-in-sweet-orange-and-mango-juices-by-justica-flava-and-afromomum-melegueta-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1678</span> On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teoman%20Ozer">Teoman Ozer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Orhan"> Ozlem Orhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-symmetry" title="λ-symmetry">λ-symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BC-symmetry" title=" μ-symmetry"> μ-symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20solution" title=" invariant solution"> invariant solution</a> </p> <a href="https://publications.waset.org/abstracts/59662/on-the-relation-between-l-symmetries-and-m-symmetries-of-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1677</span> Improvement in Safety Profile of Semecarpus Anacardium Linn by Shodhana: An Ayurvedic Purification Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umang%20H.%20Gajjar">Umang H. Gajjar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Khambholja"> K. M. Khambholja</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Patel"> R. K. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semecarpus anacardium shows the presence of bioflavonoids, phenolic compounds, bhilawanols, minerals, vitamins and amino acids. Detoxified S. anacardium and its oils are considered to have anti-inflammatory properties and used in nervous debility, neuritis, rheumatism and leprous modules. S. anacardium if used without purification causes toxic skin inflammation problem because it contains toxic phenolic oil. During this Shodhana Process - An ayurvedic purification method, toxic phenolic oil was removed, have marked effect on the concentration of the phytoconstituent & antioxidant activity of S. anacardium. Total phenolic content decreased up to 70 % (from 28.9 %w/w to 8.94 %w/w), while there is a negligible effect on the concentration of total flavonoid (7.51 %w/w to 7.43 %w/w) and total carbohydrate (0.907 %w/w to 0.853 % w/w) content. IC50& EC50 value of extract of S. anacardium before and after purification are 171.7 & 314.3 while EC50values are 280.μg/ml & 304. μg/ml, shows that antioxidant activity of S. anacardium is decreased but the safety profile of the drug is increased as the toxic phenolic oil was removed during Shodhana - An ayurvedic purification method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semecarpus%20anacardium" title="Semecarpus anacardium">Semecarpus anacardium</a>, <a href="https://publications.waset.org/abstracts/search?q=Shodhana%20process" title=" Shodhana process"> Shodhana process</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20profile" title=" safety profile"> safety profile</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a> </p> <a href="https://publications.waset.org/abstracts/46743/improvement-in-safety-profile-of-semecarpus-anacardium-linn-by-shodhana-an-ayurvedic-purification-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1676</span> A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Cicceri">Giovanni Cicceri</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Maisano"> Roberta Maisano</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Morey"> Nathalie Morey</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvatore%20Distefano"> Salvatore Distefano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20internet%20of%20things" title="environmental internet of things">environmental internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=EIoT" title=" EIoT"> EIoT</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20monitoring" title=" environment monitoring"> environment monitoring</a> </p> <a href="https://publications.waset.org/abstracts/130838/a-machine-learning-approach-for-anomaly-detection-in-environmental-iot-driven-wastewater-purification-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1675</span> Characteristics of Different Solar PV Modules under Partial Shading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hla%20Hla%20Khaing">Hla Hla Khaing</a>, <a href="https://publications.waset.org/abstracts/search?q=Yit%20Jian%20Liang"> Yit Jian Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nant%20Nyein%20Moe%20Htay"> Nant Nyein Moe Htay</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Fan"> Jiang Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partial%20shade" title="partial shade">partial shade</a>, <a href="https://publications.waset.org/abstracts/search?q=CdTe" title=" CdTe"> CdTe</a>, <a href="https://publications.waset.org/abstracts/search?q=CIGS" title=" CIGS"> CIGS</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-crystalline%20%28mc-Si%29" title=" multi-crystalline (mc-Si)"> multi-crystalline (mc-Si)</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silicon%20%28a-Si%29" title=" amorphous silicon (a-Si)"> amorphous silicon (a-Si)</a>, <a href="https://publications.waset.org/abstracts/search?q=bypass%20diode" title=" bypass diode"> bypass diode</a> </p> <a href="https://publications.waset.org/abstracts/9357/characteristics-of-different-solar-pv-modules-under-partial-shading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1674</span> Partial Purification and Characterization of a Low Molecular Weight and Industrially Important Chitinase and a Chitin Deacetylase Enzyme from Streptomyces Chilikensis RC1830, a Novel Strain Isolated from Chilika Lake, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lopamudra%20Ray">Lopamudra Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Malla%20Padma"> Malla Padma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dibya%20Bhol"> Dibya Bhol</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Ranjan%20Mishra"> Samir Ranjan Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Panda"> A. N. Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurdeep%20Rastogi"> Gurdeep Rastogi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Adhya"> T. K. Adhya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Kumar%20Pattnaik"> Ajit Kumar Pattnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrutyunjay%20Suar"> Mrutyunjay Suar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishakha%20Raina"> Vishakha Raina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chilika Lake is the largest coastal estuarine brackish water lagoon in Asia situated on the east coast of India and is a designated Ramsar site. In the current study, several chitinolytic microorganisms were isolated and screened by appearance of clearance zone on 0.5% colloidal chitin agar plate. A strain designated as RC 1830 displayed maximum colloidal chitin degradation by release of 112 μmol/ml/min of N-acetyl D-glucosamine (GlcNAc) in 48h. The strain was taxonomically identified by polyphasic approach based on a range of phenotypic and genotypic properties and was found to be a novel species named Streptomyces chilikensis RC1830. The organism was halophilic (12% NaCl w/v), alkalophilic (pH10) and was capable of hydrolyzing chitin, starch, cellulose, gelatin, casein, tributyrin and tween 80. The partial purification of chitinase enzymes from RC1830 was performed by DEAE Sephacel anion exchange chromatography which revealed the presence of a very low molecular weight chitinase(10.5kD) which may be a probable chitobiosidase enzyme. The study reports the presence of a low MW chitinase (10.5kD) and a chitin decaetylase from a novel Streptomyces strain RC1830 isolated from Chilika Lake. Previously chitinases less than 20.5kD have not been reported from any other Streptomyces species. The enzymes was characterized with respect to optimum pH, temperature, and substrate specificity and temperature stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitinases" title="chitinases">chitinases</a>, <a href="https://publications.waset.org/abstracts/search?q=chitobiosidase" title=" chitobiosidase"> chitobiosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=Chilika%20Lake" title=" Chilika Lake"> Chilika Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/17497/partial-purification-and-characterization-of-a-low-molecular-weight-and-industrially-important-chitinase-and-a-chitin-deacetylase-enzyme-from-streptomyces-chilikensis-rc1830-a-novel-strain-isolated-from-chilika-lake-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1673</span> Nadler's Fixed Point Theorem on Partial Metric Spaces and its Application to a Homotopy Result</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Kumar%20Pathak">Hemant Kumar Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1994, Matthews (S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197) introduced the concept of a partial metric as a part of the study of denotational semantics of data flow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory. In this paper, we introduce the concept of almost partial Hausdorff metric. We prove a fixed point theorem for multi-valued mappings on partial metric space using the concept of almost partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. In the sequel, we derive a homotopy result as an application of our main result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fixed%20point" title="fixed point">fixed point</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20metric%20space" title=" partial metric space"> partial metric space</a>, <a href="https://publications.waset.org/abstracts/search?q=homotopy" title=" homotopy"> homotopy</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20sciences" title=" physical sciences"> physical sciences</a> </p> <a href="https://publications.waset.org/abstracts/5182/nadlers-fixed-point-theorem-on-partial-metric-spaces-and-its-application-to-a-homotopy-result" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1672</span> Optimization of Hepatitis B Surface Antigen Purifications to Improving the Production of Hepatitis B Vaccines on Pichia pastoris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizky%20Kusuma%20Cahyani">Rizky Kusuma Cahyani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hepatitis B is a liver inflammatory disease caused by hepatitis B virus (HBV). This infection can be prevented by vaccination which contains HBV surface protein (sHBsAg). However, vaccine supply is limited. Several attempts have been conducted to produce local sHBsAg. However, the purity degree and protein yield are still inadequate. Therefore optimization of HBsAg purification steps is required to obtain high yield with better purification fold. In this study, optimization of purification was done in 2 steps, precipitation using variation of NaCl concentration (0,3 M; 0,5 M; 0,7 M) and PEG (3%, 5%, 7%); ion exchange chromatography (IEC) using NaCl 300-500 mM elution buffer concentration.To determine HBsAg protein, bicinchoninic acid assay (BCA) and enzyme-linked immunosorbent assay (ELISA) was used in this study. Visualization of HBsAg protein was done by SDS-PAGE analysis. Based on quantitative analysis, optimal condition at precipitation step was given 0,3 M NaCl and PEG 3%, while in ion exchange chromatography step, the optimum condition when protein eluted with NaCl 500 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicates that the presence of protein HBsAg with a molecular weight of 25 kDa (monomer) and 50 kDa (dimer). The optimum condition for purification of sHBsAg produced in Pichia pastoris gave a yield of 47% and purification fold 17x so that it would increase the production of hepatitis B vaccine to be more optimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20B%20virus" title="hepatitis B virus">hepatitis B virus</a>, <a href="https://publications.waset.org/abstracts/search?q=HBsAg" title=" HBsAg"> HBsAg</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20B%20surface%20antigen" title=" hepatitis B surface antigen"> hepatitis B surface antigen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichia%20pastoris" title=" Pichia pastoris"> Pichia pastoris</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a> </p> <a href="https://publications.waset.org/abstracts/91001/optimization-of-hepatitis-b-surface-antigen-purifications-to-improving-the-production-of-hepatitis-b-vaccines-on-pichia-pastoris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1671</span> Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Ling%20Li">Chia-Ling Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title="economic analysis">economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-phthalate" title=" non-phthalate"> non-phthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a> </p> <a href="https://publications.waset.org/abstracts/51541/continuous-catalytic-hydrogenation-and-purification-for-synthesis-non-phthalate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1670</span> Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanchal%20Mewar">Chanchal Mewar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shikha%20Gangil"> Shikha Gangil</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashwant%20%20Parihar"> Yashwant Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Virendra%20Dhakar"> Virendra Dhakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Modhera"> Bharat Modhera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20step%20method" title=" three step method"> three step method</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sources" title=" silica sources"> silica sources</a> </p> <a href="https://publications.waset.org/abstracts/35335/preparation-of-biodiesel-by-three-step-method-followed-purification-by-various-silica-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1669</span> Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Po%20Cheng">Wen Po Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Hua%20Fu"> Chi Hua Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Hung%20Chen"> Ping Hung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey%20Fang%20Yu"> Ruey Fang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=acidification" title=" acidification"> acidification</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/7385/factors-affecting-aluminum-dissolve-from-acidified-water-purification-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">629</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1668</span> Assessment of Solid Insulating Material Using Partial Discharge Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Khan">Qasim Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Ahmad"> Furkan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Asfar%20A.%20Khan"> Asfar A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saad%20Alam"> M. Saad Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiz%20Ahmad"> Faiz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partial%20discharges" title="partial discharges">partial discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title=" condition monitoring"> condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20defects" title=" insulation defects"> insulation defects</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20and%20corrosion" title=" degradation and corrosion"> degradation and corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a> </p> <a href="https://publications.waset.org/abstracts/44215/assessment-of-solid-insulating-material-using-partial-discharge-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1667</span> Tax Competition and Partial Tax Coordination under Fiscal Decentralization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Sanz-Cordoba">Patricia Sanz-Cordoba</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Theilen"> Bernd Theilen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article analyzes the conditions where decentralization and partial tax harmonization in a coalition of asymmetric jurisdictions plays a role in the fight of fiscal competition (i.e. the race to bottom). Starting from a centralized economies, we use the ZM-W model to analyze the fiscal competition and coordination among three countries. We find that the asymmetry of jurisdictions facilitates partial tax harmonization between jurisdictions when these asymmetries are not too large. Furthermore, when the asymmetries are large enough, the level of labor tax plays an important role in the decision of decentralize capital tax. Accordingly, decentralization is achievable when labor tax is low. This result indicates that decentralization and partial tax harmonization between jurisdictions can be possible results in order to fight the negative externalities from fiscal competition, and more in the European Union countries where the asymmetries are substantial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centralization" title="centralization">centralization</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralization" title=" decentralization"> decentralization</a>, <a href="https://publications.waset.org/abstracts/search?q=fiscal%20competition" title=" fiscal competition"> fiscal competition</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20tax%20harmonization" title=" partial tax harmonization"> partial tax harmonization</a> </p> <a href="https://publications.waset.org/abstracts/75610/tax-competition-and-partial-tax-coordination-under-fiscal-decentralization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1666</span> Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Eryilmaz">K. Eryilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mercanoglu"> G. Mercanoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title="lanthanide">lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide" title=" peptide"> peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=labeling" title=" labeling"> labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclide" title=" radionuclide"> radionuclide</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceutical" title=" radiopharmaceutical"> radiopharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/96095/additional-method-for-the-purification-of-lanthanide-labeled-peptide-compounds-pre-purified-by-weak-cation-exchange-cartridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1665</span> Purification and Characterization of Phycoerythrin from a Mesophilic Cyanobacterium Nostoc piscinale PUPCCC 405.17</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kaur">Sandeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phycoerythrin (PE) from the mesophilic filamentous cyanobacterium Nostoc piscinale PUPCCC 405.17, a good producer of phycobiliproteins, has been characterized in terms of their unit assembly and stability. The phycoerythrin was extracted by freeze-thawing the cells in water, concentrated by ammonium sulphate fractionation and purified by anion exchange chromatography. The purification process resulted in 2.90 fold increase in phycoerythrin purity reaching to 1.54. Sodium Dodecyl Sulphate- Polyacrylamide Gel Electrophoresis of purified PE demonstrated three protein bands of 14.3, 27.54 and 39.81 kDa. The native PE also showed one band of 125.87 kDa, assumed to be a dimer (αβ)2γ based on results of non-denaturing PAGE. Lyophilized powder PE was more stable compared to phycoerythrin in the solution. The half-life of dry PE is 80 days when stored at 4 °C under dark. The phycoerythrin from this organism has potential applications in food as natural colour and as a fluorescent marker. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Nostoc%20piscinale" title=" Nostoc piscinale"> Nostoc piscinale</a>, <a href="https://publications.waset.org/abstracts/search?q=phycoerythrin" title=" phycoerythrin"> phycoerythrin</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification "> purification </a> </p> <a href="https://publications.waset.org/abstracts/108813/purification-and-characterization-of-phycoerythrin-from-a-mesophilic-cyanobacterium-nostoc-piscinale-pupccc-40517" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1664</span> Effect of Non-Invasive Electrical Stimulation on Partial Hearing Loss: Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetanjali%20Saggar">Geetanjali Saggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Partial hearing loss is the inability to hear effectively as a normal hearing individual whose hearing threshold is 20 dB or better in both ears. Individuals with partial hearing loss may benefit from non-invasive electrical stimulation as a method of therapy and possible intervention. Objective: The project aims to assess and relate the efficacy of electrical stimulation on individuals with partial hearing loss. The study's goal was to evaluate the different sorts of non-invasive electrical stimulation in tinnitus and hearing loss in order to build the framework for future research. Method: In this pilot study, a total of five patients of age group above 50 years were selected with partial hearing loss. The electrical modality of Repetitive Transcranial Magnetic Stimulation (RTMS) was used among the patients and was evaluated using gold questionnaires- HHIA and APHAB for hearing at intervals of 0-7-14 days. The statistical data was analyzed by SPSS software-16. Results: There were not much significant changes in the hearing of the patients when non-invasive electrical modality was applied as an intervention in the partial hearing loss condition. However, there was minimal change in the daily functioning of the patient with the application of intervention. Conclusion: This study concluded that non-invasive electrical stimulation had minimal to no effect on the partial hearing of the patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title="non-invasive">non-invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20loss" title=" hearing loss"> hearing loss</a>, <a href="https://publications.waset.org/abstracts/search?q=transcranial%20magnetic%20stimulation" title=" transcranial magnetic stimulation"> transcranial magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20deafness" title=" partial deafness"> partial deafness</a>, <a href="https://publications.waset.org/abstracts/search?q=transcranial%20direct%20current%20stimulation" title=" transcranial direct current stimulation"> transcranial direct current stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tinnitus" title=" tinnitus"> tinnitus</a> </p> <a href="https://publications.waset.org/abstracts/193497/effect-of-non-invasive-electrical-stimulation-on-partial-hearing-loss-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1663</span> Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Zanganeh">N. Zanganeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zabet"> M. Zabet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first. Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactulose" title="lactulose">lactulose</a>, <a href="https://publications.waset.org/abstracts/search?q=lactose" title=" lactose"> lactose</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a> </p> <a href="https://publications.waset.org/abstracts/15976/studying-the-effect-of-ethanol-and-operating-temperature-on-purification-of-lactulose-syrup-containing-lactose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1662</span> High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Rostom">Samira Rostom</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Symonds"> Robert Symonds</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20W.%20Hughes"> Robin W. Hughes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOF" title="MOF">MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=H2%20purification" title=" H2 purification"> H2 purification</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20T" title=" high T"> high T</a>, <a href="https://publications.waset.org/abstracts/search?q=PSA" title=" PSA"> PSA</a> </p> <a href="https://publications.waset.org/abstracts/160618/high-temperature-and-high-pressure-purification-of-hydrogen-from-syngas-using-metal-organic-framework-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1661</span> Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Mredula">K. P. Mredula</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Vakaskar"> D. C. Vakaskar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-resolution" title="multi-resolution">multi-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Haar%20Wavelet" title=" Haar Wavelet"> Haar Wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a> </p> <a href="https://publications.waset.org/abstracts/59280/algorithms-utilizing-wavelet-to-solve-various-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1660</span> Valorization of Natural Vegetable Substances from Tunisia: Purification of Two Food Additives, Anthocyanins and Locust Bean Gum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bouzouita">N. Bouzouita</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Snoussi"> A. Snoussi </a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ben%20Haj%20Koubaier"> H. Ben Haj Koubaier</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Essaidi"> I. Essaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Chaabouni"> M. M. Chaabouni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zgoulli"> S. Zgoulli</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Thonart"> P. Thonart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Color is one of the most important quality attributes for the food industry. Grape marc, a complex lignocellulosic material is one of the most abundant and worth less byproduct, generated after the pressing process. The development of the process of purification by micro filtration, ultra filtration, nano filtration and drying by atomization of the anthocyanins of Tunisian origin is the aim of this work. Locust bean gum is the ground endosperm of the seeds of carob fruit; owing to its remarkable water-binding properties, it is widely used to improve the texture of food and largely employed in food industry. The purification of LGB causes drastically reduced ash and proteins contents but important increase for galactomannan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carob" title="Carob">Carob</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20additives" title=" food additives"> food additives</a>, <a href="https://publications.waset.org/abstracts/search?q=grape%20pomace" title=" grape pomace"> grape pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=locust%20bean%20gum" title=" locust bean gum"> locust bean gum</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20colorant" title=" natural colorant"> natural colorant</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20filtration" title=" nano filtration"> nano filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=thickener" title=" thickener"> thickener</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20filtration" title=" ultra filtration"> ultra filtration</a> </p> <a href="https://publications.waset.org/abstracts/19110/valorization-of-natural-vegetable-substances-from-tunisia-purification-of-two-food-additives-anthocyanins-and-locust-bean-gum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1659</span> Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iranga%20Weerakkody">Iranga Weerakkody</a>, <a href="https://publications.waset.org/abstracts/search?q=Palitha%20Sri%20Geegana%20Arachchige"> Palitha Sri Geegana Arachchige</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasith%20Tilakaratna"> Dasith Tilakaratna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=folklife" title="folklife">folklife</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingini%20seeds" title=" Ingini seeds"> Ingini seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=Strychnos%20potatorum" title=" Strychnos potatorum"> Strychnos potatorum</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20forest%20produce" title=" organic forest produce"> organic forest produce</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title=" water purification"> water purification</a> </p> <a href="https://publications.waset.org/abstracts/128366/ingini-seeds-a-qualitative-study-on-its-use-in-water-purification-in-the-dry-zone-of-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1658</span> Experimental Research on the Effect of Activating Temperature on Combustion and Nox Emission Characteristics of Pulverized Coal in a Novel Purification-combustion Reaction System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziqu%20Ouyang">Ziqu Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Su"> Kun Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel efficient and clean coal combustion system, namely the purification-combustion system, was designed by the Institute of Engineering Thermal Physics, Chinese Academy of Science, in 2022. Among them, the purification system was composed of a mesothermal activating unit and a hyperthermal reductive unit, and the combustion system was composed of a mild combustion system. In the purification-combustion system, the deep in-situ removal of coal-N could be realized by matching the temperature and atmosphere in each unit, and thus the NOx emission was controlled effectively. To acquire the methods for realizing the efficient and clean coal combustion, this study investigated the effect of the activating temperature (including 822 °C, 858 °C, 933 °C, 991 °C), which was the key factor affecting the system operation, on combustion and NOx emission characteristics of pulverized coal in a 30 kW purification-combustion test bench. The research result turned out that the activating temperature affected the combustion and NOx emission characteristics significantly. As the activating temperature increased, the temperature increased first and then decreased in the mild combustion unit, and the temperature change in the lower part was much higher than that in the upper part. Moreover, the main combustion region was always located at the top of the unit under different activating temperatures, and the combustion intensity along the unit was weakened gradually. Increasing the activating temperature excessively could destroy the reductive atmosphere early in the upper part of the unit, which wasn’t conducive to the full removal of coal-N in the reductive coal char. As the activating temperature increased, the combustion efficiency increased first and then decreased, while the NOx emission decreased first and then increased, illustrating that increasing the activating temperature properly promoted the efficient and clean coal combustion, but there was a limit to its growth. In this study, the optimal activating temperature was 858 °C. Hence, this research illustrated that increasing the activating temperature properly could realize the mutual matching of improving the combustion efficiency and reducing the NOx emission, and thus guaranteed the clean and efficient coal combustion well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activating%20temperature" title="activating temperature">activating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20characteristics" title=" combustion characteristics"> combustion characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=nox%20emission" title=" nox emission"> nox emission</a>, <a href="https://publications.waset.org/abstracts/search?q=purification-combustion%20system" title=" purification-combustion system"> purification-combustion system</a> </p> <a href="https://publications.waset.org/abstracts/164482/experimental-research-on-the-effect-of-activating-temperature-on-combustion-and-nox-emission-characteristics-of-pulverized-coal-in-a-novel-purification-combustion-reaction-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1657</span> Solar-Powered Water Purification Using Ozone and Sand Filtration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayla%20Youhanaie">Kayla Youhanaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Dott"> Kenneth Dott</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20Gillis-Smith"> Greg Gillis-Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to clean water is a global challenge that affects nearly one-third of the world’s population. A lack of safe drinking water negatively affects a person’s health, safety, and economic status. However, many regions of the world that face this clean water challenge also have high solar energy potential. To address this worldwide issue and utilize available resources, a solar-powered water purification device was developed that could be implemented in communities around the world that lack access to potable water. The device uses ozone to destroy water-borne pathogens and sand filtration to filter out particulates from the water. To select the best method for this application, a quantitative energy efficiency comparison of three water purification methods was conducted: heat, UV light, and ozone. After constructing an initial prototype, the efficacy of the device was tested using agar petri dishes to test for bacteria growth in treated water samples at various time intervals after applying the device to contaminated water. The results demonstrated that the water purification device successfully removed all bacteria and particulates from the water within three minutes, making it safe for human consumption. These results, as well as the proposed design that utilizes widely available resources in target communities, suggest that the device is a sustainable solution to address the global water crisis and could improve the quality of life for millions of people worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20water" title="clean water">clean water</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20powered%20water%20purification" title=" solar powered water purification"> solar powered water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=ozonation" title=" ozonation"> ozonation</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20filtration" title=" sand filtration"> sand filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20water%20crisis" title=" global water crisis"> global water crisis</a> </p> <a href="https://publications.waset.org/abstracts/162398/solar-powered-water-purification-using-ozone-and-sand-filtration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1656</span> Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Pajuhan">Saba Pajuhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20M.%20Dastgheib"> S. M. M. Dastgheib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title="biosurfactant">biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=bioemulsifier" title=" bioemulsifier"> bioemulsifier</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension" title=" interfacial tension"> interfacial tension</a> </p> <a href="https://publications.waset.org/abstracts/49047/different-methods-of-producing-bioemulsifier-by-bacillus-licheniformis-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1655</span> Study of Environmental Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houmame%20Benbouali">Houmame Benbouali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treatment%20plant" title="treatment plant">treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/23227/study-of-environmental-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=56">56</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=57">57</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=partial%20purification&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>