CINXE.COM

Search results for: Haiti earthquake

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Haiti earthquake</title> <meta name="description" content="Search results for: Haiti earthquake"> <meta name="keywords" content="Haiti earthquake"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Haiti earthquake" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Haiti earthquake"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 748</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Haiti earthquake</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">748</span> The Role of Geodiversity in Earthquake Risk Management Strategies in Haiti</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djimy%20Dolcin">Djimy Dolcin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Haiti is a victim of the seismic threat, due to its geographical location and geodynamic context. Moreover, the vulnerability of the population is aggravated by the occupation of areas highly exposed to this threat. This work, therefore, presents an analysis of seismic risk management in Haiti in the context of geodiversity and its potential for understanding risk. To carry out this work, a bibliographical search was carried out on the subject. Faced with this state of affairs, we realized that the implementation of information and education strategies aimed at the population, which until now has been unaware of the danger it faces, is a fundamental obligation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geodiversity" title="geodiversity">geodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20risk%20management" title=" earthquake risk management"> earthquake risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiti" title=" Haiti"> Haiti</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20risk" title=" earthquake risk"> earthquake risk</a> </p> <a href="https://publications.waset.org/abstracts/194942/the-role-of-geodiversity-in-earthquake-risk-management-strategies-in-haiti" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">747</span> Seismotectonics of Southern Haiti: A Faulting Model for the 12 January 2010 M7 Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Newdeskarl%20Saint%20Fleur">Newdeskarl Saint Fleur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathalie%20Feuillet"> Nathalie Feuillet</a>, <a href="https://publications.waset.org/abstracts/search?q=Rapha%C3%ABl%20Grandin"> Raphaël Grandin</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89ric%20Jacques"> Éric Jacques</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Weil-Accardo"> Jennifer Weil-Accardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Klinger"> Yann Klinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prevailing consensus is that the 2010 Mw7.0 Haiti earthquake left the Enriquillo–Plantain Garden strike-slip Fault (EPGF) unruptured but broke unmapped blind north-dipping thrusts. Using high-resolution topography, aerial images, bathymetry and geology we identified previously unrecognized south-dipping NW-SE-striking active thrusts in southern Haiti. One of them, Lamentin thrust (LT), cuts across the crowded city of Carrefour, extends offshore into Port-au-Prince Bay and connects at depth with the EPGF. We propose that both faults broke in 2010. The rupture likely initiated on the thrust and propagated further along the EPGF due to unclamping. This scenario is consistent with geodetic, seismological and field data. The 2010 earthquake increased the stress toward failure on the unruptured segments of the EPGF and on neighboring thrusts, significantly increasing the seismic hazard in the Port-au-Prince urban area. The numerous active thrusts recognized in that area must be considered for future evaluation of the seismic hazard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20faulting" title="active faulting">active faulting</a>, <a href="https://publications.waset.org/abstracts/search?q=enriquillo-plantain%20garden%20fault" title=" enriquillo-plantain garden fault"> enriquillo-plantain garden fault</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake" title=" Haiti earthquake"> Haiti earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard" title=" seismic hazard"> seismic hazard</a> </p> <a href="https://publications.waset.org/abstracts/44099/seismotectonics-of-southern-haiti-a-faulting-model-for-the-12-january-2010-m7-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">746</span> An Analysis of Socio-Demographics, Living Conditions, and Physical and Emotional Child Abuse Patterns in the Context of the 2010 Haiti Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sony%20Subedi">Sony Subedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Colleen%20Davison"> Colleen Davison</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Bartels"> Susan Bartels</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study is to i) investigate the socio-demographics and living conditions of households in Haiti pre- and post 2010 earthquake, ii) determine the household prevalence of emotional and physical abuse in children (aged 2-14) after the earthquake, and iii) explore the association between earthquake-related loss and experience of emotional and physical child abuse in the household while considering potential confounding variables and the interactive effects of a number of social, economic, and demographic factors. Methods: A nationally representative sample of Haitian households from the 2005/6 and 2012 phases of the Demographic and Health Surveys (DHS) was used. Descriptive analysis was summarized using frequencies and measures of central tendency. Chi-squared and independent t-tests were used to compare data that was available pre-earthquake and post-earthquake. The association between experiences of earthquake-related loss and emotional and physical child abuse was assessed using log-binomial regression models. Results: Comparing pre-post-earthquake, noteworthy improvements were observed in the educational attainment of the household head (9.1% decrease in “no education” category) and in possession of the following household items: electricity, television, mobile-phone, and radio post-earthquake. Approximately 77.0% of children aged 2-14 experienced at least one form of physical abuse and 78.5% of children experienced at least one form of emotional abuse one month prior to the 2012 survey period. Analysis regarding the third objective (association between experiences of earthquake-related loss and emotional and physical child abuse) is in progress. Conclusions: The extremely high prevalence of emotional and physical child abuse in Haiti indicates an immediate need for improvements in the enforcement of existing policies and interventions aimed at decreasing child abuse in the household. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake" title="Haiti earthquake">Haiti earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20abuse" title=" physical abuse"> physical abuse</a>, <a href="https://publications.waset.org/abstracts/search?q=emotional%20abuse" title=" emotional abuse"> emotional abuse</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20disasters" title=" natural disasters"> natural disasters</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/92462/an-analysis-of-socio-demographics-living-conditions-and-physical-and-emotional-child-abuse-patterns-in-the-context-of-the-2010-haiti-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">745</span> Examining Individual and Organisational Legal Accountability for Sexual Exploitation Perpetrated by International Humanitarian Workers in Haiti</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Carthy">Elizabeth Carthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is growing recognition that sexual exploitation and abuse (SEA) perpetrated by humanitarian workers is widespread, most recently affirmed by allegations of high-ranking Oxfam officials paying women for sex in post-earthquake Haiti. SEA covers a range of gendered abuses, including rape, sexual assault, and ‘transactional’ or ‘survival’ sex. Holding individuals legally accountable for such behaviors is difficult in all contexts even more so in fragile and conflict-affected settings. Transactional sex, for the purposes of this paper, refers to situations where humanitarian workers exchange aid or assistance for sexual services. This paper explores existing organizational accountability measures relating to transactional sex engaged in by international humanitarian workers through a descriptive and interpretive case study approach-examining the situation in Haiti. It comparatively analyses steps the United Nations has taken to combat this problem. Then it examines the possibility of domestic legal accountability for such conduct in Haiti. Finally, the paper argues that international human rights law can fill in potential gaps in domestic legal frameworks to ensure states hold humanitarian workers and potentially organizations accountable for engaging in and/or perpetuating this gendered abuse of power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender-based%20violence" title="gender-based violence">gender-based violence</a>, <a href="https://publications.waset.org/abstracts/search?q=humanitarian%20action" title=" humanitarian action"> humanitarian action</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20human%20rights%20law" title=" international human rights law"> international human rights law</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20exploitation" title=" sexual exploitation"> sexual exploitation</a> </p> <a href="https://publications.waset.org/abstracts/91236/examining-individual-and-organisational-legal-accountability-for-sexual-exploitation-perpetrated-by-international-humanitarian-workers-in-haiti" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">744</span> The Epidemiology of Hospital Maternal Deaths, Haiti 2017-2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berger%20Saintius">Berger Saintius</a>, <a href="https://publications.waset.org/abstracts/search?q=Edna%20Ariste"> Edna Ariste</a>, <a href="https://publications.waset.org/abstracts/search?q=Djeamsly%20Salomon"> Djeamsly Salomon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Maternal mortality is a preventable global health problem that affects developed, developing, and underdeveloped countries alike. Globally, maternal mortality rates have declined since 1990, but 830 women die every day from pregnancy and childbirth-related causes that are often preventable. Haiti, with a number of 529 maternal deaths per 100,000 live births, is one of the countries with the highest maternal mortality rate in the Caribbean. This study consists of analyzing maternal death surveillance data in Haiti from 2017-2020. Method : A descriptive study was conducted; data were extracted from the National Epidemiological Surveillance Network of maternal deaths from 2017 to 2020. Sociodemographic variables were analyzed. Excel and Epi Info 7.2 were used for data analysis. Frequency and proportion measurements were calculated. Results: 756 deaths were recorded for the study period: 42 (6%) in 2017, 168 (22%) in 2018, 265 (35%) in 2019, and 281 (37%) in 2020. The North Department recorded the highest number of deaths, 167 (22%). 83(11%) in Les Cayes. 96% of these deaths are people aged between 15 and 49. Conclusion. Maternal mortality is a major health problem in Haiti. Mobilization, participation, and involvement of communities, increase in obstetric care coverage and promotion of Family Planning are among the strategies to fight this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title="epidemiology">epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20death" title=" maternal death"> maternal death</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiti" title=" Haiti"> Haiti</a> </p> <a href="https://publications.waset.org/abstracts/159959/the-epidemiology-of-hospital-maternal-deaths-haiti-2017-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">743</span> Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ran%20Goldblatt">Ran Goldblatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Jones"> Nicholas Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Mannix"> Jennifer Mannix</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Bottoms"> Brad Bottoms</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title="disaster management">disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiti" title=" Haiti"> Haiti</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenStreetMap" title=" OpenStreetMap"> OpenStreetMap</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/114220/predicting-openstreetmap-coverage-by-means-of-remote-sensing-the-case-of-haiti" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">742</span> Epidemiological Profile of Acute Flaccid Paralysis (PFA), Haiti, 2018-2021</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophonie%20Sarielle%20Jean%20Jacques%20Bertrand">Sophonie Sarielle Jean Jacques Bertrand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Acute flaccid paralysis (PFA) is the sudden weakness or paralysis of muscles seen in children under 15 years of age. According to the WHO, PFA remains a real public health problem. For Haiti, the PFA represents a national priority. This study aims to describe the epidemiological profile of cases of Acute Flaccid Paralysis (PFA) in Haiti from 2018-2020. Methods: A descriptive cross-sectional study covering the period of 2018-2021 was carried out. epidemiological surveillance data PFA exported to Integrated Monitoring Evaluation Surveillance (MESI) were used. Sociodemographic variables were studied. Prevalence and clinical mortality rate were calculated. Epi Info 7.2 and Excel 2016 were used for data analysis. Results: 76 AFP cases were recorded for the period, or 13 (17%) in 2018, 23 (30%) in 2019, 8 (11%) in 2020 32 (42%) in 2021. Children aged 5-14 years accounted for 36% of cases (n= 26). The M/F sex ratio was 0.52, with a predominance of the female sex. The clinical mortality rate was 2.6%. The prevalence was 1.77/100,000 people. Conclusion: From 2018-2021, 76 cases of PFA cases were recorded in the 10 departments of the country, of which the West department was the most affected. Maintaining high vaccination coverage and a standard acute flaccid paralysis surveillance system are essential for the eradication of this condition. Strengthen epidemiological surveillance of PFA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title="epidemiology">epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=PFA" title=" PFA"> PFA</a>, <a href="https://publications.waset.org/abstracts/search?q=Ha%C3%AFti" title=" Haïti"> Haïti</a>, <a href="https://publications.waset.org/abstracts/search?q=MESI" title=" MESI"> MESI</a> </p> <a href="https://publications.waset.org/abstracts/159838/epidemiological-profile-of-acute-flaccid-paralysis-pfa-haiti-2018-2021" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">741</span> Assessment the Tsunamis Impact with Tectonic Sources in the Southern Mainland of the Haitian Republic: Using Two Numerical Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Delva%20Richard">Delva Richard</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahibo%20Narcisse"> Zahibo Narcisse</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalciner%20Ahmet"> Yalciner Ahmet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Republic of Haiti is one of the poor countries of the world, therefore the authorities must make choices to provide timely solutions to the many difficulties that this Caribbean country is experiencing. There is a very acute lack of scientific research to study natural phenomena in depth. A working group meeting was established under the aegis of the World Bank, UNESCO and the authorities, to study the level of exposure of the Hispaniola. The devastating earthquake of August 2021 killed about 2100 and caused massive material damage; and the 14 12 January 2010 killed more than 250,000 people and caused massive material damage, the evidence of which is still 11 years later. In this paper we want to contribute to the assessment of the risk of tsunami on the southern peninsula of the Republic of Haiti. For the realization of this work we have the bathymetric and topographic data of very good qualities from the private measurement campaigns that we have combined with GEBCO for the inundation grids. We use two numerical models MOST and NAMI DANCE for the calculation of the parameters required in any tsunami risk assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mod%C3%A9lisation%20num%C3%A9rique" title="modélisation numérique">modélisation numérique</a>, <a href="https://publications.waset.org/abstracts/search?q=ondes%20longues%20oc%C3%A9aniques" title=" ondes longues océaniques"> ondes longues océaniques</a>, <a href="https://publications.waset.org/abstracts/search?q=bathymetrie" title=" bathymetrie"> bathymetrie</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20risque" title=" evaluation risque"> evaluation risque</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunamis" title=" tsunamis"> tsunamis</a> </p> <a href="https://publications.waset.org/abstracts/194470/assessment-the-tsunamis-impact-with-tectonic-sources-in-the-southern-mainland-of-the-haitian-republic-using-two-numerical-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">740</span> Dynamics of Understanding Earthquake Precursors-A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarada%20Nivedita%20Bhuyan">Sarada Nivedita Bhuyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake is the sudden, rapid movement of the earth’s crust and is the natural means of releasing stress. Tectonic plates play a major role for earthquakes as tectonic plates are the crust of the planet. The boundary lines of tectonic plates are usually known as fault lines. To understand an earthquake before its occurrence, different types of earthquake precursors are studied by different researchers. Surface temperature, strange cloud cover, earth’s electric field, geomagnetic phenomena, ground water level, active faults, ionospheric anomalies, tectonic movements are taken as parameters for earthquake study by different researchers. In this paper we tried to gather complete and helpful information of earthquake precursors which have been studied until now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20precursors" title="earthquake precursors">earthquake precursors</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20plates" title=" tectonic plates"> tectonic plates</a>, <a href="https://publications.waset.org/abstracts/search?q=fault" title=" fault"> fault</a> </p> <a href="https://publications.waset.org/abstracts/37407/dynamics-of-understanding-earthquake-precursors-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> Haiti and Power Symbolic: An Analysis Understanding of the Impact of the Presidential Political Speeches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marc%20Arthur%20Bien%20Aim%C3%A9">Marc Arthur Bien Aimé</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20da%20Silveira%20Moreira"> Julio da Silveira Moreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the political speech in Haiti over the course of the decade 2011-2021, focusing on the speeches of the presidents Michel J. Martelly and Jovenel Moïse and their impacts on their awareness collective. In using a qualitative approach, we have analyzed the speech of the president pronounced in response to the political instability of countries, as well as interviews with a group of 20 Haitians living in Port- Au-Prince. Our results put in evidence their complex relationship between politics, awareness collective, and the influence of the powers imperialists. We show that the situation in Haiti's disastrous social and political situation is driven by personal political interests and the absence of a state political project. Moreover, the speeches of the president’s analysis are meaningless, transforming concepts such as social progress and justice in simple words. This political rhetoric contributes to the domination symbolic of the population of Haitian. This study is also linked to the theme “Constitutions, processes democratic and critical of the state in Latin America,” emphasizing the importance of analysis of political speech to understand the complexities of the democratic process and criticism of the State in their Latin American region. We suggest future research to deepen our understanding of these political dynamics and their impact on public policies and developments of the constitutions throughout Latin America. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=political%20discourse" title="political discourse">political discourse</a>, <a href="https://publications.waset.org/abstracts/search?q=conscience%20collective" title=" conscience collective"> conscience collective</a>, <a href="https://publications.waset.org/abstracts/search?q=inequality%20social" title=" inequality social"> inequality social</a>, <a href="https://publications.waset.org/abstracts/search?q=democratic%20processes" title=" democratic processes"> democratic processes</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutions" title=" constitutions"> constitutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiti" title=" Haiti"> Haiti</a> </p> <a href="https://publications.waset.org/abstracts/181175/haiti-and-power-symbolic-an-analysis-understanding-of-the-impact-of-the-presidential-political-speeches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">738</span> Combined Civilian and Military Disaster Response: A Critical Analysis of the 2010 Haiti Earthquake Relief Effort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Arnaouti">Matthew Arnaouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Baird"> Michael Baird</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabrielle%20Cahill"> Gabrielle Cahill</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamara%20Worlton"> Tamara Worlton</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Joseph"> Michelle Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Over ten years after the 7.0 magnitude Earthquake struck the capital of Haiti, impacting over three million people and leading to the deaths of over two hundred thousand, the multinational humanitarian response remains the largest disaster relief effort to date. This study critically evaluates the multi-sector and multinational disaster response to the Earthquake, looking at how the lessons learned from this analysis can be applied to future disaster response efforts. We put particular emphasis on assessing the interaction between civilian and military sectors during this humanitarian relief effort, with the hopes of highlighting how concrete guidelines are essential to improve future responses. Methods: An extensive scoping review of the relevant literature was conducted - where library scientists conducted reproducible, verified systematic searches of multiple databases. Grey literature and hand searches were utilised to identify additional unclassified military documents, for inclusion in the study. More than 100 documents were included for data extraction and analysis. Key domains were identified, these included: Humanitarian and Military Response, Communication, Coordination, Resources, Needs Assessment and Pre-Existing Policy. Corresponding information and lessons-learned pertaining to these domains was then extracted - detailing the barriers and facilitators to an effective response. Results: Multiple themes were noted which stratified all identified domains - including the lack of adequate pre-existing policy, as well as extensive ambiguity of actors’ roles. This ambiguity was continually influenced by the complex role the United States military played in the disaster response. At a deeper level, the effects of neo-colonialism and concern about infringements on Haitian sovereignty played a substantial role at all levels: setting the pre-existing conditions and determining the redevelopment efforts that followed. Furthermore, external factors significantly impacted the response, particularly the loss of life within the political and security sectors. This was compounded by the destruction of important infrastructure systems - particularly electricity supplies and telecommunication networks, as well as air and seaport capabilities. Conclusions: This study stands as one of the first and most comprehensive evaluations, systematically analysing the civilian and military response - including their collaborative efforts. This study offers vital information for improving future combined responses and provides a significant opportunity for advancing knowledge in disaster relief efforts - which remains a more pressing issue than ever. The categories and domains formulated serve to highlight interdependent factors that should be applied in future disaster responses, with significant potential to aid the effective performance of humanitarian actors. Further studies will be grounded in these findings, particularly the need for greater inclusion of the Haitian perspective in the literature, through additional qualitative research studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=civilian%20and%20military%20collaboration" title="civilian and military collaboration">civilian and military collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20response" title=" combined response"> combined response</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20response" title=" disaster response"> disaster response</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiti" title=" Haiti"> Haiti</a>, <a href="https://publications.waset.org/abstracts/search?q=humanitarian%20response" title=" humanitarian response"> humanitarian response</a> </p> <a href="https://publications.waset.org/abstracts/145364/combined-civilian-and-military-disaster-response-a-critical-analysis-of-the-2010-haiti-earthquake-relief-effort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">737</span> A Brief Overview of Seven Churches in Van Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel">Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler"> Soner Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gulen"> Mustafa Gulen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Van province which has a very rich historical heritage is located in eastern part of Turkey, between Lake Van and the Iranian border. Many civilizations prevailing in Van until today have built up many historical structures such as castles, mosques, churches, bridges, baths, etc. In 2011, a devastating earthquake with magnitude 7.2 Mw, epicenter in Tabanlı Village, occurred in Van, where a large part of the city locates in the first-degree earthquake zone. As a result of this earthquake, 644 people were killed; a lot of reinforced, unreinforced and historical structures were badly damaged. Many historical structures damaged due to this earthquake have been restored. In this study, the damages observed in Seven churches (Yedi Kilise) after 2011 Van earthquake is evaluated with regard to architecture and civil engineering perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20structures" title=" historical structures"> historical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20province" title=" Van province"> Van province</a>, <a href="https://publications.waset.org/abstracts/search?q=church" title=" church"> church</a> </p> <a href="https://publications.waset.org/abstracts/21338/a-brief-overview-of-seven-churches-in-van-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">736</span> Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Lu">Ming Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Li"> Xiaojun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bodi%20Lu"> Bodi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Juehui%20Xing"> Juehui Xing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attribute%20index" title="attribute index">attribute index</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20method" title=" classification method"> classification method</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20damage%20picture" title=" earthquake damage picture"> earthquake damage picture</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20structure" title=" engineering structure"> engineering structure</a> </p> <a href="https://publications.waset.org/abstracts/66126/attribute-index-and-classification-method-of-earthquake-damage-photographs-of-engineering-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">765</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">735</span> Experiential Learning in an Earthquake Engineering Course Using Online Tools and Shake Table Exercises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20Winston%20Oreta">Andres Winston Oreta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiential Learning (ELE) is a strategy for enhancing the teaching and learning of courses especially in civil engineering. This paper presents the adaption of the ELE framework in the delivery of various course requirements in an earthquake engineering course. Examples of how ELE is integrated using online tools and hands-on laboratory technology to address the course learning outcomes on earthquake engineering are presented. Student feedback shows that ELE using online tools and technology strengthens students’ understanding and intuition of seismic design and earthquake engineering concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title="earthquake engineering">earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=experiential%20learning" title=" experiential learning"> experiential learning</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table" title=" shake table"> shake table</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/189318/experiential-learning-in-an-earthquake-engineering-course-using-online-tools-and-shake-table-exercises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">734</span> The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shokrollahi">Mahdi Shokrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20acceleration" title="vertical earthquake acceleration">vertical earthquake acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20area" title=" near-fault area"> near-fault area</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20and%20vertical%20component%20of%20earthquake" title=" horizontal and vertical component of earthquake"> horizontal and vertical component of earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling-restrained%20brace" title=" buckling-restrained brace"> buckling-restrained brace</a> </p> <a href="https://publications.waset.org/abstracts/91326/the-simultaneous-effect-of-horizontal-and-vertical-earthquake-components-on-the-seismic-response-of-buckling-restrained-braced-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">733</span> Challenges for Reconstruction: A Case Study from 2015 Gorkha, Nepal Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hari%20K.%20Adhikari">Hari K. Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Keshab%20Sharma"> Keshab Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Apil"> K. C. Apil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 hit the central region of Nepal on April 25, 2015; with the epicenter about 77 km northwest of Kathmandu Valley. This paper aims to explore challenges of reconstruction in the rural earthquake-stricken areas of Nepal. The Gorkha earthquake on April 25, 2015, has significantly affected the livelihood of people and overall economy in Nepal, causing severe damage and destruction in central Nepal including nation’s capital. A larger part of the earthquake affected area is difficult to access with rugged terrain and scattered settlements, which posed unique challenges and efforts on a massive scale reconstruction and rehabilitation. 800 thousand buildings were affected leaving 8 million people homeless. Challenge of reconstruction of optimum 800 thousand houses is arduous for Nepal in the background of its turmoil political scenario and weak governance. With significant actors involved in the reconstruction process, no appreciable relief has reached to the ground, which is reflected over the frustration of affected people. The 2015 Gorkha earthquake is one of most devastating disasters in the modern history of Nepal. Best of our knowledge, there is no comprehensive study on reconstruction after disasters in modern Nepal, which integrates the necessary information to deal with challenges and opportunities of reconstructions. The study was conducted using qualitative content analysis method. Thirty engineers and ten social mobilizes working for reconstruction and more than hundreds local social workers, local party leaders, and earthquake victims were selected arbitrarily. Information was collected through semi-structured interviews and open-ended questions, focus group discussions, and field notes, with no previous assumption. Author also reviewed literature and document reviews covering academic and practitioner studies on challenges of reconstruction after earthquake in developing countries such as 2001 Gujarat earthquake, 2005 Kashmir earthquake, 2003 Bam earthquake and 2010 Haiti earthquake; which have very similar building typologies, economic, political, geographical, and geological conditions with Nepal. Secondary data was collected from reports, action plans, and reflection papers of governmental entities, non-governmental organizations, private sector businesses, and the online news. This study concludes that inaccessibility, absence of local government, weak governance, weak infrastructures, lack of preparedness, knowledge gap and manpower shortage, etc. are the key challenges of the reconstruction after 2015 earthquake in Nepal. After scrutinizing different challenges and issues, study counsels that good governance, integrated information, addressing technical issues, public participation along with short term and long term strategies to tackle with technical issues are some crucial factors for timely and quality reconstruction in context of Nepal. Sample collected for this study is relatively small sample size and may not be fully representative of the stakeholders involved in reconstruction. However, the key findings of this study are ones that need to be recognized by academics, governments, and implementation agencies, and considered in the implementation of post-disaster reconstruction program in developing countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gorkha%20earthquake" title="Gorkha earthquake">Gorkha earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a> </p> <a href="https://publications.waset.org/abstracts/81009/challenges-for-reconstruction-a-case-study-from-2015-gorkha-nepal-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">732</span> Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akk%C3%B6se">Mehmet Akköse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-fault%20ground%20motion" title="near-fault ground motion">near-fault ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=pounding%20analysis" title=" pounding analysis"> pounding analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings"> RC buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP2000" title=" SAP2000"> SAP2000</a> </p> <a href="https://publications.waset.org/abstracts/37307/effects-of-near-fault-ground-motions-on-earthquake-induced-pounding-response-of-rc-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">731</span> A Safety-Door for Earthquake Disaster Prevention - Part II</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety of door has not given much attention. The main problem of doors during and after earthquake is that they are unable to be opened because deviation from its original position by the lateral load. The aim of this research is to develop and evaluate a safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. Nonlinear finite element analysis was conducted in order to evaluate the structural performance and behavior of the proposed door under both monotonic and cyclic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety-door" title="safety-door">safety-door</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster" title=" earthquake disaster"> earthquake disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20yield%20point%20steel" title=" low yield point steel"> low yield point steel</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20energy%20dissipating%20device" title=" passive energy dissipating device"> passive energy dissipating device</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a> </p> <a href="https://publications.waset.org/abstracts/44036/a-safety-door-for-earthquake-disaster-prevention-part-ii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">730</span> Examining the Role of Farmer-Centered Participatory Action Learning in Building Sustainable Communities in Rural Haiti</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20St.%20Geste">Charles St. Geste</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Neumann"> Michael Neumann</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Twohig"> Catherine Twohig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our primary aim is to examine farmer-centered participatory action learning as a tool to improve agricultural production, build resilience to climate shocks and, more broadly, advance community-driven solutions for sustainable development in rural communities across Haiti. For over six years, sixty plus farmers from Deslandes, Haiti, organized in three traditional work groups called konbits, have designed and tested low-input agroecology techniques as part of the Konbit Vanyan Kapab Pwoje Agroekoloji. The project utilizes a participatory action learning approach, emphasizing social inclusion, building on local knowledge, experiential learning, active farmer participation in trial design and evaluation, and cross-community sharing. Mixed methods were used to evaluate changes in knowledge and adoption of agroecology techniques, confidence in advancing agroecology locally, and innovation among Konbit Vanyan Kapab farmers. While skill and knowledge in application of agroecology techniques varied among individual farmers, a majority of farmers successfully adopted techniques outside of the trial farms. The use of agroecology techniques on trial and individual farms has doubled crop production in many cases. Farm income has also increased, and farmers report less damage to crops and property caused by extreme weather events. Furthermore, participatory action strategies have led to greater local self-determination and greater capacity for sustainable community development. With increased self-confidence and the knowledge and skills acquired from participating in the project, farmers prioritized sharing their successful techniques with other farmers and have developed a farmer-to-farmer training program that incorporates participatory action learning. Using adult education methods, farmers, trained as agroecology educators, are currently providing training in sustainable farming practices to farmers from five villages in three departments across Haiti. Konbit Vanyan Kapab farmers have also begun testing production of value-added food products, including a dried soup mix and tea. Key factors for success include: opportunities for farmers to actively participate in all phases of the project, group diversity, resources for application of agroecology techniques, focus on group processes and overcoming local barriers to inclusive decision-making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroecology" title="agroecology">agroecology</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20action%20learning" title=" participatory action learning"> participatory action learning</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20Haiti" title=" rural Haiti"> rural Haiti</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20community%20development" title=" sustainable community development"> sustainable community development</a> </p> <a href="https://publications.waset.org/abstracts/105706/examining-the-role-of-farmer-centered-participatory-action-learning-in-building-sustainable-communities-in-rural-haiti" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">729</span> Statistical Physics Model of Seismic Activation Preceding a Major Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20S.%20Brox">Daniel S. Brox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20activation" title="seismic activation">seismic activation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20physics" title=" statistical physics"> statistical physics</a>, <a href="https://publications.waset.org/abstracts/search?q=geodynamics" title=" geodynamics"> geodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/192295/statistical-physics-model-of-seismic-activation-preceding-a-major-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">728</span> Lessons Learnt from Moment Magnitude 7.8 Gorkha, Nepal Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Gurung">Narayan Gurung</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawu%20Wang"> Fawu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Kumar%20Dahal"> Ranjan Kumar Dahal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nepal is highly prone to earthquakes and has witnessed at least one major earthquake in 80 to 90 years interval. The Gorkha earthquake, that measured 7.8 RS in magnitude and struck Nepal on 25th April 2015, after 81 years since Mw 8.3 Nepal Bihar earthquake in 1934, was the largest earthquake after Mw 8.3 Nepal Bihar earthquake. In this paper, an attempt has been made to highlight the lessons learnt from the MwW 7.8 Gorkha (Nepal) earthquake. Several types of damage patterns in buildings were observed for reinforced concrete buildings, as well as for unreinforced masonry and adobe houses in the earthquake of 25 April 2015. Many field visits in the affected areas were conducted, and thus, associated failure and damage patterns were identified and analyzed. Damage patterns in non-engineered buildings, middle and high-rise buildings, commercial complexes, administrative buildings, schools and other critical facilities are also included from the affected districts. For most buildings, the construction and structural deficiencies have been identified as the major causes of failure; however, topography, local soil amplification, foundation settlement, liquefaction associated damages and buildings built in hazard-prone areas were also significantly observed for the failure or damages to buildings and hence are reported. Finally, the lessons learnt from Mw 7.8 Gorkha (Nepal) earthquake are presented in order to mitigate impacts of future earthquakes in Nepal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gorkha%20earthquake" title="Gorkha earthquake">Gorkha earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structure" title=" reinforced concrete structure"> reinforced concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=lesson%20learnt" title=" lesson learnt"> lesson learnt</a> </p> <a href="https://publications.waset.org/abstracts/88548/lessons-learnt-from-moment-magnitude-78-gorkha-nepal-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">727</span> Development of Quasi Real-Time Comprehensive System for Earthquake Disaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Liu">Zhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Jiang"> Hui Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Li"> Jin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunhao%20Chen"> Kunhao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Langfang%20Zhang"> Langfang Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast acquisition of the seismic information and accurate assessment of the earthquake disaster is the key problem for emergency rescue after a destructive earthquake. In order to meet the requirements of the earthquake emergency response and rescue for the cities and counties, a quasi real-time comprehensive evaluation system for earthquake disaster is developed. Based on monitoring data of Micro-Electro-Mechanical Systems (MEMS) strong motion network, structure database of a county area and the real-time disaster information by the mobile terminal after an earthquake, fragility analysis method and dynamic correction algorithm are synthetically obtained in the developed system. Real-time evaluation of the seismic disaster in the county region is finally realized to provide scientific basis for seismic emergency command, rescue and assistant decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quasi%20real-time" title="quasi real-time">quasi real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster%20data%20collection" title=" earthquake disaster data collection"> earthquake disaster data collection</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20accelerometer" title=" MEMS accelerometer"> MEMS accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20correction" title=" dynamic correction"> dynamic correction</a>, <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20evaluation" title=" comprehensive evaluation"> comprehensive evaluation</a> </p> <a href="https://publications.waset.org/abstracts/84492/development-of-quasi-real-time-comprehensive-system-for-earthquake-disaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">726</span> High School Students’ Seismic Risk Perception and Preparedness in Shavar, Dhaka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Lutfur%20Rahman">Mohammad Lutfur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> School students of Dhaka are in extreme risk of natural disasters. However, the study on assessment of the real scenario of high school students about perceptions of earthquake is very little. The purpose of this cross-sectional study is to assess the seismic risk perception and preparedness levels about earthquake among high school students in Shavar, Dhaka. A questionnaire was developed, and data collection was done about a group of high school students in seven classrooms. The author uses a method of surveying high school students to identify and describe the factors that influence their knowledge and perceptions about earthquake. This study examines gender and grade differences in perceived risk and communication behavior in response to the earthquake. Female students’ preparation, participation, and communication with family are more frequent than that of male students. Female students have been found to be more likely to learn about a disaster than male students. Higher grade students have more awareness but less preparedness about earthquake than that of the younger one. This research concludes that irrespective of grades, high school students are vulnerable to earthquake due to the lack of a seismic education program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20perception" title=" risk perception"> risk perception</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a> </p> <a href="https://publications.waset.org/abstracts/100942/high-school-students-seismic-risk-perception-and-preparedness-in-shavar-dhaka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">725</span> Characteristics of Neonates and Child Health Outcomes after the Mamuju Earthquake Disaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimas%20Tri%20Anantyo">Dimas Tri Anantyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsa-Zsa%20Ayu%20Laksmi"> Zsa-Zsa Ayu Laksmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adhie%20Nur%20Radityo"> Adhie Nur Radityo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsita%20Eka%20Rini"> Arsita Eka Rini</a>, <a href="https://publications.waset.org/abstracts/search?q=Gatot%20Irawan%20Sarosa"> Gatot Irawan Sarosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A six-point-two-magnitude earthquake rocked Mamuju District, West Sulawesi Province, Indonesia, on 15 January 2021, causing significant health issues for the affected community, particularly among vulnerable populations such as neonates and children. The aim of this study is to examine and describe the diseases diagnosed in the pediatric population in Mamuju 14 days after the earthquake. This study uses a prospective observational study of the pediatric population presenting at West Sulawesi Regional Hospital, Mamuju Regional Public Hospital, and Bhayangkara Hospital for the period of 14 days after the earthquake. Demographic and clinical information were recorded. One hundred and fifty-three children were admitted to the health center. Children younger than six years old were the highest proportion (78%). Out of 153 children, 82 of them were male (54%). The most frequently diagnosed disease during the first and second weeks after the earthquake was respiratory problems, followed by gastrointestinal problems that showed an increase in incidence in the second week. This study found that age has a correlation with frequent disease in children after an earthquake. Respiratory and gastrointestinal problems were found to be the most common diseases among the pediatric population in Mamuju after the earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20outcomes" title="health outcomes">health outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric%20population" title=" pediatric population"> pediatric population</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamuju" title=" Mamuju"> Mamuju</a> </p> <a href="https://publications.waset.org/abstracts/171174/characteristics-of-neonates-and-child-health-outcomes-after-the-mamuju-earthquake-disaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">724</span> Estimation of Maximum Earthquake for Gujarat Region, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Saxena">Ashutosh Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Pallav"> Kumar Pallav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramji%20Dwivedi"> Ramji Dwivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study estimates the seismicity parameter 'b' and maximum possible magnitude of an earthquake (Mmax) for Gujarat region with three well-established methods viz. Kijiko parametric model (KP), Kijiko-Sellevol-Bayern (KSB) and Tapered Gutenberg-Richter (TGR), as a combined seismic source regime. The earthquake catalogue is prepared for a period of 1330 to 2013 in the region Latitudes 20o N to 250 N and Longitudinally extending from 680 to 750 E for earthquake moment magnitude (Mw) ≥4.0. The ’a’ and 'b' value estimated for the region as 4.68 and 0.58. Further, Mmax estimated as 8.54 (± 0.29), 8.69 (± 0.48), and 8.12 with KP, KSB, and TGR, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mmax" title="Mmax">Mmax</a>, <a href="https://publications.waset.org/abstracts/search?q=seismicity%20parameter" title=" seismicity parameter"> seismicity parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=Gujarat" title=" Gujarat"> Gujarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapered%20Gutenberg-Richter" title=" Tapered Gutenberg-Richter "> Tapered Gutenberg-Richter </a> </p> <a href="https://publications.waset.org/abstracts/18662/estimation-of-maximum-earthquake-for-gujarat-region-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">723</span> Reinforced Concrete Design Construction Issues and Earthquake Failure-Damage Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Husnu%20Korkmaz">Hasan Husnu Korkmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Serra%20Zerrin%20Korkmaz"> Serra Zerrin Korkmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are the natural disasters that threat several countries. Turkey is situated on a very active earthquake zone. During the recent earthquakes, thousands of people died due to failure of reinforced concrete structures. Although Turkey has a very sufficient earthquake code, the design and construction mistakes were repeated for old structures. Lack of the control mechanism during the construction process may be the most important reason of failure. The quality of the concrete and poor detailing of steel or reinforcement is the most important headings. In this paper, the reasons of failure of reinforced concrete structures were summarized with relevant photos. The paper is beneficial for civil engineers as well as architect who are in the process of construction and design of structures in earthquake zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structure" title=" reinforced concrete structure"> reinforced concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a> </p> <a href="https://publications.waset.org/abstracts/47736/reinforced-concrete-design-construction-issues-and-earthquake-failure-damage-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">722</span> Analysis of Ionosphere Anomaly Before Great Earthquake in Java on 2009 Using GPS Tec Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aldilla%20Damayanti%20Purnama%20Ratri">Aldilla Damayanti Purnama Ratri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendri%20Subakti"> Hendri Subakti</a>, <a href="https://publications.waset.org/abstracts/search?q=Buldan%20Muslim"> Buldan Muslim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionosphere’s anomalies as an effect of earthquake activity is a phenomenon that is now being studied in seismo-ionospheric coupling. Generally, variation in the ionosphere caused by earthquake activity is weaker than the interference generated by different source, such as geomagnetic storms. However, disturbances of geomagnetic storms show a more global behavior, while the seismo-ionospheric anomalies occur only locally in the area which is largely determined by magnitude of the earthquake. It show that the earthquake activity is unique and because of its uniqueness it has been much research done thus expected to give clues as early warning before earthquake. One of the research that has been developed at this time is the approach of seismo-ionospheric-coupling. This study related the state in the lithosphere-atmosphere and ionosphere before and when earthquake occur. This paper choose the total electron content in a vertical (VTEC) in the ionosphere as a parameter. Total Electron Content (TEC) is defined as the amount of electron in vertical column (cylinder) with cross-section of 1m2 along GPS signal trajectory in ionosphere at around 350 km of height. Based on the analysis of data obtained from the LAPAN agency to identify abnormal signals by statistical methods, obtained that there are an anomaly in the ionosphere is characterized by decreasing of electron content of the ionosphere at 1 TECU before the earthquake occurred. Decreasing of VTEC is not associated with magnetic storm that is indicated as an earthquake precursor. This is supported by the Dst index showed no magnetic interference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=DST%20Index" title=" DST Index"> DST Index</a>, <a href="https://publications.waset.org/abstracts/search?q=ionosphere" title=" ionosphere"> ionosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=seismoionospheric%20coupling" title=" seismoionospheric coupling"> seismoionospheric coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=VTEC" title=" VTEC"> VTEC</a> </p> <a href="https://publications.waset.org/abstracts/20603/analysis-of-ionosphere-anomaly-before-great-earthquake-in-java-on-2009-using-gps-tec-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">721</span> Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Aris%20Burhanudin">Muhamad Aris Burhanudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Angga%20Firmansyas"> Angga Firmansyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Bagus%20Jaya%20Santosa"> Bagus Jaya Santosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20TOPSIS" title=" fuzzy TOPSIS"> fuzzy TOPSIS</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami" title=" tsunami"> tsunami</a> </p> <a href="https://publications.waset.org/abstracts/29246/earthquake-identification-to-predict-tsunami-in-andalas-island-indonesia-using-back-propagation-method-and-fuzzy-topsis-decision-seconder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">720</span> Simulation of the Evacuation of Ships Carrying Dangerous Goods from Tsunami</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshinori%20Matsuura">Yoshinori Matsuura</a>, <a href="https://publications.waset.org/abstracts/search?q=Saori%20Iwanaga"> Saori Iwanaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Great East Japan Earthquake occurred at 14:46 on Friday, March 11, 2011. It was the most powerful known earthquake to have hit Japan. The earthquake triggered extremely destructive tsunami waves of up to 40.5 meters in height. We focus on the ship’s evacuation from tsunami. Then we analyze about ships evacuation from tsunami using multi-agent simulation and we want to prepare for a coming earthquake. We developed a simulation model of ships that set sail from the port in order to evacuate from the tsunami considering the ship carrying dangerous goods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ship%E2%80%99s%20evacuation" title="Ship’s evacuation">Ship’s evacuation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20simulation" title=" multi-agent simulation"> multi-agent simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami" title=" tsunami"> tsunami</a> </p> <a href="https://publications.waset.org/abstracts/11743/simulation-of-the-evacuation-of-ships-carrying-dangerous-goods-from-tsunami" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">719</span> Designing a Learning Table and Game Cards for Preschoolers for Disaster Risk Reduction (DRR) on Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Mirzaei">Mehrnoosh Mirzaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children are among the most vulnerable at the occurrence of natural disasters such as earthquakes. Most of the management and measures which are considered for both before and during an earthquake are neither suitable nor efficient for this age group and cannot be applied. On the other hand, due to their age, it is hard to educate and train children to learn and understand the concept of earthquake risk mitigation as matters like earthquake prevention and safe places during an earthquake are not easily perceived. To our knowledge, children’s awareness of such concepts via their own world with the help of games is the best training method in this case. In this article, the researcher has tried to consider the child an active element before and during the earthquake. With training, provided by adults before the incidence of an earthquake, the child has the ability to learn disaster risk reduction (DRR). The focus of this research is on learning risk reduction behavior and regarding children as an individual element. The information of this article has been gathered from library resources, observations and the drawings of 10 children aged 5 whose subject was their conceptual definition of an earthquake who were asked to illustrate their conceptual definition of an earthquake; the results of 20 questionnaires filled in by preschoolers along with information gathered by interviewing them. The design of the suitable educational game, appropriate for the needs of this age group, has been made based on the theory of design with help of the user and the priority of children’s learning needs. The final result is a package of a game which is comprised of a learning table and matching cards showing sign marks for safe and unsafe places which introduce the safe behaviors and safe locations before and during the earthquake. These educational games can be used both in group contexts in kindergartens and on an individual basis at home, and they help in earthquake risk reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20education" title="disaster education">disaster education</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20sign%20marks" title=" earthquake sign marks"> earthquake sign marks</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20table" title=" learning table"> learning table</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20card" title=" matching card"> matching card</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20reduction%20behavior" title=" risk reduction behavior"> risk reduction behavior</a> </p> <a href="https://publications.waset.org/abstracts/98228/designing-a-learning-table-and-game-cards-for-preschoolers-for-disaster-risk-reduction-drr-on-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Haiti%20earthquake&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10