CINXE.COM

Search results for: boron

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: boron</title> <meta name="description" content="Search results for: boron"> <meta name="keywords" content="boron"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="boron" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="boron"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 134</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: boron</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Recovery of Boron from Industrial Wastewater by Chemical Oxo-Precipitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao-Hui%20Huang">Yao-Hui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chun%20Yen"> Ming-Chun Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Yen%20Lin"> Jui-Yen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Shih"> Yu-Jen Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigated the reclamation of boron in industrial wastewaters by a chemical oxo-precipitation (COP) technique at room temperature. In COP, the boric acid was pretreated with H₂O₂, yielding various perborate anions. Afterwards, calcium chloride was used to efficiently remove boron through precipitation of calcium perborate. The important factors included reacted pH and the molar ratio of [Ca]/[B]. Under conditions of pH 11 and [Ca]/[B] of 1, the boron concentration could be reduced immediately from 600 ppm to 50 ppm in 10 minutes. The boron removal was enhanced with a higher [Ca]/[B], which further reduced boron to 20 ppm in 10 minutes. Nevertheless, the dissolution of carbon dioxide potentially affected the efficacy of COP and increased the boron concentration after 10 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxo-precipitation" title="chemical oxo-precipitation">chemical oxo-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a> </p> <a href="https://publications.waset.org/abstracts/54161/recovery-of-boron-from-industrial-wastewater-by-chemical-oxo-precipitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kartikaningsih%20Danis">Kartikaningsih Danis</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao-Hui%20Huang"> Yao-Hui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20removal" title="boron removal">boron removal</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20coagulation" title=" chemical coagulation"> chemical coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-coagulation" title=" electro-coagulation "> electro-coagulation </a> </p> <a href="https://publications.waset.org/abstracts/22930/comparison-of-chemical-coagulation-and-electrocoagulation-for-boron-removal-from-synthetic-wastewater-using-aluminium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kurashvili">I. Kurashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Darsavelidze"> G. Darsavelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bokuchava"> G. Bokuchava</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sichinava"> A. Sichinava</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Tabatadze"> I. Tabatadze </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si<sub>1-x</sub>Ge<sub>x</sub>(x&le;0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~10<sup>15 </sup>cm<sup>-3</sup>) significant strengthening is revealed, while at the high boron concentration (~10<sup>19 </sup>cm<sup>-3</sup>) strengthening effect and activation characteristics of relaxation origin IF processes are reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron" title="boron">boron</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20friction" title=" internal friction"> internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=si-ge%20alloys" title=" si-ge alloys"> si-ge alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a> </p> <a href="https://publications.waset.org/abstracts/45812/influence-of-boron-doping-and-thermal-treatment-on-internal-friction-of-monocrystalline-si1-xgexx002-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Recovery of Boron as Homogeneous Perborate Particles from Synthetic Wastewater by Integrating Chemical Oxo-Precipitation with Fluidized-Bed Homogeneous Granulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiung-Chin%20Huang">Chiung-Chin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Yen%20Lin"> Jui-Yen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao-Hui%20Huang"> Yao-Hui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among current techniques of boron removal from wastewater with high boron concentration, chemical oxo-precipitation (COP) is one of the promising methods due to its milder condition. COP uses H2O2 to transform boric acid to perborates which can easily precipitate with barium ions at room temperature. However, the generation of the waste sludge that requires sludge/water separation and sludge dewatering is troublesome. This work presents an innovative technology which integrates chemical oxo-precipitation (COP) with fluidized-bed homogeneous granulation (FBHG) to reclaim boron as homogeneous perborate particles. By conducting COP in a fluidized-bed reactor, the barium perborate can be granulated to form homogeneous particles (>1.0 mm) with low water content (< 10%). Under the suitable condition, more than 70% of boron can be recovered from 600 ppm of boron solution and the residual boron is lower than 100 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barium" title="barium">barium</a>, <a href="https://publications.waset.org/abstracts/search?q=perborate" title=" perborate"> perborate</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxo-precipitation" title=" chemical oxo-precipitation"> chemical oxo-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20removal" title=" boron removal"> boron removal</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized-bed" title=" fluidized-bed"> fluidized-bed</a>, <a href="https://publications.waset.org/abstracts/search?q=granulation" title=" granulation"> granulation</a> </p> <a href="https://publications.waset.org/abstracts/45161/recovery-of-boron-as-homogeneous-perborate-particles-from-synthetic-wastewater-by-integrating-chemical-oxo-precipitation-with-fluidized-bed-homogeneous-granulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul">N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sariburun"> E. Sariburun</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber"> F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun"> E. Moroydor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of boron-gypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron-gypsum" title="boron-gypsum">boron-gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title=" hydrothermal synthesis"> hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20borate" title=" magnesium borate"> magnesium borate</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20density" title=" solution density"> solution density</a> </p> <a href="https://publications.waset.org/abstracts/12465/the-effect-of-solution-density-on-the-synthesis-of-magnesium-borate-from-boron-gypsum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Pioneer Synthesis and Characterization of Boron Containing Hard Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20%C3%87elik%20G%C3%BCl">Gülşah Çelik Gül</a>, <a href="https://publications.waset.org/abstracts/search?q=Figen%20Kurtulu%C5%9F"> Figen Kurtuluş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first laboratory synthesis of hard materials such as diamond proceeded to attack of developing materials with high hardness to compete diamond. Boron rich solids are good candidates owing to their short interatomic bond lengths and strong covalent character. Boron containing hard material was synthesized by modified-microwave method under nitrogen atmosphere by using a fuel (glycine or urea), amorphous boron and/or boric acid in appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20containing%20materials" title="boron containing materials">boron containing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20materials" title=" hard materials"> hard materials</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20X-ray%20diffraction" title=" powder X-ray diffraction "> powder X-ray diffraction </a> </p> <a href="https://publications.waset.org/abstracts/27062/pioneer-synthesis-and-characterization-of-boron-containing-hard-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Electrocoagulation of Ni(OH)2/NiOOH for the Removal of Boron Using Nickel Foam as Sacrificial Anode </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Shih">Yu-Jen Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao-Hui%20Hunag"> Yao-Hui Hunag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocoagulation (EC) using metallic nickel foam as anode and cathode for the removal of boron from solution was studied. The electrolytic parameters included pH, current density, and initial boron concentration for optimizing the EC process. Experimental results showed that removal efficiency was increased by elevating pH from 4.0 to 8.0, and then decreased at higher pH. The electrolytic efficacy was not affected by current density. In respect of energy consumption, 1.25 mA/cm2 of current density was acceptable for an effective EC of boron, while increasing boric acid from 10 to 100 ppm-B did not impair removal efficiency too much. Cyclic voltammetry indicated that the oxide film, Ni(OH)2 and NiOOH, at specific overpotentials would result in less weight loss of anode than that predicted by the Faraday&rsquo;s law. The optimal conditions under which 99.2% of boron was removed and less than 1 ppm-B remained in the electrolyte would be pH 8, four pairs of electrodes, and 1.25 mA/cm2 in 120 min as treating wastewaters containing 10 ppm-B. XRD and SEM characterization suggested that the granular crystallites of hydroxide precipitates was composed of theophrastite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borohydrides" title="borohydrides">borohydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20generation" title=" hydrogen generation"> hydrogen generation</a>, <a href="https://publications.waset.org/abstracts/search?q=NiOOH" title=" NiOOH"> NiOOH</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20removal" title=" boron removal"> boron removal</a> </p> <a href="https://publications.waset.org/abstracts/45835/electrocoagulation-of-nioh2niooh-for-the-removal-of-boron-using-nickel-foam-as-sacrificial-anode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> A Fluorescent Polymeric Boron Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Cubuk">Soner Cubuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirgul%20Kosif"> Mirgul Kosif</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vezir%20Kahraman"> M. Vezir Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ece%20Kok%20Yetimoglu"> Ece Kok Yetimoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron is an essential trace element for the completion of the life circle for organisms. Suitable methods for the determination of boron have been proposed, including acid - base titrimetric, inductively coupled plasma emission spectroscopy flame atomic absorption and spectrophotometric. However, the above methods have some disadvantages such as long analysis times, requirement of corrosive media such as concentrated sulphuric acid and multi-step sample preparation requirements and time-consuming procedures. In this study, a selective and reusable fluorescent sensor for boron based on glycosyloxyethyl methacrylate was prepared by photopolymerization. The response characteristics such as response time, pH, linear range, limit of detection were systematically investigated. The excitation/emission maxima of the membrane were at 378/423 nm, respectively. The approximate response time was measured as 50 sec. In addition, sensor had a very low limit of detection which was 0.3 ppb. The sensor was successfully used for the determination of boron in water samples with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron" title="boron">boron</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=photopolymerization" title=" photopolymerization"> photopolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20sensor" title=" polymeric sensor"> polymeric sensor</a> </p> <a href="https://publications.waset.org/abstracts/41973/a-fluorescent-polymeric-boron-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Mechanochemical Behaviour of Aluminium–Boron Oxide–Melamine Ternary System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Seckin%20Cardakli">Ismail Seckin Cardakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Engin%20Kocadagistan"> Mustafa Engin Kocadagistan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ersin%20Arslan"> Ersin Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, mechanochemical behaviour of aluminium - boron oxide - melamine ternary system was investigated by high energy ball milling. According to the reaction Al + B₂O₃ = Al₂O₃ + B, stochiometric amount of aluminium and boron oxide with melamine up to ten percent of total weight was used in the experiments. The powder characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) after leaching of product by 1M HCl acid. Results show that mechanically induced self-sustaining reaction (MSR) between aluminium and boron oxide takes place after four hours high energy ball milling. Al₂O₃/h-BN composite powder is obtained as the product of aluminium - boron oxide - melamine ternary system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20ball%20milling" title="high energy ball milling">high energy ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20induced%20self-sustaining%20reaction" title=" mechanically induced self-sustaining reaction"> mechanically induced self-sustaining reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=melamine" title=" melamine"> melamine</a> </p> <a href="https://publications.waset.org/abstracts/106406/mechanochemical-behaviour-of-aluminium-boron-oxide-melamine-ternary-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Bolluk">Meltem Bolluk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Duman"> Ismail Duman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20boron" title="amorphous boron">amorphous boron</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD" title=" CVD"> CVD</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20production" title=" powder production"> powder production</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20characterization" title=" powder characterization"> powder characterization</a> </p> <a href="https://publications.waset.org/abstracts/57325/production-of-amorphous-boron-powder-via-chemical-vapor-deposition-cvd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuri%20Ba%C5%9Fp%C4%B1nar">Nuri Başpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Ba%C5%9Fo%C4%9Flu"> Abdullah Başoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20%C3%96zdemir"> Özgür Özdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87a%C4%9Flayan%20%C3%96zel"> Çağlayan Özel</a>, <a href="https://publications.waset.org/abstracts/search?q=FundaTerzi"> FundaTerzi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Yaman"> Özgür Yaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20protein%20and%20energy%20diet" title="high protein and energy diet">high protein and energy diet</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomic" title=" transcriptomic "> transcriptomic </a> </p> <a href="https://publications.waset.org/abstracts/28491/effects-of-boron-compounds-in-rabbits-fed-high-protein-and-energy-diet-a-metabolomic-and-transcriptomic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">627</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Influence of Sulphur and Boron on Growth, Quality Parameters and Productivity of Soybean (Glycine Max (L.) Merrill)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shital%20Bangar">Shital Bangar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Khandagale"> G. B. Khandagale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimentation was carried out to study the influence of sulphur and boron on growth parameters and productivity of soybean in kharif season of 2009-2010 at Experimental Farm, Department of Agricultural Botany, Marathwada Agricultural University, Parbhani (M.S.). The object was to evaluate the impact of sulphur and boron on growth, development, grain yield and physiological aspects of soybean variety MAUS-81. Nine treatments consisted of three levels of sulphur i.e. 20, 30 and 40 Kg/ha as well as three levels boron i.e.10, 15 and 20 kg boron/ha and the combinations of these two mineral elements i.e. Sulphur @30 kg/ha + Borax @15 kg/ha and Sulphur @40 kg/ha + Borax @ 20 kg/ha with one control treatment in Randomized Block Design (RBD) with three replications. The effect of sulphur and boron on various growth parameters of soybean like relative growth rate (RGR) and net assimilation rate (NAR) were remained statistically on par with each other. However, the application of higher dose of Sulphur @40 kg/ha + Borax @ 20 kg/ha enhanced significantly all the growth parameters. Application of the nutrients increased the dry matter accumulation of the crop plant and hence, other growth indices like RGR and NAR also increased significantly. RGR and NAR values were recorded highest at the initial crop growth stages and decline thereafter. The application of sulphur @40 kg/ha + Borax @ 20 kg/ha recorded significantly higher content of chlorophyll ‘a’ than rest of the treatments and chlorophyll ‘b’ observed higher in boron @15 kg/ha as well as boron@20 kg/ha, whereas total chlorophyll content was maximum in sulphur @40 kg/ha. Oil content was not influenced significantly due to above fertilization. The highest seed yield and total biological yield were obtained with combination of Sulphur @40 kg/ha + Borax @ 20 kg/ha, single sulphur and boron application also showed a significant effect on seed and biological yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron" title="boron">boron</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20and%20sulphur" title=" soybean and sulphur"> soybean and sulphur</a> </p> <a href="https://publications.waset.org/abstracts/21799/influence-of-sulphur-and-boron-on-growth-quality-parameters-and-productivity-of-soybean-glycine-max-l-merrill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Liquid Phase Sintering of Boron-Alloyed Powder Metallurgy Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Wei%20Wu">Ming-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih-Jie%20Lin"> Zih-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid phase sintering (LPS) is a feasible means for decreasing the porosity of powder metallurgy (PM) Fe-based material without substantially increase the production cost. The aim of this study was to investigate the effect of 0.6 wt% boron on the densification of PM 304L stainless steel by LPS. The results indicated that the increase in the sintered density of 304L+0.6B steel is obvious after 1250 ºC sintering, and eutectic structures with borides are observed at the interfaces of the raw steel powders. Differential scanning calorimetry (DSC) results show that liquid is generated at 1244ºC during sintering. The boride in the eutectic structure is rich in boron and chromium atoms and is deficient in nickel atoms, as identified by electron probe micro-analyzer (EPMA). Furthermore, the sintered densities of 304L and 304L+0.6B steels sintered at 1300 ºC are 6.99 g/cm3 and 7.69 g/cm3, respectively, indicating that boron is a suitable alloying element for facilitating LPS of PM 304L stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering" title=" liquid phase sintering"> liquid phase sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/62892/liquid-phase-sintering-of-boron-alloyed-powder-metallurgy-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Microstructure and Sintering of Boron-Alloyed Martensitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Wei%20Wu">Ming-Wei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jin%20Tsai"> Yu-Jin Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Huai%20Chang"> Ching-Huai Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid phase sintering (LPS) is a versatile technique for achieving effective densification of powder metallurgy (PM) steels and other materials. The aim of this study was to examine the influences of 0.6 wt% boron on the microstructure and LPS behavior of boron-alloyed 410 martensitic stainless steel. The results showed that adding 0.6 wt% boron can obviously promote the LPS due to a eutectic reaction and increase the sintered density of 410 stainless steel. The density was much increased by 1.06 g/cm³ after 1225ºC sintering. Increasing the sintering temperature from 1225ºC to 1275ºC did not obviously improve the sintered density. After sintering at 1225ºC~1275ºC, the matrix was fully martensitic, and intragranular borides were extensively found due to the solidification of eutectic liquid. The microstructure after LPS consisted of the martensitic matrix and (Fe, Cr)2B boride, as identified by electron backscatter diffraction (EBSD) and electron probe micro-analysis (EPMA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20sintering" title=" liquid phase sintering"> liquid phase sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/73936/microstructure-and-sintering-of-boron-alloyed-martensitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Lithium Oxide Effect on the Thermal and Physical Properties of the Ternary System Glasses (Li2O3-B2O3-Al2O3) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Aboutaleb">D. Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Safi"> B. Safi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The borate glasses are known by their structural characterized by existence of unit’s structural composed by triangles and tetrahedrons boron in different configurations depending on the percentage of B2O3 in the glass chemical composition. In this paper, effect of lithium oxide addition on the thermal and physical properties of an alumina borate glass, was investigated. It was found that the boron abnormality has a significant effect in the change of glass properties according to the addition rate of lithium oxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borate%20glasses" title="borate glasses">borate glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=triangles%20and%20tetrahedrons%20boron" title=" triangles and tetrahedrons boron"> triangles and tetrahedrons boron</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20oxide" title=" lithium oxide"> lithium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20anomaly" title=" boron anomaly"> boron anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a> </p> <a href="https://publications.waset.org/abstracts/13807/lithium-oxide-effect-on-the-thermal-and-physical-properties-of-the-ternary-system-glasses-li2o3-b2o3-al2o3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Effect of Alloying Elements on Particle Incorporation of Boron Carbide Reinforced Aluminum Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steven%20Ploetz">Steven Ploetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Lohmueller"> Andreas Lohmueller</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20F.%20Singer"> Robert F. Singer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The outstanding performance of aluminum matrix composites (AMCs) regarding stiffness/weight ratio makes AMCs attractive material for lightweight construction. Low-density boride compounds promise simultaneously an increase in stiffness and decrease in composite density. This is why boron carbide is chosen for composite manufacturing. The composites are fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum is adapted during particle feeding and stirring. Poor wettability of boron carbide with liquid aluminum hinders particle incorporation, but alloying elements such as magnesium and titanium could improve wettability and thus particle incorporation. Next to alloying elements, adapted stirring parameters and impeller geometries improve particle incorporation and enable homogenous particle distribution and high particle volume fractions of boron carbide. AMCs with up to 15 vol.% of boron carbide particles are produced via melt stirring, resulting in an increase in stiffness and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20matrix%20composites" title="aluminum matrix composites">aluminum matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title=" boron carbide"> boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a> </p> <a href="https://publications.waset.org/abstracts/64924/effect-of-alloying-elements-on-particle-incorporation-of-boron-carbide-reinforced-aluminum-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Investigation of Additives&#039; Corrosion Inhibition Effects on Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Bilal%20Ozturk">Abdullah Bilal Ozturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nil%20Acarali"> Nil Acarali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hediye%20Irem%20Ozgunduz"> Hediye Irem Ozgunduz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hava%20Gizem%20Kandilci"> Hava Gizem Kandilci</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanifi%20Sarac"> Hanifi Sarac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, zeolite, shellac and different boron chemicals were used as additive to dye and effects were comprehensively investigated. Considering previous studies additive materials that had not used before were determined for produce dye with physical properties. Literature research about the materials provides determining easily sufficient amount of additive materials. Accessible of additives or yearly production amounts are become important issue at selection of materials. Zeolite and boron chemicals are suitable selection in that easy access and has large amount of production in our country. Previous research about boron chemicals shows they have flame retardant effect on textile materials besides numerous usage areas. Also, from previous research, shellac was used widely for protection and insulation of metallic materials. Zeolite added to dye to increase adhesive effect of dye. In this study, corrosion tests were applied to find out if there are positive effects of zeolite, shellac, and boron chemicals to dye’s physical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dye" title="dye">dye</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=shellac" title=" shellac"> shellac</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a> </p> <a href="https://publications.waset.org/abstracts/34282/investigation-of-additives-corrosion-inhibition-effects-on-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Risplendi">Francesca Risplendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Chiang%20Lin"> Li-Chiang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20C.%20Grossman"> Jeffrey C. Grossman</a>, <a href="https://publications.waset.org/abstracts/search?q=Giancarlo%20Cicero"> Giancarlo Cicero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20filtration" title="boron filtration">boron filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20membrane" title=" graphene membrane"> graphene membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide%20membrane" title=" reduced graphene oxide membrane"> reduced graphene oxide membrane</a> </p> <a href="https://publications.waset.org/abstracts/69154/graphene-based-materials-as-novel-membranes-for-water-desalination-and-boron-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Waichman">Sharon Waichman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahaf%20Froim"> Shahaf Froim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ido%20Zukerman"> Ido Zukerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Barzilai"> Shmuel Barzilai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmual%20Hayun"> Shmual Hayun</a>, <a href="https://publications.waset.org/abstracts/search?q=Avi%20Raveh"> Avi Raveh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide%20coatings" title=" boron carbide coatings"> boron carbide coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%2Fmetal%20bond" title=" ceramic/metal bond"> ceramic/metal bond</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20layer" title=" intermediate layer"> intermediate layer</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed-DC%20magnetron%20sputtering" title=" pulsed-DC magnetron sputtering"> pulsed-DC magnetron sputtering</a> </p> <a href="https://publications.waset.org/abstracts/107246/adhesion-enhancement-of-boron-carbide-coatings-on-aluminum-substrates-utilizing-an-intermediate-adhesive-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Development and Analysis of SFR Control Rod Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Duj%C4%8D%C3%ADkov%C3%A1">Lenka Dujčíková</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Buiron"> Laurent Buiron</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A1n%20Ha%C5%A1%C4%8D%C3%ADk"> Ján Haščík</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is dedicated to safety management of SFR CAPRA core with CFV design improvements. In the case of CAPRA core, demands for reactivity control are higher than for reference core. There are two possible ways how to ensure the certain amount of negative reactivity. One option is to boost control rods worth. The Greater part of the study is aimed at the proposal of appropriate control rod design. At first, the European Fast Reactor (EFR) control rod design with high-enriched boron carbide B4C as absorber material was tested. Considering costly and difficult enrichment process, usage of natural boron carbide absorbator is desired. Obviously, the use of natural boron leads to CR worth reduction. In order to increase it to required value, moderator material was inserted inside the control rod. Various materials and geometric configurations were examined to find optimal solution corresponding with EFR based CR worth value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title="boron carbide">boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=CAPRA%20core" title=" CAPRA core"> CAPRA core</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20rod%20design" title=" control rod design"> control rod design</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20void%20effect%20design" title=" low void effect design"> low void effect design</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20temperature" title=" melting temperature"> melting temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=moderator%20material" title=" moderator material"> moderator material</a> </p> <a href="https://publications.waset.org/abstracts/34110/development-and-analysis-of-sfr-control-rod-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Dielectric Behavior of 2D Layered Insulator Hexagonal Boron Nitride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Jain">Nikhil Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xu"> Yang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Yu"> Bin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hexagonal boron nitride (h-BN) has been used as a substrate and gate dielectric for graphene field effect transistors (GFETs). Using a graphene/h-BN/TiN (channel/dielectric/gate) stack, key material properties of h-BN were investigated i.e. dielectric strength and tunneling behavior. Work function difference between graphene and TiN results in spontaneous p-doping of graphene through a multi-layer h-BN flake. However, at high levels of current stress, n-doping of graphene is observed, possibly due to the charge transfer across the thin h-BN multi layer. Neither Direct Tunneling (DT) nor Fowler-Nordheim Tunneling (FNT) was observed in TiN/h-BN/Au hetero structures with h-BN showing two distinct volatile conduction states before breakdown. Hexagonal boron nitride emerges as a material of choice for gate dielectrics in GFETs because of robust dielectric properties and high tunneling barrier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=transistors" title=" transistors"> transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20strength" title=" dielectric strength"> dielectric strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tunneling" title=" tunneling"> tunneling</a> </p> <a href="https://publications.waset.org/abstracts/22593/dielectric-behavior-of-2d-layered-insulator-hexagonal-boron-nitride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Improvement of Microstructure, Wear and Mechanical Properties of Modified G38NiCrMo8-4-4 Steel Used in Mining Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Col">Mustafa Col</a>, <a href="https://publications.waset.org/abstracts/search?q=Funda%20Gul%20Koc"> Funda Gul Koc</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Yangaz"> Merve Yangaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20Subasi"> Eylem Subasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Can%20Akbasoglu"> Can Akbasoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> G38NiCrMo8-4-4 steel is widely used in mining industries, machine parts, gears due to its high strength and toughness properties. In this study, microstructure, wear and mechanical properties of G38NiCrMo8-4-4 steel modified with boron used in the mining industry were investigated. For this purpose, cast materials were alloyed by melting in an induction furnace to include boron with the rates of 0 ppm, 15 ppm, and 50 ppm (wt.) and were formed in the dimensions of 150x200x150 mm by casting into the sand mould. Homogenization heat treatment was applied to the specimens at 1150˚C for 7 hours. Then all specimens were austenitized at 930˚C for 1 hour, quenched in the polymer solution and tempered at 650˚C for 1 hour. Microstructures of the specimens were investigated by using light microscope and SEM to determine the effect of boron and heat treatment conditions. Changes in microstructure properties and material hardness were obtained due to increasing boron content and heat treatment conditions after microstructure investigations and hardness tests. Wear tests were carried out using a pin-on-disc tribometer under dry sliding conditions. Charpy V notch impact test was performed to determine the toughness properties of the specimens. Fracture and worn surfaces were investigated with scanning electron microscope (SEM). The results show that boron element has a positive effect on the hardness and wear properties of G38NiCrMo8-4-4 steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=G38NiCrMo8-4-4%20steel" title="G38NiCrMo8-4-4 steel">G38NiCrMo8-4-4 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/94464/improvement-of-microstructure-wear-and-mechanical-properties-of-modified-g38nicrmo8-4-4-steel-used-in-mining-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Two Layer Photo-Thermal Deflection Model to Investigate the Electronic Properties in BGaAs/GaAs Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ilahi">S. Ilahi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Baira"> M. Baira</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Saidi"> F. Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yacoubi"> N. Yacoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Auvray"> L. Auvray</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Maaref"> H. Maaref</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photo-thermal deflection technique (PTD) is used to study the nonradiative recombination process in BGaAs/GaAs alloy with boron composition of 3% and 8% grown by metal organic chemical vapor deposition (MOCVD). A two layer theoretical model has been developed taking into account both thermal and electronic contribution in the photothermal signal allowing to extract the electronic parameters namely electronic diffusivity, surface and interface recombination. It is found that the increase of boron composition alters the BGaAs epilayers transport properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photothermal%20defelction%20technique" title="photothermal defelction technique">photothermal defelction technique</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20layer%20model" title=" two layer model"> two layer model</a>, <a href="https://publications.waset.org/abstracts/search?q=BGaAs%2FGaAs%20alloys" title=" BGaAs/GaAs alloys"> BGaAs/GaAs alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20composition" title=" boron composition"> boron composition</a> </p> <a href="https://publications.waset.org/abstracts/10638/two-layer-photo-thermal-deflection-model-to-investigate-the-electronic-properties-in-bgaasgaas-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tariku%20Nefo%20Duke">Tariku Nefo Duke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=electroactive" title=" electroactive"> electroactive</a>, <a href="https://publications.waset.org/abstracts/search?q=Tg" title=" Tg"> Tg</a> </p> <a href="https://publications.waset.org/abstracts/149868/corrosion-resistance-of-mild-steel-coated-with-different-polyimidesh-boron-nitride-composite-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Synthesis of Mg/B Containing Compound in a Modified Microwave Oven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%C5%9Fah%20%C3%87elik%20G%C3%BCl">Gülşah Çelik Gül</a>, <a href="https://publications.waset.org/abstracts/search?q=Figen%20Kurtulu%C5%9F"> Figen Kurtuluş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN. &nbsp;Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20containing%20boron%20compounds" title="magnesium containing boron compounds">magnesium containing boron compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20microwave%20synthesis" title=" modified microwave synthesis"> modified microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20X-ray%20diffraction" title=" powder X-ray diffraction"> powder X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/68256/synthesis-of-mgb-containing-compound-in-a-modified-microwave-oven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Boroznin">S. V. Boroznin</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Zaporotskova"> I. V. Zaporotskova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Polikarpova"> N. P. Polikarpova </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boron-carbon%20nanotubes" title="Boron-carbon nanotubes">Boron-carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=nanolayers" title=" nanolayers"> nanolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum-chemical%20calculations" title=" quantum-chemical calculations"> quantum-chemical calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoengineering" title=" nanoengineering"> nanoengineering</a> </p> <a href="https://publications.waset.org/abstracts/27940/investigation-of-atomic-adsorption-on-the-surface-of-bc3-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Microstructure and Mechanical Properties of Boron-Containing AZ91D Mg Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Chan%20Kim">Ji Chan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of boron addition on the microstructure and mechanical properties of AZ91D Mg alloy was investigated in this study. Through calculation of phase equilibria, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as 420 °C where supersaturated solid solution can be obtained. Solid solution treatment was conducted at 420 °C for 24 hrs followed by hot rolling at 420 °C and the total reduction was about 60%. Recrystallization heat treatment was followed at 420 °C for 6 hrs to obtain equiaxed microstructure. After recrystallization treatment, aging heat treatment was conducted at temperature of 200 °C for time intervals from 1 min to 200 hrs and hardness of each condition was measured by micro-Vickers method. Peak hardness was observed after 20 hrs. Tensile tests were also conducted on the specimens aged for various time intervals and the results were compared with hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZ91D%20Mg%20alloy" title="AZ91D Mg alloy">AZ91D Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/62213/microstructure-and-mechanical-properties-of-boron-containing-az91d-mg-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Effect of Long-Term Boron Exposure on Liver Structure of Adult Male Albino Rats and a Possible Role of Vitamin C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ola%20Abdel-Tawab%20Hussein">Ola Abdel-Tawab Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Boron is a naturally occurring agent and an essential trace element of human, animals and higher plants. It is released in the form of boric acid (BA) that is water soluble and biolologically available. Its largest uses are in glass, detergents, agriculture, leather tanning industries, cosmetics, photographic materials, soaps and cleaners. Human consume daily few milligrams in the water, fruits and vegetables. High doses of boron had been recorded to be developmental and reproductive toxin in animals(Only few studies on human had investigated the health effects associated with exposure to boron. Vitamin C is a major water soluble non-enzymatic antioxidant, acts to overcome the oxidative stress. Aim of the work: However , the liver is exposed to toxic substances that are absorbed, degraded or conjugated there were little information exists about the effects of boron that it would specifically have in the liver tissue of experimental rats. So the present work aimed to study the effects of long-term boron ingestion on histological structural of the liver of adult male albino rats and to evaluate the protective role of vitamin C against induced changes. Material and Methods: 30 adult male albino rats were divided into 3 equal groups; Group I: control, Group II: recieved drinking water containing 55x10-6 gm boron/liter for 90 days and Group III: recieved vitamin C (200mg/Kg.B.W) orally concomitant with boron for the same period. liver specimens were processed for light and electron microscopic(TEM) study. Results: Examination of the liver sections of group II revealed foci of severe dilatation and congestion of central and portal veins with mononuclear cellular infiltration and hepatocellular vacuolation. Increased collagen deposition specially around the portal areas. Marked electrolucent areas in the cytoplasm, heterochromatic nuclei and destroyed organelles of the hepatocytes. Apoptotic cells were observed and decreased lipid content of ito cells. In Group III the co administration of vitamin C improved most of the structural changes of the hepatocytes, Ito cells, increased binucleated cells and decreased collagen fibers deposition. Conclusion: Thus, the long term exposure to boron, induced histological changes on the structure of liver. The co administration of vitamin C improved most of these structural changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron" title="boron">boron</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title=" vitamin C"> vitamin C</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/28533/effect-of-long-term-boron-exposure-on-liver-structure-of-adult-male-albino-rats-and-a-possible-role-of-vitamin-c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Modification of Hexagonal Boron Nitride Induced by Focused Laser Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Wlasny">I. Wlasny</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Klusek"> Z. Klusek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Wysmolek"> A. Wysmolek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hexagonal boron nitride is a representative of a widely popular class of two-dimensional Van Der Waals materials. It finds its uses, among others, in construction of complexly layered heterostructures. Hexagonal boron nitride attracts great interest because of its properties characteristic for wide-gap semiconductors as well as an ultra-flat surface.Van Der Waals heterostructures composed of two-dimensional layered materials, such as transition metal dichalcogenides or graphene give hope for miniaturization of various electronic and optoelectronic elements. In our presentation, we will show the results of our investigations of the not previously reported modification of the hexagonal boron nitride layers with focused laser beam. The electrostatic force microscopy (EFM) images reveal that the irradiation leads to changes of the local electric fields for a wide range of laser wavelengths (from 442 to 785 nm). These changes are also accompanied by alterations of crystallographic structure of the material, as reflected by Raman spectra. They exhibit high stability and remain visible after at least five months. This behavior can be explained in terms of photoionization of the defect centers in h-BN which influence non-uniform electrostatic field screening by the photo-excited charge carriers. Analyzed changes influence local defect structure, and thus the interatomic distances within the lattice. These effects can be amplified by the piezoelectric character of hexagonal boron nitride, similar to that found in nitrides (e.g., GaN, AlN). Our results shed new light on the optical properties of the hexagonal boron nitride, in particular, those associated with electron-phonon coupling. Our study also opens new possibilities for h-BN applications in layered heterostructures where electrostatic fields can be used in tailoring of the local properties of the structures for use in micro- and nanoelectronics or field-controlled memory storage. This work is supported by National Science Centre project granted on the basis of the decision number DEC-2015/16/S/ST3/00451. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title="atomic force microscopy">atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/75769/modification-of-hexagonal-boron-nitride-induced-by-focused-laser-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Influence of Boron and Germanium Doping on Physical-Mechanical Properties of Monocrystalline Silicon </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ia%20Kurashvili">Ia Kurashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Darsavelidze"> Giorgi Darsavelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20%20Chubinidze"> Giorgi Chubinidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Kadaria"> Marina Kadaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron-doped Czochralski (CZ) silicon of p-type, widely used in the photovoltaic industry is suffering from the light-induced-degradation (LID) of bulk electrophysical characteristics. This is caused by specific metastable B-O defects, which are characterized by strong recombination activity. In this regard, it is actual to suppress B-O defects in CZ silicon. One of the methods is doping of silicon by different isovalent elements (Ge, C, Sn). The present work deals with the investigations of the influence of germanium doping on the internal friction and shear modulus amplitude dependences in the temperature interval of 600-800⁰C and 0.5-5 Hz frequency range in boron-containing monocrystalline silicon. Experimental specimens were grown by Czochralski method (CZ) in [111] direction. Four different specimens were investigated: Si+0,5at%Ge:B (5.1015cm-3), Si+0,5at%Ge:B (1.1019cm-3), Si+2at%Ge:B (5.1015cm-3) and Si+2at%Ge:B (1.1019cm-3). Increasing tendency of dislocation density and inhomogeneous distribution in silicon crystals with high content of boron and germanium were revealed by metallographic studies on the optical microscope of NMM-80RF/TRF. Weak increase of current carriers-holes concentration and slight decrease of their mobility were observed by Van der Pauw method on Ecopia HMS-3000 device. Non-monotonous changes of dislocation origin defects mobility and microplastic deformation characteristics influenced by measuring temperatures and boron and germanium concentrations were revealed. Possible mechanisms of changes of mechanical characteristics in Si-Ge experimental specimens were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dislocation" title="dislocation">dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20friction" title=" internal friction"> internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastic%20deformation" title=" microplastic deformation"> microplastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a> </p> <a href="https://publications.waset.org/abstracts/76280/influence-of-boron-and-germanium-doping-on-physical-mechanical-properties-of-monocrystalline-silicon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boron&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boron&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boron&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boron&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boron&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10