CINXE.COM

Search results for: prediction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: prediction</title> <meta name="description" content="Search results for: prediction"> <meta name="keywords" content="prediction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="prediction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="prediction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1023</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: prediction</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vimala%20Balakrishnan">Vimala Balakrishnan</a>, <a href="https://publications.waset.org/search?q=Mohammad%20R.%20Shakouri"> Mohammad R. Shakouri</a>, <a href="https://publications.waset.org/search?q=Hooman%20Hoodeh"> Hooman Hoodeh</a>, <a href="https://publications.waset.org/search?q=Loo"> Loo</a>, <a href="https://publications.waset.org/search?q=Huck-Soo"> Huck-Soo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Case-Based%20Reasoning" title="Case-Based Reasoning">Case-Based Reasoning</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Prediction" title=" Prediction"> Prediction</a>, <a href="https://publications.waset.org/search?q=Retinopathy." title=" Retinopathy."> Retinopathy.</a> </p> <a href="https://publications.waset.org/1901/predictions-using-data-mining-and-case-based-reasoning-a-case-study-for-retinopathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1901/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1901/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1901/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1901/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1901/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1901/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1901/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1901/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1901/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1901/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3021</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Empirical Statistical Modeling of Rainfall Prediction over Myanmar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wint%20Thida%20Zaw">Wint Thida Zaw</a>, <a href="https://publications.waset.org/search?q=Thinn%20Thu%20Naing"> Thinn Thu Naing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polynomial%20Regression" title="Polynomial Regression">Polynomial Regression</a>, <a href="https://publications.waset.org/search?q=Rainfall%20Forecasting" title=" Rainfall Forecasting"> Rainfall Forecasting</a>, <a href="https://publications.waset.org/search?q=Statistical%20forecasting." title="Statistical forecasting.">Statistical forecasting.</a> </p> <a href="https://publications.waset.org/15031/empirical-statistical-modeling-of-rainfall-prediction-over-myanmar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15031/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15031/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15031/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15031/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15031/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15031/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15031/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15031/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15031/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15031/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2634</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Building the Reliability Prediction Model of Component-Based Software Architectures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pham%20Thanh%20Trung">Pham Thanh Trung</a>, <a href="https://publications.waset.org/search?q=Huynh%20Quyet%20Thang"> Huynh Quyet Thang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Reliability is one of the most important quality attributes of software. Based on the approach of Reussner and the approach of Cheung, we proposed the reliability prediction model of component-based software architectures. Also, the value of the model is shown through the experimental evaluation on a web server system.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=component-based%20architecture" title="component-based architecture">component-based architecture</a>, <a href="https://publications.waset.org/search?q=reliability%20prediction%20model" title=" reliability prediction model"> reliability prediction model</a>, <a href="https://publications.waset.org/search?q=software%20reliability%20engineering." title=" software reliability engineering."> software reliability engineering.</a> </p> <a href="https://publications.waset.org/4882/building-the-reliability-prediction-model-of-component-based-software-architectures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4882/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4882/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4882/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4882/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4882/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4882/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4882/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4882/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4882/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4882/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1422</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Cross Project Software Fault Prediction at Design Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pradeep%20Singh">Pradeep Singh</a>, <a href="https://publications.waset.org/search?q=Shrish%20Verma"> Shrish Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Na茂ve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Software%20Metrics" title="Software Metrics">Software Metrics</a>, <a href="https://publications.waset.org/search?q=Fault%20prediction" title=" Fault prediction"> Fault prediction</a>, <a href="https://publications.waset.org/search?q=Cross%20project" title=" Cross project"> Cross project</a>, <a href="https://publications.waset.org/search?q=Within%20project." title=" Within project."> Within project.</a> </p> <a href="https://publications.waset.org/10001596/cross-project-software-fault-prediction-at-design-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001596/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001596/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001596/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001596/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001596/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001596/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001596/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001596/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001596/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001596/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2546</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dalin%20Si">Dalin Si</a>, <a href="https://publications.waset.org/search?q=Azizan%20Aziz"> Azizan Aziz</a>, <a href="https://publications.waset.org/search?q=Bertrand%20Lasternas"> Bertrand Lasternas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Building%20energy%20prediction" title="Building energy prediction">Building energy prediction</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=demand%20response" title=" demand response"> demand response</a>, <a href="https://publications.waset.org/search?q=electricity%20market." title=" electricity market."> electricity market.</a> </p> <a href="https://publications.waset.org/10006260/development-of-prediction-models-of-day-ahead-hourly-building-electricity-consumption-and-peak-power-demand-using-the-machine-learning-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006260/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006260/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006260/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006260/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006260/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006260/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006260/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006260/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006260/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006260/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2205</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Petcharaporn">K. Petcharaporn</a>, <a href="https://publications.waset.org/search?q=S.%20Kumchoo"> S. Kumchoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The acidity (citric acid) is the one of chemical content that can be refer to the internal quality and it&rsquo;s a maturity index of tomato, The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR) spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomato.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Tomato" title="Tomato">Tomato</a>, <a href="https://publications.waset.org/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/search?q=titratable%20acidity" title=" titratable acidity"> titratable acidity</a>, <a href="https://publications.waset.org/search?q=citric%20acid." title=" citric acid."> citric acid.</a> </p> <a href="https://publications.waset.org/9998976/calibration-model-of-titratable-acidity-citric-acid-for-intact-tomato-by-transmittance-sw-nir-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998976/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998976/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998976/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998976/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998976/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998976/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998976/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998976/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998976/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998976/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2700</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Grey Prediction Based Handoff Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seyed%20Saeed%20Changiz%20Rezaei">Seyed Saeed Changiz Rezaei</a>, <a href="https://publications.waset.org/search?q=Babak%20Hossein%20Khalaj"> Babak Hossein Khalaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cellular%20network" title="Cellular network">Cellular network</a>, <a href="https://publications.waset.org/search?q=Grey%20prediction" title=" Grey prediction"> Grey prediction</a>, <a href="https://publications.waset.org/search?q=Handoff." title=" Handoff."> Handoff.</a> </p> <a href="https://publications.waset.org/4524/grey-prediction-based-handoff-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4524/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4524/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4524/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4524/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4524/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4524/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4524/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4524/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4524/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4524/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2387</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Recurrent Radial Basis Function Network for Failure Time Series Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ryad%20Zemouri">Ryad Zemouri</a>, <a href="https://publications.waset.org/search?q=Paul%20Ciprian%20Patic"> Paul Ciprian Patic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=Prediction%20error" title=" Prediction error"> Prediction error</a>, <a href="https://publications.waset.org/search?q=Recurrent%20RadialBasis%20Function%20Network" title=" Recurrent RadialBasis Function Network"> Recurrent RadialBasis Function Network</a>, <a href="https://publications.waset.org/search?q=Reliability%20prediction." title=" Reliability prediction."> Reliability prediction.</a> </p> <a href="https://publications.waset.org/9230/recurrent-radial-basis-function-network-for-failure-time-series-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9230/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9230/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9230/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9230/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9230/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9230/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9230/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9230/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9230/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9230/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1818</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> An Enhanced Artificial Neural Network for Air Temperature Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Brian%20A.%20Smith">Brian A. Smith</a>, <a href="https://publications.waset.org/search?q=Ronald%20W.%20McClendon"> Ronald W. McClendon</a>, <a href="https://publications.waset.org/search?q=Gerrit%20Hoogenboom"> Gerrit Hoogenboom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18&deg;C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Time-series%20forecasting" title="Time-series forecasting">Time-series forecasting</a>, <a href="https://publications.waset.org/search?q=weather%20modeling." title=" weather modeling."> weather modeling.</a> </p> <a href="https://publications.waset.org/3911/an-enhanced-artificial-neural-network-for-air-temperature-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3911/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3911/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3911/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3911/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3911/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3911/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3911/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3911/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3911/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3911/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1867</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Miloje%20S.%20Radenkovic">Miloje S. Radenkovic</a>, <a href="https://publications.waset.org/search?q=Tamal%20Bose"> Tamal Bose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adaptive%20blind%20equalizer" title="Adaptive blind equalizer">Adaptive blind equalizer</a>, <a href="https://publications.waset.org/search?q=Recursive%20leastsquares" title=" Recursive leastsquares"> Recursive leastsquares</a>, <a href="https://publications.waset.org/search?q=Adaptive%20Filtering" title=" Adaptive Filtering"> Adaptive Filtering</a>, <a href="https://publications.waset.org/search?q=Convergence%20analysis." title=" Convergence analysis."> Convergence analysis.</a> </p> <a href="https://publications.waset.org/676/convergence-analysis-of-a-prediction-based-adaptive-equalizer-for-iir-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/676/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/676/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/676/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/676/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/676/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/676/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/676/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/676/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/676/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/676/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1454</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Impact of Faults in Different Software Systems: A Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Neeraj%20Mohan">Neeraj Mohan</a>, <a href="https://publications.waset.org/search?q=Parvinder%20S.%20Sandhu"> Parvinder S. Sandhu</a>, <a href="https://publications.waset.org/search?q=Hardeep%20Singh"> Hardeep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Software maintenance is extremely important activity in software development life cycle. It involves a lot of human efforts, cost and time. Software maintenance may be further subdivided into different activities such as fault prediction, fault detection, fault prevention, fault correction etc. This topic has gained substantial attention due to sophisticated and complex applications, commercial hardware, clustered architecture and artificial intelligence. In this paper we surveyed the work done in the field of software maintenance. Software fault prediction has been studied in context of fault prone modules, self healing systems, developer information, maintenance models etc. Still a lot of things like modeling and weightage of impact of different kind of faults in the various types of software systems need to be explored in the field of fault severity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fault%20prediction" title="Fault prediction">Fault prediction</a>, <a href="https://publications.waset.org/search?q=Software%20Maintenance" title=" Software Maintenance"> Software Maintenance</a>, <a href="https://publications.waset.org/search?q=Automated%20Fault%20Prediction" title=" Automated Fault Prediction"> Automated Fault Prediction</a>, <a href="https://publications.waset.org/search?q=and%20Failure%20Mode%20Analysis" title=" and Failure Mode Analysis"> and Failure Mode Analysis</a> </p> <a href="https://publications.waset.org/14215/impact-of-faults-in-different-software-systems-a-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14215/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14215/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14215/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14215/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14215/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14215/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14215/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14215/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14215/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14215/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2079</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Using High Performance Computing for Online Flood Monitoring and Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Stepan%20Kuchar">Stepan Kuchar</a>, <a href="https://publications.waset.org/search?q=Martin%20Golasowski"> Martin Golasowski</a>, <a href="https://publications.waset.org/search?q=Radim%20Vavrik"> Radim Vavrik</a>, <a href="https://publications.waset.org/search?q=Michal%20Podhoranyi"> Michal Podhoranyi</a>, <a href="https://publications.waset.org/search?q=Boris%20Sir"> Boris Sir</a>, <a href="https://publications.waset.org/search?q=Jan%20Martinovic"> Jan Martinovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of a high performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice River catchment is presented that shows actual durations and their gain from the parallel implementation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flood%20prediction%20process" title="Flood prediction process">Flood prediction process</a>, <a href="https://publications.waset.org/search?q=High%20performance%0D%0Acomputing" title=" High performance computing"> High performance computing</a>, <a href="https://publications.waset.org/search?q=Online%20flood%20prediction%20system" title=" Online flood prediction system"> Online flood prediction system</a>, <a href="https://publications.waset.org/search?q=Parallelization." title=" Parallelization."> Parallelization.</a> </p> <a href="https://publications.waset.org/10001094/using-high-performance-computing-for-online-flood-monitoring-and-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001094/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001094/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001094/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001094/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001094/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001094/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001094/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001094/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001094/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001094/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2329</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yang%20Zhang">Yang Zhang</a>, <a href="https://publications.waset.org/search?q=Jian%20He"> Jian He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bi-LSTM" title="Bi-LSTM">Bi-LSTM</a>, <a href="https://publications.waset.org/search?q=CHD" title=" CHD"> CHD</a>, <a href="https://publications.waset.org/search?q=coronary%20heart%20disease" title=" coronary heart disease"> coronary heart disease</a>, <a href="https://publications.waset.org/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a>, <a href="https://publications.waset.org/search?q=ResNet" title=" ResNet"> ResNet</a>, <a href="https://publications.waset.org/search?q=sliding%20window." title=" sliding window."> sliding window.</a> </p> <a href="https://publications.waset.org/10013445/an-auxiliary-technique-for-coronary-heart-disease-prediction-by-analyzing-ecg-based-on-resnet-and-bi-lstm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013445/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013445/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013445/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013445/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013445/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013445/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013445/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013445/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013445/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013445/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sae-Rom%20Pak">Sae-Rom Pak</a>, <a href="https://publications.waset.org/search?q=Seung%20Hwan%20Park"> Seung Hwan Park</a>, <a href="https://publications.waset.org/search?q=Jeong%20Ho%20Cho"> Jeong Ho Cho</a>, <a href="https://publications.waset.org/search?q=Daewoong%20An"> Daewoong An</a>, <a href="https://publications.waset.org/search?q=Cheong-Sool%20Park">Cheong-Sool Park</a>, <a href="https://publications.waset.org/search?q=Jun%20Seok%20Kim"> Jun Seok Kim</a>, <a href="https://publications.waset.org/search?q=Jun-Geol%20Baek"> Jun-Geol Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Yield%20Prediction" title="Yield Prediction">Yield Prediction</a>, <a href="https://publications.waset.org/search?q=Semiconductor%20Test%20Process" title=" Semiconductor Test Process"> Semiconductor Test Process</a>, <a href="https://publications.waset.org/search?q=Support%0D%0AVector%20Machine" title=" Support Vector Machine"> Support Vector Machine</a>, <a href="https://publications.waset.org/search?q=Under%20Sampling" title=" Under Sampling"> Under Sampling</a> </p> <a href="https://publications.waset.org/5620/yield-prediction-using-support-vectors-based-under-sampling-in-semiconductor-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5620/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5620/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5620/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5620/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5620/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5620/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5620/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5620/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5620/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5620/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2397</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Performance Prediction of Multi-Agent Based Simulation Applications on the Grid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dawit%20Mengistu">Dawit Mengistu</a>, <a href="https://publications.waset.org/search?q=Lars%20Lundberg"> Lars Lundberg</a>, <a href="https://publications.waset.org/search?q=Paul%20Davidsson"> Paul Davidsson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major requirement for Grid application developers is ensuring performance and scalability of their applications. Predicting the performance of an application demands understanding its specific features. This paper discusses performance modeling and prediction of multi-agent based simulation (MABS) applications on the Grid. An experiment conducted using a synthetic MABS workload explains the key features to be included in the performance model. The results obtained from the experiment show that the prediction model developed for the synthetic workload can be used as a guideline to understand to estimate the performance characteristics of real world simulation applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Grid%20computing" title="Grid computing">Grid computing</a>, <a href="https://publications.waset.org/search?q=Performance%20modeling" title=" Performance modeling"> Performance modeling</a>, <a href="https://publications.waset.org/search?q=Performance%20prediction" title="Performance prediction">Performance prediction</a>, <a href="https://publications.waset.org/search?q=Multi-agent%20simulation." title=" Multi-agent simulation."> Multi-agent simulation.</a> </p> <a href="https://publications.waset.org/4849/performance-prediction-of-multi-agent-based-simulation-applications-on-the-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4849/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4849/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4849/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4849/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4849/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4849/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4849/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4849/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4849/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4849/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1448</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Elyousfi">A. Elyousfi</a>, <a href="https://publications.waset.org/search?q=A.%20Tamtaoui"> A. Tamtaoui</a>, <a href="https://publications.waset.org/search?q=E.%20Bouyakhf"> E. Bouyakhf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Intra%20prediction" title="Intra prediction">Intra prediction</a>, <a href="https://publications.waset.org/search?q=H264%2FAVC" title=" H264/AVC"> H264/AVC</a>, <a href="https://publications.waset.org/search?q=video%20coding" title=" video coding"> video coding</a>, <a href="https://publications.waset.org/search?q=encodercomplexity." title=" encodercomplexity."> encodercomplexity.</a> </p> <a href="https://publications.waset.org/11238/a-new-fast-intra-prediction-mode-decision-algorithm-for-h264avc-encoders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11238/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11238/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11238/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11238/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11238/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11238/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11238/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11238/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11238/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11238/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2506</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> Uplink Throughput Prediction in Cellular Mobile Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Engin%20Eyceyurt">Engin Eyceyurt</a>, <a href="https://publications.waset.org/search?q=Josko%20Zec"> Josko Zec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Drive%20test" title="Drive test">Drive test</a>, <a href="https://publications.waset.org/search?q=LTE" title=" LTE"> LTE</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=uplink%20throughput%20prediction." title=" uplink throughput prediction."> uplink throughput prediction.</a> </p> <a href="https://publications.waset.org/10011248/uplink-throughput-prediction-in-cellular-mobile-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011248/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011248/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011248/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011248/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011248/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011248/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011248/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011248/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011248/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011248/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">894</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">976</span> SNR Classification Using Multiple CNNs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Thinh%20Ngo">Thinh Ngo</a>, <a href="https://publications.waset.org/search?q=Paul%20Rad"> Paul Rad</a>, <a href="https://publications.waset.org/search?q=Brian%20Kelley"> Brian Kelley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from &minus;20 &le; SNR &le; 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=classifier%20fusion" title=" classifier fusion"> classifier fusion</a>, <a href="https://publications.waset.org/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/search?q=Deep%20Learning" title=" Deep Learning"> Deep Learning</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=SNR." title=" SNR."> SNR.</a> </p> <a href="https://publications.waset.org/10011546/snr-classification-using-multiple-cnns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011546/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011546/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011546/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011546/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011546/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011546/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011546/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011546/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011546/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011546/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">720</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">975</span> Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muhammad%20Nizam">Muhammad Nizam</a>, <a href="https://publications.waset.org/search?q=Azah%20Mohamed"> Azah Mohamed</a>, <a href="https://publications.waset.org/search?q=Majid%20Al-Dabbagh"> Majid Al-Dabbagh</a>, <a href="https://publications.waset.org/search?q=Aini%20Hussain"> Aini Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20voltage%20collapse" title="Dynamic voltage collapse">Dynamic voltage collapse</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a> </p> <a href="https://publications.waset.org/11531/using-support-vector-machine-for-prediction-dynamic-voltage-collapse-in-an-actual-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11531/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11531/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11531/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11531/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11531/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11531/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11531/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11531/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11531/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11531/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1816</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">974</span> Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ali%20Hussian%20Ali%20AlTimemy">Ali Hussian Ali AlTimemy</a>, <a href="https://publications.waset.org/search?q=Fawzi%20M.%20Al%20Naima"> Fawzi M. Al Naima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Kidney%20Dysfunction" title="Kidney Dysfunction">Kidney Dysfunction</a>, <a href="https://publications.waset.org/search?q=Prediction" title=" Prediction"> Prediction</a>, <a href="https://publications.waset.org/search?q=SOM" title=" SOM"> SOM</a>, <a href="https://publications.waset.org/search?q=PNN" title=" PNN"> PNN</a>, <a href="https://publications.waset.org/search?q=BPNN" title="BPNN">BPNN</a>, <a href="https://publications.waset.org/search?q=Urea%20and%20Creatinine%20levels." title=" Urea and Creatinine levels."> Urea and Creatinine levels.</a> </p> <a href="https://publications.waset.org/12166/comparison-of-different-neural-network-approaches-for-the-prediction-of-kidney-dysfunction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12166/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12166/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12166/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12166/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12166/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12166/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12166/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12166/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12166/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12166/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1931</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">973</span> Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Manjula">C. Manjula</a>, <a href="https://publications.waset.org/search?q=Lilly%20Florence"> Lilly Florence</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Decision%20tree" title="Decision tree">Decision tree</a>, <a href="https://publications.waset.org/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=software%20defect%20prediction." title=" software defect prediction."> software defect prediction.</a> </p> <a href="https://publications.waset.org/10008640/hybrid-approach-for-software-defect-prediction-using-machine-learning-with-optimization-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008640/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008640/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008640/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008640/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008640/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008640/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008640/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008640/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008640/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008640/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1465</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">972</span> On the Prediction of Transmembrane Helical Segments in Membrane Proteins Based on Wavelet Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yu%20Bin">Yu Bin</a>, <a href="https://publications.waset.org/search?q=Zhang%20Yan"> Zhang Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a new method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. To access the effect of the method, 80 proteins with known 3D-structure from Mptopo database are chosen at random as the test objects (including 325 TMHs), 308 of which can be predicted accurately, the average predicted accuracy is 96.3%. In addition, the above 80 membrane proteins are divided into 13 groups according to their function and type. In particular, the results of the prediction of TMHs of the 13 groups are satisfying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=discrete%20wavelet%20transform" title="discrete wavelet transform">discrete wavelet transform</a>, <a href="https://publications.waset.org/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/search?q=membrane%20protein" title="membrane protein">membrane protein</a>, <a href="https://publications.waset.org/search?q=transmembrane%20helical%20segments" title=" transmembrane helical segments"> transmembrane helical segments</a> </p> <a href="https://publications.waset.org/11891/on-the-prediction-of-transmembrane-helical-segments-in-membrane-proteins-based-on-wavelet-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11891/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11891/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11891/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11891/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11891/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11891/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11891/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11891/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11891/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11891/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1412</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Asmir%20Gogic">Asmir Gogic</a>, <a href="https://publications.waset.org/search?q=Aljo%20Mujcic"> Aljo Mujcic</a>, <a href="https://publications.waset.org/search?q=Sandra%20Ibric"> Sandra Ibric</a>, <a href="https://publications.waset.org/search?q=Nermin%20Suljanovic"> Nermin Suljanovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bluetooth%20low%20energy" title="Bluetooth low energy">Bluetooth low energy</a>, <a href="https://publications.waset.org/search?q=disaster%20prediction" title=" disaster prediction"> disaster prediction</a>, <a href="https://publications.waset.org/search?q=mesh%0D%0Arouting%20protocols" title=" mesh routing protocols"> mesh routing protocols</a>, <a href="https://publications.waset.org/search?q=wireless%20sensor%20networks." title=" wireless sensor networks."> wireless sensor networks.</a> </p> <a href="https://publications.waset.org/10004623/performance-analysis-of-bluetooth-low-energy-mesh-routing-algorithm-in-case-of-disaster-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004623/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004623/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004623/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004623/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004623/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004623/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004623/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004623/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004623/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004623/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2857</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">970</span> Intelligent Earthquake Prediction System Based On Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Emad%20Amar">Emad Amar</a>, <a href="https://publications.waset.org/search?q=Tawfik%20Khattab"> Tawfik Khattab</a>, <a href="https://publications.waset.org/search?q=Fatma%20Zada"> Fatma Zada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history &amp; the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object&#39;s time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=BP%20neural%20network" title="BP neural network">BP neural network</a>, <a href="https://publications.waset.org/search?q=Prediction" title=" Prediction"> Prediction</a>, <a href="https://publications.waset.org/search?q=RBF%20neural%20network." title=" RBF neural network."> RBF neural network.</a> </p> <a href="https://publications.waset.org/10000062/intelligent-earthquake-prediction-system-based-on-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000062/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000062/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000062/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000062/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000062/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000062/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000062/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000062/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000062/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000062/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3218</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">969</span> Classifying and Predicting Efficiencies Using Interval DEA Grid Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yiannis%20G.%20Smirlis">Yiannis G. Smirlis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20envelopment%20analysis" title="Data envelopment analysis">Data envelopment analysis</a>, <a href="https://publications.waset.org/search?q=interval%20DEA" title=" interval DEA"> interval DEA</a>, <a href="https://publications.waset.org/search?q=efficiency%20classification" title=" efficiency classification"> efficiency classification</a>, <a href="https://publications.waset.org/search?q=efficiency%20prediction." title=" efficiency prediction."> efficiency prediction.</a> </p> <a href="https://publications.waset.org/10009165/classifying-and-predicting-efficiencies-using-interval-dea-grid-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009165/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009165/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009165/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009165/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009165/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009165/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009165/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009165/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009165/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009165/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">937</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">968</span> The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Radouane%20Iqdour">Radouane Iqdour</a>, <a href="https://publications.waset.org/search?q=Abdelouhab%20Zeroual"> Abdelouhab Zeroual</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribi猫re algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Daily%20solar%20radiation" title="Daily solar radiation">Daily solar radiation</a>, <a href="https://publications.waset.org/search?q=Prediction" title=" Prediction"> Prediction</a>, <a href="https://publications.waset.org/search?q=MLP%20neural%0D%0Anetworks" title=" MLP neural networks"> MLP neural networks</a>, <a href="https://publications.waset.org/search?q=linear%20model" title=" linear model"> linear model</a> </p> <a href="https://publications.waset.org/5005/the-multi-layered-perceptrons-neural-networks-for-the-prediction-of-daily-solar-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5005/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5005/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5005/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5005/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5005/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5005/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5005/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5005/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5005/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5005/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1328</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">967</span> Nonlinear Estimation Model for Rail Track Deterioration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Karimpour">M. Karimpour</a>, <a href="https://publications.waset.org/search?q=L.%20Hitihamillage"> L. Hitihamillage</a>, <a href="https://publications.waset.org/search?q=N.%20Elkhoury"> N. Elkhoury</a>, <a href="https://publications.waset.org/search?q=S.%20Moridpour"> S. Moridpour</a>, <a href="https://publications.waset.org/search?q=R.%20Hesami"> R. Hesami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/search?q=MGT" title=" MGT"> MGT</a>, <a href="https://publications.waset.org/search?q=Prediction%20modeling" title=" Prediction modeling"> Prediction modeling</a>, <a href="https://publications.waset.org/search?q=rail%20track%20degradation." title=" rail track degradation."> rail track degradation.</a> </p> <a href="https://publications.waset.org/10007916/nonlinear-estimation-model-for-rail-track-deterioration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007916/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007916/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007916/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007916/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007916/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007916/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007916/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007916/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007916/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007916/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1595</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> New Strategy Agents to Improve Power System Transient Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mansour%20A.%20Mohamed">Mansour A. Mohamed</a>, <a href="https://publications.waset.org/search?q=George%20G.%20Karady"> George G. Karady</a>, <a href="https://publications.waset.org/search?q=Ali%20M.%20Yousef"> Ali M. Yousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes transient angle stability agents to enhance power system stability. The proposed transient angle stability agents divided into two strategy agents. The first strategy agent is a prediction agent that will predict power system instability. According to the prediction agent-s output, the second strategy agent, which is a control agent, is automatically calculating the amount of active power reduction that can stabilize the system and initiating a control action. The control action considered is turbine fast valving. The proposed strategies are applied to a realistic power system, the IEEE 50- generator system. Results show that the proposed technique can be used on-line for power system instability prediction and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multi-agents" title="Multi-agents">Multi-agents</a>, <a href="https://publications.waset.org/search?q=Fast%20Valving" title=" Fast Valving"> Fast Valving</a>, <a href="https://publications.waset.org/search?q=Power%20System%20Transient%20Stability" title=" Power System Transient Stability"> Power System Transient Stability</a>, <a href="https://publications.waset.org/search?q=Prediction%20methods" title=" Prediction methods"> Prediction methods</a>, <a href="https://publications.waset.org/search?q=" title=""></a> </p> <a href="https://publications.waset.org/4181/new-strategy-agents-to-improve-power-system-transient-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4181/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4181/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4181/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4181/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4181/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4181/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4181/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4181/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4181/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4181/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1853</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> Energy Map Construction using Adaptive Alpha Grey Prediction Model in WSNs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Surender%20Kumar%20Soni">Surender Kumar Soni</a>, <a href="https://publications.waset.org/search?q=Dhirendra%20Pratap%20Singh"> Dhirendra Pratap Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless Sensor Networks can be used to monitor the physical phenomenon in such areas where human approach is nearly impossible. Hence the limited power supply is the major constraint of the WSNs due to the use of non-rechargeable batteries in sensor nodes. A lot of researches are going on to reduce the energy consumption of sensor nodes. Energy map can be used with clustering, data dissemination and routing techniques to reduce the power consumption of WSNs. Energy map can also be used to know which part of the network is going to fail in near future. In this paper, Energy map is constructed using the prediction based approach. Adaptive alpha GM(1,1) model is used as the prediction model. GM(1,1) is being used worldwide in many applications for predicting future values of time series using some past values due to its high computational efficiency and accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adaptive%20Alpha%20GM%281" title="Adaptive Alpha GM(1">Adaptive Alpha GM(1</a>, <a href="https://publications.waset.org/search?q=1%29%20Model" title="1) Model">1) Model</a>, <a href="https://publications.waset.org/search?q=Energy%20Map" title=" Energy Map"> Energy Map</a>, <a href="https://publications.waset.org/search?q=Prediction%20Based%20Data%20Reduction" title=" Prediction Based Data Reduction"> Prediction Based Data Reduction</a>, <a href="https://publications.waset.org/search?q=Wireless%20Sensor%20Networks" title=" Wireless Sensor Networks"> Wireless Sensor Networks</a> </p> <a href="https://publications.waset.org/11769/energy-map-construction-using-adaptive-alpha-grey-prediction-model-in-wsns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11769/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11769/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11769/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11769/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11769/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11769/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11769/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11769/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11769/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11769/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1801</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Representing Data without Lost Compression Properties in Time Series: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nabilah%20Filzah%20Mohd%20Radzuan">Nabilah Filzah Mohd Radzuan</a>, <a href="https://publications.waset.org/search?q=Zalinda%20Othman"> Zalinda Othman</a>, <a href="https://publications.waset.org/search?q=Azuraliza%20Abu%20Bakar"> Azuraliza Abu Bakar</a>, <a href="https://publications.waset.org/search?q=Abdul%20Razak%20Hamdan"> Abdul Razak Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Compression%20properties" title="Compression properties">Compression properties</a>, <a href="https://publications.waset.org/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/search?q=uncertain%20time%20series" title=" uncertain time series"> uncertain time series</a>, <a href="https://publications.waset.org/search?q=mining%20technique" title=" mining technique"> mining technique</a>, <a href="https://publications.waset.org/search?q=weather%20prediction." title=" weather prediction."> weather prediction.</a> </p> <a href="https://publications.waset.org/9996863/representing-data-without-lost-compression-properties-in-time-series-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996863/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996863/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996863/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996863/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996863/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996863/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996863/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996863/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996863/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996863/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1620</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=prediction&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10