CINXE.COM
Search results for: stress concentration factor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stress concentration factor</title> <meta name="description" content="Search results for: stress concentration factor"> <meta name="keywords" content="stress concentration factor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stress concentration factor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stress concentration factor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13115</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stress concentration factor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13115</span> Stress Concentration Trend for Combined Loading Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aderet%20M.%20Pantierer">Aderet M. Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Pantierer"> Shmuel Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Cordina"> Raphael Cordina</a>, <a href="https://publications.waset.org/abstracts/search?q=Yougashwar%20Budhoo"> Yougashwar Budhoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress concentration occurs when there is an abrupt change in geometry, a mechanical part under loading. These changes in geometry can include holes, notches, or cracks within the component. The modifications create larger stress within the part. This maximum stress is difficult to determine, as it is directly at the point of the minimum area. Strain gauges have yet to be developed to analyze stresses at such minute areas. Therefore, a stress concentration factor must be utilized. The stress concentration factor is a dimensionless parameter calculated solely on the geometry of a part. The factor is multiplied by the nominal, or average, stress of the component, which can be found analytically or experimentally. Stress concentration graphs exist for common loading conditions and geometrical configurations to aid in the determination of the maximum stress a part can withstand. These graphs were developed from historical data yielded from experimentation. This project seeks to verify a stress concentration graph for combined loading conditions. The aforementioned graph was developed using CATIA Finite Element Analysis software. The results of this analysis will be validated through further testing. The 3D modeled parts will be subjected to further finite element analysis using Patran-Nastran software. The finite element models will then be verified by testing physical specimen using a tensile testing machine. Once the data is validated, the unique stress concentration graph will be submitted for publication so it can aid engineers in future projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20models" title=" finite element models"> finite element models</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20loading" title=" combined loading"> combined loading</a> </p> <a href="https://publications.waset.org/abstracts/115912/stress-concentration-trend-for-combined-loading-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13114</span> Stress Concentration around Countersunk Hole in Isotropic Plate under Transverse Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parveen%20K.%20Saini">Parveen K. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarun%20Agarwal"> Tarun Agarwal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation into the effect of countersunk depth, plate thickness, countersunk angle and plate width on the stress concentration around countersunk hole is carried out with the help of finite element analysis. The variation of stress concentration with respect to these parameters is studied for three types of loading viz. uniformly distributed load, uniformly varying load and functionally distributed load. The results of the finite element analysis are interpreted and some conclusions are drawn. The distribution of stress concentration around countersunk hole in isotropic plates simply supported at all the edges is found similar and is independent of loading. The maximum stress concentration also occurs at a particular point irrespective of the loading conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor" title="stress concentration factor">stress concentration factor</a>, <a href="https://publications.waset.org/abstracts/search?q=countersunk%20hole" title=" countersunk hole"> countersunk hole</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/15005/stress-concentration-around-countersunk-hole-in-isotropic-plate-under-transverse-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13113</span> FEM for Stress Reduction by Optimal Auxiliary Holes in a Uniaxially Loaded Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basavaraj%20R.%20Endigeri">Basavaraj R. Endigeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriharsh%20Desphande"> Shriharsh Desphande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization and reduction of stress concentration around holes in a uniaxially loaded plate is one of the important design criteria in many of the engineering applications. These stress risers will lead to failure of the component at the region of high stress concentration which has to be avoided by means of providing auxiliary holes on either side of the parent hole. By literature survey it is known that till date, there is no analytical solution documented to reduce the stress concentration by providing auxiliary holes expect for fever geometries. In the present work, plate with a hole subjected to uniaxial load is analyzed with the numerical method to determine the optimum sizes and locations for the auxillary holes for different center hole diameter to plate width ratios. The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 8.0 is used to carry out analysis and optimization is performed to determine the location and radii for optimum values of auxiliary holes to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. It is found from the work that introduction of auxiliary holes on either side of central circular hole will reduce stress concentration factor by a factor of 19 to 21 percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor" title=" stress concentration factor"> stress concentration factor</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20holes" title=" auxiliary holes"> auxiliary holes</a> </p> <a href="https://publications.waset.org/abstracts/6004/fem-for-stress-reduction-by-optimal-auxiliary-holes-in-a-uniaxially-loaded-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13112</span> Stress Variation around a Circular Hole in Functionally Graded Plate under Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parveen%20K.%20Saini">Parveen K. Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Kushwaha"> Mayank Kushwaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of material property variation on stress concentration factor (SCF) due to the presence of a circular hole in a functionally graded material (FGM) plate is studied in this paper. A numerical method based on complex variable theory of elasticity is used to investigate the problem. To achieve the material property, variation plate is decomposed into a number of rings. In this research work, Young's modulus is assumed to be varying exponentially and it is found that stress concentration factor can be reduced by increasing Young’s modulus progressively away from the hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20hole" title=" circular hole"> circular hole</a>, <a href="https://publications.waset.org/abstracts/search?q=FGM%20plate" title=" FGM plate"> FGM plate</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a> </p> <a href="https://publications.waset.org/abstracts/4922/stress-variation-around-a-circular-hole-in-functionally-graded-plate-under-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13111</span> FE Analysis of the Notch Effect on the Behavior of Repaired Crack with Bonded Composite Patch in Aircraft Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faycal%20Benyahia">Faycal Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmohsen%20Albedah"> Abdelmohsen Albedah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bel%20Abbes%20Bachir%20Bouiadjra"> Bel Abbes Bachir Bouiadjra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the finite element analysis is applied to study the performance of the bonded composite reinforcement or repair for reducing stress concentration at a semi-circular lateral notch and repairing cracks emanating from this kind of notch. The effects of the adhesive properties on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress concentration factor at the notch tip is reduced about 30% and the maximal reduction of the stress intensity factor is about 80%. The adhesive properties must be optimized in order to increase the performance of the patch repair or reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonded%20repair" title="bonded repair">bonded repair</a>, <a href="https://publications.waset.org/abstracts/search?q=notch" title=" notch"> notch</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a> </p> <a href="https://publications.waset.org/abstracts/3813/fe-analysis-of-the-notch-effect-on-the-behavior-of-repaired-crack-with-bonded-composite-patch-in-aircraft-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13110</span> Stress Concentration and Strength Prediction of Carbon/Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Ozaslan">Emre Ozaslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Acar"> Bulent Acar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ali%20Guler"> Mehmet Ali Guler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20composites" title=" unidirectional composites"> unidirectional composites</a> </p> <a href="https://publications.waset.org/abstracts/85671/stress-concentration-and-strength-prediction-of-carbonepoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13109</span> Dynamic Response around Inclusions in Infinitely Inhomogeneous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinlai%20Bian">Jinlai Bian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zailin%20Yang"> Zailin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanxixi%20Jiang"> Guanxixi Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinzhu%20Li"> Xinzhu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20inclusions" title="circular inclusions">circular inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20variable%20function" title=" complex variable function"> complex variable function</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stress%20concentration%20factor%20%28DSCF%29" title=" dynamic stress concentration factor (DSCF)"> dynamic stress concentration factor (DSCF)</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20medium" title=" inhomogeneous medium "> inhomogeneous medium </a> </p> <a href="https://publications.waset.org/abstracts/116538/dynamic-response-around-inclusions-in-infinitely-inhomogeneous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13108</span> Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Murakami">Shingo Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=patch" title=" patch"> patch</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-plane%20deformation" title=" out-of-plane deformation"> out-of-plane deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis" title=" Finite Element Analysis"> Finite Element Analysis</a> </p> <a href="https://publications.waset.org/abstracts/13151/effect-of-out-of-plane-deformation-on-relaxation-method-of-stress-concentration-in-a-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13107</span> Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Murakami">Shingo Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Enoki"> Shinichi Enoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=patch" title=" patch"> patch</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-plane%20deformation" title=" out-of-plane deformation"> out-of-plane deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis" title=" Finite Element Analysis"> Finite Element Analysis</a> </p> <a href="https://publications.waset.org/abstracts/17377/effect-of-out-of-plane-deformation-on-relaxation-method-of-stress-concentration-in-a-plate-with-a-circular-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13106</span> FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basavaraj%20R.%20Endigeri">Basavaraj R. Endigeri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Sarganachari"> S. G. Sarganachari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor" title=" stress concentration factor"> stress concentration factor</a>, <a href="https://publications.waset.org/abstracts/search?q=auxiliary%20holes" title=" auxiliary holes"> auxiliary holes</a> </p> <a href="https://publications.waset.org/abstracts/17326/fem-for-stress-reduction-by-optimal-auxiliary-holes-in-a-loaded-plate-with-elliptical-hole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13105</span> Simplified Linearized Layering Method for Stress Intensity Factor Determination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeries%20J.%20Abou-Hanna">Jeries J. Abou-Hanna</a>, <a href="https://publications.waset.org/abstracts/search?q=Bradley%20Storm"> Bradley Storm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title="fracture mechanics">fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20linearization" title=" stress linearization"> stress linearization</a> </p> <a href="https://publications.waset.org/abstracts/146820/simplified-linearized-layering-method-for-stress-intensity-factor-determination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13104</span> Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Vahedi%20Torshizi">Mohammad Vahedi Torshizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20stress" title="bending stress">bending stress</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plantary" title=" plantary"> plantary</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20equations" title=" mathematical equations"> mathematical equations</a> </p> <a href="https://publications.waset.org/abstracts/58238/checking-planetary-clutch-on-the-romania-tractor-using-mathematical-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13103</span> Photoelastic Analysis and Finite Elements Analysis of a Stress Field Developed in a Double Edge Notched Specimen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bilek">A. Bilek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Beldi"> M. Beldi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Cherfi"> T. Cherfi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Djebali"> S. Djebali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Larbi"> S. Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite elements analysis and photoelasticity are used to determine the stress field developed in a double edge notched specimen loaded in tension. The specimen is cut in a birefringent plate. Experimental isochromatic fringes are obtained with circularly polarized light on the analyzer of a regular polariscope. The fringes represent the loci of points of equal maximum shear stress. In order to obtain the stress values corresponding to the fringe orders recorded in the notched specimen, particularly in the neighborhood of the notches, a calibrating disc made of the same material is loaded in compression along its diameter in order to determine the photoelastic fringe value. This fringe value is also used in the finite elements solution in order to obtain the simulated photoelastic fringes, the isochromatics as well as the isoclinics. A color scale is used by the software to represent the simulated fringes on the whole model. The stress concentration factor can be readily obtained at the notches. Good agreements are obtained between the experimental and the simulated fringe patterns and between the graphs of the shear stress particularly in the neighborhood of the notches. The purpose in this paper is to show that one can obtain rapidly and accurately, by the finite element analysis, the isochromatic and the isoclinic fringe patterns in a stressed model as the experimental procedure can be time consuming. Stress fields can therefore be analyzed in three dimensional models as long as the meshing and the limit conditions are properly set in the program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isochromatic%20fringe" title="isochromatic fringe">isochromatic fringe</a>, <a href="https://publications.waset.org/abstracts/search?q=isoclinic%20fringe" title=" isoclinic fringe"> isoclinic fringe</a>, <a href="https://publications.waset.org/abstracts/search?q=photoelasticity" title=" photoelasticity"> photoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor" title=" stress concentration factor"> stress concentration factor</a> </p> <a href="https://publications.waset.org/abstracts/47738/photoelastic-analysis-and-finite-elements-analysis-of-a-stress-field-developed-in-a-double-edge-notched-specimen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13102</span> Simulation of Stress in Graphite Anode of Lithium-Ion Battery: Intra and Inter-Particle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenxin%20Mei">Wenxin Mei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhua%20Sun"> Jinhua Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingsong%20Wang"> Qingsong Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The volume expansion of lithium-ion batteries is mainly induced by intercalation induced stress within the negative electrode, resulting in capacity degradation and even battery failure. Stress generation due to lithium intercalation into graphite particles is investigated based on an electrochemical-mechanical model in this work. The two-dimensional model presented is fully coupled, inclusive of the impacts of intercalation-induced stress, stress-induced intercalation, to evaluate the lithium concentration, stress generation, and displacement intra and inter-particle. The results show that the distribution of lithium concentration and stress exhibits an analogous pattern, which reflects the relation between lithium diffusion and stress. The results of inter-particle stress indicate that larger Von-Mises stress is displayed where the two particles are in contact with each other, and deformation at the edge of particles is also observed, predicting fracture. Additionally, the maximum inter-particle stress at the end of lithium intercalation is nearly ten times the intraparticle stress. And the maximum inter-particle displacement is increased by 24% compared to the single-particle. Finally, the effect of graphite particle arrangement on inter-particle stress is studied. It is found that inter-particle stress with tighter arrangement exhibits lower stress. This work can provide guidance for predicting the intra and inter-particle stress to take measures to avoid cracking of electrode material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical-mechanical%20model" title="electrochemical-mechanical model">electrochemical-mechanical model</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite%20particle" title=" graphite particle"> graphite particle</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20concentration" title=" lithium concentration"> lithium concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/128469/simulation-of-stress-in-graphite-anode-of-lithium-ion-battery-intra-and-inter-particle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13101</span> Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibu%20Dave%20Mbako">Dibu Dave Mbako</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Cheng"> Bin Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20steel%20bridge%20deck" title="orthotropic steel bridge deck">orthotropic steel bridge deck</a>, <a href="https://publications.waset.org/abstracts/search?q=rib-to-deck%20connection" title=" rib-to-deck connection"> rib-to-deck connection</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20spot%20stress" title=" hot spot stress"> hot spot stress</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a> </p> <a href="https://publications.waset.org/abstracts/84337/hot-spot-stress-analysis-and-parametric-study-on-rib-to-deck-welded-connections-in-orthotropic-steel-bridge-decks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13100</span> Simplified Stress Gradient Method for Stress-Intensity Factor Determination </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeries%20J.%20Abou-Hanna">Jeries J. Abou-Hanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title="fracture mechanics">fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20gradient" title=" stress gradient"> stress gradient</a> </p> <a href="https://publications.waset.org/abstracts/110572/simplified-stress-gradient-method-for-stress-intensity-factor-determination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13099</span> Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb">S. Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil"> A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hamad"> N. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor%20%28SIF%29" title="stress intensity factor (SIF)">stress intensity factor (SIF)</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20orientation" title=" crack orientation"> crack orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%2Fepoxy" title=" glass/epoxy"> glass/epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=X-FEM" title=" X-FEM"> X-FEM</a> </p> <a href="https://publications.waset.org/abstracts/5631/stress-intensity-factor-for-dynamic-cracking-of-composite-material-by-x-fem-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13098</span> Optimization of Tooth Root Profile and Drive Side Pressure Angle to Minimize Bending Stress at Root of Asymmetric Spur Gear Tooth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyakant%20Vaghela">Priyakant Vaghela</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Prajapati"> Jagdish Prajapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bending stress at the root of the gear tooth is the very important criteria in gear design and it should be kept the minimum. Minimization of bending stress at the root of the gear tooth is a recent demand from industry. This paper presents an innovative approach to obtain minimum bending stress at the root of a tooth by optimizing tooth root profile and drive side pressure angle. Circular-filleted at the root of the tooth is widely used in the design. Circular fillet creates discontinuity at the root of the tooth. So, at root stress concentration occurs. In order to minimize stress concentration, an important criterion is a G2 continuity at the blending of the gear tooth. A Bezier curve is used with G2 continuity at the root of asymmetric spur gear tooth. The comparison has been done between normal and modified tooth using ANSYS simulation. Tooth root profile and drive side pressure angle are optimized to minimize bending stress at the root of the tooth of the asymmetric involute spur gear. Von Mises stress of optimized profile is analyzed and compared with normal profile symmetric gear. Von Mises stress is reducing by 31.27% by optimization of drive side pressure angle and root profile. Stress concentration of modified gear was significantly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20spur%20gear%20tooth" title="asymmetric spur gear tooth">asymmetric spur gear tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=G2%20continuity" title=" G2 continuity"> G2 continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20at%20the%20root%20of%20tooth" title=" stress concentration at the root of tooth"> stress concentration at the root of tooth</a>, <a href="https://publications.waset.org/abstracts/search?q=tooth%20root%20stress" title=" tooth root stress"> tooth root stress</a> </p> <a href="https://publications.waset.org/abstracts/95043/optimization-of-tooth-root-profile-and-drive-side-pressure-angle-to-minimize-bending-stress-at-root-of-asymmetric-spur-gear-tooth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13097</span> Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Tavangari">A. Tavangari</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Salehzadeh"> N. Salehzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny-Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=penny-shaped%20crack" title="penny-shaped crack">penny-shaped crack</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritz%20method" title=" Ritz method"> Ritz method</a> </p> <a href="https://publications.waset.org/abstracts/9300/obtain-the-stress-intensity-factor-sif-in-a-medium-containing-a-penny-shaped-crack-by-the-ritz-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13096</span> Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Shalini%20Devi">C. Shalini Devi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/7873/analysis-of-stress-concentration-of-a-hybrid-composite-material-with-centre-circular-hole-subjected-to-tensile-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13095</span> Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fay%C3%A7al%20Benyahia">Fayçal Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmohsen%20Albedah"> Abdelmohsen Albedah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bel%20Abbes%20Bachir%20Bouiadjra"> Bel Abbes Bachir Bouiadjra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonded%20composite%20repair" title="bonded composite repair">bonded composite repair</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20transfer" title=" stress transfer"> stress transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/5385/computation-of-thermal-stress-intensity-factor-for-bonded-composite-repairs-in-aircraft-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13094</span> Numerical Approach for Solving the Hyper Singular Integral Equation in the Analysis of a Central Symmetrical Crack within an Infinite Strip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Slamani">Ikram Slamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hicheme%20Ferdjani"> Hicheme Ferdjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on analyzing a Griffith crack situated at the center of an infinite strip. The problem is reformulated as a hyper-singular integral equation and solved numerically using second-order Chebyshev polynomials. The primary objective is to calculate the stress intensity factor in mode 1, denoted as K1. The obtained results reveal the influence of the strip width and crack length on the stress intensity factor, assuming stress-free edges. Additionally, a comparison is made with relevant literature to validate the findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=center%20crack" title="center crack">center crack</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomial" title=" Chebyshev polynomial"> Chebyshev polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper%20singular%20integral%20equation" title=" hyper singular integral equation"> hyper singular integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Griffith" title=" Griffith"> Griffith</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20strip" title=" infinite strip"> infinite strip</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/167367/numerical-approach-for-solving-the-hyper-singular-integral-equation-in-the-analysis-of-a-central-symmetrical-crack-within-an-infinite-strip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13093</span> Numerical and Comparative Analysis between Two Composite Plates Notched in Different Shapes and Repaired by Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amari%20Khaoula">Amari Khaoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrahou%20Mohamed"> Berrahou Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topic of our article revolves around a numerical and comparative analysis between two notched Boron/epoxy plates that are U-shaped and the other V-shaped, cracked, and repaired by a rectangular patch of the same composite material; the finite element method was used for the analytical study and comparison of the results obtained for determining the optimal shape of notch which will give a longer life to the repair. In this context, we studied the variation of the stress intensity factor, the evolution of the damaged area, and the calculation of the ratio of the damaged area according to the crack length and the concentration of the Von Mises stresses as a function of the lengths of the paths. According to the results obtained, we conclude that the notch plate U is the optimal one than notch plate V because it has lower values either for the stress intensity factor (SIF), damaged area ratio (Dᵣ), or the Von Mises stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20notch%20U" title="the notch U">the notch U</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20notch%20V" title=" the notch V"> the notch V</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20finite%20element%20method%20FEM" title=" the finite element method FEM"> the finite element method FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20patch" title=" rectangular patch"> rectangular patch</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20area%20ratio" title=" damaged area ratio"> damaged area ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Mises%20stresses" title=" Von Mises stresses"> Von Mises stresses</a> </p> <a href="https://publications.waset.org/abstracts/158158/numerical-and-comparative-analysis-between-two-composite-plates-notched-in-different-shapes-and-repaired-by-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13092</span> Response to Comprehensive Stress of Growing Greylag Geese Offered Alternative Fiber Sources </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=He%20Li%20Wen">He Li Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Qing%20Xiang"> Meng Qing Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20De%20Yong"> Li De Yong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Ya%20Wei"> Zhang Ya Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%20Li%20Ping"> Ren Li Ping </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress always exerts some extent adverse effects on the animal production, food safety and quality concerns. Stress is commonly-seen in livestock industry, but there is rare literature focusing on the effects of nutrition stress. What’s more, the research always concentrates on the effect of single stress additionally, there is scarce information about the stress effect on waterfowl like goose as they are commonly thought to be tolerant to stress. To our knowledge, it is not always true. The object of this study was to evaluate the response of growing Greylag geese offered different fiber sources to the comprehensive stress, primarily involving the procedures of fasting, transport, capture, etc. The birds were randomly selected to rear with the diets differing in fiber source, being corn straw silage (CSS), steam-exploded corn straw (SECS), steam-exploded wheat straw (SEWS), and steam-exploded rice straw (SERS), respectively. Blood samples designated for the determination of stress status were collected before (pre-stress ) and after (post-stress ) the stressors carried out. No difference (P>0.05) was found on the pre-stress blood parameters of growing Greylags fed alternative fiber sources. Irrespective of the dietary differences, the comprehensive stress decreased (P<0.01) the concentration of SOD and increased (P<0.01) that of CK. Between the dietary treatments, the birds fed CSS had a higher (P<0.05)post-stress concentration of MDA than those offered SECS, along with a similarity to those fed the other two fiber sources. There was no difference (P>0.05) found on the stress response of the birds fed different fiber sources. In conclusion, SOD and CK concentration in blood may be more sensitive in indicating stress status and dietary fiber source exerted no effect on the stress response of growing Greylags. There is little chance to improve the stress status by ingesting different fiber sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20parameter" title="blood parameter">blood parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20source" title=" fiber source"> fiber source</a>, <a href="https://publications.waset.org/abstracts/search?q=Greylag%20goose" title=" Greylag goose"> Greylag goose</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/26742/response-to-comprehensive-stress-of-growing-greylag-geese-offered-alternative-fiber-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13091</span> Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20D.%20El%20Wakil">Sherif D. El Wakil</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Rice"> John Rice</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20to%20model%20a%20slab" title="finite element method to model a slab">finite element method to model a slab</a>, <a href="https://publications.waset.org/abstracts/search?q=slab%20undergoing%20plastic%20deformation" title=" slab undergoing plastic deformation"> slab undergoing plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution%20around%20a%20circular%20hole" title=" stress distribution around a circular hole"> stress distribution around a circular hole</a>, <a href="https://publications.waset.org/abstracts/search?q=visioplasticity" title=" visioplasticity"> visioplasticity</a> </p> <a href="https://publications.waset.org/abstracts/34590/computation-and-validation-of-the-stress-distribution-around-a-circular-hole-in-a-slab-undergoing-plastic-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13090</span> Simulation of Binary Nitride Inclusions Effect on Tensile Properties of Steel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Dalirbod">Ali Dalirbod</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Ahmadian"> Peyman Ahmadian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inclusions are unavoidable part of all steels. Non-metallic inclusions have significant effects on mechanical properties of steel. The effects of inclusion on stress concentration around the matrix/inclusion have been extensively studied. The results relating to single inclusion behavior, describe properly the behavior of stress but not the elongation drop. The raised stress in inclusion/matrix results in crack initiation. The influence of binary inclusions on stress concentration around matrix is a major aim of this work which is representative of the simple pattern distribution of non-metallic inclusions. Stress concentration around inclusions in this case depends on parameters like distance between two inclusions (d), angle between centrally linking line of two inclusions, load axis (φ), and rotational angle of inclusion (θ). FEM analysis was applied to investigate the highest and lowest ductility versus varying parameters above. The simulation results show that there is a critical distance between two cubic inclusions in which bigger than the threshold, the stress, and strain field in matrix/inclusions interface converts into individual fields around each inclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitride%20inclusion" title="nitride inclusion">nitride inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion-matrix%20interface" title=" inclusion-matrix interface"> inclusion-matrix interface</a> </p> <a href="https://publications.waset.org/abstracts/33985/simulation-of-binary-nitride-inclusions-effect-on-tensile-properties-of-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13089</span> Numerical Investigation on Optimizing Fatigue Life in a Lap Joint Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zamani">P. Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohajerzadeh"> S. Mohajerzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Masoudinejad"> R. Masoudinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Farhangdoost"> K. Farhangdoost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The riveting process is one of the important ways to keep fastening the lap joints in aircraft structures. Failure of aircraft lap joints directly depends on the stress field in the joint. An important application of riveting process is in the construction of aircraft fuselage structures. In this paper, a 3D finite element method is carried out in order to optimize residual stress field in a riveted lap joint and also to estimate its fatigue life. In continue, a number of experiments are designed and analyzed using design of experiments (DOE). Then, Taguchi method is used to select an optimized case between different levels of each factor. Besides that, the factor which affects the most on residual stress field is investigated. Such optimized case provides the maximum residual stress field. Fatigue life of the optimized joint is estimated by Paris-Erdogan law. Stress intensity factors (SIFs) are calculated using both finite element analysis and experimental formula. In addition, the effect of residual stress field, geometry, and secondary bending are considered in SIF calculation. A good agreement is found between results of such methods. Comparison between optimized fatigue life and fatigue life of other joints has shown an improvement in the joint’s life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title="fatigue life">fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=riveting%20process" title=" riveting process"> riveting process</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/29378/numerical-investigation-on-optimizing-fatigue-life-in-a-lap-joint-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13088</span> Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Shahrooi">S. Shahrooi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Talavari"> A. Talavari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title="stress intensity factor">stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20loading" title=" torsional loading"> torsional loading</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless%20method" title=" meshless method "> meshless method </a> </p> <a href="https://publications.waset.org/abstracts/18554/calculating-stress-intensity-factor-of-cracked-axis-by-using-a-meshless-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13087</span> Growth of Nitella in Response to Cesium Exposure: Implication for Phytoremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harun%20Rashid">Harun Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Keerthi%20S.%20S.%20Atapaththu"> Keerthi S. S. Atapaththu</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Asaeda"> Takashi Asaeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cesium (Cs) induced growth and stress response of Nitella were studied after exposure to four concentration of the metal; i.e. 0 (control), 0.001, 0.01, and 0.1 ppm Cs in growth media. Each treatment with three replicates were randomly allocated to 12 glass beakers in a complete randomize design and the experiment was continued for 30 days. At the end of the experiment, shoot length, cesium content, total chlorophyll, and plant stress response were compared. Anti-oxidant enzyme activities (peroxidase, catalase, and ascorbic peroxidase) and the concentration of H2O2 were measured to check plant stress. The longest shoot was found in control treatment (0 ppm Cs) and the shoot length of plants exposed to 0.001 ppm was statistically similar to that of control. Concentration of cesium in plants grown at 0.001, 0.01, and 0.1 ppm were significantly higher than those in control treatments. The antioxidant enzymes activities of plants exposed to cesium were significantly higher than those grown without any Cs (control). An elevated level of H2O2 concentration was also observed in former groups of plants. Further, the reduction in chlorophyll concentration and chlorophyll fluorescence in response to cesium exposure indicated the chronically damaged photosynthetic efficiency in cesium stressed Nitella. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title="antioxidant enzymes">antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=cesium" title=" cesium"> cesium</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitella" title=" Nitella"> Nitella</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/24580/growth-of-nitella-in-response-to-cesium-exposure-implication-for-phytoremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13086</span> Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Yu%20Wu">Jia-Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Fen%20Chuang"> Shu-Fen Chuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong-Yang%20Lai"> Rong-Yang Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=class%20v%20restoration" title="class v restoration">class v restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20situation" title=" loading situation"> loading situation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/66073/effect-of-class-v-cavity-configuration-and-loading-situation-on-the-stress-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=437">437</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=438">438</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stress%20concentration%20factor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>