CINXE.COM

Search results for: space exploration

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: space exploration</title> <meta name="description" content="Search results for: space exploration"> <meta name="keywords" content="space exploration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="space exploration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="space exploration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4857</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: space exploration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4857</span> State’s Responsibility of Space Debris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athari%20Farhani">Athari Farhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract The existence of space debris is a direct implication of human activities in outer space. The amount of orbital debris resulting from human exploration and use of outer space has been steadily increasing in the history of human exploration and use of outer space, so that space debris in the responsibility of the launching state. Space debris not only hs a direct impact on environmentalpollution but can also harm and endanger the safety of human life. Despite the legal provisions governing the exploration and use of outer space, both international space law and liability convention, however, these legal provisions are only basic prinsiples, so that further thought or effort are needed, such as new international legal instruments to regulate the existence of space debris. The method used in this research is normative juridical with an approach to written legal regulation, especially international agreements related to space law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=state%E2%80%99s%20responsibility" title="state’s responsibility">state’s responsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20debris" title=" space debris"> space debris</a>, <a href="https://publications.waset.org/abstracts/search?q=outerspace" title=" outerspace"> outerspace</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20law" title=" international law"> international law</a> </p> <a href="https://publications.waset.org/abstracts/167497/states-responsibility-of-space-debris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4856</span> Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somoshree%20Datta">Somoshree Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Chithra%20A.%20V."> Chithra A. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Nithyanandan"> Sandeep Nithyanandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Smitha%20K.%20K."> Smitha K. K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20exploration" title=" space exploration"> space exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20missions" title=" space missions"> space missions</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/188421/orbiting-intelligence-a-comprehensive-survey-of-ai-applications-and-advancements-in-space-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4855</span> Intellectual Property Implications in the Context of Space Exploration with a Special Focus on ESA Rules and Regulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Ana%20Maria%20Ungureanu">Linda Ana Maria Ungureanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article details the manner in which European law establishes the protection and ownership rights over works created in off-world environments or in relation to space exploration. In this sense, the analysis is focused on identifying the legal treatment applicable to creative works based on the provisions regulated under the International Space Treaties, on one side, and the International IP Treaties and subsequent EU legislation, on the other side, with a special interest on ESA Rules and Regulations. Furthermore, the article analyses the manner in which ESA regulates the ownership regime applicable for creative works, taking into account the relationship existing between the inventor/creator and ESA and the environment in which the creative work was developed. Moreover, the article sets a series of de lege ferenda proposals for the regulation of intellectual property matters in the context of space exploration, the main purpose being to identify legal measures and steps that need to be taken in order to ensure that creative activities are fostered and understood as a significant catalyst for encouraging space exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intellectual%20property%20law" title="intellectual property law">intellectual property law</a>, <a href="https://publications.waset.org/abstracts/search?q=ESA%20guidelines" title=" ESA guidelines"> ESA guidelines</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20IP%20treaties" title=" international IP treaties"> international IP treaties</a>, <a href="https://publications.waset.org/abstracts/search?q=EU%20legislation" title=" EU legislation"> EU legislation</a> </p> <a href="https://publications.waset.org/abstracts/148352/intellectual-property-implications-in-the-context-of-space-exploration-with-a-special-focus-on-esa-rules-and-regulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4854</span> Managing the Cosmos: Problems, Solutions, and Future Insights into Space Debris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Nazir%20Wani">Irfan Nazir Wani</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushpendra%20Kumar%20Shukla"> Pushpendra Kumar Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Debris, also called waste or junk, present in orbit of Earth or orbital debris, offers a substantial challenge to space exploration. Satellite operations and other space-based activities. This research paper delves into the causes and effects of space debris accumulation, explores current mitigation techniques, and presents a hopeful outlook on the potential for future sustainable space activities. The paper emphasizes the necessity of addressing planetary fragments to ensure durable sustainability in universe exploration and utilization. It examines various strategies for mitigating space debris, including debris removal technologies, spacecraft design improvements, and international collaboration efforts. Additionally, the paper highlights the importance of space debris monitoring and tracking systems in preventing collisions and minimizing the growth of orbital debris. By comprehending the complexities of space debris and implementing effective mitigation measures, the space industry can work towards a future where sustainable space activities are achievable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20shuttle" title="space shuttle">space shuttle</a>, <a href="https://publications.waset.org/abstracts/search?q=debris" title=" debris"> debris</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20junk" title=" space junk"> space junk</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=fragments" title=" fragments"> fragments</a>, <a href="https://publications.waset.org/abstracts/search?q=orbit" title=" orbit"> orbit</a> </p> <a href="https://publications.waset.org/abstracts/187359/managing-the-cosmos-problems-solutions-and-future-insights-into-space-debris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4853</span> Legal and Contractual Framework for Private Experiments in Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Ana-Maria%20Ungureanu">Linda Ana-Maria Ungureanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As space exploration opens to new actors, we are faced with the interesting question of regulating more complex structures that enable private experiments. From intellectual property implications to private and public law, there is a multitude of factors and legal structures that need to be taken into consideration when opening space, and these structures need to be harmonized with the International Space Treaties governing space exploration. In this sense, this article presents an overview of the legal and contractual framework applicable to private experiments conducted in space and/or in relation to off-world environments. Additionally, the article analyses the manner in which national space agencies regulate agreements concluded with private actors and research institutions. Finally, the article sets a series of de lege ferenda proposals for the regulation of general research and development rules and intellectual property matters that are connected to experiments and research conducted in space and/or concerning off-world environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=private%20space" title="private space">private space</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20property" title=" intellectual property"> intellectual property</a>, <a href="https://publications.waset.org/abstracts/search?q=contracts" title=" contracts"> contracts</a>, <a href="https://publications.waset.org/abstracts/search?q=ESA%20guidelines" title=" ESA guidelines"> ESA guidelines</a>, <a href="https://publications.waset.org/abstracts/search?q=EU%20legislation" title=" EU legislation"> EU legislation</a>, <a href="https://publications.waset.org/abstracts/search?q=Intellectual%20property%20law" title=" Intellectual property law"> Intellectual property law</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20IP%20treaties" title=" international IP treaties"> international IP treaties</a> </p> <a href="https://publications.waset.org/abstracts/168384/legal-and-contractual-framework-for-private-experiments-in-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4852</span> Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiangwan%20Xu">Jiangwan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyu%20Ding"> Chunyu Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground-based%20radar" title="ground-based radar">ground-based radar</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20exploration" title=" lunar exploration"> lunar exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20imaging" title=" radar imaging"> radar imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20surface%2Fsubsurface%20detection" title=" lunar surface/subsurface detection"> lunar surface/subsurface detection</a> </p> <a href="https://publications.waset.org/abstracts/190029/lunar-exploration-based-on-ground-based-radar-current-research-progress-and-future-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4851</span> The Role of State Practices and Custom in Outer Space Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biswanath%20Gupta">Biswanath Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju%20Kd"> Raju Kd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space law is the new entry in the basket of international law in the latter half of the 20th Century. In the last hundred and fifty years, courts and scholars developed a consensus that, the custom is an important source of international law. Article 38(1) (b) of the statute of the International Court of Justice recognized international custom as a source of international law. State practices and usages have a greater role to play in formulating customary international law. This paper examines those state practices which can be qualified to become international customary law. Since, 1979 (after Moon Treaty) no hard law have been developed in the area of space exploration. It tries to link between state practices and custom in space exploration and development of customary international law in space activities. The paper uses doctrinal method of legal research for examining the current questions of international law. The paper explores different international legal documents such as General Assembly Resolutions, Treaty principles, working papers of UN, cases relating to customary international law and writing of jurists relating to space law and customary international law. It is argued that, principles such as common heritage of mankind, non-military zone, sovereign equality, nuclear weapon free zone and protection of outer space environment, etc. developed state practices among the international community which can be qualified to become international customary law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customary%20international%20law" title="customary international law">customary international law</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20practice" title=" state practice"> state practice</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20law" title=" space law"> space law</a>, <a href="https://publications.waset.org/abstracts/search?q=treaty" title=" treaty"> treaty</a> </p> <a href="https://publications.waset.org/abstracts/55110/the-role-of-state-practices-and-custom-in-outer-space-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4850</span> An Autonomous Space Debris-Removal System for Effective Space Missions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shriya%20Chawla">Shriya Chawla</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Malhotra"> Vinayak Malhotra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space exploration has noted an exponential rise in the past two decades. The world has started probing the alternatives for efficient and resourceful sustenance along with utilization of advanced technology viz., satellites on earth. Space propulsion forms the core of space exploration. Of all the issues encountered, space debris has increasingly threatened the space exploration and propulsion. The efforts have resulted in the presence of disastrous space debris fragments orbiting the earth at speeds up to several kilometres per hour. Debris are well known as a potential damage to the future missions with immense loss of resources, mankind, and huge amount of money is invested in active research on them. Appreciable work had been done in the past relating to active space debris-removal technologies such as harpoon, net, drag sail. The primary emphasis is laid on confined removal. In recently, remove debris spacecraft was used for servicing and capturing cargo ships. Airbus designed and planned the debris-catching net experiment, aboard the spacecraft. The spacecraft represents largest payload deployed from the space station. However, the magnitude of the issue suggests that active space debris-removal technologies, such as harpoons and nets, still would not be enough. Thus, necessitating the need for better and operative space debris removal system. Techniques based on diverting the path of debris or the spacecraft to avert damage have turned out minimal usage owing to limited predictions. Present work focuses on an active hybrid space debris removal system. The work is motivated by the need to have safer and efficient space missions. The specific objectives of the work are 1) to thoroughly analyse the existing and conventional debris removal techniques, their working, effectiveness and limitations under varying conditions, 2) to understand the role of key controlling parameters in coupled operation of debris capturing and removal. The system represents the utilization of the latest autonomous technology available with an adaptable structural design for operations under varying conditions. The design covers advantages of most of the existing technologies while removing the disadvantages. The system is likely to enhance the probability of effective space debris removal. At present, systematic theoretical study is being carried out to thoroughly observe the effects of pseudo-random debris occurrences and to originate an optimal design with much better features and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20exploration" title="space exploration">space exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=debris%20removal" title=" debris removal"> debris removal</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20crafts" title=" space crafts"> space crafts</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20accidents" title=" space accidents"> space accidents</a> </p> <a href="https://publications.waset.org/abstracts/100009/an-autonomous-space-debris-removal-system-for-effective-space-missions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4849</span> Exploring Environmental, Social, and Governance (ESG) Standards for Space Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachael%20Sullivan">Rachael Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Berman"> Joshua Berman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of satellites orbiting earth are in the thousands now. Commercial launches are increasing, and civilians are venturing into the outer reaches of the atmosphere. As the space industry continues to grow and evolve, so too will the demand on resources, the disparities amongst socio-economic groups, and space company governance standards. Outside of just ensuring that space operations are compliant with government regulations, export controls, and international sanctions, companies should also keep in mind the impact their operations will have on society and the environment. Those looking to expand their operations into outer space should remain mindful of both the opportunities and challenges that they could encounter along the way. From commercial launches promoting civilian space travel—like the recent launches from Blue Origin, Virgin Galactic, and Space X—to regulatory and policy shifts, the commercial landscape beyond the Earth's atmosphere is evolving. But practices will also have to become sustainable. Through a review and analysis of space industry trends, international government regulations, and empirical data, this research explores how Environmental, Social, and Governance (ESG) reporting and investing will manifest within a fast-changing space industry.Institutions, regulators, investors, and employees are increasingly relying on ESG. Those working in the space industry will be no exception. Companies (or investors) that are already engaging or plan to engage in space operations should consider 1) environmental standards and objectives when tackling space debris and space mining, 2) social standards and objectives when considering how such practices may impact access and opportunities for different socioeconomic groups to the benefits of space exploration, and 3) how decision-making and governing boards will function ethically, equitably, and sustainably as we chart new paths and encounter novel challenges in outer space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=ESG" title=" ESG"> ESG</a>, <a href="https://publications.waset.org/abstracts/search?q=law" title=" law"> law</a>, <a href="https://publications.waset.org/abstracts/search?q=outer%20space" title=" outer space"> outer space</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a> </p> <a href="https://publications.waset.org/abstracts/149118/exploring-environmental-social-and-governance-esg-standards-for-space-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4848</span> Establishment of Precision System for Underground Facilities Based on 3D Absolute Positioning Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonggu%20Jang">Yonggu Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jisong%20Ryu"> Jisong Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Woosik%20Lee"> Woosik Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to address the limitations of existing underground facility exploration equipment in terms of exploration depth range, relative depth measurement, data processing time, and human-centered ground penetrating radar image interpretation. The study proposed the use of 3D absolute positioning technology to develop a precision underground facility exploration system. The aim of this study is to establish a precise exploration system for underground facilities based on 3D absolute positioning technology, which can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The study developed software and hardware technologies to build the precision exploration system. The software technologies developed include absolute positioning technology, ground surface location synchronization technology of GPR exploration equipment, GPR exploration image AI interpretation technology, and integrated underground space map-based composite data processing technology. The hardware systems developed include a vehicle-type exploration system and a cart-type exploration system. The data was collected using the developed exploration system, which employs 3D absolute positioning technology. The GPR exploration images were analyzed using AI technology, and the three-dimensional location information of the explored precise underground facilities was compared to the integrated underground space map. The study successfully developed a precision underground facility exploration system based on 3D absolute positioning technology. The developed exploration system can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The system comprises software technologies that build a 3D precise DEM, synchronize the GPR sensor's ground surface 3D location coordinates, automatically analyze and detect underground facility information in GPR exploration images and improve accuracy through comparative analysis of the three-dimensional location information, and hardware systems, including a vehicle-type exploration system and a cart-type exploration system. The study's findings and technological advancements are essential for underground safety management in Korea. The proposed precision exploration system significantly contributes to establishing precise location information of underground facility information, which is crucial for underground safety management and improves the accuracy and efficiency of exploration. The study addressed the limitations of existing equipment in exploring underground facilities, proposed 3D absolute positioning technology-based precision exploration system, developed software and hardware systems for the exploration system, and contributed to underground safety management by providing precise location information. The developed precision underground facility exploration system based on 3D absolute positioning technology has the potential to provide accurate and efficient exploration of underground facilities up to a depth of 5m. The system's technological advancements contribute to the establishment of precise location information of underground facility information, which is essential for underground safety management in Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20absolute%20positioning" title="3D absolute positioning">3D absolute positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=AI%20interpretation%20of%20GPR%20exploration%20images" title=" AI interpretation of GPR exploration images"> AI interpretation of GPR exploration images</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20data%20processing" title=" complex data processing"> complex data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20underground%20space%20maps" title=" integrated underground space maps"> integrated underground space maps</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20exploration%20system%20for%20underground%20facilities" title=" precision exploration system for underground facilities"> precision exploration system for underground facilities</a> </p> <a href="https://publications.waset.org/abstracts/164279/establishment-of-precision-system-for-underground-facilities-based-on-3d-absolute-positioning-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4847</span> Need of National Space Legislation for Space Faring Nations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed">Muhammad Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Caixia"> Yang Caixia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for national space legislation is pivotal, particularly in light of the fact that in recent years space activities have grown immensely both in volume and diversity. Countries are progressively developing capabilities in space exploration and scientific discoveries, market their capabilities to manufacture satellites, provide launch services from their facilities and are looking to privatize and commercialize their space resources. Today, nations are also seeking to comprehend the technological and financial potential of the private sector and are considering to share their financial burdens with them and to limit their exposures to risks, but they are lagging behind in legal framework in this regard. In the perspective of these emerging developments, it is therefore, felt that national space legislation should be enacted with the goal of building and implementing a vibrant and transparent legal framework at the national level to hasten investments and to ensure growth in this capital intensive - highly yield strategic sector. This study looks at (I) the international legal framework that governs space activities; (II) motivation behind making national space laws; and (III) the need for national space legislation. The paper concludes with some recommendations with regards to the conceivable future direction for national space legislation, in particular space empowered sub-areas for countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=international%20conventions" title="international conventions">international conventions</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20legislation" title=" national legislation"> national legislation</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20faring%20nations" title=" space faring nations"> space faring nations</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20law" title=" space law"> space law</a> </p> <a href="https://publications.waset.org/abstracts/73072/need-of-national-space-legislation-for-space-faring-nations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4846</span> Development of a Web Exploration Support System Focusing on Accumulation of Search Contexts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamazaki">T. Yamazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Onuma"> R. Onuma</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kaminaga"> H. Kaminaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Miyadera"> Y. Miyadera</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nakamura"> S. Nakamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web exploration has increasingly diversified in accordance with the development of browsing environments on the Internet. Moreover, advanced exploration often conducted in intellectual activities such as surveys in research activities. This kind of exploration is conducted for a long period with trials and errors. In such a case, it is extremely important for a user to accumulate the search contexts and understand them. However, existing support systems were not effective enough since most systems could not handle the various factors involved in the exploration. This research aims to develop a novel system to support web exploration focusing on the accumulation of the search contexts. This paper mainly describes the outline of the system. An experiment using the system is also described. Finally, features of the system are discussed based on the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=web%20exploration%20context" title="web exploration context">web exploration context</a>, <a href="https://publications.waset.org/abstracts/search?q=refinement%20of%20search%20intention" title=" refinement of search intention"> refinement of search intention</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulation%20of%20context" title=" accumulation of context"> accumulation of context</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration%20support" title=" exploration support"> exploration support</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20visualization" title=" information visualization"> information visualization</a> </p> <a href="https://publications.waset.org/abstracts/4213/development-of-a-web-exploration-support-system-focusing-on-accumulation-of-search-contexts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4845</span> Analyzing Extended Reality Technologies for Human Space Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morgan%20Kuligowski">Morgan Kuligowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marientina%20Gotsis"> Marientina Gotsis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extended reality (XR) technologies share an intertwined history with spaceflight and innovation. New advancements in XR technologies offer expanding possibilities to advance the future of human space exploration with increased crew autonomy. This paper seeks to identify implementation gaps between existing and proposed XR space applications to inform future mission planning. A review of virtual reality, augmented reality, and mixed reality technologies implemented aboard the International Space Station revealed a total of 16 flown investigations. A secondary set of ground-tested XR human spaceflight applications were systematically retrieved from literature sources. The two sets of XR technologies, those flown and those existing in the literature were analyzed to characterize application domains and device types. Comparisons between these groups revealed untapped application areas for XR to support crew psychological health, in-flight training, and extravehicular operations on future flights. To fill these roles, integrating XR technologies with advancements in biometric sensors and machine learning tools is expected to transform crew capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20reality" title=" extended reality"> extended reality</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20space%20station" title=" international space station"> international space station</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20reality" title=" mixed reality"> mixed reality</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a> </p> <a href="https://publications.waset.org/abstracts/138128/analyzing-extended-reality-technologies-for-human-space-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4844</span> Cosmic Radiation Hazards and Protective Strategies in Space Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnaz%20Mostafavi">Mehrnaz Mostafavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Azani"> Alireza Azani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahtab%20Shabani"> Mahtab Shabani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Ghafari"> Fatemeh Ghafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While filled with promise and wonder, space exploration also presents significant challenges, one of the foremost being the threat of cosmic radiation to astronaut health. Recent advancements in assessing these risks and developing protective strategies have shed new light on this issue. Cosmic radiation encompasses a variety of high-energy particles originating from sources like solar particle events, galactic cosmic rays, and cosmic rays from beyond the solar system. These particles, composed of protons, electrons, and heavy ions, pose a substantial threat to human health in space due to the lack of Earth's protective atmosphere and magnetic field. Researchers have made significant progress in assessing the risks associated with cosmic radiation exposure. By employing advanced dosimetry techniques and conducting biological studies, they have gained insights into how cosmic radiation affects astronauts' health, including increasing the risk of cancer and radiation sickness. This research has led to personalized risk assessment methods tailored to individual astronaut profiles. Distinctive protection strategies have been proposed to combat the dangers of cosmic radiation. These include developing spacecraft shielding materials and designs to enhance radiation protection. Additionally, researchers are exploring pharmacological interventions such as radioprotective drugs and antioxidant therapies to mitigate the biological effects of radiation exposure and preserve astronaut well-being. The findings from recent research have significant implications for the future of space exploration. By advancing our understanding of cosmic radiation risks and developing effective protection strategies, we pave the way for safer and more sustainable human missions beyond Earth's orbit. This is especially crucial for long-duration missions to destinations like Mars, where astronauts will face prolonged exposure to cosmic radiation. In conclusion, recent research has marked a milestone in addressing the challenges posed by cosmic radiation in space exploration. By delving into the complexities of cosmic radiation exposure and developing innovative protection strategies, scientists are ensuring the health and resilience of astronauts as they venture into the vast expanse of the cosmos. Continued research and collaboration in this area are essential for overcoming the cosmic radiation challenge and enabling humanity to embark on new frontiers of exploration and discovery in space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Space%20exploration" title="Space exploration">Space exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20radiation" title=" cosmic radiation"> cosmic radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=astronaut%20health" title=" astronaut health"> astronaut health</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=protective%20strategies" title=" protective strategies"> protective strategies</a> </p> <a href="https://publications.waset.org/abstracts/186188/cosmic-radiation-hazards-and-protective-strategies-in-space-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4843</span> Optimization of Commercial Gray Space along the Street from the Perspective of Vitality Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengjiao%20Hu">Mengjiao Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, China's consumption pattern is entering the "experience era"; people's consumption behavior is no longer simply "buy, buy, buy" but the transition from "consumption in space" to "consumption of space". The street is a basic public product and an important public space in the city, and commerce along the street is an important space for people to consume in the "experience era". Therefore, in this way, it is particularly important to create the vitality of the gray space along the street. From the perspective of vitality construction, this paper takes Sha Zheng Street in Chongqing as the empirical object, combined with the theoretical knowledge of behavioral architecture, and based on the current situation of the commercial gray space along Sha Zheng Street, this paper explores the influence factors and the constraints behind the spatial vitality and then puts forward a general strategy to improve the spatial vitality of the commercial gray space along the street. The author hopes that through the exploration of the vitality of commercial gray space along the street, environmental design can be introduced into the integrated design vision of the urban public environment, and the urban designers can be inspired to create a street environment with a living atmosphere with a small start. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitality%20creation" title="vitality creation">vitality creation</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20space" title=" gray space"> gray space</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20commerce" title=" street commerce"> street commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=sha%20zheng%20street" title=" sha zheng street"> sha zheng street</a> </p> <a href="https://publications.waset.org/abstracts/170660/optimization-of-commercial-gray-space-along-the-street-from-the-perspective-of-vitality-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4842</span> Exploration and Exploitation within Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20G%C3%A5svaer">D. Gåsvaer</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20St%C3%A5lberg"> L. Stålberg</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fundin"> A. Fundin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jackson"> M. Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Johansson"> P. Johansson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exploration and exploitation capabilities are both important within Operations as means for improvement when managed separately, and for establishing dynamic improvement capabilities when combined in balance. However, it is unclear what exploration and exploitation capabilities imply in improvement and development work within an operations context. So in order to better understand how to develop exploration and exploitation capabilities within operations, the main characteristics of these constructs needs to be identified and further understood. Thus, the objective of this research is to increase the understanding about exploitation and exploration characteristics, to concretize what they translates to within the context of improvement and development work in an operations unit, and to identify practical challenges. A literature review and a case study are presented. In the literature review, different interpretations of exploration and exploitation are portrayed, key characteristics have been identified, and a deepened understanding of exploration and exploitation characteristics is described. The case in the study is an operations unit, and the aim is to explore to what extent and in what ways exploration and exploitation activities are part of the improvement structures and processes. The contribution includes an identification of key characteristics of exploitation and exploration, as well as an interpretation of the constructs. Further, some practical challenges are identified. For instance, exploration activities tend to be given low priority, both in daily work as in the manufacturing strategy. Also, the overall understanding about the concepts of exploitation and exploration (or any similar aspect of dynamic improvement capabilities) is very low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploitation" title="exploitation">exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20production" title=" lean production"> lean production</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/32306/exploration-and-exploitation-within-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4841</span> India and Space Insurance Policy: An Analytical Insight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20Jayasimha">Shreyas Jayasimha</a>, <a href="https://publications.waset.org/abstracts/search?q=Suneel%20Anand%20Sundharesan"> Suneel Anand Sundharesan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohan%20Tigadi"> Rohan Tigadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent past, the United States of America and Russia were the only two dominant players in the field of space exploration and had a virtual monopoly in the field of space and technology. However, this has changed over the past few years. Many other nation states such as India, China, and the UK have made significant progress in this field. Amongst these nations, the growth and development of the Indian space program have been nothing short of a miracle. Starting recently, India has successfully launched a series of satellites including its much acclaimed Mangalyaan mission, which placed a satellite in Mars’ orbit. The fact that India was able to attain this feat in its attempt demonstrates the enormous growth potential and promise that the Indian space program holds for the coming years. However, unlike other space-faring nations, India does not have a comprehensive and consolidated space insurance policy. In this regard, it is pertinent to note that, the costs and risks involved in a administering a space program are enormous. Therefore, in the absence of a comprehensive space insurance policy, any losses from an unsuccessful will have to be borne by the state exchequer. Thus, in order to ensure that Indian space program continues on its upward trajectory, the Indian establishment should seriously consider formulating a comprehensive insurance policy. This paper intends to analyze the international best practices followed by other space-faring nations in relation to space insurance policy. Thereafter, the authors seek to examine the current regime in India relating to space insurance policy. Finally, the authors will conclude by providing a series of recommendations regarding the essential elements that should be part of any Indian space insurance policy regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=India" title="India">India</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20insurance%20policy" title=" space insurance policy"> space insurance policy</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20law" title=" space law"> space law</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20space%20research%20organization" title=" Indian space research organization"> Indian space research organization</a> </p> <a href="https://publications.waset.org/abstracts/81927/india-and-space-insurance-policy-an-analytical-insight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4840</span> Establishment of a Test Bed for Integrated Map of Underground Space and Verification of GPR Exploration Equipment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisong%20Ryu">Jisong Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Woosik%20Lee"> Woosik Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonggu%20Jang"> Yonggu Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the process of establishing a reliable test bed for verifying the usability of Ground Penetrating Radar (GPR) exploration equipment based on an integrated underground spatial map in Korea. The aim of this study is to construct a test bed consisting of metal and non-metal pipelines to verify the performance of GPR equipment and improve the accuracy of the underground spatial integrated map. The study involved the design and construction of a test bed for metal and non-metal pipe detecting tests. The test bed was built in the SOC Demonstration Research Center (Yeoncheon) of the Korea Institute of Civil Engineering and Building Technology, burying metal and non-metal pipelines up to a depth of 5m. The test bed was designed in both vehicle-type and cart-type GPR-mounted equipment. The study collected data through the construction of the test bed and conducting metal and non-metal pipe detecting tests. The study analyzed the reliability of GPR detecting results by comparing them with the basic drawings, such as the underground space integrated map. The study contributes to the improvement of GPR equipment performance evaluation and the accuracy of the underground spatial integrated map, which is essential for urban planning and construction. The study addressed the question of how to verify the usability of GPR exploration equipment based on an integrated underground spatial map and improve its performance. The study found that the test bed is reliable for verifying the performance of GPR exploration equipment and accurately detecting metal and non-metal pipelines using an integrated underground spatial map. The study concludes that the establishment of a test bed for verifying the usability of GPR exploration equipment based on an integrated underground spatial map is essential. The proposed Korean-style test bed can be used for the evaluation of GPR equipment performance and support the construction of a national non-metal pipeline exploration equipment performance evaluation center in Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Korea-style%20GPR%20testbed" title="Korea-style GPR testbed">Korea-style GPR testbed</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20pipe%20detecting" title=" metal pipe detecting"> metal pipe detecting</a>, <a href="https://publications.waset.org/abstracts/search?q=non-metal%20pipe%20detecting" title=" non-metal pipe detecting"> non-metal pipe detecting</a> </p> <a href="https://publications.waset.org/abstracts/164644/establishment-of-a-test-bed-for-integrated-map-of-underground-space-and-verification-of-gpr-exploration-equipment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4839</span> A Reduced Distributed Sate Space for Modular Petri Nets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsen%20Khlifa">Sawsen Khlifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiheb%20AMeur%20Abid"> Chiheb AMeur Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Belhassan%20Zouari"> Belhassan Zouari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modular verification approaches have been widely attempted to cope with the well known state explosion problem. This paper deals with the modular verification of modular Petri nets. We propose a reduced version for the modular state space of a given modular Petri net. The new structure allows the creation of smaller modular graphs. Each one draws the behavior of the corresponding module and outlines some global information. Hence, this version helps to overcome the explosion problem and to use less memory space. In this condensed structure, the verification of some generic properties concerning one module is limited to the exploration of its associated graph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20systems" title="distributed systems">distributed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20verification" title=" modular verification"> modular verification</a>, <a href="https://publications.waset.org/abstracts/search?q=petri%20nets" title=" petri nets"> petri nets</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20space%20explosition" title=" state space explosition"> state space explosition</a> </p> <a href="https://publications.waset.org/abstracts/148880/a-reduced-distributed-sate-space-for-modular-petri-nets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4838</span> Study on the Characteristics of Chinese Urban Network Space from the Perspective of Innovative Collaboration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wang">Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilun%20Xu"> Yilun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of knowledge economy era, deepening the mechanism of cooperation and adhering to sharing and win-win cooperation has become new direction of urban development nowadays. In recent years, innovative collaborations between cities are becoming more and more frequent, whose influence on urban network space has aroused many scholars' attention. Taking 46 cities in China as the research object, the paper builds the connectivity of innovative network between cities and the linkages of urban external innovation using patent cooperation data among cities, and explores urban network space in China by the application of GIS, which is a beneficial exploration to the study of social network space in China in the era of information network. The result shows that the urban innovative network space and geographical entity space exist differences, and the linkages of external innovation are not entirely related to the city innovative capacity and the level of economy development. However, urban innovative network space and geographical entity space are similar in hierarchical clustering. They have both formed Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta three metropolitan areas and Beijing-Shenzhen-Shanghai-Hangzhou four core cities, which lead the development of innovative network space in China. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovative%20collaboration" title="innovative collaboration">innovative collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20network%20space" title=" urban network space"> urban network space</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20connectivity%20of%20innovative%20network" title=" the connectivity of innovative network"> the connectivity of innovative network</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20linkages%20of%20external%20innovation" title=" the linkages of external innovation"> the linkages of external innovation</a> </p> <a href="https://publications.waset.org/abstracts/92033/study-on-the-characteristics-of-chinese-urban-network-space-from-the-perspective-of-innovative-collaboration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4837</span> Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dai%20Zhimei">Dai Zhimei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Chen"> Hua Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block" title="block">block</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20syntax%20and%20methodology" title=" space syntax and methodology"> space syntax and methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=street" title=" street"> street</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20space" title=" urban space"> urban space</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangzhou" title=" Yangzhou"> Yangzhou</a> </p> <a href="https://publications.waset.org/abstracts/102099/multi-scale-urban-spatial-evolution-analysis-based-on-space-syntax-a-case-study-in-modern-yangzhou-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4836</span> Linking Market Performance to Exploration and Exploitation in The Pharmaceutical Industry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johann%20Valentowitsch">Johann Valentowitsch</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Burr"> Wolfgang Burr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In organizational research, strategies of exploration and exploitation are often considered to be contradictory. Building on the tradeoff argument, many authors have assumed that a company's market performance should be positively dependent on its strategic balance between exploration and exploitation over time. In this study, we apply this reasoning to the pharmaceutical industry. Using exploratory regression analysis we show that the long-term market performance of a pharmaceutical company is linked to both its ability to carry out exploratory projects and its ability to develop exploitative competencies. In particular, our findings demonstrate that, on average, the company's annual sales performance is higher the better the strategic alignment between exploration and exploitation is balanced. The contribution of our research is twofold. On the one hand, we provide empirical evidence for the initial tradeoff hypothesis and thus support the theoretical position of those who understand exploration and exploitation as strategic substitutes. On the other hand, our findings show that a balanced relationship between exploration and exploitation is also important in research-intensive industries, which naturally tend to place more emphasis on exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploitation" title="exploitation">exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20performance" title=" market performance"> market performance</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20industry" title=" pharmaceutical industry"> pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy "> strategy </a> </p> <a href="https://publications.waset.org/abstracts/128901/linking-market-performance-to-exploration-and-exploitation-in-the-pharmaceutical-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4835</span> Evaluation of a Hybrid Configuration for Active Space Radiation Bio-Shielding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahui%20Song">Jiahui Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20P.%20Joshi"> Ravindra P. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest obstacles to human space exploration of the solar system is the risk posed by prolonged exposure to space radiation. It is generally agreed that particles with energies around 1-2 GeV per nucleon are the most damaging to humans. Passive shielding techniques entail using solid material to create a shield that prevents particles from penetrating a given region by absorbing the energy of incident particles. Previous techniques resulted in adding ‘dead mass’ to spacecraft, which is not an economically viable solution. Additionally, collisions of the incoming ionized particles with traditional passive protective material lead to secondary radiation. This study develops an enhanced hybrid active space radiation bio-shielding concept, a combination of the electrostatic and magnetostatic shielding, by varying the size of the magnetic ring, and by having multiple current-carrying rings, to mitigate the biohazards of severe space radiation for the success of deep-space explorations. The simulation results show an unprecedented reduction of 1GeV GCR (Galactic Cosmic Rays) proton transmission to about 15%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-shielding" title="bio-shielding">bio-shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic" title=" electrostatic"> electrostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetostatic" title=" magnetostatic"> magnetostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/40427/evaluation-of-a-hybrid-configuration-for-active-space-radiation-bio-shielding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4834</span> Aliens in Space: Reflections on an Applied Theatre Project in a Medium Secure Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashley%20Barnes">Ashley Barnes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will consider the ways in which varied notions of Space played a central role in a 12-week drama project with patients in a Medium Secure Hospital in the UK. In the project, the patients devised and performed a series of sketches, inspired by Science Fiction films, which echoed their own experience of alienation. During the project, the familiar and rigorously regulated Activity Room became a site of imagination, adventure and laughter; transforming the atmosphere of the hospital and allowing the patients to be transported to another space entirely. A space that was as much in their heads as in the physical domain. It will be argued that, although work created in an institution such as a Medium Secure Hospital is infused with hegemonic associations and meanings, the starting point for such work should be to seek an empty space in which the participants can allow their imaginations to be released. This work sits within a range of contexts and will be consciously interdisciplinary. It will draw from Human Geography and Criminology, as well as Performance and Applied Theatre Literature. It is hoped that this paper will build upon the literature that relates to the very particular environment of Secure Hospitals and to provide a starting point for further practical exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criminal%20justice" title="criminal justice">criminal justice</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20fiction%20films" title=" science fiction films"> science fiction films</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20and%20place" title=" space and place"> space and place</a> </p> <a href="https://publications.waset.org/abstracts/69885/aliens-in-space-reflections-on-an-applied-theatre-project-in-a-medium-secure-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4833</span> An Exploration of Renewal Utilization of Under-bridge Space Based on Spatial Potential Evaluation - Taking Chongqing Municipality as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuelian%20Qin">Xuelian Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20density%20urban%20area" title="high density urban area">high density urban area</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20evaluation" title=" potential evaluation"> potential evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20under%20bridge" title=" space under bridge"> space under bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=updated%20using" title=" updated using"> updated using</a> </p> <a href="https://publications.waset.org/abstracts/173203/an-exploration-of-renewal-utilization-of-under-bridge-space-based-on-spatial-potential-evaluation-taking-chongqing-municipality-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4832</span> Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Loris%20Franchi">Loris Franchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Calvi"> Daniele Calvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Corpino"> Sabrina Corpino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concurrent%20engineering" title="concurrent engineering">concurrent engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=negotiation%20in%20engineering%20design" title=" negotiation in engineering design"> negotiation in engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=multidisciplinary%20optimization" title=" multidisciplinary optimization"> multidisciplinary optimization</a> </p> <a href="https://publications.waset.org/abstracts/105602/enhance-concurrent-design-approach-through-a-design-methodology-based-on-an-artificial-intelligence-framework-guiding-group-decision-making-to-balanced-preliminary-design-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4831</span> Material Properties Evolution Affecting Demisability for Space Debris Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetan%20Mahawar">Chetan Mahawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarath%20Chandran"> Sarath Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sridhar%20Panigrahi"> Sridhar Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Shaji"> V. P. Shaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demisability" title="demisability">demisability</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=re-entry" title=" re-entry"> re-entry</a>, <a href="https://publications.waset.org/abstracts/search?q=survivability" title=" survivability"> survivability</a> </p> <a href="https://publications.waset.org/abstracts/155073/material-properties-evolution-affecting-demisability-for-space-debris-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4830</span> Analyzing the Oil and Gas Exploration Opportunities in Poland: Five Prospective Areas Selected and Dedicated to the Tender</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krystian%20W%C3%B3jcik">Krystian Wójcik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Wr%C3%B3blewska"> Sara Wróblewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20%C5%81ojek"> Marcin Łojek</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Sobie%C5%84"> Katarzyna Sobień</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polish Geological Survey selected five of the most prospective areas for oil and gas exploration in Poland. They are dedicated to the 6th international tender round for hydrocarbon concessions, planned in 2022. The main exploration target of these areas is related to conventional and unconventional accumulations of gas and oil in the Carpathian basement, Carpathian Foredeep and Outer Carpathians (Block 413 – 414), as well as in the Carboniferous, Rotliegend, Main Dolomite (Block 208, Cybinka – Torzym, Zielona Góra West), and in the Mesozoic of the Polish Lowlands (Koło). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concession%20policy" title="concession policy">concession policy</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20tender" title=" international tender"> international tender</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20exploration%20horizons" title=" oil and gas exploration horizons"> oil and gas exploration horizons</a>, <a href="https://publications.waset.org/abstracts/search?q=prospective%20areas" title=" prospective areas"> prospective areas</a> </p> <a href="https://publications.waset.org/abstracts/146650/analyzing-the-oil-and-gas-exploration-opportunities-in-poland-five-prospective-areas-selected-and-dedicated-to-the-tender" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4829</span> Configuration Design and Optimization of the Movable Leg-Foot Lunar Soft-Landing Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan%20Jia">Shan Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinbao%20Chen"> Jinbao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhua%20Zhou"> Jinhua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiacheng%20Qian"> Jiacheng Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar exploration is a necessary foundation for deep-space exploration. For the functional limitations of the fixed landers which are widely used currently and are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability, a movable lunar soft-landing device based on cantilever type buffer mechanism and leg-foot type walking mechanism is presented. Firstly, a 20 DoFs quadruped configuration based on pushrod is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and can make the kinematics of the whole mechanism unchanged before and after buffering. Secondly, the multi-function main/auxiliary buffers based on crumple-energy absorption and screw-nut mechanism, as well as the telescopic device which could be used to protect the plantar force sensors during the buffer process are designed. Finally, the kinematic model of the whole mechanism is established, and the configuration optimization of the whole mechanism is completed based on the performance requirements of slope adaptation and obstacle crossing. This research can provide a technical solution integrating soft-landing, large-scale inspection and material-transfer for future lunar exploration and even mars exploration, and can also serve as the technical basis for developing the reusable landers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=configuration%20design" title="configuration design">configuration design</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20soft-landing%20device" title=" lunar soft-landing device"> lunar soft-landing device</a>, <a href="https://publications.waset.org/abstracts/search?q=movable" title=" movable"> movable</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/98256/configuration-design-and-optimization-of-the-movable-leg-foot-lunar-soft-landing-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4828</span> The Exploration on the Mode of Renovation and Reconstruction of Old Factory Buildings for Cultural and Creative Industrial Parks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Pan"> Yu Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Wu"> Jing Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingwan%20Shen"> Lingwan Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the reform and opening, China's cities have developed rapidly, and the industrial structure has been constantly adjusted and optimized. A large number of industrial plants have lost their production functions and become idle buildings. The renovation projects for the old factory buildings are important parts of the urban renewal, and most of them are the cultural and creative industrial park projects. In this paper, a statistical analysis of renovation projects of the representative cultural and creative industrial parks in recent years was conducted. According to the user's spatial experience satisfaction survey, the physical and spatial factors affecting the space regeneration of the old factory were concluded. Thus the relationship between space regeneration and material, structure, internal and external space design has been derived. Finally, we summarized the general spatial processing model in which the contradiction between ‘new’ and ‘old’ can be grafted and transformed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renovation%20of%20factory%20buildings" title="renovation of factory buildings">renovation of factory buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20renewal" title=" urban renewal"> urban renewal</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20cultural%20and%20creative%20industrial%20park" title=" the cultural and creative industrial park"> the cultural and creative industrial park</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20regeneration" title=" space regeneration"> space regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20mode" title=" reconstruction mode "> reconstruction mode </a> </p> <a href="https://publications.waset.org/abstracts/92043/the-exploration-on-the-mode-of-renovation-and-reconstruction-of-old-factory-buildings-for-cultural-and-creative-industrial-parks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=161">161</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=162">162</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20exploration&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10