CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 321 results for author: <span class="mathjax">Yuan, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Yuan%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yuan, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yuan%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yuan, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08138">arXiv:2502.08138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.08138">pdf</a>, <a href="https://arxiv.org/format/2502.08138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Comparing observed properties of winds in low-luminosity active galactic nuclei with theoretical predictions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+F">Fangzheng Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tombesi%2C+F">Francesco Tombesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=XIe%2C+F">Fu-guo XIe</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08138v1-abstract-short" style="display: inline;"> Theoretical and numerical simulations of black hole hot accretion flows have shown the ubiquitous existence of winds and predicted their properties such as velocity and mass flux. In this paper, we have summarized from literature the physical properties of winds launched from low-luminosity active galactic nuclei (LLAGN), which are believed to be powered by hot accretion flows, and compared them w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08138v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08138v1-abstract-full" style="display: none;"> Theoretical and numerical simulations of black hole hot accretion flows have shown the ubiquitous existence of winds and predicted their properties such as velocity and mass flux. In this paper, we have summarized from literature the physical properties of winds launched from low-luminosity active galactic nuclei (LLAGN), which are believed to be powered by hot accretion flows, and compared them with theoretical predictions. We infer that for both ultra-fast outflows and hot winds, the observed wind velocity as a function of their launching radius and the ratio between wind mass flux and black hole accretion rate show good consistency with theoretical predictions. For the prototype LLAGN M81* with abundant observational data, we have examined various observed properties of wind in detail, including velocity, mass flux of the wind, the power-law index of the radial profile of inflow rate, and the jet-to-wind power ratio. Good agreements are found with theoretical predictions, providing strong support to the theory of wind launched from hot accretion flows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08138v1-abstract-full').style.display = 'none'; document.getElementById('2502.08138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.06942">arXiv:2502.06942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.06942">pdf</a>, <a href="https://arxiv.org/format/2502.06942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Shedding light on the star formation rate-halo accretion rate connection and halo quenching mechanism via DECODE, the Discrete statistical sEmi-empiriCal mODEl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fu%2C+H">Hao Fu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boco%2C+L">Lumen Boco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shankar%2C+F">Francesco Shankar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lapi%2C+A">Andrea Lapi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ayromlou%2C+M">Mohammadreza Ayromlou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roberts%2C+D">Daniel Roberts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodr%C3%ADguez-Puebla%2C+A">Aldo Rodr铆guez-Puebla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleland%2C+C">Cressida Cleland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mei%2C+S">Simona Mei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menci%2C+N">Nicola Menci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.06942v1-abstract-short" style="display: inline;"> Aims: The relative roles of the physical mechanisms involved in quenching galaxy star formation are still unclear. We tackle this fundamental problem with our cosmological semi-empirical model DECODE (Discrete statistical sEmi-empiriCal mODEl), designed to predict galaxy stellar mass assembly histories, from minimal input assumptions. Methods: Specifically, in this work the star formation histor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06942v1-abstract-full').style.display = 'inline'; document.getElementById('2502.06942v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.06942v1-abstract-full" style="display: none;"> Aims: The relative roles of the physical mechanisms involved in quenching galaxy star formation are still unclear. We tackle this fundamental problem with our cosmological semi-empirical model DECODE (Discrete statistical sEmi-empiriCal mODEl), designed to predict galaxy stellar mass assembly histories, from minimal input assumptions. Methods: Specifically, in this work the star formation history of each galaxy is calculated along its progenitor dark matter halo by assigning at each redshift a star formation rate extracted from a monotonic star formation rate-halo accretion rate (SFR-HAR) relation derived from abundance matching between the (observed) SFR function and the (numerically predicted) HAR function, a relation that is also predicted by the TNG100 simulation. SFRs are integrated across cosmic time to build up the mass of galaxies, which may halt their star formation following input physical quenching recipes. Results: In this work we test the popular halo quenching scenario and we find that: 1) the assumption of a monotonic relation between SFR and HAR allows to reproduce the number densities of the bulk of star-forming galaxies in the local Universe; 2) the halo quenching is sufficient to reproduce the statistics of the quenched galaxies and flat (steep) high-mass end of the SMHM relation (SMF); and 3) to align with the observed steep (flat) low-mass end of the SMHM (SMF) additional quenching processes in the least massive haloes are needed. Conclusions: DECODE is an invaluable tool and will pave the way to investigate the origin of newly observed high-redshift objects from the latest ongoing facilities such as JWST and Euclid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.06942v1-abstract-full').style.display = 'none'; document.getElementById('2502.06942v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures, accepted for publication in Astronomy &amp; Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08685">arXiv:2501.08685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08685">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450898">10.1051/0004-6361/202450898 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The putative center in NGC 1052 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Baczko%2C+A">Anne-Kathrin Baczko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kadler%2C+M">Matthias Kadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ros%2C+E">Eduardo Ros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fromm%2C+C+M">Christian M. Fromm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wielgus%2C+M">Maciek Wielgus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perucho%2C+M">Manel Perucho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krichbaum%2C+T+P">Thomas P. Krichbaum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balokovi%C4%87%2C+M">Mislav Balokovi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blackburn%2C+L">Lindy Blackburn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+C">Chi-kwan Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Issaoun%2C+S">Sara Issaoun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Janssen%2C+M">Michael Janssen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ricci%2C+L">Luca Ricci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albentosa-Ru%C3%ADz%2C+E">Ezequiel Albentosa-Ru铆z</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberdi%2C+A">Antxon Alberdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alef%2C+W">Walter Alef</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Algaba%2C+J+C">Juan Carlos Algaba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anantua%2C+R">Richard Anantua</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asada%2C+K">Keiichi Asada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azulay%2C+R">Rebecca Azulay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bach%2C+U">Uwe Bach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ball%2C+D">David Ball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bandyopadhyay%2C+B">Bidisha Bandyopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrett%2C+J">John Barrett</a> , et al. (262 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08685v1-abstract-short" style="display: inline;"> Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain poorly understood. To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052. We combine&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08685v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08685v1-abstract-full" style="display: none;"> Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain poorly understood. To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052. We combined observations of NGC 1052 taken with VLBA, GMVA, and EHT over one week in the spring of 2017. For the first time, NGC 1052 was detected with the EHT, providing a size of the central region in-between both jet bases of 250 RS (Schwarzschild radii) perpendicular to the jet axes. This size estimate supports previous studies of the jets expansion profile which suggest two breaks of the profile at around 300 RS and 10000 RS distances to the core. Furthermore, we estimated the magnetic field to be 1.25 Gauss at a distance of 22 渭as from the central engine by fitting a synchrotron-self absorption spectrum to the innermost emission feature, which shows a spectral turn-over at about 130 GHz. Assuming a purely poloidal magnetic field, this implies an upper limit on the magnetic field strength at the event horizon of 26000 Gauss, which is consistent with previous measurements. The complex, low-brightness, double-sided jet structure in NGC 1052 makes it a challenge to detect the source at millimeter (mm) wavelengths. However, our first EHT observations have demonstrated that detection is possible up to at least 230 GHz. This study offers a glimpse through the dense surrounding torus and into the innermost central region, where the jets are formed. This has enabled us to finally resolve this region and provide improved constraints on its expansion and magnetic field strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08685v1-abstract-full').style.display = 'none'; document.getElementById('2501.08685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures, published in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A, 692, A205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05518">arXiv:2501.05518</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05518">pdf</a>, <a href="https://arxiv.org/format/2501.05518">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> A multi-frequency study of sub-parsec jets with the Event Horizon Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=R%C3%B6der%2C+J">Jan R枚der</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wielgus%2C+M">Maciek Wielgus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lobanov%2C+A+P">Andrei P. Lobanov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krichbaum%2C+T+P">Thomas P. Krichbaum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nair%2C+D+G">Dhanya G. Nair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+S">Sang-Sung Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ros%2C+E">Eduardo Ros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fish%2C+V+L">Vincent L. Fish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blackburn%2C+L">Lindy Blackburn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+C">Chi-kwan Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Issaoun%2C+S">Sara Issaoun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Janssen%2C+M">Michael Janssen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+M+D">Michael D. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doeleman%2C+S+S">Sheperd S. Doeleman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bower%2C+G+C">Geoffrey C. Bower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crew%2C+G+B">Geoffrey B. Crew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tilanus%2C+R+P+J">Remo P. J. Tilanus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Savolainen%2C+T">Tuomas Savolainen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Impellizzeri%2C+C+M+V">C. M. Violette Impellizzeri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberdi%2C+A">Antxon Alberdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baczko%2C+A">Anne-Kathrin Baczko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%B3mez%2C+J+L">Jos茅 L. G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+R">Ru-Sen Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paraschos%2C+G+F">Georgios F. Paraschos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Traianou%2C+E">Efthalia Traianou</a> , et al. (265 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05518v1-abstract-short" style="display: inline;"> The 2017 observing campaign of the Event Horizon Telescope (EHT) delivered the first very long baseline interferometry (VLBI) images at the observing frequency of 230 GHz, leading to a number of unique studies on black holes and relativistic jets from active galactic nuclei (AGN). In total, eighteen sources were observed: the main science targets, Sgr A* and M87 along with various calibrators. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05518v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05518v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05518v1-abstract-full" style="display: none;"> The 2017 observing campaign of the Event Horizon Telescope (EHT) delivered the first very long baseline interferometry (VLBI) images at the observing frequency of 230 GHz, leading to a number of unique studies on black holes and relativistic jets from active galactic nuclei (AGN). In total, eighteen sources were observed: the main science targets, Sgr A* and M87 along with various calibrators. We investigated the morphology of the sixteen AGN in the EHT 2017 data set, focusing on the properties of the VLBI cores: size, flux density, and brightness temperature. We studied their dependence on the observing frequency in order to compare it with the Blandford-K枚nigl (BK) jet model. We modeled the source structure of seven AGN in the EHT 2017 data set using linearly polarized circular Gaussian components and collected results for the other nine AGN from dedicated EHT publications, complemented by lower frequency data in the 2-86 GHz range. Then, we studied the dependences of the VLBI core flux density, size, and brightness temperature on the frequency measured in the AGN host frame. We compared the observations with the BK jet model and estimated the magnetic field strength dependence on the distance from the central black hole. Our results indicate a deviation from the standard BK model, particularly in the decrease of the brightness temperature with the observing frequency. Either bulk acceleration of the jet material, energy transfer from the magnetic field to the particles, or both are required to explain the observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05518v1-abstract-full').style.display = 'none'; document.getElementById('2501.05518v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08396">arXiv:2412.08396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.08396">pdf</a>, <a href="https://arxiv.org/format/2412.08396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Discovery of Local Analogs to JWST&#39;s Little Red Dots </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+R">Ruqiu Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zhen-Ya Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+C">Chunyan Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+J">Junxian Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+L">Linhua Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhoads%2C+J+E">James E. Rhoads</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malhotra%2C+S">Sangeeta Malhotra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. Felipe Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wold%2C+I">Isak Wold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Infante%2C+L">Leopoldo Infante</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+S">Shuairu Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+X">Xiang Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fu%2C+X">Xiaodan Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08396v1-abstract-short" style="display: inline;"> Recently, the James Webb Space Telescope (JWST) has revealed a new class of high redshift (high-$z$, $z&gt;4$) compact galaxies which are red in the rest-frame optical and blue in the rest-frame UV as V-shaped spectral energy distributions (SEDs), referred to as &#34;Little Red Dots&#34; (LRDs). It is very likely that LRDs host obscured broad-line active galactic nuclei (AGNs). In the meanwhile, Green pea ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08396v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08396v1-abstract-full" style="display: none;"> Recently, the James Webb Space Telescope (JWST) has revealed a new class of high redshift (high-$z$, $z&gt;4$) compact galaxies which are red in the rest-frame optical and blue in the rest-frame UV as V-shaped spectral energy distributions (SEDs), referred to as &#34;Little Red Dots&#34; (LRDs). It is very likely that LRDs host obscured broad-line active galactic nuclei (AGNs). In the meanwhile, Green pea galaxies (GPs), which are compact dwarf galaxies at low redshift, share various similar properties with high redshift star-forming galaxies. Here we aim to find the connection between the LRDs and GPs hosting broad-line AGNs (BLGPs). With a sample of 19 BLGPs obtained from our previous work, we further identify 7 GPs with V-shaped rest-frame UV-to-optical SEDs that are likely local analogs to LRDs. These V-shaped BLGPs exhibit faint UV absolute magnitudes and sub-Eddington rates similar to those of LRDs. Three of them occupy a similar region as LRDs in the BPT diagram, suggesting they have similar ionization conditions and gas-phase metallicities to LRDs. These similarities suggest that V-shaped BLGPs can be taken as local analogs of high-redshift LRDs. In addition, most (16/19) BLGPs, including 6 V-shaped BLGPs, host over-massive black holes above the local $M_{\rm BH}$-$M_{*}$ relation, making it the first sample of galaxies hosting over-massive black holes at $z&lt;0.4$. These findings will help us learn more about the formation and co-evolution of early galaxies and black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08396v1-abstract-full').style.display = 'none'; document.getElementById('2412.08396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, 2 tables, submitted to the Astrophysical Journal Letters. Comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08395">arXiv:2412.08395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.08395">pdf</a>, <a href="https://arxiv.org/format/2412.08395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Lyman Continuum Leakers at $z&gt;3$ in the GOODS-S Field: Mergers Dominated </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+S">Shuairu Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zhen-ya Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+C">Chunyan Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+R">Ruqiu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08395v1-abstract-short" style="display: inline;"> Understanding the ionizing photon escape from galaxies is essential for studying Cosmic Reionization. With a sample of 23 Lyman Continuum (LyC) leakers at $3&lt;z&lt;4.5$ in the GOODS-S field, we investigate their morphologies using high-resolution data from the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST). We find that 20 of the 23 LyC leakers show merging signatures, while th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08395v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08395v1-abstract-full" style="display: none;"> Understanding the ionizing photon escape from galaxies is essential for studying Cosmic Reionization. With a sample of 23 Lyman Continuum (LyC) leakers at $3&lt;z&lt;4.5$ in the GOODS-S field, we investigate their morphologies using high-resolution data from the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST). We find that 20 of the 23 LyC leakers show merging signatures, while the remaining 3 are starbursts. Based on our previous finding that LyC leakers are not necessarily starbursts while some are in the star formation main sequence, we further find that those in the main sequence show merger signatures. Our results suggest that LyC leakers are either starbursts or mergers, both of which can facilitate the LyC photon escape, in addition to generating more LyC photons. Furthermore, we show that high-$z$ LyC leakers are statistically more extended than those selected at low redshift, which exhibits a higher merger fraction as size increases. This is likely due to the observational bias that the spatial resolution limits the detection of high-$z$ compact galaxies, while low redshift LyC leakers are more selected as compact starbursts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08395v1-abstract-full').style.display = 'none'; document.getElementById('2412.08395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, submitted to ApJL. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13891">arXiv:2411.13891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13891">pdf</a>, <a href="https://arxiv.org/format/2411.13891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> UPdec-Webb: A Dataset for Coaddition of JWST NIRCam Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shan%2C+H">Huanyuan Shan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nie%2C+L">Lin Nie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheng%2C+C">Cheng Cheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+Q">Qifan Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+G">Guoliang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xie%2C+Y">Yushan Xie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Dezi Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Y">Yao Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+M">Min Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+N">Nan Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jia%2C+P">Peng Jia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+R">Ran Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+F">Fengshan Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shu%2C+Y">Yiping Shu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+C">Chang Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wei%2C+C">Cheng-Liang Wei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+H">Han Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+W">Wen-Wen Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+L">Li-Yan Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kang%2C+X">Xi Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13891v1-abstract-short" style="display: inline;"> We present the application of the image coaddition algorithm, Up-sampling and PSF Deconvolution Coaddition (UPDC), for stacking multiple exposure images captured by the James Webb Space Telescope (JWST) Near-Infrared Camera (NIRCam). By addressing the point spread function (PSF) effect, UPDC provides visually enhanced and sharper images. Furthermore, the anti-aliasing and super-resolution capabili&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13891v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13891v1-abstract-full" style="display: none;"> We present the application of the image coaddition algorithm, Up-sampling and PSF Deconvolution Coaddition (UPDC), for stacking multiple exposure images captured by the James Webb Space Telescope (JWST) Near-Infrared Camera (NIRCam). By addressing the point spread function (PSF) effect, UPDC provides visually enhanced and sharper images. Furthermore, the anti-aliasing and super-resolution capabilities of UPDC make it easier to deblend sources overlapped on images, yielding a higher accuracy of aperture photometry. We apply this algorithm to the SMACS J0723 imaging data. Comparative analysis with the Drizzle algorithm demonstrates significant improvements in detecting faint sources, achieving accurate photometry, and effectively deblending (super-resolution) closely packed sources. {As a result, we have newly detected a pair of close binary stars that were previously unresolvable in the original exposures or the Drizzled image.} These improvements significantly benefit various scientific projects conducted by JWST. The resulting dataset, named &#34;UPdec-Webb&#34;, can be accessible through the official website of the Chinese Virtual Observatory (ChinaVO). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13891v1-abstract-full').style.display = 'none'; document.getElementById('2411.13891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 18 figures, accepted for publication in ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07453">arXiv:2410.07453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07453">pdf</a>, <a href="https://arxiv.org/format/2410.07453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ad5bdb">10.3847/1538-3881/ad5bdb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Very Long Baseline Interferometry Detections at 870渭m </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Raymond%2C+A+W">Alexander W. Raymond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doeleman%2C+S+S">Sheperd S. Doeleman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asada%2C+K">Keiichi Asada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blackburn%2C+L">Lindy Blackburn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bower%2C+G+C">Geoffrey C. Bower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bremer%2C+M">Michael Bremer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broguiere%2C+D">Dominique Broguiere</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+M">Ming-Tang Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crew%2C+G+B">Geoffrey B. Crew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dornbusch%2C+S">Sven Dornbusch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fish%2C+V+L">Vincent L. Fish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garc%C3%ADa%2C+R">Roberto Garc铆a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gentaz%2C+O">Olivier Gentaz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goddi%2C+C">Ciriaco Goddi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+C">Chih-Chiang Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hecht%2C+M+H">Michael H. Hecht</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yau-De Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Janssen%2C+M">Michael Janssen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+G+K">Garrett K. Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koay%2C+J+Y">Jun Yi Koay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krichbaum%2C+T+P">Thomas P. Krichbaum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lo%2C+W">Wen-Ping Lo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsushita%2C+S">Satoki Matsushita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matthews%2C+L+D">Lynn D. Matthews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moran%2C+J+M">James M. Moran</a> , et al. (254 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07453v1-abstract-short" style="display: inline;"> The first very long baseline interferometry (VLBI) detections at 870$渭$m wavelength (345$\,$GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth, and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on inter-continental baselines between telescop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07453v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07453v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07453v1-abstract-full" style="display: none;"> The first very long baseline interferometry (VLBI) detections at 870$渭$m wavelength (345$\,$GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth, and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on inter-continental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in October 2018. The longest-baseline detections approach 11$\,$G$位$ corresponding to an angular resolution, or fringe spacing, of 19$渭$as. The Allan deviation of the visibility phase at 870$渭$m is comparable to that at 1.3$\,$mm on the relevant integration time scales between 2 and 100$\,$s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870$渭$m. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07453v1-abstract-full').style.display = 'none'; document.getElementById('2410.07453v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corresponding author: S. Doeleman</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astronomical Journal, Volume 168, Issue 3, id.130, 19 pp. 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20352">arXiv:2409.20352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20352">pdf</a>, <a href="https://arxiv.org/format/2409.20352">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Merging Signatures in an Offset Lyman Continuum Emitter at Redshift 3.8 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zhen-Ya Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+C">Chunyan Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+S">Shuairu Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+R">Ruqiu Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheng%2C+C">Cheng Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20352v1-abstract-short" style="display: inline;"> Lyman continuum (LyC) emitters at $z&gt;3$ provide critical samples for studying the contribution of galaxies to the ionizing background in the Epoch of Reionization. We collect a sample of $z&gt;3$ LyC emitters, a dominant fraction ($\sim$60%-70%) of which shows spatial offsets between LyC emission and the non-ionizing continuum. From this sample, especially, we find a case of an offset LyC emitter, CD&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20352v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20352v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20352v1-abstract-full" style="display: none;"> Lyman continuum (LyC) emitters at $z&gt;3$ provide critical samples for studying the contribution of galaxies to the ionizing background in the Epoch of Reionization. We collect a sample of $z&gt;3$ LyC emitters, a dominant fraction ($\sim$60%-70%) of which shows spatial offsets between LyC emission and the non-ionizing continuum. From this sample, especially, we find a case of an offset LyC emitter, CDFS-6664 ($z=3.797$), which shows two components in the high-resolution Hubble Space Telescope (HST) and James Webb Space Telescope (JWST) images. The exceptionally rich data set of CDFS-6664 enables us to extract the two components across multiple wavelengths and estimate their physical properties. We show that CDFS-6664 is consistent with a major merger system with boosted star formation in both components and the offset LyC emission is most likely associated with the bluer and younger component in this merging system. Our result offers an example in which the offset can be caused by a merger. Future observations of more offset LyC emitters would elucidate the role that mergers play in the escape of LyC photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20352v1-abstract-full').style.display = 'none'; document.getElementById('2409.20352v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, ApJ, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20350">arXiv:2409.20350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20350">pdf</a>, <a href="https://arxiv.org/format/2409.20350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2412-3">10.1007/s11433-024-2412-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intermediate-Mass Black Holes in Green Pea Galaxies (IMBH-GP) I: a Candidate Sample from LAMOST and SDSS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+R">Ruqiu Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zhen-Ya Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+J">Jun-Xian Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+C">Chunyan Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+N">Ning Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+L">Lingzhi Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+L">Linhua Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+X">Xiang Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+S">Shuairu Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fu%2C+X">Xiaodan Fu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20350v1-abstract-short" style="display: inline;"> The scaling relation of central massive black holes (MBHs) and their host galaxies is well-studied for supermassive BHs (SMBHs, $M_{\rm BH}\ \ge 10^6\, M_{\rm \odot}$). However, this relation has large uncertainties in the mass range of the intermediate-mass BHs (IMBHs, $M_{\rm BH}\ \sim10^3-10^{6}\, M_{\rm \odot}$). Since Green Pea (GP) galaxies are luminous compact dwarf galaxies, which may be l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20350v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20350v1-abstract-full" style="display: none;"> The scaling relation of central massive black holes (MBHs) and their host galaxies is well-studied for supermassive BHs (SMBHs, $M_{\rm BH}\ \ge 10^6\, M_{\rm \odot}$). However, this relation has large uncertainties in the mass range of the intermediate-mass BHs (IMBHs, $M_{\rm BH}\ \sim10^3-10^{6}\, M_{\rm \odot}$). Since Green Pea (GP) galaxies are luminous compact dwarf galaxies, which may be likely to host less massive SMBHs or even IMBHs, we systematically search for MBHs in a large sample of 2190 GP galaxies at $z &lt; 0.4$, selected from LAMOST and SDSS spectroscopic surveys. Here, we report a newly discovered sample of 59 MBH candidates with broad H$伪$ lines. This sample has a median stellar mass of $10^{8.83\pm0.11}\, M_{\rm \odot}$ and hosts MBHs with single-epoch virial masses ranging from $M_{\rm BH}\ \sim 10^{4.7}$ to $10^{8.5}\, M_{\rm \odot}$ (median $10^{5.85\pm0.64}\, M_{\rm \odot}$). Among the 59 MBH candidates, 36 have black hole masses $M_{\rm BH} \le 10^{6}\, M_{\rm \odot}$ (IMBH candidates), one of which even has $M_{\rm BH} \ \lesssim 10^{5}\, M_{\rm \odot}$. We find that the $M_{\rm BH}-M_{\rm *}$ relation of our MBH sample is consistent with the $M_{\rm BH}-M_{\rm bulge}$ relation for SMBHs, while is above the $M_{\rm BH}-M_{\rm *}$ relation for MBHs in dwarf galaxies in the same mass range. Furthermore, we show that 25 MBH candidates, including 4 IMBH candidates, have additional evidence of black hole activities, assessed through various methods such as the broad-line width, BPT diagram, mid-infrared color, X-ray luminosity, and radio emission. Our studies show that it is very promising to find IMBHs in GP galaxies, and the BH sample so obtained enables us to probe the connection between the MBHs and compact dwarf galaxies in the low-redshift Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20350v1-abstract-full').style.display = 'none'; document.getElementById('2409.20350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, 2 tables; Accepted for pubulication in SCPMA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2024SCPMA..6709811L </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20349">arXiv:2409.20349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20349">pdf</a>, <a href="https://arxiv.org/format/2409.20349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Lyman Continuum Leakers at $z&gt;3$ in the GOODS-S Field: Starburst or Not? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+S">Shuairu Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+C">Chunyan Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zhen-Ya Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+R">Ruqiu Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20349v1-abstract-short" style="display: inline;"> We investigate the star-forming properties of 23 Lyman Continuum (LyC) leakers at z &gt; 3 in the Great Observatories&#39; Deep Survey-South (GOODS-S) field based on a systematic review of LyC observations from the literature. Using data from the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST), we construct the spectral energy distributions (SEDs) for these LyC leakers, covering th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20349v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20349v1-abstract-full" style="display: none;"> We investigate the star-forming properties of 23 Lyman Continuum (LyC) leakers at z &gt; 3 in the Great Observatories&#39; Deep Survey-South (GOODS-S) field based on a systematic review of LyC observations from the literature. Using data from the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST), we construct the spectral energy distributions (SEDs) for these LyC leakers, covering the spectrum from rest-frame ultraviolet to near-infrared. Through the application of a unified modeling approach, we measure the ultraviolet slope, star formation rate, and stellar mass for these LyC leakers in a consistent manner. These high-redshift LyC leakers demonstrate statistically blue UV-continuum slopes, which is consistent with their high escape fraction of LyC photons. We find that these high-redshift LyC leakers span a wide range of specific star formation rate (log(sSFR/yr) from -8.6 to -6.7). Ten of these LyC leakers are located on the star formation main sequence, instead of all being in the starburst mode. The results indicate that intense bursts of star formation are not necessarily required for the leakage of LyC photons for galaxies at z &gt; 3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20349v1-abstract-full').style.display = 'none'; document.getElementById('2409.20349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures, 2 tables, accepted by ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14498">arXiv:2409.14498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14498">pdf</a>, <a href="https://arxiv.org/format/2409.14498">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> $Mesiri$:Mephisto Early Supernovae Ia Rapid Identifier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lunwei%2C+Z">Zhang Lunwei</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhenyu%2C+W">Wang Zhenyu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dezi%2C+L">Liu Dezi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bingqiu%2C+C">Chen Bingqiu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brajesh%2C+K">Kumar Brajesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xinzhong%2C+E">Er Xinzhong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xiaowei%2C+L">Liu Xiaowei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14498v1-abstract-short" style="display: inline;"> The early time observations of Type Ia supernovae (SNe Ia) play a crucial role in investigating and resolving longstanding questions about progenitor stars and the explosion mechanisms of these events. Colors of supernovae (SNe) in the initial days after the explosion can help differentiate between different types of SNe. However, the use of true color information to identify SNe Ia at the early-t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14498v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14498v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14498v1-abstract-full" style="display: none;"> The early time observations of Type Ia supernovae (SNe Ia) play a crucial role in investigating and resolving longstanding questions about progenitor stars and the explosion mechanisms of these events. Colors of supernovae (SNe) in the initial days after the explosion can help differentiate between different types of SNe. However, the use of true color information to identify SNe Ia at the early-time explosion is still in its infancy. The Multi-channel Photometric Survey Telescope (Mephisto) is a photometric survey telescope equipped with three CCD cameras, capable of simultaneously imaging the same patch of sky in three bands (\emph{u, g, i} or \emph{v, r, z}), yielding real-time colors of astronomical objects. In this paper, we introduce a new time-series classification tool named Mephisto Early Supernovae Ia Rapid Identifier (\emph{\texttt{Mesiri}}), which for the first time, utilizes real-time color information to distinguish early-time SNe Ia from core-collapse supernovae (CCSNe). \emph{\texttt{Mesiri}} is based on the deep learning approach and can achieve an accuracy of $96.75\pm0.79$\%, and AUC of $98.87\pm0.53$\% in case of single epoch random observation before the peak brightness. These values reach towards perfectness if additional data points on several night observations are considered. The classification with real-time color significantly outperforms that with pseudo-color, especially at the early time, i.e., with only a few points of observations. The architecture of BiLSTM shows the best performance than the others that have been tested in this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14498v1-abstract-full').style.display = 'none'; document.getElementById('2409.14498v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 17 figures, 4 tables, accepted for publication in RAA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12028">arXiv:2409.12028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.12028">pdf</a>, <a href="https://arxiv.org/ps/2409.12028">ps</a>, <a href="https://arxiv.org/format/2409.12028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Faraday rotation measure of the M87 jet at 3.5mm with the Atacama Large Millimeter/submillimeter Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+S">Sijia Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+R">Ru-Sen Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goddi%2C+C">Ciriaco Goddi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krichbaum%2C+T+P">Thomas P. Krichbaum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhiyuan Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+R">Ruo-Yu Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Jae-Young Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nakamura%2C+M">Masanori Nakamura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+L">Liang Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marti-Vidal%2C+I">Ivan Marti-Vidal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+Z">Zhiqiang Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12028v1-abstract-short" style="display: inline;"> Faraday rotation is an important probe of the magnetic fields and magnetized plasma around active galactic nuclei (AGN) jets. We present a Faraday rotation measure image of the M87 jet between 85.2 GHz and 101.3 GHz with a resolution of ~2&#34; with the Atacama Large Millimeter/submillimeter Array (ALMA). We found that the rotation measure (RM) of the M87 core is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12028v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12028v1-abstract-full" style="display: none;"> Faraday rotation is an important probe of the magnetic fields and magnetized plasma around active galactic nuclei (AGN) jets. We present a Faraday rotation measure image of the M87 jet between 85.2 GHz and 101.3 GHz with a resolution of ~2&#34; with the Atacama Large Millimeter/submillimeter Array (ALMA). We found that the rotation measure (RM) of the M87 core is $\rm (4.5\pm 0.4)\times10^{4}\ rad\ m^{-2}$ with a low linear polarization fraction of $\rm (0.88\pm 0.08)\%$. The spatial RM gradient in the M87 jet spans a wide range from $\sim -2\times10^4\rm~rad\ m^{-2}$ to $\sim 3\times10^4\rm~rad\ m^{-2}$ with a typical uncertainty of $0.3\times10^4\rm~rad\ m^{-2}$. A comparison with previous RM measurements of the core suggests that the Faraday rotation of the core may originate very close to the super massive black hole (SMBH). Both an internal origin and an external screen with a rapidly varying emitting source could be possible. As for the jet, the RM gradient indicates a helical configuration of the magnetic field that persists up to kpc scale. Combined with the kpc-scale RM measurements at lower frequencies, we found that RM is frequency-dependent in the jet. One possible scenario to explain this dependence is that the kpc-scale jet has a trumpet-like shape and the jet coil unwinds near its end. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12028v1-abstract-full').style.display = 'none'; document.getElementById('2409.12028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11pages, 5 figures. Accepted for publication in ApJ. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03168">arXiv:2409.03168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.03168">pdf</a>, <a href="https://arxiv.org/format/2409.03168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The HI reservoir in central spiral galaxies and the implied star formation process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dou%2C+J">Jing Dou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+Q">Qiusheng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Renzini%2C+A">Alvio Renzini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mannucci%2C+F">Filippo Mannucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Daddi%2C+E">Emanuele Daddi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+C">Chengpeng Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+J">Jiaxuan Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+Y">Yong Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+D">Dingyi Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lyu%2C+C">Cheqiu Lyu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiolino%2C+R">Roberto Maiolino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+Y">Yulong Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03168v1-abstract-short" style="display: inline;"> The cold interstellar medium (ISM) as the raw material for star formation is critical to understanding galaxy evolution. It is generally understood that galaxies stop making stars when, in one way or another, they run out of gas. However, here we provide evidence that central spiral galaxies remain rich in atomic gas even if their star formation rate and molecular gas fraction have dropped signifi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03168v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03168v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03168v1-abstract-full" style="display: none;"> The cold interstellar medium (ISM) as the raw material for star formation is critical to understanding galaxy evolution. It is generally understood that galaxies stop making stars when, in one way or another, they run out of gas. However, here we provide evidence that central spiral galaxies remain rich in atomic gas even if their star formation rate and molecular gas fraction have dropped significantly compared to &#34;normal&#34; star-forming galaxies of the same mass. Since HI is sensitive to external processes, here we investigate central spiral galaxies using a combined sample from SDSS, ALFALFA, and xGASS surveys. After proper incompleteness corrections, we find that the key HI scaling relations for central spirals show significant but regular systematic dependence on stellar mass. At any given stellar mass, the HI gas mass fraction is about constant with changing specific star formation rate (sSFR), which suggests that HI reservoir is ubiquitous in central spirals with any star formation status down to M* ~ 10^9 Msun. Together with the tight correlation between the molecular gas mass fraction and sSFR for galaxies across a wide range of different properties, it suggests that the decline of SFR of all central spirals in the local universe is due to the halt of H2 supply, though there is plenty of HI gas around. These hence provide critical observations of the dramatically different behavior of the cold multi-phase ISM, and a key to understand the star formation process and quenching mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03168v1-abstract-full').style.display = 'none'; document.getElementById('2409.03168v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures; Accepted for publication in the ApJL; This is the fourth paper in the &#34;From Haloes to Galaxies&#34; series</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01664">arXiv:2409.01664</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01664">pdf</a>, <a href="https://arxiv.org/format/2409.01664">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Wind from cold accretion flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bu%2C+D">De-Fu Bu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01664v1-abstract-short" style="display: inline;"> We describe the physical mechanisms of launching and acceleration of wind from an active galactic nucleus (AGN) accretion disk. We focus on the radiation line force driven and magnetic driven wind models, which operate on the accretion disk scale. We review the investigation histories of the two mechanisms and the most new results obtained recently. The ultra-fast outflows (UFOs) found in the hard&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01664v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01664v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01664v1-abstract-full" style="display: none;"> We describe the physical mechanisms of launching and acceleration of wind from an active galactic nucleus (AGN) accretion disk. We focus on the radiation line force driven and magnetic driven wind models, which operate on the accretion disk scale. We review the investigation histories of the two mechanisms and the most new results obtained recently. The ultra-fast outflows (UFOs) found in the hard X-ray bands are believed to directly originate from AGN accretion disks. We review the theoretical works applying the two mechanisms of wind to explain the UFOs. We briefly introduce the propagation of winds on a large scale which is important for AGN wind feedback study. Finally, the roles of wind in AGN feedback are briefly reviewed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01664v1-abstract-full').style.display = 'none'; document.getElementById('2409.01664v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 2 figures, invited review chapter for the book &#34;New Frontiers in GRMHD Simulations&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16595">arXiv:2408.16595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16595">pdf</a>, <a href="https://arxiv.org/format/2408.16595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Wind from the Hot Accretion Flow and Super-Eddington Accretion Flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hai Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16595v1-abstract-short" style="display: inline;"> Wind is believed to be widespread in various black hole accretion flows. However, unlike the wind from thin disks, which have substantial observational evidence, the wind from hot accretion flows is difficult to observe due to the extremely high temperatures causing the gas to be almost fully ionized. Its existence was controversial until recent theoretical work demonstrated its presence and stren&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16595v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16595v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16595v1-abstract-full" style="display: none;"> Wind is believed to be widespread in various black hole accretion flows. However, unlike the wind from thin disks, which have substantial observational evidence, the wind from hot accretion flows is difficult to observe due to the extremely high temperatures causing the gas to be almost fully ionized. Its existence was controversial until recent theoretical work demonstrated its presence and strength, which was subsequently confirmed by observations. Although there have been some new observations recently, the main progress still comes from theoretical studies. These studies investigate the effects of different magnetic fields and black hole spins on the wind, providing insights into properties such as mass flux and wind velocity. Wind is typically produced locally within the Bondi radius, and even wind generated on a small scale can propagate far beyond this radius. The situation with super-Eddington wind is similar, despite some recent observations, the main advances rely on theoretical studies. Recent research comparing the momentum and energy of wind and jets suggests that wind plays a more crucial role in active galactic nuclei feedback than jets, whether the wind originates from hot accretion flows or super-Eddington accretion flows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16595v1-abstract-full').style.display = 'none'; document.getElementById('2408.16595v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 6 figures, Invited chapter for the edited book &#34;New Frontiers in GRMHD Simulations&#34; (Eds. C. Bambi, Y. Mizuno, S. Shashank and F. Yuan, Springer Singapore, expected in 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12442">arXiv:2408.12442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12442">pdf</a>, <a href="https://arxiv.org/format/2408.12442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad991f">10.3847/1538-4357/ad991f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Halos to Galaxies. VI. Improved halo mass estimation for SDSS groups and measurement of the halo mass function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+D">Dingyi Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jing%2C+Y">Yipeng Jing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+X">Xiaohu Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Renzini%2C+A">Alvio Renzini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallazzi%2C+A+R">Anna R. Gallazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lyu%2C+C">Cheqiu Lyu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiolino%2C+R">Roberto Maiolino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dou%2C+J">Jing Dou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+Z">Zeyu Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+Q">Qiusheng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mannucci%2C+F">Filippo Mannucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mo%2C+H">Houjun Mo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+B">Bitao Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+E">Enci Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yu-Chen Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+B">Bingxiao Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+X">Xingye Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12442v2-abstract-short" style="display: inline;"> In $螞$CDM cosmology, galaxies form and evolve in their host dark matter (DM) halos. Halo mass is crucial for understanding the halo-galaxy connection. The abundance matching (AM) technique has been widely used to derive the halo masses of galaxy groups. However, quenching of the central galaxy can decouple the coevolution of its stellar mass and DM halo mass. Different halo assembly histories can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12442v2-abstract-full').style.display = 'inline'; document.getElementById('2408.12442v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12442v2-abstract-full" style="display: none;"> In $螞$CDM cosmology, galaxies form and evolve in their host dark matter (DM) halos. Halo mass is crucial for understanding the halo-galaxy connection. The abundance matching (AM) technique has been widely used to derive the halo masses of galaxy groups. However, quenching of the central galaxy can decouple the coevolution of its stellar mass and DM halo mass. Different halo assembly histories can also result in significantly different final stellar mass of the central galaxies. These processes can introduce substantial uncertainties in the halo masses derived from the AM method, particularly leading to a systematic bias between groups with star-forming centrals (blue groups) and passive centrals (red groups). To improve, we developed a new machine learning (ML) algorithm that accounts for these effects and is trained on simulations. Our results show that the ML method eliminates the systematic bias in the derived halo masses for blue and red groups and is, on average, $\sim1/3$ more accurate than the AM method. With careful calibration of observable quantities from simulations and observations from SDSS, we apply our ML model to the SDSS Yang et al. groups to derive their halo masses down to $10^{11.5}\mathrm{M_\odot}$ or even lower. The derived SDSS group halo mass function agrees well with the theoretical predictions, and the derived stellar-to-halo mass relations for both red and blue groups matches well with those obtained from direct weak lensing measurements. These new halo mass estimates enable more accurate investigation of the galaxy-halo connection and the role of the halos in galaxy evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12442v2-abstract-full').style.display = 'none'; document.getElementById('2408.12442v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 11 figures. Published by ApJ, comments welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 979 42 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07749">arXiv:2408.07749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.07749">pdf</a>, <a href="https://arxiv.org/format/2408.07749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad9a5c">10.3847/1538-4357/ad9a5c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Halos to Galaxies. X: Decoding Galaxy SEDs with Physical Priors and Accurate Star Formation History Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+Z">Zeyu Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Renzini%2C+A">Alvio Renzini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallazzi%2C+A+R">Anna R. Gallazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mannucci%2C+F">Filippo Mannucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mo%2C+H">Houjun Mo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jing%2C+Y">Yipeng Jing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+X">Xiaohu Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+E">Enci Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+D">Dingyi Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dou%2C+J">Jing Dou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+Q">Qiusheng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lyu%2C+C">Cheqiu Lyu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiolino%2C+R">Roberto Maiolino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+B">Bitao Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yu-Chen Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+B">Bingxiao Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+X">Xingye Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07749v2-abstract-short" style="display: inline;"> The spectral energy distribution (SED) of galaxies is essential for deriving fundamental properties like stellar mass and star formation history (SFH). However, conventional methods, including both parametric and non-parametric approaches, often fail to accurately recover the observed cosmic star formation rate (SFR) density due to oversimplified or unrealistic assumptions about SFH and their inab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07749v2-abstract-full').style.display = 'inline'; document.getElementById('2408.07749v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07749v2-abstract-full" style="display: none;"> The spectral energy distribution (SED) of galaxies is essential for deriving fundamental properties like stellar mass and star formation history (SFH). However, conventional methods, including both parametric and non-parametric approaches, often fail to accurately recover the observed cosmic star formation rate (SFR) density due to oversimplified or unrealistic assumptions about SFH and their inability to account for the complex SFH variations across different galaxy populations. To address this issue, we introduce a novel approach that improves galaxy broadband SED analysis by incorporating physical priors derived from hydrodynamical simulations. Tests using IllustrisTNG simulations demonstrate that our method can reliably determine galaxy physical properties from broadband photometry, including stellar mass within 0.05 dex, current SFR within 0.3 dex, and fractional stellar formation time within 0.2 dex, with a negligible fraction of catastrophic failures. When applied to the Sloan Digital Sky Survey (SDSS) main photometric galaxy sample with spectroscopic redshift, our estimates of stellar mass and SFR are consistent with the widely used MPA-JHU and GSWLC catalogs. Notably, using the derived SFHs of individual SDSS galaxies, we estimate the cosmic SFR density and stellar mass density with remarkable consistency to direct observations up to $z \sim 6$. This demonstrates a significant advancement in deriving SFHs from SEDs that closely align with observational data. Consequently, our method can reliably recover observed spectral indices such as $\rm D_{\rm n}(4000)$ and $\rm H未_{\rm A}$ by synthesizing the full spectra of galaxies using the estimated SFHs and metal enrichment histories, relying solely on broadband photometry as input. Furthermore, this method is extremely computationally efficient compared to conventional approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07749v2-abstract-full').style.display = 'none'; document.getElementById('2408.07749v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures. This paper has been accepted for publication in ApJ,</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 979 66 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03409">arXiv:2407.03409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03409">pdf</a>, <a href="https://arxiv.org/format/2407.03409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> From Halos to Galaxies. IX. Estimate of Halo Assembly History for SDSS Galaxy Groups </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lyu%2C+C">Cheqiu Lyu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jing%2C+Y">Yipeng Jing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+X">Xiaohu Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Renzini%2C+A">Alvio Renzini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+D">Dingyi Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mannucci%2C+F">Filippo Mannucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mo%2C+H">Houjun Mo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+B">Bitao Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+B">Bingxiao Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dou%2C+J">Jing Dou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallazzi%2C+A+R">Anna R. Gallazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+Q">Qiusheng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiolino%2C+R">Roberto Maiolino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+E">Enci Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03409v1-abstract-short" style="display: inline;"> The properties of the galaxies are tightly connected to their host halo mass and halo assembly history. Accurate measurement of the halo assembly history in observation is challenging but crucial to the understanding of galaxy formation and evolution. The stellar-to-halo mass ratio ($M_*/M_{\mathrm{h}}$) for the centrals has often been used to indicate the halo assembly time $t_{\mathrm{h,50}}$ of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03409v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03409v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03409v1-abstract-full" style="display: none;"> The properties of the galaxies are tightly connected to their host halo mass and halo assembly history. Accurate measurement of the halo assembly history in observation is challenging but crucial to the understanding of galaxy formation and evolution. The stellar-to-halo mass ratio ($M_*/M_{\mathrm{h}}$) for the centrals has often been used to indicate the halo assembly time $t_{\mathrm{h,50}}$ of the group, where $t_{\mathrm{h,50}}$ is the lookback time at which a halo has assembled half of its present-day virial mass. Using mock data from the semi-analytic models, we find that $M_*/M_{\mathrm{h}}$ shows a significant scatter with $t_{\mathrm{h,50}}$, with a strong systematic difference between the group with a star-forming central (blue group) and passive central (red group). To improve the accuracy, we develop machine-learning models to estimate $t_{\mathrm{h,50}}$ for galaxy groups using only observable quantities in the mocks. Since star-formation quenching will decouple the co-growth of the dark matter and baryon, we train our models separately for blue and red groups. Our models have successfully recovered $t_{\mathrm{h,50}}$, within an accuracy of $\sim$ 1.09 Gyr. With careful calibrations of individual observable quantities in the mocks with SDSS observations, we apply the trained models to the SDSS Yang et al. groups and derive the $t_{\mathrm{h,50}}$ for each group for the first time. The derived SDSS $t_{\mathrm{h,50}}$ distributions are in good agreement with that in the mocks, in particular for blue groups. The derived halo assembly history, together with the halo mass, make an important step forward in studying the halo-galaxy connections in observation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03409v1-abstract-full').style.display = 'none'; document.getElementById('2407.03409v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures. Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13169">arXiv:2406.13169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13169">pdf</a>, <a href="https://arxiv.org/format/2406.13169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A surprising excess of radio emission in extremely stable quasars: a unique clue to jet launching? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kang%2C+W">Wen-Yong Kang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+J">Jun-Xian Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+Z">Zhen-Yi Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+H">Hao-Chen Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ren%2C+W">Wen-Ke Ren</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liao%2C+M">Mai Liao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zdziarski%2C+A">Andrzej Zdziarski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cao%2C+X">Xinwu Cao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13169v1-abstract-short" style="display: inline;"> Quasars are generally divided into jetted radio-loud and non-jetted radio-quiet ones, but why only 10% quasars are radio loud has been puzzling for decades. Other than jet-induced-phenomena, black hole mass, or Eddington ratio, prominent difference between jetted and non-jetted quasars has scarcely been detected. Here we show a unique distinction between them and the mystery of jet launching could&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13169v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13169v1-abstract-full" style="display: none;"> Quasars are generally divided into jetted radio-loud and non-jetted radio-quiet ones, but why only 10% quasars are radio loud has been puzzling for decades. Other than jet-induced-phenomena, black hole mass, or Eddington ratio, prominent difference between jetted and non-jetted quasars has scarcely been detected. Here we show a unique distinction between them and the mystery of jet launching could be disclosed by a prominent excess of radio emission in extremely stable quasars (ESQs, i.e., type 1 quasars with extremely weak variability in UV/optical over 10 years). Specifically, we find that $&gt;$ 25% of the ESQs are detected by the FIRST/VLASS radio survey, while only $\sim$ 6-8% of the control sample, matched in redshift, luminosity, and Eddington ratio, are radio-detected. The excess of radio detection in ESQs has a significance of 4.4 $蟽$ (99.9995%), and dominantly occurs at intermediate radio loudness with R $\sim$ 10 - 60. The radio detection fraction of ESQs also tends to increase in the ESQ samples selected with more stringent thresholds. Our results are in contrast to the common view that RL quasars are likely more variable in UV/optical due to jet contribution. New clues/challenge posed by our findings highlight the importance of extensive follow-up observations to probe the nature of jets in ESQs, and theoretical studies on the link between jet launching and ESQs. Moreover, our results makes ESQs, an essential population which has never been explored, unique targets in the burgeoning era of time domain astronomy, like their opposite counterparts of quasars exhibiting extreme variability or changing-look features. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13169v1-abstract-full').style.display = 'none'; document.getElementById('2406.13169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 16 figures, Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17623">arXiv:2404.17623</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17623">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450497">10.1051/0004-6361/202450497 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Broadband Multi-wavelength Properties of M87 during the 2018 EHT Campaign including a Very High Energy Flaring Episode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Algaba%2C+J+C">J. C. Algaba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balokovic%2C+M">M. Balokovic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+S">S. Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cheong%2C+W+Y">W. Y. Cheong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+Y+Z">Y. Z. Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Ammando%2C+F">F. D&#39;Ammando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Falcone%2C+A+D">A. D. Falcone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ford%2C+N+M">N. M. Ford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giroletti%2C+M">M. Giroletti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goddi%2C+C">C. Goddi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gurwell%2C+M+A">M. A. Gurwell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hada%2C+K">K. Hada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haggard%2C+D">D. Haggard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jorstad%2C+S">S. Jorstad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaur%2C+A">A. Kaur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawashima%2C+T">T. Kawashima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kerby%2C+S">S. Kerby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J+Y">J. Y. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kino%2C+M">M. Kino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kravchenko%2C+E+V">E. V. Kravchenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+S+S">S. S. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+R+S">R. S. Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Markoff%2C+S">S. Markoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Michail%2C+J">J. Michail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neilsen%2C+J">J. Neilsen</a> , et al. (721 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17623v3-abstract-short" style="display: inline;"> The nearby elliptical galaxy M87 contains one of the only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio to gamma-ray energies) took part in the second M87 EHT campaign. The goal of this extensive MWL campaign was to better understand the physi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17623v3-abstract-full').style.display = 'inline'; document.getElementById('2404.17623v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17623v3-abstract-full" style="display: none;"> The nearby elliptical galaxy M87 contains one of the only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio to gamma-ray energies) took part in the second M87 EHT campaign. The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high energy (VHE) gamma-rays, as well as details of the individual observations and light curves. We also conduct phenomenological modelling to investigate the basic source properties. We present the first VHE gamma-ray flare from M87 detected since 2010. The flux above 350 GeV has more than doubled within a period of about 36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHE gamma-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and emphasises the need for combined image and spectral modelling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17623v3-abstract-full').style.display = 'none'; document.getElementById('2404.17623v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 23 figures, accepted by Astronomy &amp; Astrophysics on August. 29, 2024</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 692, A140 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15950">arXiv:2403.15950</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15950">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adn3544">10.1126/sciadv.adn3544 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling the inner part of the jet in M87: Confronting jet morphology with theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hai Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mizuno%2C+Y">Yosuke Mizuno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+F">Fan Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+R">Rusen Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+X">Xi Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zdziarski%2C+A+A">Andrzej A. Zdziarski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+J">Jieshuang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15950v1-abstract-short" style="display: inline;"> The formation of jets in black hole accretion systems is a long-standing problem. It has been proposed that a jet can be formed by extracting the rotation energy of the black hole (&#34;BZ-jet&#34;) or the accretion flow (&#34;disk-jet&#34;). While both models can produce collimated relativistic outflows, neither has successfully explained the observed jet morphology. By employing general relativistic magnetohydr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15950v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15950v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15950v1-abstract-full" style="display: none;"> The formation of jets in black hole accretion systems is a long-standing problem. It has been proposed that a jet can be formed by extracting the rotation energy of the black hole (&#34;BZ-jet&#34;) or the accretion flow (&#34;disk-jet&#34;). While both models can produce collimated relativistic outflows, neither has successfully explained the observed jet morphology. By employing general relativistic magnetohydrodynamic simulations, and considering nonthermal electrons accelerated by magnetic reconnection that is likely driven by magnetic eruption in the underlying accretion flow, we obtain images by radiative transfer calculations and compared them to millimeter observations of the jet in M87. We find that the BZ-jet originating from a magnetically arrested disk around a high-spin black hole can well reproduce the jet morphology, including its width and limb-brightening feature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15950v1-abstract-full').style.display = 'none'; document.getElementById('2403.15950v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 20 figures, 3 tables, published in Science Advances on 22 Mar 2024. arXiv admin note: substantial text overlap with arXiv:2206.05661</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.09957">arXiv:2403.09957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.09957">pdf</a>, <a href="https://arxiv.org/format/2403.09957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Suppression of Star Formation in Galaxy Pairs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+S">Shuai Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+S">Shi-Yin Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhong%2C+W">Wen-Xin Zhong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+W">Wen-Yuan Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Lin-Lin Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.09957v1-abstract-short" style="display: inline;"> We investigate the suppression of star formation in galaxy pairs based on the isolated galaxy pair sample derived from the SDSS survey. By comparing the star formation rate between late-type galaxies in galaxy pairs and those in the isolated environment, we detect the signal of star formation suppression in galaxy pairs at $d_p &lt; 100$kpc and $200$kpc$ &lt; d_p &lt; 350$kpc. The occurrence of star format&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09957v1-abstract-full').style.display = 'inline'; document.getElementById('2403.09957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.09957v1-abstract-full" style="display: none;"> We investigate the suppression of star formation in galaxy pairs based on the isolated galaxy pair sample derived from the SDSS survey. By comparing the star formation rate between late-type galaxies in galaxy pairs and those in the isolated environment, we detect the signal of star formation suppression in galaxy pairs at $d_p &lt; 100$kpc and $200$kpc$ &lt; d_p &lt; 350$kpc. The occurrence of star formation suppression in these late-type galaxies requires their companion galaxies to have an early-type morphology ($n_s &gt; 2.5$). Star formation suppression in wide galaxy pairs with $200$kpc$ &lt; d_p &lt; 350$kpc mainly occurs in massive late-type galaxies, while in close galaxy pairs with $d_p &lt; 100$kpc, it only appears in late-type galaxies with a massive companion ( $\log M_\star &gt; 11.0$), nearly independent of their own stellar mass. Based on these findings, we infer that star formation suppression in wide galaxy pairs is actually a result of galaxy conformity, while in close galaxy pairs, it stems from the influence of hot circum-galactic medium surrounding companion galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.09957v1-abstract-full').style.display = 'none'; document.getElementById('2403.09957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00479">arXiv:2403.00479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00479">pdf</a>, <a href="https://arxiv.org/format/2403.00479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Observational Evidence for Hot Wind Impact on pc-scale in Low-luminosity Active Galactic Nucleus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+F">Fangzheng Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhiyuan Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+Z">Zhao Su</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+S">Suoqing Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00479v1-abstract-short" style="display: inline;"> Supermassive black holes in galaxies spend majority of their lifetime in the low-luminosity regime, powered by hot accretion flow. Strong winds launched from the hot accretion flow have the potential to play an important role in active galactic nuclei (AGN) feedback. Direct observational evidence for these hot winds with temperature around 10 keV, has been obtained through the detection of highly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00479v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00479v1-abstract-full" style="display: none;"> Supermassive black holes in galaxies spend majority of their lifetime in the low-luminosity regime, powered by hot accretion flow. Strong winds launched from the hot accretion flow have the potential to play an important role in active galactic nuclei (AGN) feedback. Direct observational evidence for these hot winds with temperature around 10 keV, has been obtained through the detection of highly ionized iron emission lines with Doppler shifts in two prototypical low-luminosity AGNs, namely M81* and NGC 7213. In this work, we further identify blueshifted H-like O/Ne emission lines in the soft X-ray spectra of these two sources. These lines are interpreted to be associated with additional outflowing components possessing velocity around several $10^3$ km/s and lower temperature (~0.2-0.4 keV). Blue-shifted velocity and the X-ray intensity of these additional outflowing components are hard to be explained by previously detected hot wind freely propagating to larger radii. Through detailed numerical simulations, we find the newly detected blue-shifted emission lines would come from circumnuclear gas shock-heated by the hot wind instead. Hot wind can provide larger ram pressure force on the clumpy circumnuclear gas than the gravitational force from central black hole, effectively impeding the black hole accretion of gas. Our results provide strong evidences for the energy and momentum feedback by the hot AGN wind. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00479v1-abstract-full').style.display = 'none'; document.getElementById('2403.00479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00927">arXiv:2402.00927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00927">pdf</a>, <a href="https://arxiv.org/format/2402.00927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348308">10.1051/0004-6361/202348308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ordered magnetic fields around the 3C 84 central black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Paraschos%2C+G+F">G. F. Paraschos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J+-">J. -Y. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wielgus%2C+M">M. Wielgus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=R%C3%B6der%2C+J">J. R枚der</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krichbaum%2C+T+P">T. P. Krichbaum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ros%2C+E">E. Ros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agudo%2C+I">I. Agudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Myserlis%2C+I">I. Myserlis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moscibrodzka%2C+M">M. Moscibrodzka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Traianou%2C+E">E. Traianou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zensus%2C+J+A">J. A. Zensus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blackburn%2C+L">L. Blackburn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+C+-">C. -K. Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Issaoun%2C+S">S. Issaoun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Janssen%2C+M">M. Janssen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+M+D">M. D. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fish%2C+V+L">V. L. Fish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiyama%2C+K">K. Akiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberdi%2C+A">A. Alberdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alef%2C+W">W. Alef</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Algaba%2C+J+C">J. C. Algaba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anantua%2C+R">R. Anantua</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asada%2C+K">K. Asada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azulay%2C+R">R. Azulay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bach%2C+U">U. Bach</a> , et al. (258 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00927v1-abstract-short" style="display: inline;"> 3C84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of VLBI above the hitherto available maximum frequency of 86GHz. Using ultrahigh resolution VLBI observations at the highest available frequency of 228GHz, we aim to directly detect compact structures a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00927v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00927v1-abstract-full" style="display: none;"> 3C84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of VLBI above the hitherto available maximum frequency of 86GHz. Using ultrahigh resolution VLBI observations at the highest available frequency of 228GHz, we aim to directly detect compact structures and understand the physical conditions in the compact region of 3C84. We used EHT 228GHz observations and, given the limited (u,v)-coverage, applied geometric model fitting to the data. We also employed quasi-simultaneously observed, multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure. We report the detection of a highly ordered, strong magnetic field around the central, SMBH of 3C84. The brightness temperature analysis suggests that the system is in equipartition. We determined a turnover frequency of $谓_m=(113\pm4)$GHz, a corresponding synchrotron self-absorbed magnetic field of $B_{SSA}=(2.9\pm1.6)$G, and an equipartition magnetic field of $B_{eq}=(5.2\pm0.6)$G. Three components are resolved with the highest fractional polarisation detected for this object ($m_\textrm{net}=(17.0\pm3.9)$%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017-2018. We report a steeply negative slope of the spectrum at 228GHz. We used these findings to test models of jet formation, propagation, and Faraday rotation in 3C84. The findings of our investigation into different flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C84. However, systematic uncertainties due to the limited (u,v)-coverage, however, cannot be ignored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00927v1-abstract-full').style.display = 'none'; document.getElementById('2402.00927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, published in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Issue: A&amp;A Volume 682, February 2024; Article number: L3; Number of pages: 15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02945">arXiv:2401.02945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02945">pdf</a>, <a href="https://arxiv.org/format/2401.02945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Dark Energy Survey Supernova Program: Cosmological Analysis and Systematic Uncertainties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vincenzi%2C+M">M. Vincenzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brout%2C+D">D. Brout</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+P">P. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popovic%2C+B">B. Popovic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taylor%2C+G">G. Taylor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acevedo%2C+M">M. Acevedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Camilleri%2C+R">R. Camilleri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+T+M">T. M. Davis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinton%2C+S+R">S. R. Hinton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kelsey%2C+L">L. Kelsey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kessler%2C+R">R. Kessler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J">J. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lidman%2C+C">C. Lidman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6ller%2C+A">A. M枚ller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+H">H. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sako%2C+M">M. Sako</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanchez%2C+B">B. Sanchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">D. Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M">M. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sullivan%2C+M">M. Sullivan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiseman%2C+P">P. Wiseman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+J">J. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bassett%2C+B+A">B. A. Bassett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carollo%2C+D">D. Carollo</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02945v2-abstract-short" style="display: inline;"> We present the full Hubble diagram of photometrically-classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7,000 host galaxies. Based on the light-curve quality, we select 1635 photometrically-identified SNe Ia with spectroscopic redshift 0.10$&lt; z &lt;$1.13, which is the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02945v2-abstract-full').style.display = 'inline'; document.getElementById('2401.02945v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02945v2-abstract-full" style="display: none;"> We present the full Hubble diagram of photometrically-classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7,000 host galaxies. Based on the light-curve quality, we select 1635 photometrically-identified SNe Ia with spectroscopic redshift 0.10$&lt; z &lt;$1.13, which is the largest sample of supernovae from any single survey and increases the number of known $z&gt;0.5$ supernovae by a factor of five. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically-classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are $蟽_{惟_M,{\rm stat+sys}}^{螞{\rm CDM}}=$0.017 in a flat $螞$CDM model, and $(蟽_{惟_M},蟽_w)_{\rm stat+sys}^{w{\rm CDM}}=$(0.082, 0.152) in a flat $w$CDM model. Combining the DES SN data with the highly complementary CMB measurements by Planck Collaboration (2020) reduces uncertainties on cosmological parameters by a factor of 4. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory&#39;s Legacy Survey of Space and Time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02945v2-abstract-full').style.display = 'none'; document.getElementById('2401.02945v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 19 figures; Submitted to ApJ; companion paper Dark Energy Collaboration et al. on consecutive arxiv number 2401.02929</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-693-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02929">arXiv:2401.02929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02929">pdf</a>, <a href="https://arxiv.org/format/2401.02929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Dark Energy Survey: Cosmology Results With ~1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=DES+Collaboration"> DES Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acevedo%2C+M">M. Acevedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+O">O. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Armstrong%2C+P">P. Armstrong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+J">J. Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bassett%2C+B+A">B. A. Bassett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardinelli%2C+P+H">P. H. Bernardinelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+J">J. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bocquet%2C+S">S. Bocquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brout%2C+D">D. Brout</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley-Geer%2C+E">E. Buckley-Geer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burke%2C+D+L">D. L. Burke</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02929v3-abstract-short" style="display: inline;"> We present cosmological constraints from the sample of Type Ia supernovae (SN Ia) discovered during the full five years of the Dark Energy Survey (DES) Supernova Program. In contrast to most previous cosmological samples, in which SN are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02929v3-abstract-full').style.display = 'inline'; document.getElementById('2401.02929v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02929v3-abstract-full" style="display: none;"> We present cosmological constraints from the sample of Type Ia supernovae (SN Ia) discovered during the full five years of the Dark Energy Survey (DES) Supernova Program. In contrast to most previous cosmological samples, in which SN are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being a SN Ia, we find 1635 DES SNe in the redshift range $0.10&lt;z&lt;1.13$ that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-quality $z&gt;0.5$ SNe compared to the previous leading compilation of Pantheon+, and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints we combine the DES supernova data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning $0.025&lt;z&lt;0.10$. Using SN data alone and including systematic uncertainties we find $惟_{\rm M}=0.352\pm 0.017$ in flat $螞$CDM. Supernova data alone now require acceleration ($q_0&lt;0$ in $螞$CDM) with over $5蟽$ confidence. We find $(惟_{\rm M},w)=(0.264^{+0.074}_{-0.096},-0.80^{+0.14}_{-0.16})$ in flat $w$CDM. For flat $w_0w_a$CDM, we find $(惟_{\rm M},w_0,w_a)=(0.495^{+0.033}_{-0.043},-0.36^{+0.36}_{-0.30},-8.8^{+3.7}_{-4.5})$. Including Planck CMB data, SDSS BAO data, and DES $3\times2$-point data gives $(惟_{\rm M},w)=(0.321\pm0.007,-0.941\pm0.026)$. In all cases dark energy is consistent with a cosmological constant to within $\sim2蟽$. In our analysis, systematic errors on cosmological parameters are subdominant compared to statistical errors; paving the way for future photometrically classified supernova analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02929v3-abstract-full').style.display = 'none'; document.getElementById('2401.02929v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures; Accepted by ApJL 29 March 2024; v3 updates to accepted version and includes links to data</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-0821-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06345">arXiv:2312.06345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06345">pdf</a>, <a href="https://arxiv.org/format/2312.06345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Hubble Deep Hydrogen Alpha (HDH$伪$) Project: I. Catalog of Emission-line Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+S">Shuairu Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zhen-Ya Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhoads%2C+J">James Rhoads</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+J">Junxian Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+L">Linhua Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+C">Chunyan Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahna%2C+P+T">P. T. Rahna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hu%2C+W">Weida Hu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+R">Ruqiu Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shan%2C+H">Huanyuan Shan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+C">Chun Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Infante%2C+L">Leopoldo Infante</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrientos%2C+L+F">L. Felipe Barrientos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+X">Xianzhong Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+G">Guanwen Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liang%2C+Z">Zhixiong Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06345v1-abstract-short" style="display: inline;"> We present the first results of the Hubble Deep Hydrogen Alpha (HDH$伪$) project, which analyzes the space-borne deep H$伪$ narrowband imaging data in the GOODS-S region. The HDH$伪$ data comprises 72 orbits&#39; images taken with the HST ACS/WFC F658N filter. The exposure time varies across a total area of $\sim$76.1 $\rm{arcmin}^2$, adding up to a total exposure time of 195.7 ks, among which 68.8 ks ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06345v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06345v1-abstract-full" style="display: none;"> We present the first results of the Hubble Deep Hydrogen Alpha (HDH$伪$) project, which analyzes the space-borne deep H$伪$ narrowband imaging data in the GOODS-S region. The HDH$伪$ data comprises 72 orbits&#39; images taken with the HST ACS/WFC F658N filter. The exposure time varies across a total area of $\sim$76.1 $\rm{arcmin}^2$, adding up to a total exposure time of 195.7 ks, among which 68.8 ks are spent in the deepest region. These images are aligned, reprojected, and combined to have the same pixel grid as the Hubble Legacy Fields (HLF). The scientific goals of the HDH$伪$ include establishing a sample of emission-line galaxies (ELGs) including [O III] emitters at $z\sim$ 0.3, [O II] emitters at $z\sim$ 0.8, and Lyman-$伪$ emitters (LAEs) at $z \sim 4.4$, studying the line morphology of ELGs with high resolution imaging data, and statistically analyzing the line luminosity functions and line equivalent-width distributions of ELGs selected with HST. Furthermore, the HDH$伪$ project enhances the legacy value of the GOODS-S field by contributing the first HST-based narrowband image to the existing data sets, which includes the HST broadband data and other ancillary data from X-ray to radio taken by other facilities. In this paper, we describe the data reduction process of the HDH$伪$, select ELGs based on HST&#39;s F658N and broadband data, validate the redshifts of the selected candidates by cross matching with the public spectroscopic catalogs in the GOODS-S, and present a final catalog of the confirmed [O III] emitters at $z\sim$ 0.3, [O II] emitters at $z\sim$ 0.8, and LAEs at $z \sim 4.4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06345v1-abstract-full').style.display = 'none'; document.getElementById('2312.06345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 14 figures, 9 tables, accepted by ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07653">arXiv:2311.07653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07653">pdf</a>, <a href="https://arxiv.org/format/2311.07653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07821-2">10.1038/s41586-024-07821-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Black holes regulate cool gas accretion in massive galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+K">Ke Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+Y">Yuxuan Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+Y">Yong Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elbaz%2C+D">David Elbaz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+Z">Zhi-Yu Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+Q">Qiusheng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yijun Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shu%2C+C">Chenggang Shu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xia%2C+X">Xiaoyang Xia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07653v2-abstract-short" style="display: inline;"> The nucleus of almost all massive galaxies contains a supermassive black hole (BH). The feedback from the accretion of these BHs is often considered to have crucial roles in establishing the quiescence of massive galaxies, although some recent studies show that even galaxies hosting the most active BHs do not exhibit a reduction in their molecular gas reservoirs or star formation rates. Therefore,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07653v2-abstract-full').style.display = 'inline'; document.getElementById('2311.07653v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07653v2-abstract-full" style="display: none;"> The nucleus of almost all massive galaxies contains a supermassive black hole (BH). The feedback from the accretion of these BHs is often considered to have crucial roles in establishing the quiescence of massive galaxies, although some recent studies show that even galaxies hosting the most active BHs do not exhibit a reduction in their molecular gas reservoirs or star formation rates. Therefore, the influence of BHs on galaxy star formation remains highly debated and lacks direct evidence. Here, based on a large sample of nearby galaxies with measurements of masses of both BHs and atomic hydrogen (HI), the main component of the interstellar medium, we show that the HI gas mass to stellar masses ratio ($渭_{\rm HI} = M_{\rm HI}/M_{\star}$) is more strongly correlated with BH masses ($M_{\rm BH}$) than with any other galaxy parameters, including stellar mass, stellar mass surface density and bulge masses. Moreover, once the $渭_{\rm HI}-M_{\rm BH}$ correlation is considered, $渭_{\rm HI}$ loses dependence on other galactic parameters, demonstrating that $M_{\rm BH}$ serves as the primary driver of $渭_{\rm HI}$. These findings provide important evidence for how the accumulated energy from BH accretion regulates the cool gas content in galaxies, by ejecting interstellar medium gas and/or suppressing gas cooling from the circumgalactic medium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07653v2-abstract-full').style.display = 'none'; document.getElementById('2311.07653v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature. Updated to match the accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10733">arXiv:2310.10733</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10733">pdf</a>, <a href="https://arxiv.org/format/2310.10733">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> From Halos to Galaxies. VII. The Connections Between Stellar Mass Growth History, Quenching History and Halo Assembly History for Central Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lyu%2C+C">Cheqiu Lyu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jing%2C+Y">Yipeng Jing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+X">Xiaohu Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Renzini%2C+A">Alvio Renzini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+B">Bitao Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+K">Kai Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+B">Bingxiao Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+D">Dingyi Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dou%2C+J">Jing Dou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+Q">Qiusheng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maiolino%2C+R">Roberto Maiolino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mannucci%2C+F">Filippo Mannucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10733v1-abstract-short" style="display: inline;"> The assembly of galaxies over cosmic time is tightly connected to the assembly of their host dark matter halos. We investigate the stellar mass growth history and the chemical enrichment history of central galaxies in SDSS-MaNGA. We find that the derived stellar metallicity of passive central galaxies is always higher than that of the star-forming ones. This stellar metallicity enhancement becomes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10733v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10733v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10733v1-abstract-full" style="display: none;"> The assembly of galaxies over cosmic time is tightly connected to the assembly of their host dark matter halos. We investigate the stellar mass growth history and the chemical enrichment history of central galaxies in SDSS-MaNGA. We find that the derived stellar metallicity of passive central galaxies is always higher than that of the star-forming ones. This stellar metallicity enhancement becomes progressively larger towards low-mass galaxies (at a given epoch) and earlier epochs (at a given stellar mass), which suggests strangulation as the primary mechanism for star formation quenching in central galaxies not only in the local universe, but also very likely at higher redshifts up to $z\sim3$. We show that at the same present-day stellar mass, passive central galaxies assembled half of their final stellar mass $\sim 2$ Gyr earlier than star-forming central galaxies, which agrees well with semi-analytic model. Exploring semi-analytic model, we find that this is because passive central galaxies reside in, on average, more massive halos with a higher halo mass increase rate across cosmic time. As a consequence, passive central galaxies are assembled faster and also quenched earlier than their star-forming counterparts. While at the same present-day halo mass, different halo assembly history also produces very different final stellar mass of the central galaxy within, and halos assembled earlier host more massive centrals with a higher quenched fraction, in particular around the &#34;golden halo mass&#34; at $10^{12}\mathrm{M_\odot}$. Our results call attention back to the dark matter halo as a key driver of galaxy evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10733v1-abstract-full').style.display = 'none'; document.getElementById('2310.10733v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures. Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15970">arXiv:2308.15970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15970">pdf</a>, <a href="https://arxiv.org/format/2308.15970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> On the dominant role of wind in the quasar feedback mode in the late stage evolution of massive elliptical galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+B">Bocheng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+S">Suoqing Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15970v1-abstract-short" style="display: inline;"> In this paper we investigate the role of AGN feedback on the late stage evolution of elliptical galaxies by performing high-resolution hydrodynamical simulation in the {\it MACER} framework. By comparing models that take into account different feedback mechanisms, namely AGN and stellar feedback, we find that AGN feedback is crucial in keeping the black hole in a low accretion state and suppressin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15970v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15970v1-abstract-full" style="display: none;"> In this paper we investigate the role of AGN feedback on the late stage evolution of elliptical galaxies by performing high-resolution hydrodynamical simulation in the {\it MACER} framework. By comparing models that take into account different feedback mechanisms, namely AGN and stellar feedback, we find that AGN feedback is crucial in keeping the black hole in a low accretion state and suppressing the star formation. We then compare the energy from AGN radiation and wind deposited in the galaxy and find that only wind can compensate for the radiative cooling of the gas in the galaxy. Further, we investigate which plays the dominant role, the wind from the cold (quasar) or hot (radio) feedback modes, by examining the cumulative energy output and impact area to which the wind can heat the interstellar medium and suppress star formation. Our results indicate that first, although AGN spends most of its time in hot (radio) mode, the cumulative energy output is dominated by the outburst of the cold mode. Second, only the impact area of the cold-mode wind is large enough to heat the gas in the halo, while the hot-mode wind is not. Additionally, the cold-mode wind is capable of sweeping up the material from stellar mass loss. These results indicate the dominant role of cold-mode wind. The limitations of our model, including the absence of jet feedback, are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15970v1-abstract-full').style.display = 'none'; document.getElementById('2308.15970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 14 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.15381">arXiv:2308.15381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.15381">pdf</a>, <a href="https://arxiv.org/format/2308.15381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> A search for pulsars around Sgr A* in the first Event Horizon Telescope dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Torne%2C+P">Pablo Torne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+K">Kuo Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eatough%2C+R+P">Ralph P. Eatough</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wongphechauxsorn%2C+J">Jompoj Wongphechauxsorn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cordes%2C+J+M">James M. Cordes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Desvignes%2C+G">Gregory Desvignes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Laurentis%2C+M">Mariafelicia De Laurentis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kramer%2C+M">Michael Kramer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ransom%2C+S+M">Scott M. Ransom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chatterjee%2C+S">Shami Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wharton%2C+R">Robert Wharton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karuppusamy%2C+R">Ramesh Karuppusamy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blackburn%2C+L">Lindy Blackburn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Janssen%2C+M">Michael Janssen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chan%2C+C">Chi-kwan Chan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crew%2C+G+B">Geoffrey B. Crew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matthews%2C+L+D">Lynn D. Matthews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goddi%2C+C">Ciriaco Goddi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rottmann%2C+H">Helge Rottmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wagner%2C+J">Jan Wagner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanchez%2C+S">Salvador Sanchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruiz%2C+I">Ignacio Ruiz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbate%2C+F">Federico Abbate</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bower%2C+G+C">Geoffrey C. Bower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salamanca%2C+J+J">Juan J. Salamanca</a> , et al. (261 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.15381v1-abstract-short" style="display: inline;"> The Event Horizon Telescope (EHT) observed in 2017 the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz ($位$=1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT datasets. The high observing frequency means that pulsars - which typically exhibit steep emission&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15381v1-abstract-full').style.display = 'inline'; document.getElementById('2308.15381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.15381v1-abstract-full" style="display: none;"> The Event Horizon Telescope (EHT) observed in 2017 the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz ($位$=1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT datasets. The high observing frequency means that pulsars - which typically exhibit steep emission spectra - are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic Center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most-sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope and the IRAM 30 m Telescope. We apply three detection methods based on Fourier-domain analysis, the Fast-Folding-Algorithm and single pulse search targeting both pulsars and burst-like transient emission; using the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction ($\lesssim$2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.15381v1-abstract-full').style.display = 'none'; document.getElementById('2308.15381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 7 figures, 6 Tables. Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13781">arXiv:2308.13781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13781">pdf</a>, <a href="https://arxiv.org/format/2308.13781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acebce">10.3847/1538-4357/acebce <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of gamma rays up to 320 TeV from the middle-aged TeV pulsar wind nebula HESS J1849$-$000 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Amenomori%2C+M">M. Amenomori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+S">S. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+D">D. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T+L">T. L. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W+Y">W. Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+X">Xu Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cirennima"> Cirennima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+S+W">S. W. Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Danzengluobu"> Danzengluobu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ding%2C+L+K">L. K. Ding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+J+H">J. H. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+K">K. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+C+F">C. F. Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Z">Zhaoyang Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Z+Y">Z. Y. Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+Q">Qi Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomi%2C+A">A. Gomi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gou%2C+Q+B">Q. B. Gou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+Y+Q">Y. Q. Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+Y+Y">Y. Y. Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayashi%2C+Y">Y. Hayashi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=He%2C+H+H">H. H. He</a> , et al. (93 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13781v1-abstract-short" style="display: inline;"> Gamma rays from HESS J1849$-$000, a middle-aged TeV pulsar wind nebula (PWN), are observed by the Tibet air shower array and the muon detector array. The detection significance of gamma rays reaches $4.0\, 蟽$ and $4.4\, 蟽$ levels above 25 TeV and 100 TeV, respectively, in units of Gaussian standard deviation $蟽$. The energy spectrum measured between $40\, {\rm TeV} &lt; E &lt; 320\, {\rm TeV}$ for the f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13781v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13781v1-abstract-full" style="display: none;"> Gamma rays from HESS J1849$-$000, a middle-aged TeV pulsar wind nebula (PWN), are observed by the Tibet air shower array and the muon detector array. The detection significance of gamma rays reaches $4.0\, 蟽$ and $4.4\, 蟽$ levels above 25 TeV and 100 TeV, respectively, in units of Gaussian standard deviation $蟽$. The energy spectrum measured between $40\, {\rm TeV} &lt; E &lt; 320\, {\rm TeV}$ for the first time is described with a simple power-law function of ${\rm d}N/{\rm d}E = (2.86 \pm 1.44) \times 10^{-16}(E/40\, {\rm TeV})^{-2.24 \pm 0.41}\, {\rm TeV}^{-1}\, {\rm cm}^{-2}\, {\rm s}^{-1}$. The gamma-ray energy spectrum from the sub-TeV ($E &lt; 1\, {\rm TeV}$) to sub-PeV ($100\, {\rm TeV} &lt; E &lt; 1\, {\rm PeV}$) ranges including the results of previous studies can be modeled with the leptonic scenario, inverse Compton scattering by high-energy electrons accelerated by the PWN of PSR J1849$-$0001. On the other hand, the gamma-ray energy spectrum can also be modeled with the hadronic scenario in which gamma rays are generated from the decay of neutral pions produced by collisions between accelerated cosmic-ray protons and the ambient molecular cloud found in the gamma-ray emitting region. The cutoff energy of cosmic-ray protons $E_{\rm p\, cut}$, cut is estimated at ${\rm log}_{10}(E_{\rm p,\, cut}/{\rm TeV}) = 3.73^{+2.98}_{-0.66}$, suggesting that protons are accelerated up to the PeV energy range. Our study thus proposes that HESS J1849$-$000 should be further investigated as a new candidate for a Galactic PeV cosmic-ray accelerator, PeVatron. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13781v1-abstract-full').style.display = 'none'; document.getElementById('2308.13781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures, Accepted for publication from the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13780">arXiv:2308.13780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13780">pdf</a>, <a href="https://arxiv.org/format/2308.13780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6ef4">10.3847/1538-4357/ac6ef4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Gamma-Ray Energy Spectrum beyond 100 TeV from the HESS J1843$-$033 Region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Amenomori%2C+M">M. Amenomori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asano%2C+S">S. Asano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bao%2C+Y+W">Y. W. Bao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+D">D. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T+L">T. L. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W+Y">W. Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+X">Xu Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cirennima"> Cirennima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+S+W">S. W. Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Danzengluobu"> Danzengluobu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ding%2C+L+K">L. K. Ding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+J+H">J. H. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+K">K. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+C+F">C. F. Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Z">Zhaoyang Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Z+Y">Z. Y. Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+Q">Qi Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomi%2C+A">A. Gomi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gou%2C+Q+B">Q. B. Gou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+Y+Q">Y. Q. Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+Y+Y">Y. Y. Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=He%2C+H+H">H. H. He</a>, <a href="/search/astro-ph?searchtype=author&amp;query=He%2C+Z+T">Z. T. He</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13780v1-abstract-short" style="display: inline;"> HESS J1843$-$033 is a very-high-energy gamma-ray source whose origin remains unidentified. This work presents, for the first time, the energy spectrum of gamma rays beyond $100\, {\rm TeV}$ from the HESS J1843$-$033 region using the data recorded by the Tibet air shower array and its underground muon detector array. A gamma-ray source with an extension of $0.34^{\circ} \pm 0.12^{\circ}$ is success&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13780v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13780v1-abstract-full" style="display: none;"> HESS J1843$-$033 is a very-high-energy gamma-ray source whose origin remains unidentified. This work presents, for the first time, the energy spectrum of gamma rays beyond $100\, {\rm TeV}$ from the HESS J1843$-$033 region using the data recorded by the Tibet air shower array and its underground muon detector array. A gamma-ray source with an extension of $0.34^{\circ} \pm 0.12^{\circ}$ is successfully detected above $25\, {\rm TeV}$ at $(伪,\, 未) = (281.09^{\circ}\pm 0.10^{\circ},\, -3.76^{\circ}\pm 0.09^{\circ})$ near HESS J1843$-$033 with a statistical significance of $6.2\, 蟽$, and the source is named TASG J1844$-$038. The position of TASG J1844$-$038 is consistent with those of HESS J1843$-$033, eHWC J1842$-$035, and LHAASO J1843$-$0338. The measured gamma-ray energy spectrum in $25\, {\rm TeV} &lt; E &lt; 130\, {\rm TeV}$ is described with ${\rm d}N/{\rm d}E = (9.70\pm 1.89)\times 10^{-16} (E/40\, {\rm TeV})^{-3.26\pm 0.30}\, {\rm TeV}^{-1} {\rm cm}^{-2} {\rm s}^{-1}$, and the spectral fit to the combined spectra of HESS J1843$-$033, LHAASO J1843$-$0338, and TASG J1844$-$038 implies the existence of a cutoff at $49.5\pm 9.0\, {\rm TeV}$. Associations of TASG J1844-038 with SNR G28.6$-$0.1 and PSR J1844-0346 are also discussed in detail for the first time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13780v1-abstract-full').style.display = 'none'; document.getElementById('2308.13780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00916">arXiv:2308.00916</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00916">pdf</a>, <a href="https://arxiv.org/format/2308.00916">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dhungana%2C+G">Govinda Dhungana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kehoe%2C+R">Robert Kehoe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staten%2C+R">Ryan Staten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vinko%2C+J">Jozsef Vinko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wheeler%2C+J+C">J. Craig Wheeler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akerlof%2C+C+W">Carl W. Akerlof</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doss%2C+D">David Doss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farrente%2C+F+V">Farley V. Farrente</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gibson%2C+C+A">Coyne A. Gibson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lasker%2C+J">James Lasker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marion%2C+G+H">G. H. Marion</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S+B">Shashi Bhushan Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quimby%2C+R">Robert Quimby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E">Eli Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+D+A">Donald A. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+W">WeiKang Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00916v2-abstract-short" style="display: inline;"> We present cosmological analysis of 12 nearby ($z&lt;0.06$) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00916v2-abstract-full').style.display = 'inline'; document.getElementById('2308.00916v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00916v2-abstract-full" style="display: none;"> We present cosmological analysis of 12 nearby ($z&lt;0.06$) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be $72.9^{+5.7}_{-4.3}~{\rm kms^{-1}~Mpc^{-1}}$, which is consistent with the standard $螞CDM$ model values derived using other independent techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00916v2-abstract-full').style.display = 'none'; document.getElementById('2308.00916v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14015">arXiv:2307.14015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.14015">pdf</a>, <a href="https://arxiv.org/format/2307.14015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06336-6">10.1038/s41586-023-06336-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-second periodic radio oscillations in a microquasar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tian%2C+P">Pengfu Tian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+P">Pei Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+X">Xiaohui Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+B">Bing Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dai%2C+Z">Zigao Dai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+S">Shuangnan Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Q">Qingzhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+P">Peng Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+X">Xuefeng Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zheng Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+J">Jiashi Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+Z">Zonghong Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pan%2C+Z">Zhichen Pan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gan%2C+H">Hengqian Gan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+X">Xiao Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sai%2C+N">Na Sai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14015v1-abstract-short" style="display: inline;"> Powerful relativistic jets are one of the ubiquitous features of accreting black holes in all scales. GRS 1915+105 is a well-known fast-spinning black-hole X-ray binary with a relativistic jet, termed as a ``microquasar&#39;&#39;, as indicated by its superluminal motion of radio emission. It exhibits persistent x-ray activity over the last 30 years, with quasi-periodic oscillations of $\sim 1-10$ Hz and 3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14015v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14015v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14015v1-abstract-full" style="display: none;"> Powerful relativistic jets are one of the ubiquitous features of accreting black holes in all scales. GRS 1915+105 is a well-known fast-spinning black-hole X-ray binary with a relativistic jet, termed as a ``microquasar&#39;&#39;, as indicated by its superluminal motion of radio emission. It exhibits persistent x-ray activity over the last 30 years, with quasi-periodic oscillations of $\sim 1-10$ Hz and 34 and 67 Hz in the x-ray band. These oscillations likely originate in the inner accretion disk, but other origins have been considered. Radio observations found variable light curves with quasi-periodic flares or oscillations with periods of $\sim 20-50$ minutes. Here we report two instances of $\sim$5 Hz transient periodic oscillation features from the source detected in the 1.05-1.45 GHz radio band that occurred in January 2021 and June 2022, respectively. Circular polarization was also observed during the oscillation phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14015v1-abstract-full').style.display = 'none'; document.getElementById('2307.14015v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The author version of the article which will appear in Nature on 26 July 2023, 32 pages including the extended data. The online publication version can be found at the following URL: https://www.nature.com/articles/s41586-023-06336-6</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2023, Nature, 621, 271-275 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05672">arXiv:2307.05672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05672">pdf</a>, <a href="https://arxiv.org/format/2307.05672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2149-y">10.1007/s11433-023-2149-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scientific Objectives of the Hot Universe Baryon Surveyor (HUBS) Mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bregman%2C+J">Joel Bregman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cen%2C+R">Renyue Cen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Yang Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+W">Wei Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+T">Taotao Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guo%2C+F">Fulai Guo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hodges-Kluck%2C+E">Edmund Hodges-Kluck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+R">Rui Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+L">Li Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+S">Suoqing Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kang%2C+X">Xi Kang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lai%2C+X">Xiaoyu Lai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+J">Jiangtao Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+M">Miao Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+X">Xiangdong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhaosheng Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liang%2C+G">Guiyun Liang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+H">Helei Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+W">Wenhao Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+F">Fangjun Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+J">Junjie Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ponti%2C+G">Gabriele Ponti</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05672v1-abstract-short" style="display: inline;"> The Hot Universe Baryon Surveyor (HUBS) is a proposed space-based X-ray telescope for detecting X-ray emissions from the hot gas content in our universe. With its unprecedented spatially-resolved high-resolution spectroscopy and large field of view, the HUBS mission will be uniquely qualified to measure the physical and chemical properties of the hot gas in the interstellar medium, the circumgalac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05672v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05672v1-abstract-full" style="display: none;"> The Hot Universe Baryon Surveyor (HUBS) is a proposed space-based X-ray telescope for detecting X-ray emissions from the hot gas content in our universe. With its unprecedented spatially-resolved high-resolution spectroscopy and large field of view, the HUBS mission will be uniquely qualified to measure the physical and chemical properties of the hot gas in the interstellar medium, the circumgalactic medium, the intergalactic medium, and the intracluster medium. These measurements will be valuable for two key scientific goals of HUBS, namely to unravel the AGN and stellar feedback physics that governs the formation and evolution of galaxies, and to probe the baryon budget and multi-phase states from galactic to cosmological scales. In addition to these two goals, the HUBS mission will also help us solve some problems in the fields of galaxy clusters, AGNs, diffuse X-ray backgrounds, supernova remnants, and compact objects. This paper discusses the perspective of advancing these fields using the HUBS telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05672v1-abstract-full').style.display = 'none'; document.getElementById('2307.05672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 22 figures. Accepted for publication in Science China: Physics, Mechanics and Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01252">arXiv:2307.01252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01252">pdf</a>, <a href="https://arxiv.org/format/2307.01252">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> ReveaLLAGN 0: First Look at JWST MIRI data of Sombrero and NGC 1052 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Goold%2C+K">K. Goold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seth%2C+A">A. Seth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Molina%2C+M">M. Molina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ohlson%2C+D">D. Ohlson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Runnoe%2C+J+C">J. C. Runnoe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boeker%2C+T">T. Boeker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+T+A">T. A. Davis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dumont%2C+A">A. Dumont</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eracleous%2C+M">M. Eracleous</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez-Ontiveros%2C+J+A">J. A. Fern谩ndez-Ontiveros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallo%2C+E">E. Gallo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goulding%2C+A+D">A. D. Goulding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greene%2C+J+E">J. E. Greene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">L. C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Markoff%2C+S+B">S. B. Markoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neumayer%2C+N">N. Neumayer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Plotkin%2C+R">R. Plotkin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prieto%2C+A">A. Prieto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Satyapal%2C+S">S. Satyapal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+De+Ven%2C+G">G. Van De Ven</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Walsh%2C+J+L">J. L. Walsh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">F. Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feldmeier-Krause%2C+A">A. Feldmeier-Krause</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCltekin%2C+K">K. G眉ltekin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoenig%2C+S">S. Hoenig</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01252v2-abstract-short" style="display: inline;"> We present the first results from the Revealing Low-Luminosity Active Galactic Nuclei (ReveaLLAGN) survey, a JWST survey of seven nearby LLAGN. We focus on two observations with the Mid-Infrared Instrument&#39;s (MIRI) Medium Resolution Spectrograph (MRS) of the nuclei of NGC 1052 and Sombrero (NGC 4594 / M104). We also compare these data to public JWST data of a higher-luminosity AGN, NGC 7319 and NG&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01252v2-abstract-full').style.display = 'inline'; document.getElementById('2307.01252v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01252v2-abstract-full" style="display: none;"> We present the first results from the Revealing Low-Luminosity Active Galactic Nuclei (ReveaLLAGN) survey, a JWST survey of seven nearby LLAGN. We focus on two observations with the Mid-Infrared Instrument&#39;s (MIRI) Medium Resolution Spectrograph (MRS) of the nuclei of NGC 1052 and Sombrero (NGC 4594 / M104). We also compare these data to public JWST data of a higher-luminosity AGN, NGC 7319 and NGC 7469. JWST clearly separates the AGN spectrum from the galaxy light even in Sombrero, the faintest target in our survey; the AGN components have very red spectra. We find that the emission-line widths in both NGC 1052 and Sombrero increase with increasing ionization potential, with FWHM &gt; 1000 km/s for lines with ionization potential &gt; 50 eV. These lines are also significantly blue-shifted in both LLAGN. The high ionization potential lines in NGC 7319 show neither broad widths or significant blue shifts. Many of the lower ionization potential emission lines in Sombrero show significant blue wings extending &gt; 1000 km/s. These features and the emission-line maps in both galaxies are consistent with outflows along the jet direction. Sombrero has the lowest luminosity high-ionization potential lines ([Ne V] and [O IV]) ever measured in the mid-IR, but the relative strengths of these lines are consistent with higher luminosity AGN. On the other hand, the [Ne V] emission is much weaker relative to the [Ne III] and [Ne II] lines of higher-luminosity AGN. These initial results show the great promise that JWST holds for identifying and studying the physical nature of LLAGN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01252v2-abstract-full').style.display = 'none'; document.getElementById('2307.01252v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ Feb 28, 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11415">arXiv:2305.11415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11415">pdf</a>, <a href="https://arxiv.org/format/2305.11415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1529">10.1093/mnras/stad1529 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Black Hole Feeding and Feedback in a Compact Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Di%2C+Y">Yihuan Di</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+F">Fangzheng Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caradonna%2C+M">Mirielle Caradonna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11415v1-abstract-short" style="display: inline;"> We perform high-resolution hydrodynamical simulations using the framework of {\it MACER} to investigate supermassive black hole (SMBH) feeding and feedback in a massive compact galaxy, which has a small effective radius but a large stellar mass, with a simulation duration of 10 Gyr. We compare the results with a reference galaxy with a similar stellar mass but a less concentrated stellar density d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11415v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11415v1-abstract-full" style="display: none;"> We perform high-resolution hydrodynamical simulations using the framework of {\it MACER} to investigate supermassive black hole (SMBH) feeding and feedback in a massive compact galaxy, which has a small effective radius but a large stellar mass, with a simulation duration of 10 Gyr. We compare the results with a reference galaxy with a similar stellar mass but a less concentrated stellar density distribution, as typically found in local elliptical galaxies. We find that about 10% of the time, the compact galaxy develops multi-phase gas within a few kpc, but the accretion flow through the inner boundary below the Bondi radius is always a single phase. The inflow rate in the compact galaxy is several times larger than in the reference galaxy, mainly due to the higher gas density caused by the more compact stellar distribution. Such a higher inflow rate results in stronger SMBH feeding and feedback and a larger fountain-like inflow-outflow structure. Compared to the reference galaxy, the star formation rate in the compact galaxy is roughly two orders of magnitude higher but is still low enough to be considered quiescent. Over the whole evolution period, the black hole mass grows by $\sim$50% in the compact galaxy, much larger than the value of $\sim$ 3% in the reference galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11415v1-abstract-full').style.display = 'none'; document.getElementById('2305.11415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02344">arXiv:2305.02344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02344">pdf</a>, <a href="https://arxiv.org/format/2305.02344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abj9192">10.1126/science.abj9192 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inspiraling streams of enriched gas observed around a massive galaxy 11 billion years ago </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+S">Shiwu Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+Z">Zheng Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+D">Dandan Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shimakawa%2C+R">Rhythm Shimakawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaia%2C+F+A">Fabrizio Arrigoni Battaia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prochaska%2C+J+X">Jason Xavier Prochaska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cen%2C+R">Renyue Cen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zheng Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+Y">Yunjing Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Q">Qiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dou%2C+L">Liming Dou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+J">Jianfeng Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zabludoff%2C+A">Ann Zabludoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fan%2C+X">Xiaohui Fan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ai%2C+Y">Yanli Ai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golden-Marx%2C+E+G">Emmet Gabriel Golden-Marx</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+M">Miao Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+Y">Youjun Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ma%2C+X">Xiangcheng Ma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+S">Sen Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+R">Ran Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02344v1-abstract-short" style="display: inline;"> Stars form in galaxies, from gas that has been accreted from the intergalactic medium. Simulations have shown that recycling of gas-the reaccretion of gas that was previously ejected from a galaxy-could sustain star formation in the early Universe. We observe the gas surrounding a massive galaxy at redshift 2.3 and detect emission lines from neutral hydrogen, helium, and ionized carbon that extend&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02344v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02344v1-abstract-full" style="display: none;"> Stars form in galaxies, from gas that has been accreted from the intergalactic medium. Simulations have shown that recycling of gas-the reaccretion of gas that was previously ejected from a galaxy-could sustain star formation in the early Universe. We observe the gas surrounding a massive galaxy at redshift 2.3 and detect emission lines from neutral hydrogen, helium, and ionized carbon that extend 100 kiloparsecs from the galaxy. The kinematics of this circumgalactic gas is consistent with an inspiraling stream. The carbon abundance indicates that the gas had already been enriched with elements heavier than helium, previously ejected from a galaxy. We interpret the results as evidence of gas recycling during high-redshift galaxy assembly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02344v1-abstract-full').style.display = 'none'; document.getElementById('2305.02344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Science, 5 May 2023 (accepted version), Main text 20 pages, four figures in the main text, and 13 figures and 4 tables in the supplementary materials;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13252">arXiv:2304.13252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13252">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-05843-w">10.1038/s41586-023-05843-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A ring-like accretion structure in M87 connecting its black hole and jet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+R">Ru-Sen Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asada%2C+K">Keiichi Asada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krichbaum%2C+T+P">Thomas P. Krichbaum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+J">Jongho Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tazaki%2C+F">Fumie Tazaki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pu%2C+H">Hung-Yi Pu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nakamura%2C+M">Masanori Nakamura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lobanov%2C+A">Andrei Lobanov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hada%2C+K">Kazuhiro Hada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Jae-Young Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marti-Vidal%2C+I">Ivan Marti-Vidal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%B3mez%2C+J+L">Jos茅 L. G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawashima%2C+T">Tomohisa Kawashima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ros%2C+E">Eduardo Ros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alef%2C+W">Walter Alef</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Britzen%2C+S">Silke Britzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bremer%2C+M">Michael Bremer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broderick%2C+A+E">Avery E. Broderick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doi%2C+A">Akihiro Doi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giovannini%2C+G">Gabriele Giovannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giroletti%2C+M">Marcello Giroletti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+P+T+P">Paul T. P. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Honma%2C+M">Mareki Honma</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13252v1-abstract-short" style="display: inline;"> The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole^3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13252v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13252v1-abstract-full" style="display: none;"> The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole^3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of 8.4_{-1.1}^{+0.5} Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13252v1-abstract-full').style.display = 'none'; document.getElementById('2304.13252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 18 figures, 3 tables, author&#39;s version of the paper published in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08284">arXiv:2304.08284</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.08284">pdf</a>, <a href="https://arxiv.org/format/2304.08284">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1857">10.1093/mnras/stad1857 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of Five Green Pea Galaxies with Double-peaked Narrow [OIII] Lines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+R">Ruqiu Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zhen-Ya Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+J">Jun-Xian Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fang-Ting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhoads%2C+J+E">James E. Rhoads</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malhotra%2C+S">Sangeeta Malhotra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+T">Tao An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jiang%2C+C">Chunyan Jiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+S">Shuairu Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahna%2C+P+T">P. T. Rahna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+X">Xiang Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singha%2C+M">Mainak Singha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08284v3-abstract-short" style="display: inline;"> Although double-peaked narrow emission-line galaxies have been studied extensively in the past years, only a few are reported with the green pea galaxies (GPs). Here we present our discovery of five GPs with double-peaked narrow [OIII] emission lines, referred to as DPGPs, selected from the LAMOST and SDSS spectroscopic surveys. We find that these five DPGPs have blueshifted narrow components more&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08284v3-abstract-full').style.display = 'inline'; document.getElementById('2304.08284v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08284v3-abstract-full" style="display: none;"> Although double-peaked narrow emission-line galaxies have been studied extensively in the past years, only a few are reported with the green pea galaxies (GPs). Here we present our discovery of five GPs with double-peaked narrow [OIII] emission lines, referred to as DPGPs, selected from the LAMOST and SDSS spectroscopic surveys. We find that these five DPGPs have blueshifted narrow components more prominent than the redshifted components, with velocity offsets of [OIII]$位$5007 lines ranging from 306 to 518 $\rm km\, s^{-1}$ and full widths at half maximums (FWHMs) of individual components ranging from 263 to 441 $\rm km\, s^{-1}$. By analyzing the spectra and the spectral energy distributions (SEDs), we find that they have larger metallicities and stellar masses compared with other GPs. The H$伪$ line width, emission-line diagnostic, mid-infrared color, radio emission, and SED fitting provide evidence of the AGN activities in these DPGPs. They have the same spectral properties of Type 2 quasars. Furthermore, we discuss the possible nature of the double-peaked narrow emission-line profiles of these DPGPs and find that they are more likely to be dual AGN. These DPGP galaxies are ideal laboratories for exploring the growth mode of AGN in the extremely luminous emission-line galaxies, the co-evolution between AGN and host galaxies, and the evolution of high-redshift galaxies in the early Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08284v3-abstract-full').style.display = 'none'; document.getElementById('2304.08284v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures, 3 tables; Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08010">arXiv:2304.08010</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.08010">pdf</a>, <a href="https://arxiv.org/format/2304.08010">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-4527/acd0e9">10.1088/1674-4527/acd0e9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mock X-ray observations of hot gas with L-Galaxies semi-analytic models of galaxy formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhong%2C+W">Wenxin Zhong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fu%2C+J">Jian Fu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+S">Shiyin Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08010v3-abstract-short" style="display: inline;"> We create mock X-ray observations of hot gas in galaxy clusters with a new extension of L-Galaxies semi-analytic model of galaxy formation, which includes the radial distribution of hot gas in each halo. Based on the model outputs, we first build some mock light cones, then generate mock spectra with SOXS package and derive the mock images in the light cones. Using the mock data, we simulate the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08010v3-abstract-full').style.display = 'inline'; document.getElementById('2304.08010v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08010v3-abstract-full" style="display: none;"> We create mock X-ray observations of hot gas in galaxy clusters with a new extension of L-Galaxies semi-analytic model of galaxy formation, which includes the radial distribution of hot gas in each halo. Based on the model outputs, we first build some mock light cones, then generate mock spectra with SOXS package and derive the mock images in the light cones. Using the mock data, we simulate the mock X-ray spectra for ROSAT all-sky survey, and compare the mock spectra with the observational results. Then, we consider the design parameters of HUBS mission and simulate the observation of the halo hot gas for HUBS as an important application of our mock work. We find: (1) Our mock data match the observations by current X-ray telescopes. (2) The survey of hot baryons in resolved clusters by HUBS is effective below redshift 0.5, and the observations of the emission lines in point-like sources at z&gt;0.5 by HUBS help us understand the hot baryons in the early universe. (3) By taking the advantage of the large simulation box and flexibility in semi-analytic models, our mock X-ray observations provide the opportunity to make target selection and observation strategies for forthcoming X-ray facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08010v3-abstract-full').style.display = 'none'; document.getElementById('2304.08010v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, accepted for publication in RAA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05577">arXiv:2304.05577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05577">pdf</a>, <a href="https://arxiv.org/format/2304.05577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1080">10.1093/mnras/stad1080 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The X-ray variation of M81* resolved by Chandra and NuSTAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Niu%2C+S">S. Niu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xie%2C+F+G">F. G. Xie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Q+D">Q. D. Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+L">L. Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">F. Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Long%2C+M">M. Long</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05577v1-abstract-short" style="display: inline;"> Despite advances in our understanding of low luminosity active galactic nuclei (LLAGNs), the fundamental details about the mechanisms of radiation and flare/outburst in hot accretion flow are still largely missing. We have systematically analyzed the archival Chandra and NuSTAR X-ray data of the nearby LLAGN M81*, whose $L_{\rm bol}\sim 10^{-5} L_{\rm Edd}$. Through a detailed study of X-ray light&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05577v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05577v1-abstract-full" style="display: none;"> Despite advances in our understanding of low luminosity active galactic nuclei (LLAGNs), the fundamental details about the mechanisms of radiation and flare/outburst in hot accretion flow are still largely missing. We have systematically analyzed the archival Chandra and NuSTAR X-ray data of the nearby LLAGN M81*, whose $L_{\rm bol}\sim 10^{-5} L_{\rm Edd}$. Through a detailed study of X-ray light curve and spectral properties, we find that the X-ray continuum emission of the power-law shape more likely originates from inverse Compton scattering within the hot accretion flow. In contrast to Sgr A*, flares are rare in M81*. Low-amplitude variation can only be observed in soft X-ray band (amplitude usually $\lesssim 2$). Several simple models are tested, including sinusoidal-like and quasi-periodical. Based on a comparison of the dramatic differences of flare properties among Sgr A*, M31* and M81*, we find that, when the differences in both the accretion rate and the black hole mass are considered, the flares in LLAGNs can be understood universally in a magneto-hydrodynamical model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05577v1-abstract-full').style.display = 'none'; document.getElementById('2304.05577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, and 4 tables. Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12303">arXiv:2303.12303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12303">pdf</a>, <a href="https://arxiv.org/format/2303.12303">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acc4b7">10.3847/2041-8213/acc4b7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Chocolate Chip Cookie Model: dust-to-metal ratio of HII regions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+J">Jiafeng Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+S">Shiyin Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Fangting Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zeng%2C+Q">Qi Zeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12303v2-abstract-short" style="display: inline;"> Using a sample of face-on star-forming galaxies selected from the Sloan Digital Sky Survey, we statistically derive the typical optical depth $蟿_{\rm{cl}}$ of individual HII regions based on the ``Chocolate Chip Cookie&#34; model of Lu2022. By binning galaxies into stellar mass and gas-phase metallicity bins and interpreting $蟿_{\rm{cl}}$ as the dust to gas ratio (DGR) of HII regions, we further inves&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12303v2-abstract-full').style.display = 'inline'; document.getElementById('2303.12303v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12303v2-abstract-full" style="display: none;"> Using a sample of face-on star-forming galaxies selected from the Sloan Digital Sky Survey, we statistically derive the typical optical depth $蟿_{\rm{cl}}$ of individual HII regions based on the ``Chocolate Chip Cookie&#34; model of Lu2022. By binning galaxies into stellar mass and gas-phase metallicity bins and interpreting $蟿_{\rm{cl}}$ as the dust to gas ratio (DGR) of HII regions, we further investigate the correlations among DGR and stellar mass, gas-phase metallicity respectively. We find that DGR increases monotonically with the stellar mass of galaxies. At a given stellar mass, DGR shows a linear correlation with the gas-phase metallicity, which implies a constant dust to metal ratio (DTM) of galaxies at a given stellar mass. These results adequately indicate that the DTM of galaxies is simply a function of their stellar masses. In terms of gas-phase metallicity, because of the mass-metalliciy relation, DTM increases with increasing metallicity with a power-law index 1.45 in the low metallicity region, while remains constant at the high metallicity end. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12303v2-abstract-full').style.display = 'none'; document.getElementById('2303.12303v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12004">arXiv:2303.12004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12004">pdf</a>, <a href="https://arxiv.org/format/2303.12004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acc586">10.3847/1538-4357/acc586 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of Polarized Radiative Transfer Codes used by the EHT Collaboration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Prather%2C+B+S">Ben S. Prather</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dexter%2C+J">Jason Dexter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moscibrodzka%2C+M">Monika Moscibrodzka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pu%2C+H">Hung-Yi Pu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bronzwaer%2C+T">Thomas Bronzwaer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davelaar%2C+J">Jordy Davelaar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Younsi%2C+Z">Ziri Younsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gammie%2C+C+F">Charles F. Gammie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gold%2C+R">Roman Gold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wong%2C+G+N">George N. Wong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akiyama%2C+K">Kazunori Akiyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberdi%2C+A">Antxon Alberdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alef%2C+W">Walter Alef</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Algaba%2C+J+C">Juan Carlos Algaba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anantua%2C+R">Richard Anantua</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asada%2C+K">Keiichi Asada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azulay%2C+R">Rebecca Azulay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bach%2C+U">Uwe Bach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baczko%2C+A">Anne-Kathrin Baczko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ball%2C+D">David Ball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balokovi%C4%87%2C+M">Mislav Balokovi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrett%2C+J">John Barrett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baub%C3%B6ck%2C+M">Michi Baub枚ck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benson%2C+B+A">Bradford A. Benson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bintley%2C+D">Dan Bintley</a> , et al. (248 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12004v1-abstract-short" style="display: inline;"> Interpretation of resolved polarized images of black holes by the Event Horizon Telescope (EHT) requires predictions of the polarized emission observable by an Earth-based instrument for a particular model of the black hole accretion system. Such predictions are generated by general relativistic radiative transfer (GRRT) codes, which integrate the equations of polarized radiative transfer in curve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12004v1-abstract-full').style.display = 'inline'; document.getElementById('2303.12004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12004v1-abstract-full" style="display: none;"> Interpretation of resolved polarized images of black holes by the Event Horizon Telescope (EHT) requires predictions of the polarized emission observable by an Earth-based instrument for a particular model of the black hole accretion system. Such predictions are generated by general relativistic radiative transfer (GRRT) codes, which integrate the equations of polarized radiative transfer in curved spacetime. A selection of ray-tracing GRRT codes used within the EHT collaboration is evaluated for accuracy and consistency in producing a selection of test images, demonstrating that the various methods and implementations of radiative transfer calculations are highly consistent. When imaging an analytic accretion model, we find that all codes produce images similar within a pixel-wise normalized mean squared error (NMSE) of 0.012 in the worst case. When imaging a snapshot from a cell-based magnetohydrodynamic simulation, we find all test images to be similar within NMSEs of 0.02, 0.04, 0.04, and 0.12 in Stokes I, Q, U , and V respectively. We additionally find the values of several image metrics relevant to published EHT results to be in agreement to much better precision than measurement uncertainties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12004v1-abstract-full').style.display = 'none'; document.getElementById('2303.12004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03834">arXiv:2303.03834</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03834">pdf</a>, <a href="https://arxiv.org/format/2303.03834">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2055">10.1093/mnras/stad2055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Active galactic nuclei feedback in an elliptical galaxy (III): the impacts and fate of cosmological inflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+B">Bocheng Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+S">Suoqing Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peng%2C+Y">Yingjie Peng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+L+C">Luis C. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ostriker%2C+J+P">Jeremiah P. Ostriker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ciotti%2C+L">Luca Ciotti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03834v2-abstract-short" style="display: inline;"> The cosmological inflow of a galaxy is speculated to be able to enter the galaxy and enhance the star formation rate (SFR) and black hole accretion rate (BHAR). In this paper, by performing high-resolution hydrodynamic simulations in the framework of {\it MACER}, we investigate the fate of the inflow and its impacts on the evolution of a massive elliptical galaxy. The inflow properties are adopted&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03834v2-abstract-full').style.display = 'inline'; document.getElementById('2303.03834v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03834v2-abstract-full" style="display: none;"> The cosmological inflow of a galaxy is speculated to be able to enter the galaxy and enhance the star formation rate (SFR) and black hole accretion rate (BHAR). In this paper, by performing high-resolution hydrodynamic simulations in the framework of {\it MACER}, we investigate the fate of the inflow and its impacts on the evolution of a massive elliptical galaxy. The inflow properties are adopted from the cosmological simulation IllustrisTNG. We find that, the inflow gas hardly enters but is blocked beyond $\sim 20$ kpc from the central galaxy and becomes part of the circumgalactic medium (CGM). The gas pressure gradient, mainly contributed by the thermalized stellar wind and subdominantly by the energy input from the AGN, balances gravity and prevents the inflow from entering the galaxy. The SFR and BHAR are almost not affected by the normal inflow. However, if the rate of cosmological inflow were increased by a factor of 3, a small fraction of the inflow would enter the galaxy and contribute about 10\% of the gas in the galaxy. In this case, the gas density in the galaxy would increase by a factor of $\ga$ 20. This increase is not because of the additional gas supply by the inflow but the increase of gas density in the CGM caused by the inflow. Consequently, the SFR and BHAR would increase by a factor of $\sim$ 5 and $\sim 1000$ respectively. Finally, AGN feedback can perturb the motion of the inflow and heat the CGM through its intermittent outbursts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03834v2-abstract-full').style.display = 'none'; document.getElementById('2303.03834v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages,13 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.05925">arXiv:2301.05925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.05925">pdf</a>, <a href="https://arxiv.org/format/2301.05925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad176">10.1093/mnras/stad176 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A &#34;coronal-mass-ejection&#39;&#39; model for flares in Sagittarius A* </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+X">Xi Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Ya-Ping Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.05925v3-abstract-short" style="display: inline;"> High-resolution near infrared observations with GRAVITY instrument have revealed rapid orbital motions of a hot spot around Sgr A*, the supermassive black hole in our Galactic center, during its three bright flares. The projected distances of the spot to the black hole are measured and seems to increase with time. The values of distance, combined with the measured orbiting time, imply that the spo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05925v3-abstract-full').style.display = 'inline'; document.getElementById('2301.05925v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.05925v3-abstract-full" style="display: none;"> High-resolution near infrared observations with GRAVITY instrument have revealed rapid orbital motions of a hot spot around Sgr A*, the supermassive black hole in our Galactic center, during its three bright flares. The projected distances of the spot to the black hole are measured and seems to increase with time. The values of distance, combined with the measured orbiting time, imply that the spot is rotating with a super-Keplerian velocity. These results are hard to understand if the spot stay within the accretion flow thus provide strong constraints on theoretical models for flares. Previously we have proposed a &#34;ME&#34; model for the flares by analogy with the coronal mass ejection model in solar physics. In that model, magnetic reconnection occurred at the surface of the accretion flow results in the formation of flux ropes, which are then ejected out. Energetic electrons accelerated in the current sheet flow into the flux rope region and their radiation is responsible for the flares. In this paper, we apply the model to the interpretation of the GRAVITY results by calculating the dynamics of the ejected flux rope, the evolution of the magnetic field and the energy distribution of accelerated electrons, and the radiation of the system. We find that the model can well explain the observed light curve of the flares, the time-dependent distance and the super-Keplerian motion of the hot spot. It also explains why the light curve of some flares have double peaks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.05925v3-abstract-full').style.display = 'none'; document.getElementById('2301.05925v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures, accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02270">arXiv:2212.02270</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02270">pdf</a>, <a href="https://arxiv.org/format/2212.02270">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36478-0">10.1038/s41467-023-36478-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Asymmetric eROSITA bubbles as the evidence of a circumgalactic medium wind </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mou%2C+G">Guobin Mou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+D">Dongze Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+T">Taotao Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+R">Ruiyu Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sofue%2C+Y">Yoshiaki Sofue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+T">Tinggui Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=He%2C+Z">Zhicheng He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02270v2-abstract-short" style="display: inline;"> The eROSITA bubbles are detected via the instrument with the same name. The northern bubble shows noticeable asymmetric features, including distortion to the west and enhancement in the eastern edge, while the southern counterpart is significantly dimmer. Their origins are debated. Here, we performed hydrodynamic simulations showing that asymmetric eROSITA bubbles favor a dynamic, circumgalactic m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02270v2-abstract-full').style.display = 'inline'; document.getElementById('2212.02270v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02270v2-abstract-full" style="display: none;"> The eROSITA bubbles are detected via the instrument with the same name. The northern bubble shows noticeable asymmetric features, including distortion to the west and enhancement in the eastern edge, while the southern counterpart is significantly dimmer. Their origins are debated. Here, we performed hydrodynamic simulations showing that asymmetric eROSITA bubbles favor a dynamic, circumgalactic medium wind model, but disfavor other mechanisms such as a non-axisymmetric halo gas or a tilted nuclear outflow. The wind from the east by north direction in Galactic coordinates blows across the northern halo with a velocity of about 200 km s$^{-1}$, and part of it enters the southern halo. This creates a dynamic halo medium and redistributes both density and metallicity within. This naturally explains the asymmetric bubbles in both the morphology and surface brightness. Our results suggest that our Galaxy is accreting low-abundance circumgalactic medium from one side while providing outflow feedback. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02270v2-abstract-full').style.display = 'none'; document.getElementById('2212.02270v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature Communications, file size 10MB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10710">arXiv:2211.10710</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10710">pdf</a>, <a href="https://arxiv.org/format/2211.10710">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1444">10.1093/mnras/stad1444 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The properties of wind and jet from a super-Eddington accretion flow around a supermassive black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">Hai Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+F">Feng Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kwan%2C+T">Tom Kwan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dai%2C+L">Lixin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10710v4-abstract-short" style="display: inline;"> Wind and jet are important medium of AGN feedback thus it is crucial to obtain their properties for the feedback study. In this paper we investigate the properties of wind and jet launched from a magnetized super-Eddington accretion flow around a supermassive black hole. For this aim, we have performed radiation magnetohydrodynamical simulation of a magnetically arrested super-Eddington accretion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10710v4-abstract-full').style.display = 'inline'; document.getElementById('2211.10710v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10710v4-abstract-full" style="display: none;"> Wind and jet are important medium of AGN feedback thus it is crucial to obtain their properties for the feedback study. In this paper we investigate the properties of wind and jet launched from a magnetized super-Eddington accretion flow around a supermassive black hole. For this aim, we have performed radiation magnetohydrodynamical simulation of a magnetically arrested super-Eddington accretion flows. We then have analyzed the simulation data by the ``virtual particle trajectory&#39;&#39; approach and obtained the mass flux, poloidal and toroidal velocities, and mass-flux-weighted momentum and energy fluxes of wind and jet. The mass flux is found to be 2-6 times higher than that obtained based on the time-averaged streamline method widely used in literature. The momentum flux of wind is found to be larger than that of jet, while the total energy flux of jet is at most 3 times larger than that of wind. These results are similar to the case of hot accretion flows and imply that winds likely play a more important role than jet in AGN feedback. The acceleration mechanism of wind and jet is analyzed and found to be dominated by Lorentz force rather than radiation force. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10710v4-abstract-full').style.display = 'none'; document.getElementById('2211.10710v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures; Accepted for publication in MNRAS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuan%2C+F&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10