CINXE.COM

Search results for: retinitis pigmentosa

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: retinitis pigmentosa</title> <meta name="description" content="Search results for: retinitis pigmentosa"> <meta name="keywords" content="retinitis pigmentosa"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="retinitis pigmentosa" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="retinitis pigmentosa"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: retinitis pigmentosa</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Strategy Therapy for Retinitis Pigmentosa Induced by Argon Laser in Rabbits by High Dose Adult Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hager%20E.%20Amer">Hager E. Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20El%20Saftawy"> Hany El Saftawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20Rashed"> Laila Rashed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Ata"> Ahmed M. Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Metwally"> Fatma Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Mettawei"> Hesham Mettawei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20E.%20Sayed"> Hossam E. Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Adel"> Tamer Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kareem%20M.%20El%20Sawah"> Kareem M. El Sawah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The purpose of this study is to regenerate the damaged photoreceptor cells as a result of argon laser as a model of Retinitis Pigmentosa in rabbits' retina by using adult stem cells from rabbits' bone marrow. Background: Retinitis pigmentosa (RP) is a group of inherited disorders that primarily affect photoreceptor and pigment epithelium function. RP leads to loss of the rod outer segment and shorten the photoreceptor layer and expose the photoreceptor cell body to high-pressure levels in oxygen (oxidative stress) leads to apoptosis to the rod and cone cells. In particular, there is no specific treatment for retinitis pigmentosa. Materials and Methods: Forty Two Giant (Rex) rabbits were used in this experiment divided into 3 groups: Group 1: Control (6 rabbits), Group 2: Argon laser radiated as a model of retinitis pigmentosa (12 rabbits), Group 3: Laser radiated and treated by 6 million stem cells (12 rabbits). The last two groups are divided each into two subgroups each subgroup contains 6 rabbits, the ophthalmological examination was performed on rabbits, blood samples and retina samples were taken after 25 days and after 36 days from the laser radiation (10 days and 21 days after stem cells insertion in group 3) to perform the biochemical analysis. Results: Compared to control Group, a decrease of ERG wave amplitude and antioxidant substances (Glutathione) in blood and retina in group 2, and an increase of oxidative stress substances (Nitric oxide, Malonaldehyde, and carponyl protein) and apoptotic substances (Advanced glycation end product and M-metalloproteinase) in blood and retina. Compared to group 2, mostly increases of antioxidant substances and ERG wave amplitude in group 3, and mostly decreases in oxidative stress substances and apoptotic substances. Conclusion: Insertion of 6 million stem cells intravitreous gives good results in regeneration of the damaged photoreceptor cells after 21 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinitis%20pigmentosa" title="retinitis pigmentosa">retinitis pigmentosa</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=argon%20laser" title=" argon laser"> argon laser</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/54636/a-strategy-therapy-for-retinitis-pigmentosa-induced-by-argon-laser-in-rabbits-by-high-dose-adult-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> An Unusual Occurrence: Typhoid Retinitis with Kyrieleis&#039; Vasculitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Sethi">Aditya Sethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Sethi"> Vaibhav Sethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shenouda%20Girgis"> Shenouda Girgis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a case of a 31-year-old female who presented with a three week history of left eye blurry vision following a fever. She was diagnosed with Typhoid fever, confirmed by a positive Widal test report. On examination, her best corrected visual acuity in the right eye was 20/20 and in the left eye was 20/60. Fundus examination of the right eye showed a focal area of retinitis with retinal haemorrhages along the superior arcade within the macula. There was also focal area of retinitis with superficial retinal haemorrhages along the superior arcade vessels. There was also presence of multiple yellowish white exudates within the adjacent retinal artery arranged in a beaded pattern, suggestive of Kyrieleis' vasculitis. Optical Coherence Tomography (OCT) of the left eye demonstrated cystoid macula edema with serous foveal detachment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=typhoid%20retinitis" title="typhoid retinitis">typhoid retinitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyrieleis%E2%80%99%20vasculitis" title=" Kyrieleis’ vasculitis"> Kyrieleis’ vasculitis</a>, <a href="https://publications.waset.org/abstracts/search?q=immune-mediated%20retinitis" title=" immune-mediated retinitis"> immune-mediated retinitis</a>, <a href="https://publications.waset.org/abstracts/search?q=post-fever%20retinitis" title=" post-fever retinitis"> post-fever retinitis</a>, <a href="https://publications.waset.org/abstracts/search?q=typhoid%20retinopathy" title=" typhoid retinopathy"> typhoid retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=retinitis" title=" retinitis"> retinitis</a> </p> <a href="https://publications.waset.org/abstracts/132860/an-unusual-occurrence-typhoid-retinitis-with-kyrieleis-vasculitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Causes of Blindness and Low Vision among Visually Impaired Population Supported by Welfare Organization in Ardabil Province in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Maeiyat">Mohammad Maeiyat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Maeiyat%20Ivatlou"> Ali Maeiyat Ivatlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasul%20Fani%20Khiavi"> Rasul Fani Khiavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abouzar%20Maeiyat%20Ivatlou"> Abouzar Maeiyat Ivatlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Parya%20Maeiyat"> Parya Maeiyat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Considering the fact that visual impairment is still one of the countries health problem, this study was conducted to determine the causes of blindness and low vision in visually impaired membership of Ardabil Province welfare organization. Methods: The present study which was based on descriptive and national-census, that carried out in visually impaired population supported by welfare organization in all urban and rural areas of Ardabil Province in 2013 and Collection of samples lasted for 7 months. The subjects were inspected by optometrist to determine their visual status (blindness or low vision) and then referred to ophthalmologist in order to discover the main causes of visual impairment based on the international classification of diseases version 10. Statistical analysis of collected data was performed using SPSS software version 18. Results: Overall, 403 subjects with mean age of years participated in this study. 73.2% were blind, 26.8 % were low vision and according gender grouping 60.50 % of them were male, 39.50 % were female that divided into three groups with the age level of lower than 15 (11.2%) 15 to 49 (76.7%), and 50 and higher (12.1%). The age range was 1 to 78 years. The causes of blindness and low vision were in descending order: optic atrophy (18.4%), retinitis pigmentosa (16.8%), corneal diseases (12.4%), chorioretinal diseases (9.4%), cataract (8.9%), glaucoma (8.2%), phthisis bulbi (7.2%), degenerative myopia (6.9%), microphtalmos ( 4%), amblyopia (3.2%), albinism (2.5%) and nistagmus (2%). Conclusion: in this study the main causes of visual impairments were optic atrophy and retinitis pigmentosa, thus specific prevention plans can be effective in reducing the incidence of visual disabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blindness" title="blindness">blindness</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20vision" title=" low vision"> low vision</a>, <a href="https://publications.waset.org/abstracts/search?q=welfare" title=" welfare"> welfare</a>, <a href="https://publications.waset.org/abstracts/search?q=ardabil" title=" ardabil"> ardabil</a> </p> <a href="https://publications.waset.org/abstracts/24741/causes-of-blindness-and-low-vision-among-visually-impaired-population-supported-by-welfare-organization-in-ardabil-province-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Luj%C3%A1n%20Villarreal">Diego Luján Villarreal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20prosthetic%20devices" title="visual prosthetic devices">visual prosthetic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20for%20stimulation" title=" volume for stimulation"> volume for stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20discretization" title=" FEM discretization"> FEM discretization</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20simulation" title=" 3D simulation"> 3D simulation</a> </p> <a href="https://publications.waset.org/abstracts/162034/on-the-volume-of-ganglion-cell-stimulation-in-visual-prostheses-by-finite-element-discretization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ethan%20James">Ethan James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20devices" title=" medical devices"> medical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=ophthalmic%20devices" title=" ophthalmic devices"> ophthalmic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=ophthalmology" title=" ophthalmology"> ophthalmology</a>, <a href="https://publications.waset.org/abstracts/search?q=retina" title=" retina"> retina</a> </p> <a href="https://publications.waset.org/abstracts/127742/medical-diagnosis-of-retinal-diseases-using-artificial-intelligence-deep-learning-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Bilateral Retinitis in Q Fever</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carl%20Eiselen">Carl Eiselen</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20O%E2%80%99Hagan"> Stephen O’Hagan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Q fever, caused by the obligate intracellular bacterium Coxiella burnetii, is an infectious disease with variable systemic manifestations. Its potential to cause ocular complications has not been reported before in Australia. This case study explores the unusual presentation of asymptomatic acute multifocal retinitis (AMR) in a patient with acute Q fever endocarditis and hepatitis in rural Queensland, Australia. Case Presentation: A 48-year-old male gardener presented with flu-like symptoms, weight loss, and encephalopathy. Despite systemic malaise, he had no ocular symptoms. Laboratory investigations confirmed acute Q fever, and imaging studies identified hepatic involvement and endocarditis. The retinal screening revealed asymptomatic AMR, corroborated by fundus examination and SD-OCT. Following treatment with Doxycycline and hydroxychloroquine, both systemic and ocular manifestations improved. Discussion: This is the first documented case of asymptomatic AMR associated with Q fever. The patient’s lack of autoantibodies challenges the established understanding of Q fever endocarditis and suggests potential alternative mechanisms. Conclusion: This case report expands our understanding of the multi-systemic impact of Q fever, highlighting the need for comprehensive clinical evaluation and including retinal screening in the setting of acute infection. The disease's underlying mechanism for ocular involvement is not yet established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coxiella%20Burnetti" title="Coxiella Burnetti">Coxiella Burnetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Q%20fever" title=" Q fever"> Q fever</a>, <a href="https://publications.waset.org/abstracts/search?q=ocular%20manifestation" title=" ocular manifestation"> ocular manifestation</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20multifocal%20retintis" title=" acute multifocal retintis"> acute multifocal retintis</a>, <a href="https://publications.waset.org/abstracts/search?q=endocarditis" title=" endocarditis"> endocarditis</a> </p> <a href="https://publications.waset.org/abstracts/178196/bilateral-retinitis-in-q-fever" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Frequent Pattern Mining for Digenic Human Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atsuko%20Okazaki">Atsuko Okazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurg%20Ott"> Jurg Ott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digenic%20traits" title="digenic traits">digenic traits</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20variants" title=" DNA variants"> DNA variants</a>, <a href="https://publications.waset.org/abstracts/search?q=epistasis" title=" epistasis"> epistasis</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20genetics" title=" statistical genetics"> statistical genetics</a> </p> <a href="https://publications.waset.org/abstracts/135746/frequent-pattern-mining-for-digenic-human-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Clinico-pathological Study of Xeroderma Pigmentosa: A Case Series of Eight Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kakali%20Roy">Kakali Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahana%20P.%20Raju"> Sahana P. Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhra%20Dhar"> Subhra Dhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandipan%20Dhar"> Sandipan Dhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Xeroderma pigmentosa (XP) is a rare inherited (autosomal recessive) disease resulting from impairment in DNA repair that involves recognition and repair of ultraviolet radiation (UVR) induced DNA damage in the nucleotide excision repair pathway. Which results in increased photosensitivity, UVR induced damage to skin and eye, increased susceptibility of skin and ocular cancer, and progressive neurodegeneration in some patients. XP is present worldwide, with higher incidence in areas having frequent consanguinity. Being extremely rare, there is limited literature on XP and associated complications. Here, the clinico-pathological experience (spectrum of clinical presentation, histopathological findings of malignant skin lesions, and progression) of managing 8 cases of XP is presented. Methodology: A retrospective study was conducted in a pediatric tertiary care hospital in eastern India during a ten-year period from 2013 to 2022. A clinical diagnosis was made based on severe sun burn or premature photo-aging and/or onset of cutaneous malignancies at early age (1st decade) in background of consanguinity and autosomal recessive inheritance pattern in family. Results: The mean age of presentation was 1.2 years (range of 7month-3years), while three children presented during their infancy. Male to female ratio was 5:3, and all were born of consanguineous marriage. They presented with dermatological manifestations (100%) followed by ophthalmic (75%) and/or neurological symptoms (25%). Patients had normal skin at birth but soon developed extreme sensitivity to UVR in the form of exaggerated sun tanning, burning, and blistering on minimal sun exposure, followed by abnormal skin pigmentation like freckles and lentiginosis. Subsequently, over time there was progressive xerosis, atrophy, wrinkling, and poikiloderma. Six patients had varied degree of ocular involvement, while three of them had severe manifestation, including madarosis, tylosis, ectropion, Lagopthalmos, Pthysis bulbi, clouding and scarring of the cornea with complete or partial loss of vision, and ophthalmic malignancies. 50% (n=4) cases had skin and ocular pre-malignant (actinic keratosis) and malignant lesions, including melanoma and non melanoma skin cancer (NMSC) like squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in their early childhood. One patient had simultaneous occurrence of multiple malignancies together (SCC, BCC, and melanoma). Subnormal intelligence was noticed as neurological feature, and none had sensory neural hearing loss, microcephaly, neuroregression, or neurdeficit. All the patients had been being managed by a multidisciplinary team of pediatricians, dermatologists, ophthalmologists, neurologists and psychiatrists. Conclusion: Although till date there is no complete cure for XP and the disease is ultimately fatal. But increased awareness, early diagnosis followed by persistent vigorous protection from UVR, and regular screening for early detection of malignancies along with psychological support can drastically improve patients’ quality of life and life expectancy. Further research is required on formulating optimal management of XP, specifically the role and possibilities of gene therapy in XP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=childhood%20malignancies" title="childhood malignancies">childhood malignancies</a>, <a href="https://publications.waset.org/abstracts/search?q=dermato-pathological%20findings" title=" dermato-pathological findings"> dermato-pathological findings</a>, <a href="https://publications.waset.org/abstracts/search?q=eastern%20India" title=" eastern India"> eastern India</a>, <a href="https://publications.waset.org/abstracts/search?q=Xeroderma%20pigmentosa" title=" Xeroderma pigmentosa"> Xeroderma pigmentosa</a> </p> <a href="https://publications.waset.org/abstracts/162111/clinico-pathological-study-of-xeroderma-pigmentosa-a-case-series-of-eight-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10