CINXE.COM
Search results for: Gene prediction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Gene prediction</title> <meta name="description" content="Search results for: Gene prediction"> <meta name="keywords" content="Gene prediction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Gene prediction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Gene prediction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1237</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Gene prediction</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Novel Hybrid Method for Gene Selection and Cancer Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liping%20Jing">Liping Jing</a>, <a href="https://publications.waset.org/search?q=Michael%20K.%20Ng"> Michael K. Ng</a>, <a href="https://publications.waset.org/search?q=Tieyong%20Zeng"> Tieyong Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gene%20Selection" title="Gene Selection">Gene Selection</a>, <a href="https://publications.waset.org/search?q=Cancer%20Prediction" title=" Cancer Prediction"> Cancer Prediction</a>, <a href="https://publications.waset.org/search?q=Lasso" title=" Lasso"> Lasso</a>, <a href="https://publications.waset.org/search?q=Clustering" title=" Clustering"> Clustering</a>, <a href="https://publications.waset.org/search?q=Classification." title="Classification.">Classification.</a> </p> <a href="https://publications.waset.org/8670/novel-hybrid-method-for-gene-selection-and-cancer-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8670/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8670/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8670/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8670/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8670/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8670/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8670/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8670/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8670/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8670/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2044</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mona%20Heydari">Mona Heydari</a>, <a href="https://publications.waset.org/search?q=Ehsan%20Motamedian"> Ehsan Motamedian</a>, <a href="https://publications.waset.org/search?q=Seyed%20Abbas%20Shojaosadati"> Seyed Abbas Shojaosadati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Metabolic%20network" title="Metabolic network">Metabolic network</a>, <a href="https://publications.waset.org/search?q=gene%20knockout" title=" gene knockout"> gene knockout</a>, <a href="https://publications.waset.org/search?q=flux%20balance%0D%0Aanalysis" title=" flux balance analysis"> flux balance analysis</a>, <a href="https://publications.waset.org/search?q=microarray%20data" title=" microarray data"> microarray data</a>, <a href="https://publications.waset.org/search?q=integration." title=" integration."> integration.</a> </p> <a href="https://publications.waset.org/10004894/integration-of-microarray-data-into-a-genome-scale-metabolic-model-to-study-flux-distribution-after-gene-knockout" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004894/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004894/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004894/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004894/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004894/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004894/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004894/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004894/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004894/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004894/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">996</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1235</span> Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chia-Ta%20Tsai">Chia-Ta Tsai</a>, <a href="https://publications.waset.org/search?q=Wen-Lin%20Huang"> Wen-Lin Huang</a>, <a href="https://publications.waset.org/search?q=Shinn-Jang%20Ho"> Shinn-Jang Ho</a>, <a href="https://publications.waset.org/search?q=Li-Sun%20Shu"> Li-Sun Shu</a>, <a href="https://publications.waset.org/search?q=Shinn-Ying%20Ho"> Shinn-Ying Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bacterial%20virulence%20factors" title="Bacterial virulence factors">Bacterial virulence factors</a>, <a href="https://publications.waset.org/search?q=GO%20terms" title=" GO terms"> GO terms</a>, <a href="https://publications.waset.org/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/search?q=protein%20sequence." title=" protein sequence."> protein sequence.</a> </p> <a href="https://publications.waset.org/3594/virulent-go-prediction-of-virulent-proteins-in-bacterial-pathogens-utilizing-gene-ontology-terms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3594/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3594/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3594/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3594/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3594/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3594/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3594/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3594/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3594/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3594/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2189</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1234</span> A Heat-Inducible Transgene Expression System for Gene Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Masaki%20Yamaguchi">Masaki Yamaguchi</a>, <a href="https://publications.waset.org/search?q=Akira%20Ito"> Akira Ito</a>, <a href="https://publications.waset.org/search?q=Noriaki%20Okamoto"> Noriaki Okamoto</a>, <a href="https://publications.waset.org/search?q=Yoshinori%20Kawabe"> Yoshinori Kawabe</a>, <a href="https://publications.waset.org/search?q=Masamichi%20Kamihira"> Masamichi Kamihira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat-inducible gene expression vectors are useful for hyperthermia-induced cancer gene therapy, because the combination of hyperthermia and gene therapy can considerably improve the therapeutic effects. In the present study, we developed an enhanced heat-inducible transgene expression system in which a heat-shock protein (HSP) promoter and tetracycline-responsive transactivator were combined. When the transactivator plasmid containing the tetracycline-responsive transactivator gene was co-transfected with the reporter gene expression plasmid, a high level of heat-induced gene expression was observed compared with that using the HSP promoter without the transactivator. In vitro evaluation of the therapeutic effect using HeLa cells showed that heat-induced therapeutic gene expression caused cell death in a high percentage of these cells, indicating that this strategy is promising for cancer gene therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Inducible%20gene%20expression" title="Inducible gene expression">Inducible gene expression</a>, <a href="https://publications.waset.org/search?q=Gene%20therapy" title=" Gene therapy"> Gene therapy</a>, <a href="https://publications.waset.org/search?q=Hyperthermia" title=" Hyperthermia"> Hyperthermia</a>, <a href="https://publications.waset.org/search?q=Heat%20shock%20protein" title=" Heat shock protein"> Heat shock protein</a>, <a href="https://publications.waset.org/search?q=Tetracycline%20transactivator." title=" Tetracycline transactivator."> Tetracycline transactivator.</a> </p> <a href="https://publications.waset.org/2563/a-heat-inducible-transgene-expression-system-for-gene-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2563/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2563/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2563/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2563/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2563/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2563/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2563/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2563/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2563/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2563/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2135</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1233</span> A New blaVIM Gene in a Pseudomonas putida Isolated from ENT Units in Sulaimani Hospitals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dalanya%20Asaad%20Mohammed">Dalanya Asaad Mohammed</a>, <a href="https://publications.waset.org/search?q=Dara%20Abdul%20Razaq"> Dara Abdul Razaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of twenty tensile biopsies were collected from children undergoing tonsillectomy from teaching hospital ENT department and Kurdistan private hospital in sulaimani city. All biopsies were homogenized and cultured; the obtained bacterial isolates were purified and identified by biochemical tests and VITEK 2 compact system. Among the twenty studied samples, only one Pseudomonas putida with probability of 99% was isolated. Antimicrobial susceptibility was carried out by disk diffusion method, Pseudomonas putida showed resistance to all antibiotics used except vancomycin. The isolate further subjected to PCR and DNA sequence analysis of blaVIM gene using different set of primers for different regions of VIM gene. The results were found to be PCR positive for the blaVIM gene. To determine the sequence of blaVIM gene, DNA sequencing performed. Sequence alignment of blaVIM gene with previously recorded blaVIM gene in NCBI- database showed that P. putida isolate have different blaVIM gene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clinical%20isolates" title="Clinical isolates">Clinical isolates</a>, <a href="https://publications.waset.org/search?q=Putida" title=" Putida"> Putida</a>, <a href="https://publications.waset.org/search?q=Sulaimani" title=" Sulaimani"> Sulaimani</a>, <a href="https://publications.waset.org/search?q=Vim%20gene." title=" Vim gene."> Vim gene.</a> </p> <a href="https://publications.waset.org/14385/a-new-blavim-gene-in-a-pseudomonas-putida-isolated-from-ent-units-in-sulaimani-hospitals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14385/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14385/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14385/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14385/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14385/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14385/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14385/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14385/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14385/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14385/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1655</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1232</span> A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time Delay Gene Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ankit%20Agrawal">Ankit Agrawal</a>, <a href="https://publications.waset.org/search?q=Ankush%20Mittal"> Ankush Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A gene network gives the knowledge of the regulatory relationships among the genes. Each gene has its activators and inhibitors that regulate its expression positively and negatively respectively. Genes themselves are believed to act as activators and inhibitors of other genes. They can even activate one set of genes and inhibit another set. Identifying gene networks is one of the most crucial and challenging problems in Bioinformatics. Most work done so far either assumes that there is no time delay in gene regulation or there is a constant time delay. We here propose a Dynamic Time- Lagged Correlation Based Method (DTCBM) to learn the gene networks, which uses time-lagged correlation to find the potential gene interactions, and then uses a post-processing stage to remove false gene interactions to common parents, and finally uses dynamic correlation thresholds for each gene to construct the gene network. DTCBM finds correlation between gene expression signals shifted in time, and therefore takes into consideration the multi time delay relationships among the genes. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae gene expression data and comparison with other methods indicate that it has a better performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Activators" title="Activators">Activators</a>, <a href="https://publications.waset.org/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/search?q=dynamic%20time-lagged%0Acorrelation%20based%20method" title=" dynamic time-lagged correlation based method"> dynamic time-lagged correlation based method</a>, <a href="https://publications.waset.org/search?q=inhibitors" title=" inhibitors"> inhibitors</a>, <a href="https://publications.waset.org/search?q=multi-time%20delay%20gene%20network." title=" multi-time delay gene network."> multi-time delay gene network.</a> </p> <a href="https://publications.waset.org/9118/a-dynamic-time-lagged-correlation-based-method-to-learn-multi-time-delay-gene-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9118/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9118/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9118/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9118/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9118/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9118/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9118/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9118/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9118/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9118/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1614</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1231</span> An Integrative Bayesian Approach to Supporting the Prediction of Protein-Protein Interactions: A Case Study in Human Heart Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fiona%20Browne">Fiona Browne</a>, <a href="https://publications.waset.org/search?q=Huiru%20Zheng"> Huiru Zheng</a>, <a href="https://publications.waset.org/search?q=Haiying%20Wang"> Haiying Wang</a>, <a href="https://publications.waset.org/search?q=Francisco%20Azuaje"> Francisco Azuaje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years have seen a growing trend towards the integration of multiple information sources to support large-scale prediction of protein-protein interaction (PPI) networks in model organisms. Despite advances in computational approaches, the combination of multiple “omic" datasets representing the same type of data, e.g. different gene expression datasets, has not been rigorously studied. Furthermore, there is a need to further investigate the inference capability of powerful approaches, such as fullyconnected Bayesian networks, in the context of the prediction of PPI networks. This paper addresses these limitations by proposing a Bayesian approach to integrate multiple datasets, some of which encode the same type of “omic" data to support the identification of PPI networks. The case study reported involved the combination of three gene expression datasets relevant to human heart failure (HF). In comparison with two traditional methods, Naive Bayesian and maximum likelihood ratio approaches, the proposed technique can accurately identify known PPI and can be applied to infer potentially novel interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20network" title="Bayesian network">Bayesian network</a>, <a href="https://publications.waset.org/search?q=Classification" title=" Classification"> Classification</a>, <a href="https://publications.waset.org/search?q=Data%20integration" title=" Data integration"> Data integration</a>, <a href="https://publications.waset.org/search?q=Protein%20interaction%20networks." title=" Protein interaction networks."> Protein interaction networks.</a> </p> <a href="https://publications.waset.org/7161/an-integrative-bayesian-approach-to-supporting-the-prediction-of-protein-protein-interactions-a-case-study-in-human-heart-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7161/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7161/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7161/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7161/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7161/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7161/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7161/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7161/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7161/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7161/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1616</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1230</span> Differentiation of Gene Expression Profiles Data for Liver and Kidney of Pigs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khlopova%20N.S.">Khlopova N.S.</a>, <a href="https://publications.waset.org/search?q=Glazko%20V.I."> Glazko V.I.</a>, <a href="https://publications.waset.org/search?q=Glazko%20T.T."> Glazko T.T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using DNA microarrays the comparative analysis of a gene expression profiles is carried out in a liver and kidneys of pigs. The hypothesis of a cross hybridization of one probe with different cDNA sites of the same gene or different genes is checked up, and it is shown, that cross hybridization can be a source of essential errors at revealing of a key genes in organ-specific transcriptome. It is reveald that distinctions in profiles of a gene expression are well coordinated with function, morphology, biochemistry and histology of these organs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microarray" title="Microarray">Microarray</a>, <a href="https://publications.waset.org/search?q=gene%20expression%20profiles" title=" gene expression profiles"> gene expression profiles</a>, <a href="https://publications.waset.org/search?q=key%20genes." title=" key genes."> key genes.</a> </p> <a href="https://publications.waset.org/1732/differentiation-of-gene-expression-profiles-data-for-liver-and-kidney-of-pigs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1732/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1732/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1732/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1732/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1732/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1732/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1732/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1732/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1732/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1732/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1602</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1229</span> Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mai%20S.%20Mabrouk">Mai S. Mabrouk</a>, <a href="https://publications.waset.org/search?q=Nahed%20H.%20Solouma"> Nahed H. Solouma</a>, <a href="https://publications.waset.org/search?q=Abou-Bakr%20M.%20Youssef"> Abou-Bakr M. Youssef</a>, <a href="https://publications.waset.org/search?q=Yasser%20M.%20Kadah"> Yasser M. Kadah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gene%20prediction" title="Gene prediction">Gene prediction</a>, <a href="https://publications.waset.org/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/search?q=correlation%20dimension" title=" correlation dimension"> correlation dimension</a>, <a href="https://publications.waset.org/search?q=Lyapunov%20exponent." title=" Lyapunov exponent."> Lyapunov exponent.</a> </p> <a href="https://publications.waset.org/9460/eukaryotic-gene-prediction-by-an-investigation-of-nonlinear-dynamical-modeling-techniques-on-eiip-coded-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9460/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9460/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9460/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9460/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9460/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9460/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9460/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9460/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9460/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9460/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1825</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1228</span> Automatic Clustering of Gene Ontology by Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Razib%20M.%20Othman">Razib M. Othman</a>, <a href="https://publications.waset.org/search?q=Safaai%20Deris"> Safaai Deris</a>, <a href="https://publications.waset.org/search?q=Rosli%20M.%20Illias"> Rosli M. Illias</a>, <a href="https://publications.waset.org/search?q=Zalmiyah%20Zakaria"> Zalmiyah Zakaria</a>, <a href="https://publications.waset.org/search?q=Saberi%20M.%20Mohamad"> Saberi M. Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nowadays, Gene Ontology has been used widely by many researchers for biological data mining and information retrieval, integration of biological databases, finding genes, and incorporating knowledge in the Gene Ontology for gene clustering. However, the increase in size of the Gene Ontology has caused problems in maintaining and processing them. One way to obtain their accessibility is by clustering them into fragmented groups. Clustering the Gene Ontology is a difficult combinatorial problem and can be modeled as a graph partitioning problem. Additionally, deciding the number k of clusters to use is not easily perceived and is a hard algorithmic problem. Therefore, an approach for solving the automatic clustering of the Gene Ontology is proposed by incorporating cohesion-and-coupling metric into a hybrid algorithm consisting of a genetic algorithm and a split-and-merge algorithm. Experimental results and an example of modularized Gene Ontology in RDF/XML format are given to illustrate the effectiveness of the algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Automatic%20clustering" title="Automatic clustering">Automatic clustering</a>, <a href="https://publications.waset.org/search?q=cohesion-and-coupling%20metric" title=" cohesion-and-coupling metric"> cohesion-and-coupling metric</a>, <a href="https://publications.waset.org/search?q=gene%20ontology%3B%20genetic%20algorithm" title=" gene ontology; genetic algorithm"> gene ontology; genetic algorithm</a>, <a href="https://publications.waset.org/search?q=split-and-merge%20algorithm." title=" split-and-merge algorithm."> split-and-merge algorithm.</a> </p> <a href="https://publications.waset.org/7125/automatic-clustering-of-gene-ontology-by-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7125/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7125/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7125/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7125/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7125/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7125/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7125/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7125/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7125/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7125/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1955</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1227</span> Clustering Approach to Unveiling Relationships between Gene Regulatory Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hiba%20Hasan">Hiba Hasan</a>, <a href="https://publications.waset.org/search?q=Khalid%20Raza"> Khalid Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Reverse engineering of genetic regulatory network involves the modeling of the given gene expression data into a form of the network. Computationally it is possible to have the relationships between genes, so called gene regulatory networks (GRNs), that can help to find the genomics and proteomics based diagnostic approach for any disease. In this paper, clustering based method has been used to reconstruct genetic regulatory network from time series gene expression data. Supercoiled data set from Escherichia coli has been taken to demonstrate the proposed method.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gene%20expression" title="Gene expression">Gene expression</a>, <a href="https://publications.waset.org/search?q=gene%20regulatory%20networks%20%28GRNs%29" title=" gene regulatory networks (GRNs)"> gene regulatory networks (GRNs)</a>, <a href="https://publications.waset.org/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/search?q=data%20preprocessing" title=" data preprocessing"> data preprocessing</a>, <a href="https://publications.waset.org/search?q=network%20visualization." title=" network visualization. "> network visualization. </a> </p> <a href="https://publications.waset.org/16904/clustering-approach-to-unveiling-relationships-between-gene-regulatory-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16904/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16904/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16904/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16904/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16904/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16904/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16904/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16904/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16904/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16904/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2152</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1226</span> Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nilubon%20Kurubanjerdjit">Nilubon Kurubanjerdjit</a>, <a href="https://publications.waset.org/search?q=Nattakarn%20Iam-On"> Nattakarn Iam-On</a>, <a href="https://publications.waset.org/search?q=Ka-Lok%20Ng"> Ka-Lok Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=MicroRNA" title="MicroRNA">MicroRNA</a>, <a href="https://publications.waset.org/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/search?q=machine%0D%0Alearning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=Na%C3%AFve%20Bayes" title=" Naïve Bayes"> Naïve Bayes</a>, <a href="https://publications.waset.org/search?q=SVM." title=" SVM."> SVM.</a> </p> <a href="https://publications.waset.org/10003520/prediction-of-microrna-target-gene-by-machine-learning-algorithms-in-lung-cancer-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003520/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003520/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003520/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003520/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003520/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003520/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003520/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003520/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003520/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003520/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2387</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1225</span> A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Li-Yeh%20Chuang">Li-Yeh Chuang</a>, <a href="https://publications.waset.org/search?q=Yu-Jen%20Hou"> Yu-Jen Hou</a>, <a href="https://publications.waset.org/search?q=Jr."> Jr.</a>, <a href="https://publications.waset.org/search?q=Cheng-Hong%20Yang"> Cheng-Hong Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Genetic%20Algorithm%20%28GA%29" title="Genetic Algorithm (GA)">Genetic Algorithm (GA)</a>, <a href="https://publications.waset.org/search?q=Genotype" title=" Genotype"> Genotype</a>, <a href="https://publications.waset.org/search?q=Single%0D%0Anucleotide%20polymorphism%20%28SNP%29" title=" Single nucleotide polymorphism (SNP)"> Single nucleotide polymorphism (SNP)</a>, <a href="https://publications.waset.org/search?q=tag%20SNPs." title=" tag SNPs."> tag SNPs.</a> </p> <a href="https://publications.waset.org/10488/a-novel-prediction-method-for-tag-snp-selection-using-genetic-algorithm-based-on-knn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10488/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10488/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10488/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10488/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10488/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10488/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10488/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10488/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10488/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10488/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1771</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1224</span> Web–Based Tools and Databases for Micro-RNA Analysis: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sitansu%20Kumar%20Verma">Sitansu Kumar Verma</a>, <a href="https://publications.waset.org/search?q=Soni%20Yadav"> Soni Yadav</a>, <a href="https://publications.waset.org/search?q=Jitendra%20Singh"> Jitendra Singh</a>, <a href="https://publications.waset.org/search?q=Shraddha"> Shraddha</a>, <a href="https://publications.waset.org/search?q=Ajay%20Kumar"> Ajay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=MicroRNAs" title="MicroRNAs">MicroRNAs</a>, <a href="https://publications.waset.org/search?q=computational%20tools" title=" computational tools"> computational tools</a>, <a href="https://publications.waset.org/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a>, <a href="https://publications.waset.org/search?q=databases" title=" databases"> databases</a>, <a href="https://publications.waset.org/search?q=RNAi." title=" RNAi. "> RNAi. </a> </p> <a href="https://publications.waset.org/9997433/web-based-tools-and-databases-for-micro-rna-analysis-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997433/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997433/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997433/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997433/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997433/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997433/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997433/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997433/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997433/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997433/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3184</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1223</span> Multi-Label Hierarchical Classification for Protein Function Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Helyane%20B.%20Borges"> Helyane B. Borges</a>, <a href="https://publications.waset.org/search?q=Julio%20Cesar%20Nievola"> Julio Cesar Nievola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hierarchical%20Classification" title=" Hierarchical Classification"> Hierarchical Classification</a>, <a href="https://publications.waset.org/search?q=Competitive%20Neural%20Network" title=" Competitive Neural Network"> Competitive Neural Network</a>, <a href="https://publications.waset.org/search?q=Global%20Classifier." title=" Global Classifier."> Global Classifier.</a> </p> <a href="https://publications.waset.org/16089/multi-label-hierarchical-classification-for-protein-function-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16089/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16089/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16089/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16089/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16089/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16089/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16089/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16089/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16089/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16089/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2380</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1222</span> Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reena%20Murali">Reena Murali</a>, <a href="https://publications.waset.org/search?q=David%20Peter%20S."> David Peter S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies show that upregulation of mRNA because serious diseases like cancer. So designing effective siRNA with good knockdown effects plays an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (%G), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/search?q=Double%20Stranded%20RNA" title=" Double Stranded RNA"> Double Stranded RNA</a>, <a href="https://publications.waset.org/search?q=RNA%20Interference" title=" RNA Interference"> RNA Interference</a>, <a href="https://publications.waset.org/search?q=Short%20Interfering%20RNA." title=" Short Interfering RNA."> Short Interfering RNA.</a> </p> <a href="https://publications.waset.org/10000073/computational-model-for-predicting-effective-sirna-sequences-using-whole-stacking-energy-g-for-gene-silencing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000073/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000073/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000073/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000073/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000073/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000073/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000073/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000073/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000073/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000073/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2666</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1221</span> An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Mallika">R. Mallika</a>, <a href="https://publications.waset.org/search?q=V.%20Saravanan"> V. Saravanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Support%20vector%20machines-one%20against%20all" title="Support vector machines-one against all">Support vector machines-one against all</a>, <a href="https://publications.waset.org/search?q=cancerclassification" title=" cancerclassification"> cancerclassification</a>, <a href="https://publications.waset.org/search?q=Linear%20Discriminant%20analysis" title=" Linear Discriminant analysis"> Linear Discriminant analysis</a>, <a href="https://publications.waset.org/search?q=K%20nearest%20neighbour" title=" K nearest neighbour"> K nearest neighbour</a>, <a href="https://publications.waset.org/search?q=microarray%20gene%20expression" title="microarray gene expression">microarray gene expression</a>, <a href="https://publications.waset.org/search?q=gene%20pair%20ranking." title=" gene pair ranking."> gene pair ranking.</a> </p> <a href="https://publications.waset.org/3742/an-svm-based-classification-method-for-cancer-data-using-minimum-microarray-gene-expressions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3742/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3742/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3742/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3742/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3742/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3742/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3742/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3742/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3742/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3742/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2562</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1220</span> Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Sir">B. Sir</a>, <a href="https://publications.waset.org/search?q=M.%20Podhoranyi"> M. Podhoranyi</a>, <a href="https://publications.waset.org/search?q=S.%20Kuchar"> S. Kuchar</a>, <a href="https://publications.waset.org/search?q=T.%20Kocyan"> T. Kocyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15 – May 18 2014). Prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flood" title="Flood">Flood</a>, <a href="https://publications.waset.org/search?q=HEC-HMS" title=" HEC-HMS"> HEC-HMS</a>, <a href="https://publications.waset.org/search?q=Prediction" title=" Prediction"> Prediction</a>, <a href="https://publications.waset.org/search?q=Rainfall%20%E2%80%93%20Runoff." title=" Rainfall – Runoff."> Rainfall – Runoff.</a> </p> <a href="https://publications.waset.org/10001346/automatic-flood-prediction-using-rainfall-runoff-model-in-moravian-silesian-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001346/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001346/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001346/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001346/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001346/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001346/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001346/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001346/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001346/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001346/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2227</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1219</span> Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Shukla">A. Shukla</a>, <a href="https://publications.waset.org/search?q=A.%20Tarsauliya"> A. Tarsauliya</a>, <a href="https://publications.waset.org/search?q=R.%20Tiwari"> R. Tiwari</a>, <a href="https://publications.waset.org/search?q=S.%20Sharma"> S. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cancer" title="Cancer">Cancer</a>, <a href="https://publications.waset.org/search?q=Gene%20Signature" title=" Gene Signature"> Gene Signature</a>, <a href="https://publications.waset.org/search?q=SAM" title=" SAM"> SAM</a>, <a href="https://publications.waset.org/search?q=Classification." title=" Classification."> Classification.</a> </p> <a href="https://publications.waset.org/283/gene-expression-signature-for-classification-of-metastasis-positive-and-negative-oral-cancer-in-homosapiens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/283/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/283/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/283/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/283/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/283/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/283/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/283/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/283/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/283/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/283/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2076</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1218</span> UTMGO: A Tool for Searching a Group of Semantically Related Gene Ontology Terms and Application to Annotation of Anonymous Protein Sequence </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Razib%20M.%20Othman">Razib M. Othman</a>, <a href="https://publications.waset.org/search?q=Safaai%20Deris"> Safaai Deris</a>, <a href="https://publications.waset.org/search?q=Rosli%20M.%20Illias"> Rosli M. Illias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gene Ontology terms have been actively used to annotate various protein sets. SWISS-PROT, TrEMBL, and InterPro are protein databases that are annotated according to the Gene Ontology terms. However, direct implementation of the Gene Ontology terms for annotation of anonymous protein sequences is not easy, especially for species not commonly represented in biological databases. UTMGO is developed as a tool that allows the user to quickly and easily search for a group of semantically related Gene Ontology terms. The applicability of the UTMGO is demonstrated by applying it to annotation of anonymous protein sequence. The extended UTMGO uses the Gene Ontology terms together with protein sequences associated with the terms to perform the annotation task. GOPET, GOtcha, GoFigure, and JAFA are used to compare the performance of the extended UTMGO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anonymous%20protein%20sequence" title="Anonymous protein sequence">Anonymous protein sequence</a>, <a href="https://publications.waset.org/search?q=Gene%20Ontology" title=" Gene Ontology"> Gene Ontology</a>, <a href="https://publications.waset.org/search?q=Protein%20sequence%20annotation" title="Protein sequence annotation">Protein sequence annotation</a>, <a href="https://publications.waset.org/search?q=Protein%20sequence%20alignment" title=" Protein sequence alignment"> Protein sequence alignment</a> </p> <a href="https://publications.waset.org/6744/utmgo-a-tool-for-searching-a-group-of-semantically-related-gene-ontology-terms-and-application-to-annotation-of-anonymous-protein-sequence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6744/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6744/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6744/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6744/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6744/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6744/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6744/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6744/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6744/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6744/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1440</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1217</span> River Flow Prediction Using Nonlinear Prediction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20H.%20Adenan">N. H. Adenan</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20M.%20Noorani"> M. S. M. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (<em>CC</em>) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=River%20flow" title="River flow">River flow</a>, <a href="https://publications.waset.org/search?q=nonlinear%20prediction%20method" title=" nonlinear prediction method"> nonlinear prediction method</a>, <a href="https://publications.waset.org/search?q=phase%20space" title=" phase space"> phase space</a>, <a href="https://publications.waset.org/search?q=local%20linear%20approximation." title=" local linear approximation."> local linear approximation.</a> </p> <a href="https://publications.waset.org/17410/river-flow-prediction-using-nonlinear-prediction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17410/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17410/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17410/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17410/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17410/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17410/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17410/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17410/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17410/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17410/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2365</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1216</span> Dynamical Analysis of Circadian Gene Expression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Carla%20Layana%20Luis%20Diambra">Carla Layana Luis Diambra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Microarrays technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining this data one can identify the dynamics of the gene expression time series. By recourse of principal component analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis. We applied PCA to reduce the dimensionality of the data set. Examination of the components also provides insight into the underlying factors measured in the experiments. Our results suggest that all rhythmic content of data can be reduced to three main components.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=circadian%20rhythms" title="circadian rhythms">circadian rhythms</a>, <a href="https://publications.waset.org/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/search?q=PCA." title=" PCA."> PCA.</a> </p> <a href="https://publications.waset.org/12666/dynamical-analysis-of-circadian-gene-expression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12666/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12666/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12666/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12666/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12666/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12666/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12666/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12666/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12666/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12666/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1592</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1215</span> Monthly River Flow Prediction Using a Nonlinear Prediction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20H.%20Adenan">N. H. Adenan</a>, <a href="https://publications.waset.org/search?q=M.%20S.%20M.%20Noorani"> M. S. M. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (<em>CC</em>) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=River%20flow" title="River flow">River flow</a>, <a href="https://publications.waset.org/search?q=nonlinear%20prediction%20method" title=" nonlinear prediction method"> nonlinear prediction method</a>, <a href="https://publications.waset.org/search?q=phase%20space" title=" phase space"> phase space</a>, <a href="https://publications.waset.org/search?q=local%20linear%20approximation." title=" local linear approximation."> local linear approximation.</a> </p> <a href="https://publications.waset.org/9997328/monthly-river-flow-prediction-using-a-nonlinear-prediction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997328/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997328/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997328/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997328/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997328/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997328/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997328/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997328/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997328/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997328/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1962</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1214</span> A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Anidha">M. Anidha</a>, <a href="https://publications.waset.org/search?q=K.%20Premalatha"> K. Premalatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gene%20selection" title="Gene selection">Gene selection</a>, <a href="https://publications.waset.org/search?q=mutual%20information" title=" mutual information"> mutual information</a>, <a href="https://publications.waset.org/search?q=Fisher%20score" title=" Fisher score"> Fisher score</a>, <a href="https://publications.waset.org/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/search?q=SVM." title=" SVM."> SVM.</a> </p> <a href="https://publications.waset.org/10004601/a-hybrid-gene-selection-technique-using-improved-mutual-information-and-fisher-score-for-cancer-classification-using-microarrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004601/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004601/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004601/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004601/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004601/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004601/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004601/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004601/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004601/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004601/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1152</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1213</span> Inhibiting Gene for a Late-Heading Gene Responsible for Photoperiod Sensitivity in Rice (Oryza sativa)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amol%20Dahal">Amol Dahal</a>, <a href="https://publications.waset.org/search?q=Shunsuke%20Hori"> Shunsuke Hori</a>, <a href="https://publications.waset.org/search?q=Haruki%20Nakazawa"> Haruki Nakazawa</a>, <a href="https://publications.waset.org/search?q=Kazumitsu%20Onishi"> Kazumitsu Onishi</a>, <a href="https://publications.waset.org/search?q=Toshio%20Kawano"> Toshio Kawano</a>, <a href="https://publications.waset.org/search?q=Masayuki%20Murai"> Masayuki Murai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Two indica varieties, IR36 and ‘Suweon 258’ (“S”) are middle-heading in southern Japan. 36U, also middle-heading, is an isogenic line of IR36 carrying Ur1 (Undulate rachis-1) gene. However, late-heading plants segregated in the F2 population from the F1 of S × 36U, and so did in the following generations. The concerning lateness gene is designated as Ex. From the F8 generation, isogenic-line pair of early-heading and late-heading lines, denoted by “E” (ex/ex) and “L” (Ex/Ex), were developed. Genetic analyses of heading time were conducted, using F1s and F2s among L, E, S and 36U. The following inferences were drawn from the experimental results: 1) L, and both of E and 36U harbor Ex and ex, respectively; 2) Besides Ex, S harbors an inhibitor gene to it, i.e. I-Ex which is a novel finding of the present study. 3) Ex is a dominant allele at the E1 locus.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Basic%20vegetative%20phase" title="Basic vegetative phase">Basic vegetative phase</a>, <a href="https://publications.waset.org/search?q=heading%20time" title=" heading time"> heading time</a>, <a href="https://publications.waset.org/search?q=lateness%20gene" title=" lateness gene"> lateness gene</a>, <a href="https://publications.waset.org/search?q=photoperiod-sensitive%20phase." title=" photoperiod-sensitive phase."> photoperiod-sensitive phase.</a> </p> <a href="https://publications.waset.org/16491/inhibiting-gene-for-a-late-heading-gene-responsible-for-photoperiod-sensitivity-in-rice-oryza-sativa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16491/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16491/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16491/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16491/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16491/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16491/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16491/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16491/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16491/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16491/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1301</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1212</span> Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Elyousfi">A. Elyousfi</a>, <a href="https://publications.waset.org/search?q=A.%20Tamtaoui"> A. Tamtaoui</a>, <a href="https://publications.waset.org/search?q=E.%20Bouyakhf"> E. Bouyakhf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Intra%20prediction" title="Intra prediction">Intra prediction</a>, <a href="https://publications.waset.org/search?q=H.264%2FAVC" title=" H.264/AVC"> H.264/AVC</a>, <a href="https://publications.waset.org/search?q=video%20coding" title=" video coding"> video coding</a>, <a href="https://publications.waset.org/search?q=encodercomplexity." title=" encodercomplexity."> encodercomplexity.</a> </p> <a href="https://publications.waset.org/2152/fast-intra-prediction-algorithm-for-h264avc-based-on-quadratic-and-gradient-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2152/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2152/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2152/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2152/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2152/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2152/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2152/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2152/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2152/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2152/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1894</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1211</span> Combining Gene and Chemo Therapy using Multifunctional Polymeric Micelles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hong%20Yi%20Huang">Hong Yi Huang</a>, <a href="https://publications.waset.org/search?q=Wei%20Ti%20Kuo"> Wei Ti Kuo</a>, <a href="https://publications.waset.org/search?q=Yi%20You%20Huang"> Yi You Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-viral gene carriers composed of biodegradable polymers or lipids have been considered as a safer alternative for gene carriers over viral vectors. We have developed multi-functional nano-micelles for both drug and gene delivery application. Polyethyleneimine (PEI) was modified by grafting stearic acid (SA) and formulated to polymeric micelles (PEI-SA) with positive surface charge for gene and drug delivery. Our results showed that PEI-SA micelles provided high siRNA binding efficiency. In addition, siRNA delivered by PEI-SA carriers also demonstrated significantly high cellular uptake even in the presence of serum proteins. The post-transcriptional gene silencing efficiency was greatly improved by the polyplex formulated by 10k PEI-SA/siRNA. The amphiphilic structure of PEI-SA micelles provided advantages for multifunctional tasks; where the hydrophilic shell modified with cationic charges can electrostatically interact with DNA or siRNA, and the hydrophobic core can serve as payloads for hydrophobic drugs, making it a promising multifunctional vehicle for both genetic and chemotherapy application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=polyethyleneimine" title="polyethyleneimine">polyethyleneimine</a>, <a href="https://publications.waset.org/search?q=gene%20delivery" title=" gene delivery"> gene delivery</a>, <a href="https://publications.waset.org/search?q=micelles" title=" micelles"> micelles</a>, <a href="https://publications.waset.org/search?q=siRNA" title=" siRNA"> siRNA</a> </p> <a href="https://publications.waset.org/2612/combining-gene-and-chemo-therapy-using-multifunctional-polymeric-micelles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2612/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2612/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2612/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2612/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2612/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2612/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2612/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2612/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2612/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2612/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1888</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1210</span> Application of KL Divergence for Estimation of Each Metabolic Pathway Genes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shohei%20Maruyama">Shohei Maruyama</a>, <a href="https://publications.waset.org/search?q=Yasuo%20Matsuyama"> Yasuo Matsuyama</a>, <a href="https://publications.waset.org/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Metabolic%20pathways" title="Metabolic pathways">Metabolic pathways</a>, <a href="https://publications.waset.org/search?q=gene%20expression%20data" title=" gene expression data"> gene expression data</a>, <a href="https://publications.waset.org/search?q=microarray" title=" microarray"> microarray</a>, <a href="https://publications.waset.org/search?q=Kullback%E2%80%93Leibler%20divergence" title=" Kullback–Leibler divergence"> Kullback–Leibler divergence</a>, <a href="https://publications.waset.org/search?q=KL%20divergence" title=" KL divergence"> KL divergence</a>, <a href="https://publications.waset.org/search?q=support%0D%0Avector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/search?q=machine%20learning." title=" machine learning."> machine learning.</a> </p> <a href="https://publications.waset.org/10000800/application-of-kl-divergence-for-estimation-of-each-metabolic-pathway-genes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000800/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000800/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000800/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000800/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000800/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000800/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000800/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000800/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000800/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000800/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2336</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1209</span> On Improving Breast Cancer Prediction Using GRNN-CP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kefaya%20Qaddoum">Kefaya Qaddoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=conformal%20prediction" title=" conformal prediction"> conformal prediction</a>, <a href="https://publications.waset.org/search?q=cancer%20classification" title=" cancer classification"> cancer classification</a>, <a href="https://publications.waset.org/search?q=regression." title=" regression."> regression.</a> </p> <a href="https://publications.waset.org/10007942/on-improving-breast-cancer-prediction-using-grnn-cp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007942/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007942/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007942/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007942/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007942/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007942/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007942/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007942/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007942/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007942/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">839</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1208</span> Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Micheal%20Olaolu%20Arowolo">Micheal Olaolu Arowolo</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Azam"> Muhammad Azam</a>, <a href="https://publications.waset.org/search?q=Fei%20He"> Fei He</a>, <a href="https://publications.waset.org/search?q=Mihail%20Popescu"> Mihail Popescu</a>, <a href="https://publications.waset.org/search?q=Dong%20Xu"> Dong Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biological%20pathway" title="Biological pathway">Biological pathway</a>, <a href="https://publications.waset.org/search?q=gene%20identification" title=" gene identification"> gene identification</a>, <a href="https://publications.waset.org/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/search?q=Siamese%20network" title=" Siamese network"> Siamese network</a>, <a href="https://publications.waset.org/search?q=ResNet." title=" ResNet."> ResNet.</a> </p> <a href="https://publications.waset.org/10013264/annotations-of-gene-pathways-images-in-biomedical-publications-using-siamese-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013264/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013264/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013264/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013264/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013264/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013264/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013264/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013264/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013264/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013264/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Gene%20prediction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>