CINXE.COM

Collatz conjecture - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Collatz conjecture - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"757d1e6a-2495-4fb4-8bd2-d4b295d73050","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Collatz_conjecture","wgTitle":"Collatz conjecture","wgCurRevisionId":1267439306,"wgRevisionId":1267439306,"wgArticleId":37895,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: bot: original URL status unknown","Articles with short description","Short description is different from Wikidata","Wikipedia indefinitely semi-protected pages","Wikipedia articles needing clarification from September 2024","Commons category link from Wikidata","Webarchive template wayback links","Conjectures","Arithmetic dynamics","Integer sequences","Unsolved problems in number theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel": "wikitext","wgRelevantPageName":"Collatz_conjecture","wgRelevantArticleId":37895,"wgIsProbablyEditable":false,"wgRelevantPageIsProbablyEditable":false,"wgRestrictionEdit":["autoconfirmed"],"wgRestrictionMove":["autoconfirmed"],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q837314","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile", "model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.15"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Collatz conjecture - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Collatz_conjecture"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Collatz_conjecture"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Collatz_conjecture rootpage-Collatz_conjecture skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Collatz+conjecture" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Collatz+conjecture" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Collatz+conjecture" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Collatz+conjecture" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Statement_of_the_problem" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Statement_of_the_problem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Statement of the problem</span> </div> </a> <ul id="toc-Statement_of_the_problem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Empirical_data" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Empirical_data"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Empirical data</span> </div> </a> <ul id="toc-Empirical_data-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Visualizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Visualizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Visualizations</span> </div> </a> <ul id="toc-Visualizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Supporting_arguments" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Supporting_arguments"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Supporting arguments</span> </div> </a> <button aria-controls="toc-Supporting_arguments-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Supporting arguments subsection</span> </button> <ul id="toc-Supporting_arguments-sublist" class="vector-toc-list"> <li id="toc-Experimental_evidence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Experimental_evidence"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Experimental evidence</span> </div> </a> <ul id="toc-Experimental_evidence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_probabilistic_heuristic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_probabilistic_heuristic"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>A probabilistic heuristic</span> </div> </a> <ul id="toc-A_probabilistic_heuristic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stopping_times" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stopping_times"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Stopping times</span> </div> </a> <ul id="toc-Stopping_times-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lower_bounds" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lower_bounds"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Lower bounds</span> </div> </a> <ul id="toc-Lower_bounds-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Cycles" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Cycles"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Cycles</span> </div> </a> <button aria-controls="toc-Cycles-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Cycles subsection</span> </button> <ul id="toc-Cycles-sublist" class="vector-toc-list"> <li id="toc-Cycle_length" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cycle_length"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Cycle length</span> </div> </a> <ul id="toc-Cycle_length-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-k-cycles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#k-cycles"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span><span>k</span>-cycles</span> </div> </a> <ul id="toc-k-cycles-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_formulations_of_the_conjecture" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_formulations_of_the_conjecture"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Other formulations of the conjecture</span> </div> </a> <button aria-controls="toc-Other_formulations_of_the_conjecture-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other formulations of the conjecture subsection</span> </button> <ul id="toc-Other_formulations_of_the_conjecture-sublist" class="vector-toc-list"> <li id="toc-In_reverse" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_reverse"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>In reverse</span> </div> </a> <ul id="toc-In_reverse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_an_abstract_machine_that_computes_in_base_two" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#As_an_abstract_machine_that_computes_in_base_two"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>As an abstract machine that computes in base two</span> </div> </a> <ul id="toc-As_an_abstract_machine_that_computes_in_base_two-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-As_a_parity_sequence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#As_a_parity_sequence"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>As a parity sequence</span> </div> </a> <ul id="toc-As_a_parity_sequence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_a_tag_system" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#As_a_tag_system"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>As a tag system</span> </div> </a> <ul id="toc-As_a_tag_system-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Extensions_to_larger_domains" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Extensions_to_larger_domains"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Extensions to larger domains</span> </div> </a> <button aria-controls="toc-Extensions_to_larger_domains-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Extensions to larger domains subsection</span> </button> <ul id="toc-Extensions_to_larger_domains-sublist" class="vector-toc-list"> <li id="toc-Iterating_on_all_integers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Iterating_on_all_integers"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Iterating on all integers</span> </div> </a> <ul id="toc-Iterating_on_all_integers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Iterating_on_rationals_with_odd_denominators" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Iterating_on_rationals_with_odd_denominators"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Iterating on rationals with odd denominators</span> </div> </a> <ul id="toc-Iterating_on_rationals_with_odd_denominators-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-2-adic_extension" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#2-adic_extension"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>2-adic extension</span> </div> </a> <ul id="toc-2-adic_extension-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Iterating_on_real_or_complex_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Iterating_on_real_or_complex_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Iterating on real or complex numbers</span> </div> </a> <ul id="toc-Iterating_on_real_or_complex_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Optimizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Optimizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Optimizations</span> </div> </a> <button aria-controls="toc-Optimizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Optimizations subsection</span> </button> <ul id="toc-Optimizations-sublist" class="vector-toc-list"> <li id="toc-Time–space_tradeoff" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time–space_tradeoff"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Time–space tradeoff</span> </div> </a> <ul id="toc-Time–space_tradeoff-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modular_restrictions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modular_restrictions"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Modular restrictions</span> </div> </a> <ul id="toc-Modular_restrictions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Syracuse_function" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Syracuse_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Syracuse function</span> </div> </a> <ul id="toc-Syracuse_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Undecidable_generalizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Undecidable_generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Undecidable generalizations</span> </div> </a> <ul id="toc-Undecidable_generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_computational_complexity" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#In_computational_complexity"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>In computational complexity</span> </div> </a> <ul id="toc-In_computational_complexity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Collatz conjecture</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 38 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-38" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">38 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D8%AF%D8%B3%D9%8A%D8%A9_%D9%83%D9%88%D9%84%D8%A7%D8%AA%D8%B2" title="حدسية كولاتز – Arabic" lang="ar" hreflang="ar" data-title="حدسية كولاتز" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%95%E0%A7%8B%E0%A6%B2%E0%A6%BE%E0%A6%9F%E0%A6%B8_%E0%A6%85%E0%A6%A8%E0%A7%81%E0%A6%AE%E0%A6%BE%E0%A6%A8" title="কোলাটস অনুমান – Bangla" lang="bn" hreflang="bn" data-title="কোলাটস অনুমান" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Conjectura_de_Collatz" title="Conjectura de Collatz – Catalan" lang="ca" hreflang="ca" data-title="Conjectura de Collatz" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Collatz%C5%AFv_probl%C3%A9m" title="Collatzův problém – Czech" lang="cs" hreflang="cs" data-title="Collatzův problém" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Collatz-formodningen" title="Collatz-formodningen – Danish" lang="da" hreflang="da" data-title="Collatz-formodningen" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Collatz-Problem" title="Collatz-Problem – German" lang="de" hreflang="de" data-title="Collatz-Problem" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%B9%CE%BA%CE%B1%CF%83%CE%AF%CE%B1_%CF%84%CE%BF%CF%85_%CE%9A%CF%8C%CE%BB%CE%B1%CF%84%CE%B6" title="Εικασία του Κόλατζ – Greek" lang="el" hreflang="el" data-title="Εικασία του Κόλατζ" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Conjetura_de_Collatz" title="Conjetura de Collatz – Spanish" lang="es" hreflang="es" data-title="Conjetura de Collatz" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Konjekto_de_Collatz" title="Konjekto de Collatz – Esperanto" lang="eo" hreflang="eo" data-title="Konjekto de Collatz" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Collatzen_aierua" title="Collatzen aierua – Basque" lang="eu" hreflang="eu" data-title="Collatzen aierua" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AD%D8%AF%D8%B3_%DA%A9%D9%88%D9%84%D8%A7%D8%AA%D8%B2" title="حدس کولاتز – Persian" lang="fa" hreflang="fa" data-title="حدس کولاتز" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Conjecture_de_Syracuse" title="Conjecture de Syracuse – French" lang="fr" hreflang="fr" data-title="Conjecture de Syracuse" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%BD%9C%EB%9D%BC%EC%B8%A0_%EC%B6%94%EC%B8%A1" title="콜라츠 추측 – Korean" lang="ko" hreflang="ko" data-title="콜라츠 추측" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A5%8B%E0%A4%B2%E0%A4%BE%E0%A4%9C_%E0%A4%85%E0%A4%9F%E0%A4%95%E0%A4%B2" title="कोलाज अटकल – Hindi" lang="hi" hreflang="hi" data-title="कोलाज अटकल" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Konjektur_Collatz" title="Konjektur Collatz – Indonesian" lang="id" hreflang="id" data-title="Konjektur Collatz" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Tilg%C3%A1ta_Collatz" title="Tilgáta Collatz – Icelandic" lang="is" hreflang="is" data-title="Tilgáta Collatz" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Congettura_di_Collatz" title="Congettura di Collatz – Italian" lang="it" hreflang="it" data-title="Congettura di Collatz" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%A9%D7%A2%D7%A8%D7%AA_%D7%A7%D7%95%D7%9C%D7%A5" title="השערת קולץ – Hebrew" lang="he" hreflang="he" data-title="השערת קולץ" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Konjekti_Sirakiz" title="Konjekti Sirakiz – Haitian Creole" lang="ht" hreflang="ht" data-title="Konjekti Sirakiz" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Congettura_de_Collatz" title="Congettura de Collatz – Lombard" lang="lmo" hreflang="lmo" data-title="Congettura de Collatz" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Collatz-sejt%C3%A9s" title="Collatz-sejtés – Hungarian" lang="hu" hreflang="hu" data-title="Collatz-sejtés" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vermoeden_van_Collatz" title="Vermoeden van Collatz – Dutch" lang="nl" hreflang="nl" data-title="Vermoeden van Collatz" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%A9%E3%83%83%E3%83%84%E3%81%AE%E5%95%8F%E9%A1%8C" title="コラッツの問題 – Japanese" lang="ja" hreflang="ja" data-title="コラッツの問題" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Collatz%E2%80%99_formodning" title="Collatz’ formodning – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Collatz’ formodning" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Problem_Collatza" title="Problem Collatza – Polish" lang="pl" hreflang="pl" data-title="Problem Collatza" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Conjectura_de_Collatz" title="Conjectura de Collatz – Portuguese" lang="pt" hreflang="pt" data-title="Conjectura de Collatz" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D0%B8%D0%BF%D0%BE%D1%82%D0%B5%D0%B7%D0%B0_%D0%9A%D0%BE%D0%BB%D0%BB%D0%B0%D1%82%D1%86%D0%B0" title="Гипотеза Коллатца – Russian" lang="ru" hreflang="ru" data-title="Гипотеза Коллатца" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Collatz_conjecture" title="Collatz conjecture – Simple English" lang="en-simple" hreflang="en-simple" data-title="Collatz conjecture" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Collatzeva_domneva" title="Collatzeva domneva – Slovenian" lang="sl" hreflang="sl" data-title="Collatzeva domneva" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BB%D0%B0%D1%86%D0%BE%D0%B2%D0%B0_%D1%85%D0%B8%D0%BF%D0%BE%D1%82%D0%B5%D0%B7%D0%B0" title="Колацова хипотеза – Serbian" lang="sr" hreflang="sr" data-title="Колацова хипотеза" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Collatzin_konjektuuri" title="Collatzin konjektuuri – Finnish" lang="fi" hreflang="fi" data-title="Collatzin konjektuuri" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Collatz_problem" title="Collatz problem – Swedish" lang="sv" hreflang="sv" data-title="Collatz problem" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Collatz_san%C4%B1s%C4%B1" title="Collatz sanısı – Turkish" lang="tr" hreflang="tr" data-title="Collatz sanısı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D1%96%D0%BF%D0%BE%D1%82%D0%B5%D0%B7%D0%B0_%D0%9A%D0%BE%D0%BB%D0%BB%D0%B0%D1%82%D1%86%D0%B0" title="Гіпотеза Коллатца – Ukrainian" lang="uk" hreflang="uk" data-title="Гіпотеза Коллатца" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Gi%E1%BA%A3_thuy%E1%BA%BFt_Collatz" title="Giả thuyết Collatz – Vietnamese" lang="vi" hreflang="vi" data-title="Giả thuyết Collatz" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%80%83%E6%8B%89%E8%8C%B2%E7%8C%9C%E6%83%B3" title="考拉茲猜想 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="考拉茲猜想" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/Collatz%E7%8C%9C%E6%83%B3" title="Collatz猜想 – Cantonese" lang="yue" hreflang="yue" data-title="Collatz猜想" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%80%83%E6%8B%89%E5%85%B9%E7%8C%9C%E6%83%B3" title="考拉兹猜想 – Chinese" lang="zh" hreflang="zh" data-title="考拉兹猜想" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q837314#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Collatz_conjecture" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Collatz_conjecture" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Collatz_conjecture"><span>Read</span></a></li><li id="ca-viewsource" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Collatz_conjecture&amp;action=edit" title="This page is protected.&#10;You can view its source [e]" accesskey="e"><span>View source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Collatz_conjecture&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Collatz_conjecture"><span>Read</span></a></li><li id="ca-more-viewsource" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Collatz_conjecture&amp;action=edit"><span>View source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Collatz_conjecture&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Collatz_conjecture" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Collatz_conjecture" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Collatz_conjecture&amp;oldid=1267439306" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Collatz_conjecture&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Collatz_conjecture&amp;id=1267439306&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCollatz_conjecture"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCollatz_conjecture"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Collatz_conjecture&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Collatz_conjecture&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Collatz_conjecture" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikifunctions mw-list-item"><a href="https://www.wikifunctions.org/wiki/Z13561" hreflang="en"><span>Wikifunctions</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q837314" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-pp-default" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Protection_policy#semi" title="This article is semi-protected."><img alt="Page semi-protected" src="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/20px-Semi-protection-shackle.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/30px-Semi-protection-shackle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/1/1b/Semi-protection-shackle.svg/40px-Semi-protection-shackle.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Open problem on 3x+1 and x/2 functions</div> <p> <style data-mw-deduplicate="TemplateStyles:r1233989161">.mw-parser-output .unsolved{margin:0.5em 0 1em 1em;border:#ccc solid;padding:0.35em 0.35em 0.35em 2.2em;background-color:var(--background-color-interactive-subtle);background-image:url("https://upload.wikimedia.org/wikipedia/commons/2/26/Question%2C_Web_Fundamentals.svg");background-position:top 50%left 0.35em;background-size:1.5em;background-repeat:no-repeat}@media(min-width:720px){.mw-parser-output .unsolved{clear:right;float:right;max-width:25%}}.mw-parser-output .unsolved-label{font-weight:bold}.mw-parser-output .unsolved-body{margin:0.35em;font-style:italic}.mw-parser-output .unsolved-more{font-size:smaller}</style> </p> <div role="note" aria-labelledby="unsolved-label-mathematics" class="unsolved"> <div><span class="unsolved-label" id="unsolved-label-mathematics">Unsolved problem in mathematics</span>:</div> <div class="unsolved-body"><div><ul><li>For even numbers, divide by 2;</li><li>For odd numbers, multiply by 3 and add 1.</li></ul></div>With enough repetition, do all positive integers converge to 1?</div> <div class="unsolved-more"><a href="/wiki/List_of_unsolved_problems_in_mathematics" title="List of unsolved problems in mathematics">(more unsolved problems in mathematics)</a></div> </div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Collatz-graph-50-no27.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Collatz-graph-50-no27.svg/130px-Collatz-graph-50-no27.svg.png" decoding="async" width="130" height="346" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Collatz-graph-50-no27.svg/195px-Collatz-graph-50-no27.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Collatz-graph-50-no27.svg/260px-Collatz-graph-50-no27.svg.png 2x" data-file-width="393" data-file-height="1045" /></a><figcaption><a href="/wiki/Directed_graph" title="Directed graph">Directed graph</a> showing the <a href="/wiki/Orbit_(dynamics)" title="Orbit (dynamics)">orbits</a> of small numbers under the Collatz map, skipping even numbers. The Collatz conjecture states that all paths eventually lead to 1.</figcaption></figure> <p>The <b>Collatz conjecture</b><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> is one of the most famous <a href="/wiki/List_of_unsolved_problems_in_mathematics" title="List of unsolved problems in mathematics">unsolved problems in mathematics</a>. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every <a href="/wiki/Positive_integer" class="mw-redirect" title="Positive integer">positive integer</a> into 1. It concerns <a href="/wiki/Integer_sequence" title="Integer sequence">sequences of integers</a> in which each term is obtained from the previous term as follows: if a term is <a href="/wiki/Parity_(mathematics)" title="Parity (mathematics)">even</a>, the next term is one half of it. If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all positive integers up to <span class="nowrap"><span data-sort-value="7020295000000000000♠"></span>2.95<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>20</sup></span>, but no general proof has been found. </p><p>It is named after the mathematician <a href="/wiki/Lothar_Collatz" title="Lothar Collatz">Lothar Collatz</a>, who introduced the idea in 1937, two years after receiving his doctorate.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The sequence of numbers involved is sometimes referred to as the <b>hailstone sequence</b>, <b>hailstone numbers</b> or <b>hailstone numerals</b> (because the values are usually subject to multiple descents and ascents like <a href="/wiki/Hailstones" class="mw-redirect" title="Hailstones">hailstones</a> in a cloud),<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> or as <b>wondrous numbers</b>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Paul Erdős</a> said about the Collatz conjecture: "Mathematics may not be ready for such problems."<sup id="cite_ref-Guy_(2004)_8-0" class="reference"><a href="#cite_note-Guy_(2004)-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Jeffrey_Lagarias" title="Jeffrey Lagarias">Jeffrey Lagarias</a> stated in 2010 that the Collatz conjecture "is an extraordinarily difficult problem, completely out of reach of present day mathematics".<sup id="cite_ref-Lagarias_(2010)_9-0" class="reference"><a href="#cite_note-Lagarias_(2010)-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> However, though the Collatz conjecture itself remains open, efforts to solve the problem have led to new techniques and many partial results.<sup id="cite_ref-Lagarias_(2010)_9-1" class="reference"><a href="#cite_note-Lagarias_(2010)-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Tao_10-0" class="reference"><a href="#cite_note-Tao-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Statement_of_the_problem">Statement of the problem</h2></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Collatz-stopping-time.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Collatz-stopping-time.svg/220px-Collatz-stopping-time.svg.png" decoding="async" width="220" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Collatz-stopping-time.svg/330px-Collatz-stopping-time.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Collatz-stopping-time.svg/440px-Collatz-stopping-time.svg.png 2x" data-file-width="570" data-file-height="590" /></a><figcaption>Numbers from 1 to 9999 and their corresponding total stopping time</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CollatzStatistic100million.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/CollatzStatistic100million.png/220px-CollatzStatistic100million.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/CollatzStatistic100million.png/330px-CollatzStatistic100million.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/CollatzStatistic100million.png/440px-CollatzStatistic100million.png 2x" data-file-width="1921" data-file-height="964" /></a><figcaption>Histogram of total stopping times for the numbers 1 to 10<sup>8</sup>. Total stopping time is on the <span class="texhtml mvar" style="font-style:italic;">x</span> axis, frequency on the <span class="texhtml mvar" style="font-style:italic;">y</span> axis.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CollatzStatistic1billion.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/CollatzStatistic1billion.png/220px-CollatzStatistic1billion.png" decoding="async" width="220" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/CollatzStatistic1billion.png/330px-CollatzStatistic1billion.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0d/CollatzStatistic1billion.png/440px-CollatzStatistic1billion.png 2x" data-file-width="1504" data-file-height="940" /></a><figcaption>Histogram of total stopping times for the numbers 1 to 10<sup>9</sup>. Total stopping time is on the <span class="texhtml mvar" style="font-style:italic;">x</span> axis, frequency on the <span class="texhtml mvar" style="font-style:italic;">y</span> axis.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Collatz-10Million.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Collatz-10Million.png/220px-Collatz-10Million.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Collatz-10Million.png/330px-Collatz-10Million.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Collatz-10Million.png/440px-Collatz-10Million.png 2x" data-file-width="800" data-file-height="600" /></a><figcaption>Iteration time for inputs of 2 to 10<sup>7</sup>.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Collatz_Gif.gif" class="mw-file-description"><img alt="Total Stopping Time: numbers up to 250, 1000, 4000, 20000, 100000, 500000" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/Collatz_Gif.gif/220px-Collatz_Gif.gif" decoding="async" width="220" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/34/Collatz_Gif.gif/330px-Collatz_Gif.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/34/Collatz_Gif.gif/440px-Collatz_Gif.gif 2x" data-file-width="982" data-file-height="715" /></a><figcaption>Total stopping time of numbers up to 250, 1000, 4000, 20000, 100000, 500000</figcaption></figure> <p>Consider the following operation on an arbitrary <a href="/wiki/Positive_integer" class="mw-redirect" title="Positive integer">positive integer</a>: </p> <ul><li>If the number is even, divide it by two.</li> <li>If the number is odd, triple it and add one.</li></ul> <p>In <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">modular arithmetic</a> notation, define the <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="texhtml mvar" style="font-style:italic;">f</span> as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)={\begin{cases}n/2&amp;{\text{if }}n\equiv 0{\pmod {2}},\\[4px]3n+1&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)={\begin{cases}n/2&amp;{\text{if }}n\equiv 0{\pmod {2}},\\[4px]3n+1&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b2a03faf9d31a8de0abb3c4a3d318490105da12" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:36.886ex; height:7.509ex;" alt="{\displaystyle f(n)={\begin{cases}n/2&amp;{\text{if }}n\equiv 0{\pmod {2}},\\[4px]3n+1&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}"></span> </p><p>Now form a sequence by performing this operation repeatedly, beginning with any positive integer, and taking the result at each step as the input at the next. </p><p>In notation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}={\begin{cases}n&amp;{\text{for }}i=0,\\f(a_{i-1})&amp;{\text{for }}i&gt;0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>n</mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>i</mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}={\begin{cases}n&amp;{\text{for }}i=0,\\f(a_{i-1})&amp;{\text{for }}i&gt;0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f220f8b8d9aaa456552e64310e8fbe65e356718" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.24ex; height:6.176ex;" alt="{\displaystyle a_{i}={\begin{cases}n&amp;{\text{for }}i=0,\\f(a_{i-1})&amp;{\text{for }}i&gt;0\end{cases}}}"></span> (that is: <span class="texhtml"><i>a<sub>i</sub></i></span> is the value of <span class="texhtml mvar" style="font-style:italic;">f</span> applied to <span class="texhtml mvar" style="font-style:italic;">n</span> recursively <span class="texhtml mvar" style="font-style:italic;">i</span> times; <span class="texhtml"><i>a<sub>i</sub></i> = <i>f</i>&#8202;<span style="padding-left:0.12em;"><sup><i>i</i></sup></span>(<i>n</i>)</span>). </p><p>The Collatz conjecture is: <i>This process will eventually reach the number 1, regardless of which positive integer is chosen initially. That is, for each</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, there is some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6240a76a2092902c5f04b31c60b8ff185eec3310" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.29ex; height:2.509ex;" alt="{\displaystyle a_{i}=1}"></span>. </p><p>If the conjecture is false, it can only be because there is some starting number which gives rise to a sequence that does not contain 1. Such a sequence would either enter a repeating cycle that excludes 1, or increase without bound. No such sequence has been found. </p><p>The smallest <span class="texhtml mvar" style="font-style:italic;">i</span> such that <span class="texhtml"><i>a<sub>i</sub></i> &lt; <i>a</i><sub>0</sub> </span> is called the <b>stopping time</b> of <span class="texhtml mvar" style="font-style:italic;">n</span>. Similarly, the smallest <span class="texhtml mvar" style="font-style:italic;">k</span> such that <span class="texhtml"><i>a<sub>k</sub></i> = 1</span> is called the <b>total stopping time</b> of <span class="texhtml mvar" style="font-style:italic;">n</span>.<sup id="cite_ref-Lagarias_(1985)_2-1" class="reference"><a href="#cite_note-Lagarias_(1985)-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> If one of the indexes <span class="texhtml mvar" style="font-style:italic;">i</span> or <span class="texhtml mvar" style="font-style:italic;">k</span> doesn't exist, we say that the stopping time or the total stopping time, respectively, is infinite. </p><p>The Collatz conjecture asserts that the total stopping time of every <span class="texhtml mvar" style="font-style:italic;">n</span> is finite. It is also equivalent to saying that every <span class="texhtml"><i>n</i> ≥ 2</span> has a finite stopping time. </p><p>Since <span class="texhtml">3<i>n</i> + 1</span> is even whenever <span class="texhtml mvar" style="font-style:italic;">n</span> is odd, one may instead use the "shortcut" form of the Collatz function: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0{\pmod {2}},\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0{\pmod {2}},\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae238aa62598cce67c57371012b818b65d1ad6e3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.146ex; margin-bottom: -0.192ex; width:35.071ex; height:7.843ex;" alt="{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0{\pmod {2}},\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}"></span> This definition yields smaller values for the stopping time and total stopping time without changing the overall dynamics of the process. </p> <div class="mw-heading mw-heading2"><h2 id="Empirical_data">Empirical data</h2></div> <p>For instance, starting with <span class="texhtml"><i>n</i> = 12</span> and applying the function <span class="texhtml"><i>f</i></span> without "shortcut", one gets the sequence 12, 6, 3, 10, 5, 16, 8, 4, 2, 1 . </p><p>The number <span class="texhtml"><i>n</i> = 19</span> takes longer to reach 1: 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 . </p><p>The sequence for <span class="texhtml"><i>n</i> = 27</span>, listed and graphed below, takes 111 steps (41 steps through odd numbers, in bold), climbing as high as 9232 before descending to 1. </p> <dl><dd><big><b>27</b></big>, 82, <big><b>41</b></big>, 124, 62, <big><b>31</b></big>, 94, <big><b>47</b></big>, 142, <big><b>71</b></big>, 214, <big><b>107</b></big>, 322, <big><b>161</b></big>, 484, 242, <big><b>121</b></big>, 364, 182, <big><b>91</b></big>, 274, <big><b>137</b></big>, 412, 206, <big><b>103</b></big>, 310, <big><b>155</b></big>, 466, <big><b>233</b></big>, 700, 350, <big><b>175</b></big>, 526, <big><b>263</b></big>, 790, <big><b>395</b></big>, 1186, <big><b>593</b></big>, 1780, 890, <big><b>445</b></big>, 1336, 668, 334, <big><b>167</b></big>, 502, <big><b>251</b></big>, 754, <big><b>377</b></big>, 1132, 566, <big><b>283</b></big>, 850, <big><b>425</b></big>, 1276, 638, <big><b>319</b></big>, 958, <big><b>479</b></big>, 1438, <big><b>719</b></big>, 2158, <big><b>1079</b></big>, 3238, <big><b>1619</b></big>, 4858, <big><b>2429</b></big>, 7288, 3644, 1822, <big><b>911</b></big>, 2734, <big><b>1367</b></big>, 4102, <big><b>2051</b></big>, 6154, <big><b>3077</b></big>, 9232, 4616, 2308, 1154, <big><b>577</b></big>, 1732, 866, <big><b>433</b></big>, 1300, 650, <big><b>325</b></big>, 976, 488, 244, 122, <big><b>61</b></big>, 184, 92, 46, <big><b>23</b></big>, 70, <big><b>35</b></big>, 106, <big><b>53</b></big>, 160, 80, 40, 20, 10, <big><b>5</b></big>, 16, 8, 4, 2, <big><b>1</b></big></dd></dl> <p>(sequence <span class="nowrap external"><a href="//oeis.org/A008884" class="extiw" title="oeis:A008884">A008884</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>) </p> <figure class="mw-default-size mw-halign-center" typeof="mw:File/Frameless"><a href="/wiki/File:Collatz5.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Collatz5.svg/440px-Collatz5.svg.png" decoding="async" width="440" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Collatz5.svg/660px-Collatz5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/Collatz5.svg/880px-Collatz5.svg.png 2x" data-file-width="360" data-file-height="180" /></a><figcaption></figcaption></figure> <p>Numbers with a total stopping time longer than that of any smaller starting value form a sequence beginning with: </p> <dl><dd>1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, ... (sequence <span class="nowrap external"><a href="//oeis.org/A006877" class="extiw" title="oeis:A006877">A006877</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>).</dd></dl> <p>The starting values whose <a href="/wiki/Maximum" class="mw-redirect" title="Maximum">maximum</a> trajectory point is greater than that of any smaller starting value are as follows: </p> <dl><dd>1, 2, 3, 7, 15, 27, 255, 447, 639, 703, 1819, 4255, 4591, 9663, 20895, 26623, 31911, 60975, 77671, 113383, 138367, 159487, 270271, 665215, 704511, ... (sequence <span class="nowrap external"><a href="//oeis.org/A006884" class="extiw" title="oeis:A006884">A006884</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>)</dd></dl> <p>Number of steps for <span class="texhtml mvar" style="font-style:italic;">n</span> to reach 1 are </p> <dl><dd>0, 1, 7, 2, 5, 8, 16, 3, 19, 6, 14, 9, 9, 17, 17, 4, 12, 20, 20, 7, 7, 15, 15, 10, 23, 10, 111, 18, 18, 18, 106, 5, 26, 13, 13, 21, 21, 21, 34, 8, 109, 8, 29, 16, 16, 16, 104, 11, 24, 24, ... (sequence <span class="nowrap external"><a href="//oeis.org/A006577" class="extiw" title="oeis:A006577">A006577</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>)</dd></dl> <p>The starting value having the largest total stopping time while being </p> <dl><dd>less than 10 is 9, which has 19 steps,</dd> <dd>less than 100 is 97, which has 118 steps,</dd> <dd>less than 1000 is 871, which has 178 steps,</dd> <dd>less than 10<sup>4</sup> is 6171, which has 261 steps,</dd> <dd>less than 10<sup>5</sup> is <span class="nowrap"><span data-sort-value="7004770310000000000♠"></span>77<span style="margin-left:.25em;">031</span></span>, which has 350 steps,</dd> <dd>less than 10<sup>6</sup> is <span class="nowrap"><span data-sort-value="7005837799000000000♠"></span>837<span style="margin-left:.25em;">799</span></span>, which has 524 steps,</dd> <dd>less than 10<sup>7</sup> is <span class="nowrap"><span data-sort-value="7006840051100000000♠"></span>8<span style="margin-left:.25em;">400</span><span style="margin-left:.25em;">511</span></span>, which has 685 steps,</dd> <dd>less than 10<sup>8</sup> is <span class="nowrap"><span data-sort-value="7007637281270000000♠"></span>63<span style="margin-left:.25em;">728</span><span style="margin-left:.25em;">127</span></span>, which has 949 steps,</dd> <dd>less than 10<sup>9</sup> is <span class="nowrap"><span data-sort-value="7008670617279000000♠"></span>670<span style="margin-left:.25em;">617</span><span style="margin-left:.25em;">279</span></span>, which has 986 steps,</dd> <dd>less than 10<sup>10</sup> is <span class="nowrap"><span data-sort-value="7009978065763000000♠"></span>9<span style="margin-left:.25em;">780</span><span style="margin-left:.25em;">657</span><span style="margin-left:.25em;">630</span></span>, which has 1132 steps,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup></dd> <dd>less than 10<sup>11</sup> is <span class="nowrap"><span data-sort-value="7010751281382470000♠"></span>75<span style="margin-left:.25em;">128</span><span style="margin-left:.25em;">138</span><span style="margin-left:.25em;">247</span></span>, which has 1228 steps,</dd> <dd>less than 10<sup>12</sup> is <span class="nowrap"><span data-sort-value="7011989345275647000♠"></span>989<span style="margin-left:.25em;">345</span><span style="margin-left:.25em;">275</span><span style="margin-left:.25em;">647</span></span>, which has 1348 steps.<sup id="cite_ref-Roosendaal_12-0" class="reference"><a href="#cite_note-Roosendaal-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> (sequence <span class="nowrap external"><a href="//oeis.org/A284668" class="extiw" title="oeis:A284668">A284668</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>)</dd></dl> <p>These numbers are the lowest ones with the indicated step count, but not necessarily the only ones below the given limit. As an example, <span class="nowrap"><span data-sort-value="7009978065763100000♠"></span>9<span style="margin-left:.25em;">780</span><span style="margin-left:.25em;">657</span><span style="margin-left:.25em;">631</span></span> has 1132 steps, as does <span class="nowrap"><span data-sort-value="7009978065763000000♠"></span>9<span style="margin-left:.25em;">780</span><span style="margin-left:.25em;">657</span><span style="margin-left:.25em;">630</span></span>. </p><p>The starting values having the smallest total stopping time with respect to their number of digits (in base 2) are the <a href="/wiki/Power_of_two" title="Power of two">powers of two</a> since <span class="texhtml">2<sup><i>n</i></sup></span> is halved <span class="texhtml mvar" style="font-style:italic;">n</span> times to reach 1, and is never increased. </p> <div class="mw-heading mw-heading2"><h2 id="Visualizations">Visualizations</h2></div> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 215px"> <div class="thumb" style="width: 210px; height: 280px;"><span typeof="mw:File"><a href="/wiki/File:Collatz_orbits_of_the_all_integers_up_to_1000.svg" class="mw-file-description" title="Directed graph showing the orbits of the first 1000 numbers."><img alt="Directed graph showing the orbits of the first 1000 numbers." src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Collatz_orbits_of_the_all_integers_up_to_1000.svg/63px-Collatz_orbits_of_the_all_integers_up_to_1000.svg.png" decoding="async" width="63" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Collatz_orbits_of_the_all_integers_up_to_1000.svg/95px-Collatz_orbits_of_the_all_integers_up_to_1000.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Collatz_orbits_of_the_all_integers_up_to_1000.svg/126px-Collatz_orbits_of_the_all_integers_up_to_1000.svg.png 2x" data-file-width="4725" data-file-height="18634" /></a></span></div> <div class="gallerytext">Directed graph showing the orbits of the first 1000 numbers.</div> </li> <li class="gallerybox" style="width: 215px"> <div class="thumb" style="width: 210px; height: 280px;"><span typeof="mw:File"><a href="/wiki/File:CollatzConjectureGraphMaxValues.jpg" class="mw-file-description" title="The x axis represents starting number, the y axis represents the highest number reached during the chain to&#160;1. This plot shows a restricted y axis: some x values produce intermediates as high as 2.7×107 (for x = 9663)"><img alt="The x axis represents starting number, the y axis represents the highest number reached during the chain to&#160;1. This plot shows a restricted y axis: some x values produce intermediates as high as 2.7×107 (for x = 9663)" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/CollatzConjectureGraphMaxValues.jpg/133px-CollatzConjectureGraphMaxValues.jpg" decoding="async" width="133" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/CollatzConjectureGraphMaxValues.jpg/200px-CollatzConjectureGraphMaxValues.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/CollatzConjectureGraphMaxValues.jpg/267px-CollatzConjectureGraphMaxValues.jpg 2x" data-file-width="437" data-file-height="818" /></a></span></div> <div class="gallerytext">The <span class="texhtml mvar" style="font-style:italic;">x</span> axis represents starting number, the <span class="texhtml mvar" style="font-style:italic;">y</span> axis represents the highest number reached during the chain to&#160;1. This plot shows a restricted <span class="texhtml mvar" style="font-style:italic;">y</span> axis: some <span class="texhtml mvar" style="font-style:italic;">x</span> values produce intermediates as high as <span class="nowrap"><span data-sort-value="7007270000000000000♠"></span>2.7<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>7</sup></span> (for <span class="texhtml"><i>x</i> = 9663</span>)</div> </li> <li class="gallerybox" style="width: 215px"> <div class="thumb" style="width: 210px; height: 280px;"><span typeof="mw:File"><a href="/wiki/File:Collatz-max.png" class="mw-file-description" title="The same plot as the previous one but on log scale, so all y values are shown. The first thick line towards the middle of the plot corresponds to the tip at 27, which reaches a maximum at 9232."><img alt="The same plot as the previous one but on log scale, so all y values are shown. The first thick line towards the middle of the plot corresponds to the tip at 27, which reaches a maximum at 9232." src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Collatz-max.png/133px-Collatz-max.png" decoding="async" width="133" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Collatz-max.png/200px-Collatz-max.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Collatz-max.png/267px-Collatz-max.png 2x" data-file-width="437" data-file-height="818" /></a></span></div> <div class="gallerytext">The same plot as the previous one but on log scale, so all <span class="texhtml mvar" style="font-style:italic;">y</span> values are shown. The first thick line towards the middle of the plot corresponds to the tip at 27, which reaches a maximum at 9232.</div> </li> <li class="gallerybox" style="width: 215px"> <div class="thumb" style="width: 210px; height: 280px;"><span typeof="mw:File"><a href="/wiki/File:All_Collatz_sequences_of_a_length_inferior_to_20.svg" class="mw-file-description" title="The tree of all the numbers having fewer than 20 steps."><img alt="The tree of all the numbers having fewer than 20 steps." src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f1/All_Collatz_sequences_of_a_length_inferior_to_20.svg/180px-All_Collatz_sequences_of_a_length_inferior_to_20.svg.png" decoding="async" width="180" height="178" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f1/All_Collatz_sequences_of_a_length_inferior_to_20.svg/270px-All_Collatz_sequences_of_a_length_inferior_to_20.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f1/All_Collatz_sequences_of_a_length_inferior_to_20.svg/360px-All_Collatz_sequences_of_a_length_inferior_to_20.svg.png 2x" data-file-width="3696" data-file-height="3653" /></a></span></div> <div class="gallerytext">The tree of all the numbers having fewer than 20 steps.</div> </li> <li class="gallerybox" style="width: 215px"> <div class="thumb" style="width: 210px; height: 280px;"><span typeof="mw:File"><a href="/wiki/File:Collatz_Conjecture_100M.jpg" class="mw-file-description" title="The number of iterations it takes to get to one for the first 100 million numbers."><img alt="Collatz Conjecture 100M" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Collatz_Conjecture_100M.jpg/180px-Collatz_Conjecture_100M.jpg" decoding="async" width="180" height="135" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Collatz_Conjecture_100M.jpg/270px-Collatz_Conjecture_100M.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Collatz_Conjecture_100M.jpg/360px-Collatz_Conjecture_100M.jpg 2x" data-file-width="1600" data-file-height="1200" /></a></span></div> <div class="gallerytext">The number of iterations it takes to get to one for the first 100 million numbers.</div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="Supporting_arguments">Supporting arguments</h2></div> <p>Although the conjecture has not been proven, most mathematicians who have looked into the problem think the conjecture is true because experimental evidence and heuristic arguments support it. </p> <div class="mw-heading mw-heading3"><h3 id="Experimental_evidence">Experimental evidence</h3></div> <p>The conjecture has been checked by computer for all starting values up to 2<sup>68</sup> ≈ <span class="nowrap"><span data-sort-value="7020295000000000000♠"></span>2.95<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>20</sup></span>. All values tested so far converge to 1.<sup id="cite_ref-Barina_13-0" class="reference"><a href="#cite_note-Barina-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>This computer evidence is still not rigorous proof that the conjecture is true for all starting values, as <a href="/wiki/Counterexamples" class="mw-redirect" title="Counterexamples">counterexamples</a> may be found when considering very large (or possibly immense) positive integers, as in the case of the disproven <a href="/wiki/P%C3%B3lya_conjecture" title="Pólya conjecture">Pólya conjecture</a> and <a href="/wiki/Mertens_conjecture" title="Mertens conjecture">Mertens conjecture</a>. </p><p>However, such verifications may have other implications. Certain constraints on any non-trivial cycle, such as <a href="/wiki/Lower_bound" class="mw-redirect" title="Lower bound">lower bounds</a> on the length of the cycle, can be proven based on the value of the lowest term in the cycle. Therefore, computer searches to rule out cycles that have a small lowest term can strengthen these constraints.<sup id="cite_ref-Garner_(1981)_14-0" class="reference"><a href="#cite_note-Garner_(1981)-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Eliahou_(1993)_15-0" class="reference"><a href="#cite_note-Eliahou_(1993)-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Simons_&amp;_de_Weger_(2005)_16-0" class="reference"><a href="#cite_note-Simons_&amp;_de_Weger_(2005)-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="A_probabilistic_heuristic">A probabilistic heuristic</h3></div> <p>If one considers only the <i>odd</i> numbers in the sequence generated by the Collatz process, then each odd number is on average <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>&#8288;</span> of the previous one.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> (More precisely, the geometric mean of the ratios of outcomes is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>&#8288;</span>.) This yields a heuristic argument that every Hailstone sequence should decrease in the long run, although this is not evidence against other cycles, only against divergence. The argument is not a proof because it assumes that Hailstone sequences are assembled from uncorrelated probabilistic events. (It does rigorously establish that the <a href="/wiki/P-adic_numbers" class="mw-redirect" title="P-adic numbers">2-adic</a> extension of the Collatz process has two division steps for every multiplication step for <a href="/wiki/Almost_all" title="Almost all">almost all</a> 2-adic starting values.) </p> <div class="mw-heading mw-heading3"><h3 id="Stopping_times">Stopping times</h3></div> <p>As proven by <a href="/wiki/Riho_Terras_(mathematician)" title="Riho Terras (mathematician)">Riho Terras</a>, almost every positive integer has a finite stopping time.<sup id="cite_ref-Terras_(1976)_18-0" class="reference"><a href="#cite_note-Terras_(1976)-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> In other words, almost every Collatz sequence reaches a point that is strictly below its initial value. The proof is based on the distribution of <a href="#As_a_parity_sequence">parity vectors</a> and uses the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a>. </p><p>In 2019, <a href="/wiki/Terence_Tao" title="Terence Tao">Terence Tao</a> improved this result by showing, using logarithmic <a href="/wiki/Probability_density_function" title="Probability density function">density</a>, that <a href="/wiki/Almost_all" title="Almost all">almost all</a> (in the sense of logarithmic density) Collatz orbits are descending below any given function of the starting point, provided that this function diverges to infinity, no matter how slowly. Responding to this work, <i><a href="/wiki/Quanta_Magazine" title="Quanta Magazine">Quanta Magazine</a></i> wrote that Tao "came away with one of the most significant results on the Collatz conjecture in decades".<sup id="cite_ref-Tao_10-1" class="reference"><a href="#cite_note-Tao-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Lower_bounds">Lower bounds</h3></div> <p>In a <a href="/wiki/Computer-aided_proof" class="mw-redirect" title="Computer-aided proof">computer-aided proof</a>, Krasikov and Lagarias showed that the number of integers in the interval <span class="texhtml">[1,<i>x</i>]</span> that eventually reach 1 is at least equal to <span class="texhtml"><i>x</i><sup>0.84</sup></span> for all sufficiently large <span class="texhtml mvar" style="font-style:italic;">x</span>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Cycles">Cycles</h2></div> <p>In this part, consider the shortcut form of the Collatz function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0{\pmod {2}},\\{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0{\pmod {2}},\\{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b00f4f000899ad1f6844df7b58c7efdfe130023" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.071ex; height:7.509ex;" alt="{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0{\pmod {2}},\\{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}"></span> A <a href="/wiki/Periodic_sequence" title="Periodic sequence">cycle</a> is a sequence <span class="texhtml">(<i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ..., <i>a<sub>q</sub></i>)</span> of distinct positive integers where <span class="texhtml"><i>f</i>(<i>a</i><sub>0</sub>) = <i>a</i><sub>1</sub></span>, <span class="texhtml"><i>f</i>(<i>a</i><sub>1</sub>) = <i>a</i><sub>2</sub></span>, ..., and <span class="texhtml"><i>f</i>(<i>a<sub>q</sub></i>) = <i>a</i><sub>0</sub></span>. </p><p>The only known cycle is <span class="texhtml">(1,2)</span> of period 2, called the trivial cycle. </p> <div class="mw-heading mw-heading3"><h3 id="Cycle_length">Cycle length</h3></div> <p>The length of a non-trivial cycle is known to be at least <span class="nowrap"><span data-sort-value="7011114208327604000♠"></span>114<span style="margin-left:.25em;">208</span><span style="margin-left:.25em;">327</span><span style="margin-left:.25em;">604</span></span> (or <span class="nowrap"><span data-sort-value="7011186265759595000♠"></span>186<span style="margin-left:.25em;">265</span><span style="margin-left:.25em;">759</span><span style="margin-left:.25em;">595</span></span> without shortcut). If it can be shown that for all positive integers less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\times 2^{69}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>69</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\times 2^{69}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32a7a1a5ff26bec26826cf4ee6543c4d88c24261" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.042ex; height:2.676ex;" alt="{\displaystyle 3\times 2^{69}}"></span> the Collatz sequences reach 1, then this bound would raise to <span class="nowrap"><span data-sort-value="7011217976794617000♠"></span>217<span style="margin-left:.25em;">976</span><span style="margin-left:.25em;">794</span><span style="margin-left:.25em;">617</span></span> (<span class="nowrap"><span data-sort-value="7011355504839929000♠"></span>355<span style="margin-left:.25em;">504</span><span style="margin-left:.25em;">839</span><span style="margin-left:.25em;">929</span></span> without shortcut).<sup id="cite_ref-Hercher_(2023)_21-0" class="reference"><a href="#cite_note-Hercher_(2023)-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Eliahou_(1993)_15-1" class="reference"><a href="#cite_note-Eliahou_(1993)-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> In fact, Eliahou (1993) proved that the period <span class="texhtml mvar" style="font-style:italic;">p</span> of any non-trivial cycle is of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=301994a+17087915b+85137581c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>301994</mn> <mi>a</mi> <mo>+</mo> <mn>17087915</mn> <mi>b</mi> <mo>+</mo> <mn>85137581</mn> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=301994a+17087915b+85137581c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7fa38c40c5092cb2a1dc81e55024a67565aa2a5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:38.846ex; height:2.509ex;" alt="{\displaystyle p=301994a+17087915b+85137581c}"></span> where <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span> and <span class="texhtml mvar" style="font-style:italic;">c</span> are non-negative integers, <span class="texhtml"><i>b</i> ≥ 1</span> and <span class="texhtml"><i>ac</i> = 0</span>. This result is based on the <a href="/wiki/Simple_continued_fraction" title="Simple continued fraction">simple continued fraction</a> expansion of <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">ln 3</span><span class="sr-only">/</span><span class="den">ln 2</span></span>&#8288;</span></span>.<sup id="cite_ref-Eliahou_(1993)_15-2" class="reference"><a href="#cite_note-Eliahou_(1993)-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="k-cycles"><span class="texhtml mvar" style="font-style:italic;">k</span>-cycles</h3></div> <p>A <span class="texhtml mvar" style="font-style:italic;">k</span>-cycle is a cycle that can be partitioned into <span class="texhtml"><i>k</i></span> contiguous subsequences, each consisting of an increasing sequence of odd numbers, followed by a decreasing sequence of even numbers.<sup id="cite_ref-Simons_&amp;_de_Weger_(2005)_16-1" class="reference"><a href="#cite_note-Simons_&amp;_de_Weger_(2005)-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> For instance, if the cycle consists of a single increasing sequence of odd numbers followed by a decreasing sequence of even numbers, it is called a <i>1-cycle</i>. </p><p>Steiner (1977) proved that there is no 1-cycle other than the trivial <span class="texhtml">(1; 2)</span>.<sup id="cite_ref-Steiner_(1977)_22-0" class="reference"><a href="#cite_note-Steiner_(1977)-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Simons (2005) used Steiner's method to prove that there is no 2-cycle.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Simons and de Weger (2005) extended this proof up to 68-cycles; there is no <span class="texhtml mvar" style="font-style:italic;">k</span>-cycle up to <span class="texhtml"><i>k</i> = 68</span>.<sup id="cite_ref-Simons_&amp;_de_Weger_(2005)_16-2" class="reference"><a href="#cite_note-Simons_&amp;_de_Weger_(2005)-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Hercher extended the method further and proved that there exists no <i>k</i>-cycle with <span class="texhtml"><i>k</i> ≤ 91</span>.<sup id="cite_ref-Hercher_(2023)_21-1" class="reference"><a href="#cite_note-Hercher_(2023)-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> As exhaustive computer searches continue, larger <span class="texhtml"><i>k</i></span> values may be ruled out. To state the argument more intuitively; we do not have to search for cycles that have less than 92 subsequences, where each subsequence consists of consecutive ups followed by consecutive downs.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (September 2024)">clarification needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Other_formulations_of_the_conjecture">Other formulations of the conjecture</h2></div> <div class="mw-heading mw-heading3"><h3 id="In_reverse">In reverse</h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Collatz-tree,_depth%3D20.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Collatz-tree%2C_depth%3D20.svg/440px-Collatz-tree%2C_depth%3D20.svg.png" decoding="async" width="440" height="59" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Collatz-tree%2C_depth%3D20.svg/660px-Collatz-tree%2C_depth%3D20.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Collatz-tree%2C_depth%3D20.svg/880px-Collatz-tree%2C_depth%3D20.svg.png 2x" data-file-width="14843" data-file-height="2000" /></a><figcaption>The first 21 levels of the <i>Collatz <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graph</a></i> generated in bottom-up fashion. The graph includes all numbers with an orbit length of 21 or less.</figcaption></figure> <p>There is another approach to prove the conjecture, which considers the bottom-up method of growing the so-called <i>Collatz graph</i>. The <i>Collatz graph</i> is a <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graph</a> defined by the inverse <a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">relation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(n)={\begin{cases}\{2n\}&amp;{\text{if }}n\equiv 0,1,2,3,5\\[4px]\left\{2n,{\frac {n-1}{3}}\right\}&amp;{\text{if }}n\equiv 4\end{cases}}{\pmod {6}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>{</mo> <mrow> <mn>2</mn> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>4</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(n)={\begin{cases}\{2n\}&amp;{\text{if }}n\equiv 0,1,2,3,5\\[4px]\left\{2n,{\frac {n-1}{3}}\right\}&amp;{\text{if }}n\equiv 4\end{cases}}{\pmod {6}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41a322eb17a1ca4fa107beb57cac4867b0c89c07" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:51.695ex; height:8.509ex;" alt="{\displaystyle R(n)={\begin{cases}\{2n\}&amp;{\text{if }}n\equiv 0,1,2,3,5\\[4px]\left\{2n,{\frac {n-1}{3}}\right\}&amp;{\text{if }}n\equiv 4\end{cases}}{\pmod {6}}.}"></span> </p><p>So, instead of proving that all positive integers eventually lead to 1, we can try to prove that 1 leads backwards to all positive integers. For any integer <span class="texhtml mvar" style="font-style:italic;">n</span>, <span class="texhtml"><i>n</i> ≡ 1 (mod 2)</span> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="texhtml">3<i>n</i> + 1 ≡ 4 (mod 6)</span>. Equivalently, <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>n</i> − 1</span><span class="sr-only">/</span><span class="den">3</span></span>&#8288;</span> ≡ 1 (mod 2)</span> if and only if <span class="texhtml"><i>n</i> ≡ 4 (mod 6)</span>. Conjecturally, this inverse relation forms a <a href="/wiki/Tree_(graph_theory)" title="Tree (graph theory)">tree</a> except for the 1–2–4 loop (the inverse of the 4–2–1 loop of the unaltered function <span class="texhtml mvar" style="font-style:italic;">f</span> defined in the <a href="#Statement_of_the_problem">Statement of the problem</a> section of this article). </p><p>When the relation <span class="texhtml">3<i>n</i> + 1</span> of the function <span class="texhtml mvar" style="font-style:italic;">f</span> is replaced by the common substitute "shortcut" relation <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">3<i>n</i> + 1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, the Collatz graph is defined by the inverse relation, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(n)={\begin{cases}\{2n\}&amp;{\text{if }}n\equiv 0,1\\[4px]\left\{2n,{\frac {2n-1}{3}}\right\}&amp;{\text{if }}n\equiv 2\end{cases}}{\pmod {3}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo fence="false" stretchy="false">{</mo> <mn>2</mn> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>{</mo> <mrow> <mn>2</mn> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>2</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(n)={\begin{cases}\{2n\}&amp;{\text{if }}n\equiv 0,1\\[4px]\left\{2n,{\frac {2n-1}{3}}\right\}&amp;{\text{if }}n\equiv 2\end{cases}}{\pmod {3}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/443d6acdf06087446392a7e48e733c009d60c4fc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:45.928ex; height:8.509ex;" alt="{\displaystyle R(n)={\begin{cases}\{2n\}&amp;{\text{if }}n\equiv 0,1\\[4px]\left\{2n,{\frac {2n-1}{3}}\right\}&amp;{\text{if }}n\equiv 2\end{cases}}{\pmod {3}}.}"></span> </p><p>For any integer <span class="texhtml mvar" style="font-style:italic;">n</span>, <span class="texhtml"><i>n</i> ≡ 1 (mod 2)</span> if and only if <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">3<i>n</i> + 1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> ≡ 2 (mod 3)</span>. Equivalently, <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">2<i>n</i> − 1</span><span class="sr-only">/</span><span class="den">3</span></span>&#8288;</span> ≡ 1 (mod 2)</span> if and only if <span class="texhtml"><i>n</i> ≡ 2 (mod 3)</span>. Conjecturally, this inverse relation forms a tree except for a 1–2 loop (the inverse of the 1–2 loop of the function f(n) revised as indicated above). </p><p>Alternatively, replace the <span class="texhtml">3<i>n</i> + 1</span> with <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>n</i><span class="nowrap" style="padding-left:0.15em;">′</span></span><span class="sr-only">/</span><span class="den"><i>H</i>(<i>n</i><span class="nowrap" style="padding-left:0.15em;">′</span>)</span></span>&#8288;</span></span> where <span class="texhtml"><i>n</i><span class="nowrap" style="padding-left:0.15em;">′</span> = 3<i>n</i> + 1</span> and <span class="texhtml"><i>H</i>(<i>n</i><span class="nowrap" style="padding-left:0.15em;">′</span>)</span> is the highest <a href="/wiki/Power_of_2" class="mw-redirect" title="Power of 2">power of 2</a> that divides <span class="texhtml"><i>n</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> (with no <a href="/wiki/Remainder" title="Remainder">remainder</a>). The resulting function <span class="texhtml mvar" style="font-style:italic;">f</span> maps from <a href="/wiki/Odd_number" class="mw-redirect" title="Odd number">odd numbers</a> to odd numbers. Now suppose that for some odd number <span class="texhtml mvar" style="font-style:italic;">n</span>, applying this operation <span class="texhtml mvar" style="font-style:italic;">k</span> times yields the number 1 (that is, <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup><i>k</i></sup></span>(<i>n</i>) = 1</span>). Then in <a href="/wiki/Binary_number" title="Binary number">binary</a>, the number <span class="texhtml mvar" style="font-style:italic;">n</span> can be written as the concatenation of <a href="/wiki/String_(computer_science)" title="String (computer science)">strings</a> <span class="texhtml"><i>w</i><sub><i>k</i></sub> <i>w</i><sub><i>k</i>−1</sub> ... <i>w</i><sub>1</sub></span> where each <span class="texhtml"><i>w</i><sub><i>h</i></sub></span> is a finite and contiguous extract from the representation of <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3<sup><i>h</i></sup></span></span>&#8288;</span></span>.<sup id="cite_ref-Colussi2011_24-0" class="reference"><a href="#cite_note-Colussi2011-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> The representation of <span class="texhtml mvar" style="font-style:italic;">n</span> therefore holds the <a href="/wiki/Repeating_decimal" title="Repeating decimal">repetends</a> of <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3<sup><i>h</i></sup></span></span>&#8288;</span></span>, where each repetend is optionally rotated and then replicated up to a finite number of bits. It is only in binary that this occurs.<sup id="cite_ref-Hew2016_25-0" class="reference"><a href="#cite_note-Hew2016-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> Conjecturally, every binary string <span class="texhtml mvar" style="font-style:italic;">s</span> that ends with a '1' can be reached by a representation of this form (where we may add or delete leading '0's to&#160;<span class="texhtml mvar" style="font-style:italic;">s</span>). </p> <div class="mw-heading mw-heading3"><h3 id="As_an_abstract_machine_that_computes_in_base_two">As an abstract machine that computes in base two</h3></div> <p>Repeated applications of the Collatz function can be represented as an <a href="/wiki/Abstract_machine" title="Abstract machine">abstract machine</a> that handles <a href="/wiki/String_(computer_science)" title="String (computer science)">strings</a> of <a href="/wiki/Bit" title="Bit">bits</a>. The machine will perform the following three steps on any odd number until only one <style data-mw-deduplicate="TemplateStyles:r886049734">.mw-parser-output .monospaced{font-family:monospace,monospace}</style><span class="monospaced">1</span> remains: </p> <ol><li>Append <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">1</span> to the (right) end of the number in binary (giving <span class="texhtml">2<i>n</i> + 1</span>);</li> <li>Add this to the original number by binary addition (giving <span class="texhtml">2<i>n</i> + 1 + <i>n</i> = 3<i>n</i> + 1</span>);</li> <li>Remove all trailing <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">0</span>s (that is, repeatedly divide by 2 until the result is odd).</li></ol> <div class="mw-heading mw-heading4"><h4 id="Example">Example</h4></div> <p>The starting number 7 is written in base two as <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">111</span>. The resulting Collatz sequence is: </p> <div style="font-family:monospace"> <pre> 111 <u>111<b>1</b></u> 1011<s>0</s> <u>1011<b>1</b></u> 10001<s>0</s> <u>10001<b>1</b></u> 1101<s>00</s> <u>1101<b>1</b></u> 101<s>000</s> <u>101<b>1</b></u> 1<s>0000</s> </pre> </div> <div class="mw-heading mw-heading3"><h3 id="As_a_parity_sequence">As a parity sequence</h3></div> <p>For this section, consider the shortcut form of the Collatz function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1\end{cases}}{\pmod {2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1\end{cases}}{\pmod {2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a240a4b8a847f8d81e77a3e609b865b8a998c487" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.146ex; margin-bottom: -0.192ex; width:36.361ex; height:7.843ex;" alt="{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1\end{cases}}{\pmod {2}}.}"></span> </p><p>If <span class="texhtml">P(...)</span> is the parity of a number, that is <span class="texhtml">P(2<i>n</i>) = 0</span> and <span class="texhtml">P(2<i>n</i> + 1) = 1</span>, then we can define the Collatz parity sequence (or parity vector) for a number <span class="texhtml mvar" style="font-style:italic;">n</span> as <span class="texhtml"><i>p<sub>i</sub></i> = P(<i>a<sub>i</sub></i>)</span>, where <span class="texhtml"><i>a</i><sub>0</sub> = <i>n</i></span>, and <span class="texhtml"><i>a</i><sub><i>i</i>+1</sub> = <i>f</i>(<i>a</i><sub><i>i</i></sub>)</span>. </p><p>Which operation is performed, <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">3<i>n</i> + 1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span> or <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>n</i></span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, depends on the parity. The parity sequence is the same as the sequence of operations. </p><p>Using this form for <span class="texhtml"><i>f</i>(<i>n</i>)</span>, it can be shown that the parity sequences for two numbers <span class="texhtml mvar" style="font-style:italic;">m</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> will agree in the first <span class="texhtml mvar" style="font-style:italic;">k</span> terms if and only if <span class="texhtml mvar" style="font-style:italic;">m</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> are equivalent modulo <span class="texhtml">2<sup><i>k</i></sup></span>. This implies that every number is uniquely identified by its parity sequence, and moreover that if there are multiple Hailstone cycles, then their corresponding parity cycles must be different.<sup id="cite_ref-Lagarias_(1985)_2-3" class="reference"><a href="#cite_note-Lagarias_(1985)-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Terras_(1976)_18-1" class="reference"><a href="#cite_note-Terras_(1976)-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>Applying the <span class="texhtml mvar" style="font-style:italic;">f</span> function <span class="texhtml mvar" style="font-style:italic;">k</span> times to the number <span class="texhtml"><i>n</i> = 2<sup><i>k</i></sup><i>a</i> + <i>b</i></span> will give the result <span class="texhtml">3<sup><i>c</i></sup><i>a</i> + <i>d</i></span>, where <span class="texhtml mvar" style="font-style:italic;">d</span> is the result of applying the <span class="texhtml mvar" style="font-style:italic;">f</span> function <span class="texhtml mvar" style="font-style:italic;">k</span> times to <span class="texhtml mvar" style="font-style:italic;">b</span>, and <span class="texhtml mvar" style="font-style:italic;">c</span> is how many increases were encountered during that sequence. For example, for <span class="texhtml">2<sup>5</sup><i>a</i> + 1</span> there are 3 increases as 1 iterates to 2, 1, 2, 1, and finally to 2 so the result is <span class="texhtml">3<sup>3</sup><i>a</i> + 2</span>; for <span class="texhtml">2<sup>2</sup><i>a</i> + 1</span> there is only 1 increase as 1 rises to 2 and falls to 1 so the result is <span class="texhtml">3<i>a</i> + 1</span>. When <span class="texhtml mvar" style="font-style:italic;">b</span> is <span class="texhtml">2<sup><i>k</i></sup> − 1</span> then there will be <span class="texhtml mvar" style="font-style:italic;">k</span> rises and the result will be <span class="texhtml">3<sup><i>k</i></sup><i>a</i> + 3<sup><i>k</i></sup> − 1</span>. The power of 3 multiplying <span class="texhtml mvar" style="font-style:italic;">a</span> is independent of the value of <span class="texhtml mvar" style="font-style:italic;">a</span>; it depends only on the behavior of <span class="texhtml mvar" style="font-style:italic;">b</span>. This allows one to predict that certain forms of numbers will always lead to a smaller number after a certain number of iterations: for example, <span class="texhtml">4<i>a</i> + 1</span> becomes <span class="texhtml">3<i>a</i> + 1</span> after two applications of <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml">16<i>a</i> + 3</span> becomes <span class="texhtml">9<i>a</i> + 2</span> after four applications of <span class="texhtml mvar" style="font-style:italic;">f</span>. Whether those smaller numbers continue to 1, however, depends on the value of <span class="texhtml mvar" style="font-style:italic;">a</span>. </p> <div class="mw-heading mw-heading3"><h3 id="As_a_tag_system">As a tag system</h3></div> <p>For the Collatz function in the shortcut form </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1.\end{cases}}{\pmod {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1.\end{cases}}{\pmod {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fbad5e3e25f45b2f51c7ef1d36bfc3da5c3e5e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.146ex; margin-bottom: -0.192ex; width:36.361ex; height:7.843ex;" alt="{\displaystyle f(n)={\begin{cases}{\frac {n}{2}}&amp;{\text{if }}n\equiv 0\\[4px]{\frac {3n+1}{2}}&amp;{\text{if }}n\equiv 1.\end{cases}}{\pmod {2}}}"></span> </p><p>Hailstone sequences can be computed by the <a href="/wiki/Tag_system#Example:_Computation_of_Collatz_sequences" title="Tag system">2-tag system</a> with production rules </p> <dl><dd><span class="texhtml"><i>a</i> → <i>bc</i></span>, <span class="texhtml"><i>b</i> → <i>a</i></span>, <span class="texhtml"><i>c</i> → <i>aaa</i></span>.</dd></dl> <p>In this system, the positive integer <span class="texhtml mvar" style="font-style:italic;">n</span> is represented by a string of <span class="texhtml mvar" style="font-style:italic;">n</span> copies of <span class="texhtml mvar" style="font-style:italic;">a</span>, and iteration of the tag operation halts on any word of length less than&#160;2. (Adapted from De Mol.) </p><p>The Collatz conjecture equivalently states that this tag system, with an arbitrary finite string of <span class="texhtml mvar" style="font-style:italic;">a</span> as the initial word, eventually halts (see <i><a href="/wiki/Tag_system#Example:_Computation_of_Collatz_sequences" title="Tag system">Tag system</a></i> for a worked example). </p> <div class="mw-heading mw-heading2"><h2 id="Extensions_to_larger_domains">Extensions to larger domains</h2></div> <div class="mw-heading mw-heading3"><h3 id="Iterating_on_all_integers">Iterating on all integers</h3></div> <p>An extension to the Collatz conjecture is to include all integers, not just positive integers. Leaving aside the cycle 0 → 0 which cannot be entered from outside, there are a total of four known cycles, which all nonzero integers seem to eventually fall into under iteration of <span class="texhtml mvar" style="font-style:italic;">f</span>. These cycles are listed here, starting with the well-known cycle for positive&#160;<span class="texhtml mvar" style="font-style:italic;">n</span>: </p><p>Odd values are listed in large bold. Each cycle is listed with its member of least absolute value (which is always odd) first. </p> <table class="wikitable" style="text-align: center;"> <tbody><tr> <th>Cycle</th> <th>Odd-value cycle length</th> <th>Full cycle length </th></tr> <tr> <td style="text-align: left;"><big><b>1</b></big> → 4 → 2 → <big><b>1</b></big> <b>...</b></td> <td>1</td> <td>3 </td></tr> <tr> <td style="text-align: left;"><big><b>−1</b></big> → −2 → <big><b>−1</b></big> <b>...</b></td> <td>1</td> <td>2 </td></tr> <tr> <td style="text-align: left;"><big><b>−5</b></big> → −14 → <big><b>−7</b></big> → −20 → −10 → <big><b>−5</b></big> <b>...</b></td> <td>2</td> <td>5 </td></tr> <tr> <td style="text-align: left;"><big><b>−17</b></big> → −50 → <big><b>−25</b></big> → −74 → <big><b>−37</b></big> → −110 → <big><b>−55</b></big> → −164 → −82 → <big><b>−41</b></big> → −122 → <big><b>−61</b></big> → −182 → <big><b>−91</b></big> → −272 → −136 → −68 → −34 → <big><b>−17</b></big> <b>...</b></td> <td>7</td> <td>18 </td></tr></tbody></table> <p>The generalized Collatz conjecture is the assertion that every integer, under iteration by <span class="texhtml mvar" style="font-style:italic;">f</span>, eventually falls into one of the four cycles above or the cycle 0 → 0. </p> <div class="mw-heading mw-heading3"><h3 id="Iterating_on_rationals_with_odd_denominators">Iterating on rationals with odd denominators</h3></div> <p>The Collatz map can be extended to (positive or negative) rational numbers which have odd denominators when written in lowest terms. The number is taken to be 'odd' or 'even' according to whether its numerator is odd or even. Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added. A closely related fact is that the Collatz map extends to the ring of <a href="/wiki/2-adic_integers" class="mw-redirect" title="2-adic integers">2-adic integers</a>, which contains the ring of rationals with odd denominators as a subring. </p><p>When using the "shortcut" definition of the Collatz map, it is known that any periodic <a href="#As_a_parity_sequence">parity sequence</a> is generated by exactly one rational.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Conversely, it is conjectured that every rational with an odd denominator has an eventually cyclic parity sequence (Periodicity Conjecture<sup id="cite_ref-Lagarias_(1985)_2-4" class="reference"><a href="#cite_note-Lagarias_(1985)-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>). </p><p>If a parity cycle has length <span class="texhtml mvar" style="font-style:italic;">n</span> and includes odd numbers exactly <span class="texhtml mvar" style="font-style:italic;">m</span> times at indices <span class="texhtml"><i>k</i><sub>0</sub> &lt; ⋯ &lt; <i>k</i><sub><i>m</i>−1</sub></span>, then the unique rational which generates immediately and periodically this parity cycle is </p> <style data-mw-deduplicate="TemplateStyles:r1266403038">.mw-parser-output table.numblk{border-collapse:collapse;border:none;margin-top:0;margin-right:0;margin-bottom:0}.mw-parser-output table.numblk>tbody>tr>td{vertical-align:middle;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2){width:99%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table{border-collapse:collapse;margin:0;border:none;width:100%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:first-child,.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:last-child{padding:0 0.4ex}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:nth-child(2){width:100%;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{padding:0}.mw-parser-output table.numblk>tbody>tr>td:last-child{font-weight:bold}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child{font-weight:unset}.mw-parser-output table.numblk>tbody>tr>td:last-child::before{content:"("}.mw-parser-output table.numblk>tbody>tr>td:last-child::after{content:")"}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::before,.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::after{content:none}.mw-parser-output table.numblk>tbody>tr>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:none;border-right:none;border-bottom:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:thin solid;border-right:thin solid;border-bottom:thin solid}.mw-parser-output table.numblk:target{color:var(--color-base,#202122);background-color:#cfe8fd}@media screen{html.skin-theme-clientpref-night .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}</style><table role="presentation" class="numblk" style="margin-left: 1.6em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {3^{m-1}2^{k_{0}}+\cdots +3^{0}2^{k_{m-1}}}{2^{n}-3^{m}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {3^{m-1}2^{k_{0}}+\cdots +3^{0}2^{k_{m-1}}}{2^{n}-3^{m}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b45c3d33f5fb4529b9230201af63c7249017e21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:25.417ex; height:6.009ex;" alt="{\displaystyle {\frac {3^{m-1}2^{k_{0}}+\cdots +3^{0}2^{k_{m-1}}}{2^{n}-3^{m}}}.}"></span></td> <td></td> <td class="nowrap"><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span></td></tr></tbody></table> <p>For example, the parity cycle <span class="nowrap">(1 0 1 1 0 0 1)</span> has length 7 and four odd terms at indices 0, 2, 3, and 6. It is repeatedly generated by the fraction <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {3^{3}2^{0}+3^{2}2^{2}+3^{1}2^{3}+3^{0}2^{6}}{2^{7}-3^{4}}}={\frac {151}{47}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>151</mn> <mn>47</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {3^{3}2^{0}+3^{2}2^{2}+3^{1}2^{3}+3^{0}2^{6}}{2^{7}-3^{4}}}={\frac {151}{47}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d09ca430bc5e3d95586279992c77ab7125521af" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.513ex; height:6.343ex;" alt="{\displaystyle {\frac {3^{3}2^{0}+3^{2}2^{2}+3^{1}2^{3}+3^{0}2^{6}}{2^{7}-3^{4}}}={\frac {151}{47}}}"></span> as the latter leads to the rational cycle <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {151}{47}}\rightarrow {\frac {250}{47}}\rightarrow {\frac {125}{47}}\rightarrow {\frac {211}{47}}\rightarrow {\frac {340}{47}}\rightarrow {\frac {170}{47}}\rightarrow {\frac {85}{47}}\rightarrow {\frac {151}{47}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>151</mn> <mn>47</mn> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>250</mn> <mn>47</mn> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>125</mn> <mn>47</mn> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>211</mn> <mn>47</mn> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>340</mn> <mn>47</mn> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>170</mn> <mn>47</mn> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>85</mn> <mn>47</mn> </mfrac> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>151</mn> <mn>47</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {151}{47}}\rightarrow {\frac {250}{47}}\rightarrow {\frac {125}{47}}\rightarrow {\frac {211}{47}}\rightarrow {\frac {340}{47}}\rightarrow {\frac {170}{47}}\rightarrow {\frac {85}{47}}\rightarrow {\frac {151}{47}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/348c423b97d24af32fe868f70aafa7edb990e97a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:59.371ex; height:5.343ex;" alt="{\displaystyle {\frac {151}{47}}\rightarrow {\frac {250}{47}}\rightarrow {\frac {125}{47}}\rightarrow {\frac {211}{47}}\rightarrow {\frac {340}{47}}\rightarrow {\frac {170}{47}}\rightarrow {\frac {85}{47}}\rightarrow {\frac {151}{47}}.}"></span> </p><p>Any cyclic permutation of <span class="nowrap">(1 0 1 1 0 0 1)</span> is associated to one of the above fractions. For instance, the cycle <span class="nowrap">(0 1 1 0 0 1 1)</span> is produced by the fraction <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {3^{3}2^{1}+3^{2}2^{2}+3^{1}2^{5}+3^{0}2^{6}}{2^{7}-3^{4}}}={\frac {250}{47}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>250</mn> <mn>47</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {3^{3}2^{1}+3^{2}2^{2}+3^{1}2^{5}+3^{0}2^{6}}{2^{7}-3^{4}}}={\frac {250}{47}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f852b5c2f3acd335545acdd7926cebe5c072b24" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.16ex; height:6.343ex;" alt="{\displaystyle {\frac {3^{3}2^{1}+3^{2}2^{2}+3^{1}2^{5}+3^{0}2^{6}}{2^{7}-3^{4}}}={\frac {250}{47}}.}"></span> </p><p>For a one-to-one correspondence, a parity cycle should be <i>irreducible</i>, that is, not partitionable into identical sub-cycles. As an illustration of this, the parity cycle <span class="nowrap">(1 1 0 0 1 1 0 0)</span> and its sub-cycle <span class="nowrap">(1 1 0 0)</span> are associated to the same fraction <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">7</span></span>&#8288;</span> when reduced to lowest terms. </p><p>In this context, assuming the validity of the Collatz conjecture implies that <span class="nowrap">(1 0)</span> and <span class="nowrap">(0 1)</span> are the only parity cycles generated by positive whole numbers (1 and 2, respectively). </p><p>If the odd denominator <span class="texhtml mvar" style="font-style:italic;">d</span> of a rational is not a multiple of 3, then all the iterates have the same denominator and the sequence of numerators can be obtained by applying the "<span class="texhtml">3<i>n</i> + <i>d</i></span>&#160;" generalization<sup id="cite_ref-Belaga_(1998a)_27-0" class="reference"><a href="#cite_note-Belaga_(1998a)-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> of the Collatz function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{d}(x)={\begin{cases}{\frac {x}{2}}&amp;{\text{if }}x\equiv 0{\pmod {2}},\\[4px]{\frac {3x+d}{2}}&amp;{\text{if }}x\equiv 1{\pmod {2}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mi>d</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{d}(x)={\begin{cases}{\frac {x}{2}}&amp;{\text{if }}x\equiv 0{\pmod {2}},\\[4px]{\frac {3x+d}{2}}&amp;{\text{if }}x\equiv 1{\pmod {2}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/160f092b9c61909d7176b6ab67678ec85bc73a20" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:36.104ex; height:8.009ex;" alt="{\displaystyle T_{d}(x)={\begin{cases}{\frac {x}{2}}&amp;{\text{if }}x\equiv 0{\pmod {2}},\\[4px]{\frac {3x+d}{2}}&amp;{\text{if }}x\equiv 1{\pmod {2}}.\end{cases}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="2-adic_extension">2-adic extension</h3></div> <p>The function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(x)={\begin{cases}{\frac {x}{2}}&amp;{\text{if }}x\equiv 0{\pmod {2}}\\[4px]{\frac {3x+1}{2}}&amp;{\text{if }}x\equiv 1{\pmod {2}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(x)={\begin{cases}{\frac {x}{2}}&amp;{\text{if }}x\equiv 0{\pmod {2}}\\[4px]{\frac {3x+1}{2}}&amp;{\text{if }}x\equiv 1{\pmod {2}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87de26c7247f378d6f1a08f32578751a4a1ee3a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.146ex; margin-bottom: -0.192ex; width:34.606ex; height:7.843ex;" alt="{\displaystyle T(x)={\begin{cases}{\frac {x}{2}}&amp;{\text{if }}x\equiv 0{\pmod {2}}\\[4px]{\frac {3x+1}{2}}&amp;{\text{if }}x\equiv 1{\pmod {2}}\end{cases}}}"></span> is well-defined on the ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92aedfb5c02eff978ab963421ce930f46801657e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.605ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{2}}"></span> of <a href="/wiki/2-adic_integers" class="mw-redirect" title="2-adic integers">2-adic integers</a>, where it is continuous and <a href="/wiki/Measure-preserving_transformation" class="mw-redirect" title="Measure-preserving transformation">measure-preserving</a> with respect to the 2-adic measure. Moreover, its dynamics is known to be <a href="/wiki/Ergodic_theory" title="Ergodic theory">ergodic</a>.<sup id="cite_ref-Lagarias_(1985)_2-5" class="reference"><a href="#cite_note-Lagarias_(1985)-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Define the <i>parity vector</i> function <span class="texhtml mvar" style="font-style:italic;">Q</span> acting on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92aedfb5c02eff978ab963421ce930f46801657e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.605ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{2}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\sum _{k=0}^{\infty }\left(T^{k}(x)\mod 2\right)2^{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mi>mod</mi> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(x)=\sum _{k=0}^{\infty }\left(T^{k}(x)\mod 2\right)2^{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc35c2ffeb8b3e818b2b90e054011db410ac6f7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.605ex; height:7.009ex;" alt="{\displaystyle Q(x)=\sum _{k=0}^{\infty }\left(T^{k}(x)\mod 2\right)2^{k}.}"></span> </p><p>The function <span class="texhtml mvar" style="font-style:italic;">Q</span> is a 2-adic <a href="/wiki/Isometry" title="Isometry">isometry</a>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> Consequently, every infinite parity sequence occurs for exactly one 2-adic integer, so that <a href="/wiki/Almost_all" title="Almost all">almost all</a> trajectories are acyclic in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92aedfb5c02eff978ab963421ce930f46801657e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.605ex; height:2.509ex;" alt="{\displaystyle \mathbb {Z} _{2}}"></span>. </p><p>An equivalent formulation of the Collatz conjecture is that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q\left(\mathbb {Z} ^{+}\right)\subset {\tfrac {1}{3}}\mathbb {Z} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>&#x2282;<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q\left(\mathbb {Z} ^{+}\right)\subset {\tfrac {1}{3}}\mathbb {Z} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd37358b94be339c15a461cb787b8df16ed7d60d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.37ex; height:3.676ex;" alt="{\displaystyle Q\left(\mathbb {Z} ^{+}\right)\subset {\tfrac {1}{3}}\mathbb {Z} .}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Iterating_on_real_or_complex_numbers">Iterating on real or complex numbers<span class="anchor" id="Collatz_fractal"></span></h3></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Collatz_Cobweb.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Collatz_Cobweb.svg/220px-Collatz_Cobweb.svg.png" decoding="async" width="220" height="219" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Collatz_Cobweb.svg/330px-Collatz_Cobweb.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Collatz_Cobweb.svg/440px-Collatz_Cobweb.svg.png 2x" data-file-width="422" data-file-height="421" /></a><figcaption><a href="/wiki/Cobweb_plot" title="Cobweb plot">Cobweb plot</a> of the orbit 10 → 5 → 8 → 4 → 2 → 1 → ... in an extension of the Collatz map to the real line.</figcaption></figure> <p>The Collatz map can be extended to the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a> by choosing any function which evaluates to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c68203be699cce32f38b291115d5bc2c6220dc9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.655ex; height:2.843ex;" alt="{\displaystyle x/2}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is an even integer, and to either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d61bf1338ba5b30d23b750ad76009792dc1dbcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.495ex; height:2.343ex;" alt="{\displaystyle 3x+1}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (3x+1)/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (3x+1)/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c097a29f0910d4b32a361ab2fdadeac6fb76c0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.629ex; height:2.843ex;" alt="{\displaystyle (3x+1)/2}"></span> (for the "shortcut" version) when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is an odd integer. This is called an <a href="/wiki/Interpolating" class="mw-redirect" title="Interpolating">interpolating</a> function. A simple way to do this is to pick two functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3755e3e04ec295992b2b5331655ef83a500a05c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0261c34f2ad1e1b5317708b7f98ae13ee70ff1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.163ex; height:2.009ex;" alt="{\displaystyle g_{2}}"></span>, where: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}(n)={\begin{cases}1,&amp;n{\text{ is even,}}\\0,&amp;n{\text{ is odd,}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is even,</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is odd,</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}(n)={\begin{cases}1,&amp;n{\text{ is even,}}\\0,&amp;n{\text{ is odd,}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98a5dabee67b8728e0d91f8eab95c68e917b8fd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.443ex; height:6.176ex;" alt="{\displaystyle g_{1}(n)={\begin{cases}1,&amp;n{\text{ is even,}}\\0,&amp;n{\text{ is odd,}}\end{cases}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2}(n)={\begin{cases}0,&amp;n{\text{ is even,}}\\1,&amp;n{\text{ is odd,}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is even,</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is odd,</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2}(n)={\begin{cases}0,&amp;n{\text{ is even,}}\\1,&amp;n{\text{ is odd,}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d3d596f1d61e22003f013e33ab6e853f68bfda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.443ex; height:6.176ex;" alt="{\displaystyle g_{2}(n)={\begin{cases}0,&amp;n{\text{ is even,}}\\1,&amp;n{\text{ is odd,}}\end{cases}}}"></span></dd></dl> <p>and use them as switches for our desired values: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\triangleq {\frac {x}{2}}\cdot g_{1}(x)\,+\,{\frac {3x+1}{2}}\cdot g_{2}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\triangleq {\frac {x}{2}}\cdot g_{1}(x)\,+\,{\frac {3x+1}{2}}\cdot g_{2}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc4f04eb20bae8921d4bd6bfabd3b39453955221" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.59ex; height:5.176ex;" alt="{\displaystyle f(x)\triangleq {\frac {x}{2}}\cdot g_{1}(x)\,+\,{\frac {3x+1}{2}}\cdot g_{2}(x)}"></span>.</dd></dl> <p>One such choice is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{1}(x)\triangleq \cos ^{2}\left({\tfrac {\pi }{2}}x\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{1}(x)\triangleq \cos ^{2}\left({\tfrac {\pi }{2}}x\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c50db0be5b91abb8f11b4d8d5f905ac8e715d1bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.804ex; height:3.509ex;" alt="{\displaystyle g_{1}(x)\triangleq \cos ^{2}\left({\tfrac {\pi }{2}}x\right)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{2}(x)\triangleq \sin ^{2}\left({\tfrac {\pi }{2}}x\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{2}(x)\triangleq \sin ^{2}\left({\tfrac {\pi }{2}}x\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/819d25604592f548685d4e6d9a103144e11802b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.548ex; height:3.509ex;" alt="{\displaystyle g_{2}(x)\triangleq \sin ^{2}\left({\tfrac {\pi }{2}}x\right)}"></span>. The <a href="/wiki/Iterations" class="mw-redirect" title="Iterations">iterations</a> of this map lead to a <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical system</a>, further investigated by Marc Chamberland.<sup id="cite_ref-Chamberland_(1996)_29-0" class="reference"><a href="#cite_note-Chamberland_(1996)-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> He showed that the conjecture does not hold for positive real numbers since there are infinitely many <a href="/wiki/Fixed_point_(mathematics)" title="Fixed point (mathematics)">fixed points</a>, as well as <a href="/wiki/Orbit_(dynamics)" title="Orbit (dynamics)">orbits</a> escaping <a href="/wiki/Monotonic_function" title="Monotonic function">monotonically</a> to infinity. The function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> has two <a href="/wiki/Attractor" title="Attractor">attracting</a> cycles of period <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1;\,2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>;</mo> <mspace width="thinmathspace" /> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1;\,2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a27ea8fa8e1e876c74f6e5bddcd4143340b4639" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.555ex; height:2.843ex;" alt="{\displaystyle (1;\,2)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1.1925...;\,2.1386...)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1.1925...</mn> <mo>;</mo> <mspace width="thinmathspace" /> <mn>2.1386...</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1.1925...;\,2.1386...)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2d4ccffbaf80146608db1b5d8dc65105c2c53f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.03ex; height:2.843ex;" alt="{\displaystyle (1.1925...;\,2.1386...)}"></span>. Moreover, the set of unbounded orbits is conjectured to be of <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">measure</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>. </p><p>Letherman, Schleicher, and Wood extended the study to the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>.<sup id="cite_ref-Letherman,_Schleicher,_and_Wood_(1999)_30-0" class="reference"><a href="#cite_note-Letherman,_Schleicher,_and_Wood_(1999)-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> They used Chamberland's function for <a href="/wiki/Trigonometric_functions#In_the_complex_plane" title="Trigonometric functions">complex sine and cosine</a> and added the extra term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{\pi }}\left({\tfrac {1}{2}}-\cos(\pi z)\right)\sin(\pi z)\,+}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{\pi }}\left({\tfrac {1}{2}}-\cos(\pi z)\right)\sin(\pi z)\,+}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5da2597df2f962f89fe42415349517d523af5188" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.801ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{\pi }}\left({\tfrac {1}{2}}-\cos(\pi z)\right)\sin(\pi z)\,+}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(z)\sin ^{2}(\pi z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(z)\sin ^{2}(\pi z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc85eb4796817374160119564d9f6b55f6a6443b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.763ex; height:3.176ex;" alt="{\displaystyle h(z)\sin ^{2}(\pi z)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb5239f31e57a3120e928486857a5ea8fb8eee80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.236ex; height:2.843ex;" alt="{\displaystyle h(z)}"></span> is any <a href="/wiki/Entire_function" title="Entire function">entire function</a>. Since this expression evaluates to zero for real integers, the extended function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f(z)\triangleq \;&amp;{\frac {z}{2}}\cos ^{2}\left({\frac {\pi }{2}}z\right)+{\frac {3z+1}{2}}\sin ^{2}\left({\frac {\pi }{2}}z\right)\,+\\&amp;{\frac {1}{\pi }}\left({\frac {1}{2}}-\cos(\pi z)\right)\sin(\pi z)+h(z)\sin ^{2}(\pi z)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mn>2</mn> </mfrac> </mrow> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>z</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f(z)\triangleq \;&amp;{\frac {z}{2}}\cos ^{2}\left({\frac {\pi }{2}}z\right)+{\frac {3z+1}{2}}\sin ^{2}\left({\frac {\pi }{2}}z\right)\,+\\&amp;{\frac {1}{\pi }}\left({\frac {1}{2}}-\cos(\pi z)\right)\sin(\pi z)+h(z)\sin ^{2}(\pi z)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/149caa0c7bbc886e6a876b3c276f238eccf6bde5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.914ex; margin-bottom: -0.257ex; width:49.257ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}f(z)\triangleq \;&amp;{\frac {z}{2}}\cos ^{2}\left({\frac {\pi }{2}}z\right)+{\frac {3z+1}{2}}\sin ^{2}\left({\frac {\pi }{2}}z\right)\,+\\&amp;{\frac {1}{\pi }}\left({\frac {1}{2}}-\cos(\pi z)\right)\sin(\pi z)+h(z)\sin ^{2}(\pi z)\end{aligned}}}"></span></dd></dl> <p>is an interpolation of the Collatz map to the complex plane. The reason for adding the extra term is to make all integers <a href="/wiki/Critical_point_(mathematics)" title="Critical point (mathematics)">critical points</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. With this, they show that no integer is in a <a href="/wiki/Classification_of_Fatou_components#Baker_domain" title="Classification of Fatou components">Baker domain</a>, which implies that any integer is either eventually periodic or belongs to a <a href="/wiki/Wandering_set" title="Wandering set">wandering domain</a>. They conjectured that the latter is not the case, which would make all integer orbits finite. </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Collatz_Fractal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Collatz_Fractal.jpg/220px-Collatz_Fractal.jpg" decoding="async" width="220" height="94" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Collatz_Fractal.jpg/330px-Collatz_Fractal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Collatz_Fractal.jpg/440px-Collatz_Fractal.jpg 2x" data-file-width="40320" data-file-height="17280" /></a><figcaption>A Collatz <a href="/wiki/Fractal" title="Fractal">fractal</a> centered at the origin, with real parts from -5 to 5.</figcaption></figure> <p>Most of the points have orbits that diverge to infinity. Coloring these points based on how fast they diverge produces the image on the left, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(z)\triangleq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(z)\triangleq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe86082a7be07c0a29e9ae2c69b5baff04f201c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.497ex; height:3.009ex;" alt="{\displaystyle h(z)\triangleq 0}"></span>. The inner black regions and the outer region are the <a href="/wiki/Classification_of_Fatou_components" title="Classification of Fatou components">Fatou components</a>, and the boundary between them is the <a href="/wiki/Julia_set" title="Julia set">Julia set</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, which forms a <a href="/wiki/Fractal" title="Fractal">fractal</a> pattern, sometimes called a "Collatz fractal". </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Exponential_Collatz_Fractal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Exponential_Collatz_Fractal.jpg/220px-Exponential_Collatz_Fractal.jpg" decoding="async" width="220" height="124" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Exponential_Collatz_Fractal.jpg/330px-Exponential_Collatz_Fractal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/74/Exponential_Collatz_Fractal.jpg/440px-Exponential_Collatz_Fractal.jpg 2x" data-file-width="30720" data-file-height="17280" /></a><figcaption>Julia set of the exponential interpolation.</figcaption></figure> <p>There are many other ways to define a complex interpolating function, such as using the <a href="/wiki/Exponential_function#Complex_plane" title="Exponential function">complex exponential</a> instead of sine and cosine: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)\triangleq {\frac {z}{2}}+{\frac {1}{4}}(2z+1)\left(1-e^{i\pi z}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x225C;<!-- ≜ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>z</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> <mi>z</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)\triangleq {\frac {z}{2}}+{\frac {1}{4}}(2z+1)\left(1-e^{i\pi z}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5a10304a8361731ba1b7d13372217996a0aa78e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.289ex; height:5.176ex;" alt="{\displaystyle f(z)\triangleq {\frac {z}{2}}+{\frac {1}{4}}(2z+1)\left(1-e^{i\pi z}\right)}"></span>,</dd></dl> <p>which exhibit different dynamics. In this case, for instance, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Im} (z)\gg 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x226B;<!-- ≫ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Im} (z)\gg 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e7161fe8d617d5307328bdef3ef8dd7f89e5903" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.449ex; height:2.843ex;" alt="{\displaystyle \operatorname {Im} (z)\gg 1}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)\approx z+{\tfrac {1}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <mi>z</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)\approx z+{\tfrac {1}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d87e2d585743dd2e992874834321b377c5eb49c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:12.861ex; height:3.509ex;" alt="{\displaystyle f(z)\approx z+{\tfrac {1}{4}}}"></span>. The corresponding Julia set, shown on the right, consists of uncountably many curves, called <i>hairs</i>, or <i>rays</i>. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Optimizations">Optimizations</h2></div> <div class="mw-heading mw-heading3"><h3 id="Time–space_tradeoff"><span id="Time.E2.80.93space_tradeoff"></span>Time–space tradeoff</h3></div> <p>The section <i><a href="#As_a_parity_sequence">As a parity sequence</a></i> above gives a way to speed up simulation of the sequence. To jump ahead <span class="texhtml mvar" style="font-style:italic;">k</span> steps on each iteration (using the <span class="texhtml mvar" style="font-style:italic;">f</span> function from that section), break up the current number into two parts, <span class="texhtml mvar" style="font-style:italic;">b</span> (the <span class="texhtml mvar" style="font-style:italic;">k</span> least significant bits, interpreted as an integer), and <span class="texhtml mvar" style="font-style:italic;">a</span> (the rest of the bits as an integer). The result of jumping ahead <span class="texhtml mvar" style="font-style:italic;">k</span> is given by </p> <dl><dd><span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup><i>k</i></sup></span>(2<sup><i>k</i></sup><i>a</i> + <i>b</i>) = 3<sup><i>c</i>(<i>b</i>, <i>k</i>)</sup><i>a</i> + <i>d</i>(<i>b</i>, <i>k</i>)</span>.</dd></dl> <p>The values of <span class="texhtml mvar" style="font-style:italic;">c</span> (or better <span class="texhtml">3<sup><i>c</i></sup></span>) and <span class="texhtml mvar" style="font-style:italic;">d</span> can be precalculated for all possible <span class="texhtml mvar" style="font-style:italic;">k</span>-bit numbers <span class="texhtml mvar" style="font-style:italic;">b</span>, where <span class="texhtml"><i>d</i>(<i>b</i>, <i>k</i>)</span> is the result of applying the <span class="texhtml mvar" style="font-style:italic;">f</span> function <span class="texhtml mvar" style="font-style:italic;">k</span> times to <span class="texhtml mvar" style="font-style:italic;">b</span>, and <span class="texhtml"><i>c</i>(<i>b</i>, <i>k</i>)</span> is the number of odd numbers encountered on the way.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> For example, if <span class="texhtml"><i>k</i> = 5</span>, one can jump ahead 5 steps on each iteration by separating out the 5 least significant bits of a number and using </p> <dl><dd><span class="texhtml mvar" style="font-style:italic;">c</span>(0...31, 5) = { 0, 3, 2, 2, 2, 2, 2, 4, 1, 4, 1, 3, 2, 2, 3, 4, 1, 2, 3, 3, 1, 1, 3, 3, 2, 3, 2, 4, 3, 3, 4, 5 },</dd> <dd><span class="texhtml mvar" style="font-style:italic;">d</span>(0...31, 5) = { 0, 2, 1, 1, 2, 2, 2, 20, 1, 26, 1, 10, 4, 4, 13, 40, 2, 5, 17, 17, 2, 2, 20, 20, 8, 22, 8, 71, 26, 26, 80, 242 }.</dd></dl> <p>This requires <span class="texhtml">2<sup><i>k</i></sup></span> <a href="/wiki/Precomputation" title="Precomputation">precomputation</a> and storage to speed up the resulting calculation by a factor of <span class="texhtml mvar" style="font-style:italic;">k</span>, a <a href="/wiki/Space%E2%80%93time_tradeoff" title="Space–time tradeoff">space–time tradeoff</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Modular_restrictions">Modular restrictions</h3></div> <p>For the special purpose of searching for a counterexample to the Collatz conjecture, this precomputation leads to an even more important acceleration, used by Tomás Oliveira e Silva in his computational confirmations of the Collatz conjecture up to large values of&#160;<span class="texhtml mvar" style="font-style:italic;">n</span>. If, for some given <span class="texhtml mvar" style="font-style:italic;">b</span> and <span class="texhtml mvar" style="font-style:italic;">k</span>, the inequality </p> <dl><dd><span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup><i>k</i></sup></span>(2<sup><i>k</i></sup><i>a</i> + <i>b</i>) = 3<sup><i>c</i>(<i>b</i>)</sup><i>a</i> + <i>d</i>(<i>b</i>) &lt; 2<sup><i>k</i></sup><i>a</i> + <i>b</i></span></dd></dl> <p>holds for all <span class="texhtml mvar" style="font-style:italic;">a</span>, then the first counterexample, if it exists, cannot be <span class="texhtml mvar" style="font-style:italic;">b</span> modulo <span class="texhtml">2<sup><i>k</i></sup></span>.<sup id="cite_ref-Garner_(1981)_14-1" class="reference"><a href="#cite_note-Garner_(1981)-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> For instance, the first counterexample must be odd because <span class="texhtml"><i>f</i>(2<i>n</i>) = <i>n</i></span>, smaller than <span class="texhtml">2<i>n</i></span>; and it must be 3 mod 4 because <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>2</sup></span>(4<i>n</i> + 1) = 3<i>n</i> + 1</span>, smaller than <span class="texhtml">4<i>n</i> + 1</span>. For each starting value <span class="texhtml mvar" style="font-style:italic;">a</span> which is not a counterexample to the Collatz conjecture, there is a <span class="texhtml mvar" style="font-style:italic;">k</span> for which such an inequality holds, so checking the Collatz conjecture for one starting value is as good as checking an entire congruence class. As <span class="texhtml mvar" style="font-style:italic;">k</span> increases, the search only needs to check those residues <span class="texhtml mvar" style="font-style:italic;">b</span> that are not eliminated by lower values of&#160;<span class="texhtml mvar" style="font-style:italic;">k</span>. Only an exponentially small fraction of the residues survive.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> For example, the only surviving residues mod 32 are 7, 15, 27, and 31. </p><p>Integers divisible by 3 cannot form a cycle, so these integers do not need to be checked as counter examples.<sup id="cite_ref-Clay_33-0" class="reference"><a href="#cite_note-Clay-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Syracuse_function">Syracuse function</h2></div> <p>If <span class="texhtml mvar" style="font-style:italic;">k</span> is an odd integer, then <span class="texhtml">3<i>k</i> + 1</span> is even, so <span class="texhtml">3<i>k</i> + 1 = 2<sup><i>a</i></sup><i>k</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> with <span class="texhtml"><i>k</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> odd and <span class="texhtml"><i>a</i> ≥ 1</span>. The <b>Syracuse function</b> is the function <span class="texhtml mvar" style="font-style:italic;">f</span> from the set <span class="texhtml mvar" style="font-style:italic;">I</span> of positive odd integers into itself, for which <span class="texhtml"><i>f</i>(<i>k</i>) = <i>k</i><span class="nowrap" style="padding-left:0.15em;">′</span></span> (sequence <span class="nowrap external"><a href="//oeis.org/A075677" class="extiw" title="oeis:A075677">A075677</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>). </p><p>Some properties of the Syracuse function are: </p> <ul><li>For all <span class="texhtml"><i>k</i> ∈ <i>I</i></span>, <span class="texhtml"><i>f</i>(4<i>k</i> + 1) = <i>f</i>(<i>k</i>)</span>. (Because <span class="texhtml">3(4<i>k</i> + 1) + 1 = 12<i>k</i> + 4 = 4(3<i>k</i> + 1)</span>.)</li> <li>In more generality: For all <span class="texhtml"><i>p</i> ≥ 1</span> and odd <span class="texhtml mvar" style="font-style:italic;">h</span>, <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup><i>p</i> − 1</sup></span>(2<sup><i>p</i></sup><i>h</i> − 1) = 2 × 3<sup><i>p</i> − 1</sup><i>h</i> − 1</span>. (Here <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup><i>p</i> − 1</sup></span></span> is <a href="/wiki/Functional_power" class="mw-redirect" title="Functional power">function iteration notation</a>.)</li> <li>For all odd <span class="texhtml mvar" style="font-style:italic;">h</span>, <span class="texhtml"><i>f</i>(2<i>h</i> − 1) ≤ <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">3<i>h</i> − 1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span></li></ul> <p>The Collatz conjecture is equivalent to the statement that, for all <span class="texhtml mvar" style="font-style:italic;">k</span> in <span class="texhtml mvar" style="font-style:italic;">I</span>, there exists an integer <span class="texhtml"><i>n</i> ≥ 1</span> such that <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup><i>n</i></sup></span>(<i>k</i>) = 1</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Undecidable_generalizations">Undecidable generalizations</h2></div> <p>In 1972, <a href="/wiki/John_Horton_Conway" title="John Horton Conway">John Horton Conway</a> proved that a natural generalization of the Collatz problem is algorithmically <a href="/wiki/Undecidable_problem" title="Undecidable problem">undecidable</a>.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>Specifically, he considered functions of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {g(n)=a_{i}n+b_{i}}{\text{ when }}{n\equiv i{\pmod {P}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>n</mi> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;when&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2261;<!-- ≡ --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {g(n)=a_{i}n+b_{i}}{\text{ when }}{n\equiv i{\pmod {P}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/500cf2fb657fc847e50a076af09a460e5b3c147e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.309ex; height:2.843ex;" alt="{\displaystyle {g(n)=a_{i}n+b_{i}}{\text{ when }}{n\equiv i{\pmod {P}}},}"></span> where <span class="texhtml"><i>a</i><sub>0</sub>, <i>b</i><sub>0</sub>, ..., <i>a</i><sub><i>P</i> − 1</sub>, <i>b</i><sub><i>P</i> − 1</sub></span> are rational numbers which are so chosen that <span class="texhtml"><i>g</i>(<i>n</i>)</span> is always an integer. The standard Collatz function is given by <span class="texhtml"><i>P</i> = 2</span>, <span class="texhtml"><i>a</i><sub>0</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, <span class="texhtml"><i>b</i><sub>0</sub> = 0</span>, <span class="texhtml"><i>a</i><sub>1</sub> = 3</span>, <span class="texhtml"><i>b</i><sub>1</sub> = 1</span>. Conway proved that the problem </p> <dl><dd>Given <span class="texhtml mvar" style="font-style:italic;">g</span> and <span class="texhtml mvar" style="font-style:italic;">n</span>, does the sequence of iterates <span class="texhtml"><i>g<sup>k</sup></i>(<i>n</i>)</span> reach <span class="texhtml">1</span>?</dd></dl> <p>is undecidable, by representing the <a href="/wiki/Halting_problem" title="Halting problem">halting problem</a> in this way. </p><p>Closer to the Collatz problem is the following <i>universally quantified</i> problem: </p> <dl><dd>Given <span class="texhtml mvar" style="font-style:italic;">g</span>, does the sequence of iterates <span class="texhtml"><i>g<sup>k</sup></i>(<i>n</i>)</span> reach <span class="texhtml">1</span>, for all <span class="texhtml"><i>n</i> &gt; 0</span>?</dd></dl> <p>Modifying the condition in this way can make a problem either harder or easier to solve (intuitively, it is harder to justify a positive answer but might be easier to justify a negative one). Kurtz and Simon<sup id="cite_ref-KurtzSimon_35-0" class="reference"><a href="#cite_note-KurtzSimon-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> proved that the universally quantified problem is, in fact, undecidable and even higher in the <a href="/wiki/Arithmetical_hierarchy" title="Arithmetical hierarchy">arithmetical hierarchy</a>; specifically, it is <span class="texhtml">Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>-complete. This hardness result holds even if one restricts the class of functions <span class="texhtml mvar" style="font-style:italic;">g</span> by fixing the modulus <span class="texhtml mvar" style="font-style:italic;">P</span> to 6480.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p><p>Iterations of <span class="texhtml mvar" style="font-style:italic;">g</span> in a simplified version of this form, with all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a8c2db2990a53c683e75961826167c5adac7c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.797ex; height:2.509ex;" alt="{\displaystyle b_{i}}"></span> equal to zero, are formalized in an <a href="/wiki/Esoteric_programming_language" title="Esoteric programming language">esoteric programming language</a> called <a href="/wiki/FRACTRAN" title="FRACTRAN">FRACTRAN</a>. </p> <div class="mw-heading mw-heading2"><h2 id="In_computational_complexity">In computational complexity</h2></div> <p>Collatz and related conjectures are often used when studying computation complexity.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> The connection is made through the <a href="/wiki/Busy_Beaver" class="mw-redirect" title="Busy Beaver">Busy Beaver</a> function, where BB(n) is the maximum number of steps taken by any n state <a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a> that halts. There is a 15 state Turing machine that halts if and only if a conjecture by <a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Paul Erdős</a> (closely related to the Collatz conjecture) is false. Hence if BB(15) was known, and this machine did not stop in that number of steps, it would be known to run forever and hence no counterexamples exist (which proves the conjecture true). This is a completely impractical way to settle the conjecture; instead it is used to suggest that BB(15) will be very hard to compute, at least as difficult as settling this Collatz-like conjecture. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2></div> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Collatz_conjecture" class="extiw" title="commons:Category:Collatz conjecture">Collatz conjecture</a></span>.</div></div> </div> <ul><li><a href="/wiki/3x_%2B_1_semigroup" title="3x + 1 semigroup"><span class="texhtml">3<i>x</i> + 1</span> semigroup</a></li> <li><a href="/wiki/Arithmetic_dynamics#Other_areas_in_which_number_theory_and_dynamics_interact" title="Arithmetic dynamics">Arithmetic dynamics</a></li> <li><a href="/wiki/Modular_arithmetic" title="Modular arithmetic">Modular arithmetic</a></li> <li><a href="/wiki/Residue-class-wise_affine_group" title="Residue-class-wise affine group">Residue-class-wise affine group</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">It is also known as the <b><span class="texhtml">3<i>n</i> + 1</span> problem</b> (or <b>conjecture</b>), the <b><span class="texhtml">3<i>x</i> + 1</span> problem</b> (or <b>conjecture</b>), the <b>Ulam conjecture</b> (after <a href="/wiki/Stanis%C5%82aw_Ulam" title="Stanisław Ulam">Stanisław Ulam</a>), <b>Kakutani's problem</b> (after <a href="/wiki/Shizuo_Kakutani" title="Shizuo Kakutani">Shizuo Kakutani</a>), the <b>Thwaites conjecture</b> (after <a href="/wiki/Bryan_Thwaites" title="Bryan Thwaites">Bryan Thwaites</a>), <b>Hasse's algorithm</b> (after <a href="/wiki/Helmut_Hasse" title="Helmut Hasse">Helmut Hasse</a>), or the <b>Syracuse problem</b> (after <a href="/wiki/Syracuse_University" title="Syracuse University">Syracuse University</a>).<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMadduxJohnson1997" class="citation book cs1">Maddux, Cleborne D.; Johnson, D. Lamont (1997). <i>Logo: A Retrospective</i>. New York: Haworth Press. p.&#160;160. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7890-0374-0" title="Special:BookSources/0-7890-0374-0"><bdi>0-7890-0374-0</bdi></a>. <q>The problem is also known by several other names, including: Ulam's conjecture, the Hailstone problem, the Syracuse problem, Kakutani's problem, Hasse's algorithm, and the Collatz problem.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Logo%3A+A+Retrospective&amp;rft.place=New+York&amp;rft.pages=160&amp;rft.pub=Haworth+Press&amp;rft.date=1997&amp;rft.isbn=0-7890-0374-0&amp;rft.aulast=Maddux&amp;rft.aufirst=Cleborne+D.&amp;rft.au=Johnson%2C+D.+Lamont&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Lagarias_(1985)-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lagarias_(1985)_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lagarias_(1985)_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Lagarias_(1985)_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Lagarias_(1985)_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Lagarias_(1985)_2-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Lagarias_(1985)_2-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Lagarias_(1985)_2-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLagarias1985" class="citation journal cs1">Lagarias, Jeffrey C. (1985). "The 3<i>x</i> + 1 problem and its generalizations". <i><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>. <b>92</b> (1): <span class="nowrap">3–</span>23. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00029890.1985.11971528">10.1080/00029890.1985.11971528</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2322189">2322189</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Mathematical+Monthly&amp;rft.atitle=The+3x+%2B+1+problem+and+its+generalizations&amp;rft.volume=92&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E3-%3C%2Fspan%3E23&amp;rft.date=1985&amp;rft_id=info%3Adoi%2F10.1080%2F00029890.1985.11971528&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2322189%23id-name%3DJSTOR&amp;rft.aulast=Lagarias&amp;rft.aufirst=Jeffrey+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">According to Lagarias (1985),<sup id="cite_ref-Lagarias_(1985)_2-0" class="reference"><a href="#cite_note-Lagarias_(1985)-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> p.&#160;4, the name "Syracuse problem" was proposed by Hasse in the 1950s, during a visit to <a href="/wiki/Syracuse_University" title="Syracuse University">Syracuse University</a>.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" class="mw-redirect" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Collatz.html">"Lothar Collatz"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Lothar+Collatz&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FCollatz.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPickover2001" class="citation book cs1">Pickover, Clifford A. (2001). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/wondersnumbersad00pick"><i>Wonders of Numbers</i></a></span>. Oxford: Oxford University Press. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/wondersnumbersad00pick/page/n136">116</a>–118. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-19-513342-0" title="Special:BookSources/0-19-513342-0"><bdi>0-19-513342-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Wonders+of+Numbers&amp;rft.place=Oxford&amp;rft.pages=116-118&amp;rft.pub=Oxford+University+Press&amp;rft.date=2001&amp;rft.isbn=0-19-513342-0&amp;rft.aulast=Pickover&amp;rft.aufirst=Clifford+A.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fwondersnumbersad00pick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHofstadter1979" class="citation book cs1"><a href="/wiki/Douglas_Hofstadter" title="Douglas Hofstadter">Hofstadter, Douglas R.</a> (1979). <a href="/wiki/G%C3%B6del,_Escher,_Bach" title="Gödel, Escher, Bach"><i>Gödel, Escher, Bach</i></a>. New York: Basic Books. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/godelescherbach00doug/page/400">400–2</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-465-02685-0" title="Special:BookSources/0-465-02685-0"><bdi>0-465-02685-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=G%C3%B6del%2C+Escher%2C+Bach&amp;rft.place=New+York&amp;rft.pages=400-2&amp;rft.pub=Basic+Books&amp;rft.date=1979&amp;rft.isbn=0-465-02685-0&amp;rft.aulast=Hofstadter&amp;rft.aufirst=Douglas+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Guy_(2004)-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Guy_(2004)_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy2004" class="citation book cs1"><a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a> (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1AP2CEGxTkgC&amp;pg=PA330">"<span class="cs1-kern-left"></span>"E16: The 3x+1 problem"<span class="cs1-kern-right"></span>"</a>. <i>Unsolved Problems in Number Theory</i> (3rd&#160;ed.). <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. pp.&#160;<span class="nowrap">330–</span>6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-20860-7" title="Special:BookSources/0-387-20860-7"><bdi>0-387-20860-7</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:1058.11001">1058.11001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=%22E16%3A+The+3x%2B1+problem%22&amp;rft.btitle=Unsolved+Problems+in+Number+Theory&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E330-%3C%2Fspan%3E6&amp;rft.edition=3rd&amp;rft.pub=Springer-Verlag&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1058.11001%23id-name%3DZbl&amp;rft.isbn=0-387-20860-7&amp;rft.aulast=Guy&amp;rft.aufirst=Richard+K.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1AP2CEGxTkgC%26pg%3DPA330&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Lagarias_(2010)-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lagarias_(2010)_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lagarias_(2010)_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLagarias2010" class="citation book cs1"><a href="/wiki/Jeffrey_Lagarias" title="Jeffrey Lagarias">Lagarias, Jeffrey C.</a>, ed. (2010). <i>The Ultimate Challenge: The 3</i>x<i> + 1 Problem</i>. <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-4940-8" title="Special:BookSources/978-0-8218-4940-8"><bdi>978-0-8218-4940-8</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:1253.11003">1253.11003</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Ultimate+Challenge%3A+The+3x+%2B+1+Problem&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1253.11003%23id-name%3DZbl&amp;rft.isbn=978-0-8218-4940-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Tao-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Tao_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Tao_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTao2022" class="citation journal cs1">Tao, Terence (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Ffmp.2022.8">"Almost all orbits of the Collatz map attain almost bounded values"</a>. <i>Forum of Mathematics, Pi</i>. <b>10</b>: e12. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1909.03562">1909.03562</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Ffmp.2022.8">10.1017/fmp.2022.8</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2050-5086">2050-5086</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Forum+of+Mathematics%2C+Pi&amp;rft.atitle=Almost+all+orbits+of+the+Collatz+map+attain+almost+bounded+values&amp;rft.volume=10&amp;rft.pages=e12&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F1909.03562&amp;rft.issn=2050-5086&amp;rft_id=info%3Adoi%2F10.1017%2Ffmp.2022.8&amp;rft.aulast=Tao&amp;rft.aufirst=Terence&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1017%252Ffmp.2022.8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeavensVermeulen1992" class="citation journal cs1">Leavens, Gary T.; Vermeulen, Mike (December 1992). "3<i>x</i> + 1 search programs". <i>Computers &amp; Mathematics with Applications</i>. <b>24</b> (11): <span class="nowrap">79–</span>99. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0898-1221%2892%2990034-F">10.1016/0898-1221(92)90034-F</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computers+%26+Mathematics+with+Applications&amp;rft.atitle=3x+%2B+1+search+programs&amp;rft.volume=24&amp;rft.issue=11&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E79-%3C%2Fspan%3E99&amp;rft.date=1992-12&amp;rft_id=info%3Adoi%2F10.1016%2F0898-1221%2892%2990034-F&amp;rft.aulast=Leavens&amp;rft.aufirst=Gary+T.&amp;rft.au=Vermeulen%2C+Mike&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Roosendaal-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Roosendaal_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoosendaal" class="citation web cs1">Roosendaal, Eric. <a rel="nofollow" class="external text" href="http://www.ericr.nl/wondrous/delrecs.html">"3x+1 delay records"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3x%2B1+delay+records&amp;rft.aulast=Roosendaal&amp;rft.aufirst=Eric&amp;rft_id=http%3A%2F%2Fwww.ericr.nl%2Fwondrous%2Fdelrecs.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span> (Note: "Delay records" are total stopping time records.)</span> </li> <li id="cite_note-Barina-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Barina_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarina2020" class="citation journal cs1">Barina, David (2020). "Convergence verification of the Collatz problem". <i>The Journal of Supercomputing</i>. <b>77</b> (3): <span class="nowrap">2681–</span>2688. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11227-020-03368-x">10.1007/s11227-020-03368-x</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220294340">220294340</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Supercomputing&amp;rft.atitle=Convergence+verification+of+the+Collatz+problem&amp;rft.volume=77&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2681-%3C%2Fspan%3E2688&amp;rft.date=2020&amp;rft_id=info%3Adoi%2F10.1007%2Fs11227-020-03368-x&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220294340%23id-name%3DS2CID&amp;rft.aulast=Barina&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Garner_(1981)-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Garner_(1981)_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Garner_(1981)_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarner1981" class="citation journal cs1">Garner, Lynn E. (1981). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1981-0603593-2">"On the Collatz 3<i>n</i>&#160;+&#160;1 algorithm"</a>. <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>. <b>82</b> (1): <span class="nowrap">19–</span>22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1981-0603593-2">10.1090/S0002-9939-1981-0603593-2</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2044308">2044308</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+American+Mathematical+Society&amp;rft.atitle=On+the+Collatz+3n+%2B+1+algorithm&amp;rft.volume=82&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E19-%3C%2Fspan%3E22&amp;rft.date=1981&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9939-1981-0603593-2&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2044308%23id-name%3DJSTOR&amp;rft.aulast=Garner&amp;rft.aufirst=Lynn+E.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0002-9939-1981-0603593-2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Eliahou_(1993)-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Eliahou_(1993)_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Eliahou_(1993)_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Eliahou_(1993)_15-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEliahou1993" class="citation journal cs1">Eliahou, Shalom (1993). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0012-365X%2893%2990052-U">"The 3<i>x</i> + 1 problem: new lower bounds on nontrivial cycle lengths"</a>. <i>Discrete Mathematics</i>. <b>118</b> (1): <span class="nowrap">45–</span>56. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0012-365X%2893%2990052-U">10.1016/0012-365X(93)90052-U</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Discrete+Mathematics&amp;rft.atitle=The+3x+%2B+1+problem%3A+new+lower+bounds+on+nontrivial+cycle+lengths&amp;rft.volume=118&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E45-%3C%2Fspan%3E56&amp;rft.date=1993&amp;rft_id=info%3Adoi%2F10.1016%2F0012-365X%2893%2990052-U&amp;rft.aulast=Eliahou&amp;rft.aufirst=Shalom&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0012-365X%252893%252990052-U&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Simons_&amp;_de_Weger_(2005)-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Simons_&amp;_de_Weger_(2005)_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Simons_&amp;_de_Weger_(2005)_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Simons_&amp;_de_Weger_(2005)_16-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimonsde_Weger2005" class="citation journal cs1">Simons, J.; de Weger, B. (2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220318094356/http://deweger.xs4all.nl/papers/%5B35%5DSidW-3n+1-ActaArith%5B2005%5D.pdf">"Theoretical and computational bounds for <i>m</i>-cycles of the 3<i>n</i>&#160;+&#160;1 problem"</a> <span class="cs1-format">(PDF)</span>. <i>Acta Arithmetica</i>. <b>117</b> (1): <span class="nowrap">51–</span>70. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005AcAri.117...51S">2005AcAri.117...51S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Faa117-1-3">10.4064/aa117-1-3</a></span>. Archived from the original on 2022-03-18<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-03-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Arithmetica&amp;rft.atitle=Theoretical+and+computational+bounds+for+m-cycles+of+the+3n+%2B+1+problem&amp;rft.volume=117&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E51-%3C%2Fspan%3E70&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.4064%2Faa117-1-3&amp;rft_id=info%3Abibcode%2F2005AcAri.117...51S&amp;rft.aulast=Simons&amp;rft.aufirst=J.&amp;rft.au=de+Weger%2C+B.&amp;rft_id=http%3A%2F%2Fdeweger.xs4all.nl%2Fpapers%2F%5B35%5DSidW-3n%2B1-ActaArith%5B2005%5D.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">Lagarias (1985),<sup id="cite_ref-Lagarias_(1985)_2-2" class="reference"><a href="#cite_note-Lagarias_(1985)-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> section "<a rel="nofollow" class="external text" href="http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/node3.html">A heuristic argument"</a>.</span> </li> <li id="cite_note-Terras_(1976)-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Terras_(1976)_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Terras_(1976)_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTerras1976" class="citation journal cs1">Terras, Riho (1976). <a rel="nofollow" class="external text" href="http://matwbn.icm.edu.pl/ksiazki/aa/aa30/aa3034.pdf">"A stopping time problem on the positive integers"</a> <span class="cs1-format">(PDF)</span>. <i>Acta Arithmetica</i>. <b>30</b> (3): <span class="nowrap">241–</span>252. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Faa-30-3-241-252">10.4064/aa-30-3-241-252</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0568274">0568274</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Arithmetica&amp;rft.atitle=A+stopping+time+problem+on+the+positive+integers&amp;rft.volume=30&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E241-%3C%2Fspan%3E252&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.4064%2Faa-30-3-241-252&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0568274%23id-name%3DMR&amp;rft.aulast=Terras&amp;rft.aufirst=Riho&amp;rft_id=http%3A%2F%2Fmatwbn.icm.edu.pl%2Fksiazki%2Faa%2Faa30%2Faa3034.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartnett2019" class="citation web cs1">Hartnett, Kevin (December 11, 2019). <a rel="nofollow" class="external text" href="https://www.quantamagazine.org/mathematician-proves-huge-result-on-dangerous-problem-20191211/">"Mathematician Proves Huge Result on 'Dangerous' Problem"</a>. <i>Quanta Magazine</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Quanta+Magazine&amp;rft.atitle=Mathematician+Proves+Huge+Result+on+%27Dangerous%27+Problem&amp;rft.date=2019-12-11&amp;rft.aulast=Hartnett&amp;rft.aufirst=Kevin&amp;rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fmathematician-proves-huge-result-on-dangerous-problem-20191211%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrasikovLagarias2003" class="citation journal cs1">Krasikov, Ilia; <a href="/wiki/Jeffrey_Lagarias" title="Jeffrey Lagarias">Lagarias, Jeffrey C.</a> (2003). <a rel="nofollow" class="external text" href="https://www.impan.pl/download/pdf/aa109-3-4">"Bounds for the 3<i>x</i>&#160;+&#160;1 problem using difference inequalities"</a>. <i>Acta Arithmetica</i>. <b>109</b> (3): <span class="nowrap">237–</span>258. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0205002">math/0205002</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003AcAri.109..237K">2003AcAri.109..237K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Faa109-3-4">10.4064/aa109-3-4</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1980260">1980260</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18467460">18467460</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Arithmetica&amp;rft.atitle=Bounds+for+the+3x+%2B+1+problem+using+difference+inequalities&amp;rft.volume=109&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E237-%3C%2Fspan%3E258&amp;rft.date=2003&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18467460%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2003AcAri.109..237K&amp;rft_id=info%3Aarxiv%2Fmath%2F0205002&amp;rft_id=info%3Adoi%2F10.4064%2Faa109-3-4&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1980260%23id-name%3DMR&amp;rft.aulast=Krasikov&amp;rft.aufirst=Ilia&amp;rft.au=Lagarias%2C+Jeffrey+C.&amp;rft_id=https%3A%2F%2Fwww.impan.pl%2Fdownload%2Fpdf%2Faa109-3-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Hercher_(2023)-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hercher_(2023)_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hercher_(2023)_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHercher2023" class="citation journal cs1">Hercher, C. (2023). <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Hercher/hercher5.pdf">"There are no Collatz <i>m</i>-cycles with <i>m &lt;= 91</i>"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Integer Sequences</i>. <b>26</b> (3): Article 23.3.5.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Integer+Sequences&amp;rft.atitle=There+are+no+Collatz+m-cycles+with+m+%3C%3D+91&amp;rft.volume=26&amp;rft.issue=3&amp;rft.pages=Article+23.3.5&amp;rft.date=2023&amp;rft.aulast=Hercher&amp;rft.aufirst=C.&amp;rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL26%2FHercher%2Fhercher5.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Steiner_(1977)-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Steiner_(1977)_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteiner1977" class="citation book cs1">Steiner, R. P. (1977). "A theorem on the syracuse problem". <i>Proceedings of the 7th Manitoba Conference on Numerical Mathematics</i>. pp.&#160;<span class="nowrap">553–</span>9. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0535032">0535032</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+theorem+on+the+syracuse+problem&amp;rft.btitle=Proceedings+of+the+7th+Manitoba+Conference+on+Numerical+Mathematics&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E553-%3C%2Fspan%3E9&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D535032%23id-name%3DMR&amp;rft.aulast=Steiner&amp;rft.aufirst=R.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimons2005" class="citation journal cs1">Simons, John L. (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0025-5718-04-01728-4">"On the nonexistence of 2-cycles for the 3<i>x</i> + 1 problem"</a>. <i>Math. Comp</i>. <b>74</b>: <span class="nowrap">1565–</span>72. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005MaCom..74.1565S">2005MaCom..74.1565S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0025-5718-04-01728-4">10.1090/s0025-5718-04-01728-4</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2137019">2137019</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Comp.&amp;rft.atitle=On+the+nonexistence+of+2-cycles+for+the+3x+%2B+1+problem&amp;rft.volume=74&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1565-%3C%2Fspan%3E72&amp;rft.date=2005&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2137019%23id-name%3DMR&amp;rft_id=info%3Adoi%2F10.1090%2Fs0025-5718-04-01728-4&amp;rft_id=info%3Abibcode%2F2005MaCom..74.1565S&amp;rft.aulast=Simons&amp;rft.aufirst=John+L.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252Fs0025-5718-04-01728-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Colussi2011-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Colussi2011_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColussi2011" class="citation journal cs1">Colussi, Livio (9 September 2011). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcs.2011.05.056">"The convergence classes of Collatz function"</a>. <i>Theoretical Computer Science</i>. <b>412</b> (39): <span class="nowrap">5409–</span>5419. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcs.2011.05.056">10.1016/j.tcs.2011.05.056</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Theoretical+Computer+Science&amp;rft.atitle=The+convergence+classes+of+Collatz+function&amp;rft.volume=412&amp;rft.issue=39&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E5409-%3C%2Fspan%3E5419&amp;rft.date=2011-09-09&amp;rft_id=info%3Adoi%2F10.1016%2Fj.tcs.2011.05.056&amp;rft.aulast=Colussi&amp;rft.aufirst=Livio&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.tcs.2011.05.056&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Hew2016-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hew2016_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHew2016" class="citation journal cs1">Hew, Patrick Chisan (7 March 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcs.2015.12.033">"Working in binary protects the repetends of 1/3<sup><i>h</i></sup>: Comment on Colussi's 'The convergence classes of Collatz function'<span class="cs1-kern-right"></span>"</a>. <i>Theoretical Computer Science</i>. <b>618</b>: <span class="nowrap">135–</span>141. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.tcs.2015.12.033">10.1016/j.tcs.2015.12.033</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Theoretical+Computer+Science&amp;rft.atitle=Working+in+binary+protects+the+repetends+of+1%2F3%3Csup%3Eh%3C%2Fsup%3E%3A+Comment+on+Colussi%27s+%27The+convergence+classes+of+Collatz+function%27&amp;rft.volume=618&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E135-%3C%2Fspan%3E141&amp;rft.date=2016-03-07&amp;rft_id=info%3Adoi%2F10.1016%2Fj.tcs.2015.12.033&amp;rft.aulast=Hew&amp;rft.aufirst=Patrick+Chisan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.tcs.2015.12.033&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLagarias1990" class="citation journal cs1">Lagarias, Jeffrey (1990). <a rel="nofollow" class="external text" href="https://eudml.org/doc/206298">"The set of rational cycles for the 3x+1 problem"</a>. <i>Acta Arithmetica</i>. <b>56</b> (1): <span class="nowrap">33–</span>53. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Faa-56-1-33-53">10.4064/aa-56-1-33-53</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0065-1036">0065-1036</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Arithmetica&amp;rft.atitle=The+set+of+rational+cycles+for+the+3x%2B1+problem&amp;rft.volume=56&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E33-%3C%2Fspan%3E53&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.4064%2Faa-56-1-33-53&amp;rft.issn=0065-1036&amp;rft.aulast=Lagarias&amp;rft.aufirst=Jeffrey&amp;rft_id=https%3A%2F%2Feudml.org%2Fdoc%2F206298&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Belaga_(1998a)-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Belaga_(1998a)_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBelagaMignotte1998" class="citation journal cs1">Belaga, Edward G.; Mignotte, Maurice (1998). <a rel="nofollow" class="external text" href="http://www.emis.de/journals/EM/expmath/volumes/7/7.html">"Embedding the 3x+1 Conjecture in a 3x+d Context"</a>. <i>Experimental Mathematics</i>. <b>7</b> (2): <span class="nowrap">145–</span>151. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F10586458.1998.10504364">10.1080/10586458.1998.10504364</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17925995">17925995</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Experimental+Mathematics&amp;rft.atitle=Embedding+the+3x%2B1+Conjecture+in+a+3x%2Bd+Context&amp;rft.volume=7&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E145-%3C%2Fspan%3E151&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1080%2F10586458.1998.10504364&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17925995%23id-name%3DS2CID&amp;rft.aulast=Belaga&amp;rft.aufirst=Edward+G.&amp;rft.au=Mignotte%2C+Maurice&amp;rft_id=http%3A%2F%2Fwww.emis.de%2Fjournals%2FEM%2Fexpmath%2Fvolumes%2F7%2F7.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernsteinLagarias1996" class="citation journal cs1">Bernstein, Daniel J.; Lagarias, Jeffrey C. (1996). <a rel="nofollow" class="external text" href="https://doi.org/10.4153%2FCJM-1996-060-x">"The 3<i>x</i> + 1 conjugacy map"</a>. <i><a href="/wiki/Canadian_Journal_of_Mathematics" title="Canadian Journal of Mathematics">Canadian Journal of Mathematics</a></i>. <b>48</b> (6): <span class="nowrap">1154–</span>1169. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4153%2FCJM-1996-060-x">10.4153/CJM-1996-060-x</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0008-414X">0008-414X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Canadian+Journal+of+Mathematics&amp;rft.atitle=The+3x+%2B+1+conjugacy+map&amp;rft.volume=48&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1154-%3C%2Fspan%3E1169&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.4153%2FCJM-1996-060-x&amp;rft.issn=0008-414X&amp;rft.aulast=Bernstein&amp;rft.aufirst=Daniel+J.&amp;rft.au=Lagarias%2C+Jeffrey+C.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.4153%252FCJM-1996-060-x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Chamberland_(1996)-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chamberland_(1996)_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChamberland1996" class="citation journal cs1">Chamberland, Marc (1996). "A continuous extension of the 3<i>x</i>&#160;+&#160;1 problem to the real line". <i>Dynam. Contin. Discrete Impuls Systems</i>. <b>2</b> (4): <span class="nowrap">495–</span>509.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Dynam.+Contin.+Discrete+Impuls+Systems&amp;rft.atitle=A+continuous+extension+of+the+3x+%2B+1+problem+to+the+real+line&amp;rft.volume=2&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E495-%3C%2Fspan%3E509&amp;rft.date=1996&amp;rft.aulast=Chamberland&amp;rft.aufirst=Marc&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-Letherman,_Schleicher,_and_Wood_(1999)-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Letherman,_Schleicher,_and_Wood_(1999)_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLethermanSchleicherWood1999" class="citation journal cs1">Letherman, Simon; Schleicher, Dierk; Wood, Reg (1999). "The (3<i>n</i>&#160;+&#160;1)-problem and holomorphic dynamics". <i>Experimental Mathematics</i>. <b>8</b> (3): <span class="nowrap">241–</span>252. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F10586458.1999.10504402">10.1080/10586458.1999.10504402</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Experimental+Mathematics&amp;rft.atitle=The+%283n+%2B+1%29-problem+and+holomorphic+dynamics&amp;rft.volume=8&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E241-%3C%2Fspan%3E252&amp;rft.date=1999&amp;rft_id=info%3Adoi%2F10.1080%2F10586458.1999.10504402&amp;rft.aulast=Letherman&amp;rft.aufirst=Simon&amp;rft.au=Schleicher%2C+Dierk&amp;rft.au=Wood%2C+Reg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScollo2007" class="citation web cs1">Scollo, Giuseppe (2007). <a rel="nofollow" class="external text" href="http://www.dmi.unict.it/~scollo/seminars/gridpa2007/CR3x+1paper.pdf">"Looking for class records in the 3<i>x</i> + 1 problem by means of the COMETA grid infrastructure"</a> <span class="cs1-format">(PDF)</span>. <i>Grid Open Days at the University of Palermo</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Grid+Open+Days+at+the+University+of+Palermo&amp;rft.atitle=Looking+for+class+records+in+the+3x+%2B+1+problem+by+means+of+the+COMETA+grid+infrastructure&amp;rft.date=2007&amp;rft.aulast=Scollo&amp;rft.aufirst=Giuseppe&amp;rft_id=http%3A%2F%2Fwww.dmi.unict.it%2F~scollo%2Fseminars%2Fgridpa2007%2FCR3x%2B1paper.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Lagarias (1985),<sup id="cite_ref-Lagarias_(1985)_2-6" class="reference"><a href="#cite_note-Lagarias_(1985)-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Theorem D.</span> </li> <li id="cite_note-Clay-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Clay_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClay" class="citation web cs1">Clay, Oliver Keatinge. <a rel="nofollow" class="external text" href="https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=2052&amp;context=jhm">"The Long Search for Collatz Counterexamples"</a>. p.&#160;208<span class="reference-accessdate">. Retrieved <span class="nowrap">26 July</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Long+Search+for+Collatz+Counterexamples&amp;rft.pages=208&amp;rft.aulast=Clay&amp;rft.aufirst=Oliver+Keatinge&amp;rft_id=https%3A%2F%2Fscholarship.claremont.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D2052%26context%3Djhm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConway1972" class="citation conference cs1">Conway, John H. (1972). "Unpredictable iterations". <i>Proc. 1972 Number Theory Conf., Univ. Colorado, Boulder</i>. pp.&#160;<span class="nowrap">49–</span>52.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Unpredictable+iterations&amp;rft.btitle=Proc.+1972+Number+Theory+Conf.%2C+Univ.+Colorado%2C+Boulder&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E49-%3C%2Fspan%3E52&amp;rft.date=1972&amp;rft.aulast=Conway&amp;rft.aufirst=John+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-KurtzSimon-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-KurtzSimon_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKurtzSimon2007" class="citation book cs1">Kurtz, Stuart A.; Simon, Janos (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mhrOkx-xyJIC&amp;pg=PA542">"The undecidability of the generalized Collatz problem"</a>. In Cai, J.-Y.; Cooper, S. B.; Zhu, H. (eds.). <i>Proceedings of the 4th International Conference on Theory and Applications of Models of Computation, TAMC 2007, held in Shanghai, China in May 2007</i>. pp.&#160;<span class="nowrap">542–</span>553. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-540-72504-6_49">10.1007/978-3-540-72504-6_49</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-72503-9" title="Special:BookSources/978-3-540-72503-9"><bdi>978-3-540-72503-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=The+undecidability+of+the+generalized+Collatz+problem&amp;rft.btitle=Proceedings+of+the+4th+International+Conference+on+Theory+and+Applications+of+Models+of+Computation%2C+TAMC+2007%2C+held+in+Shanghai%2C+China+in+May+2007&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E542-%3C%2Fspan%3E553&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-72504-6_49&amp;rft.isbn=978-3-540-72503-9&amp;rft.aulast=Kurtz&amp;rft.aufirst=Stuart+A.&amp;rft.au=Simon%2C+Janos&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmhrOkx-xyJIC%26pg%3DPA542&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span> As <a rel="nofollow" class="external text" href="http://www.cs.uchicago.edu/~simon/RES/collatz.pdf">PDF</a></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen-Amram2015" class="citation journal cs1">Ben-Amram, Amir M. (2015). "Mortality of iterated piecewise affine functions over the integers: Decidability and complexity". <i>Computability</i>. <b>1</b> (1): <span class="nowrap">19–</span>56. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3233%2FCOM-150032">10.3233/COM-150032</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Computability&amp;rft.atitle=Mortality+of+iterated+piecewise+affine+functions+over+the+integers%3A+Decidability+and+complexity&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E19-%3C%2Fspan%3E56&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.3233%2FCOM-150032&amp;rft.aulast=Ben-Amram&amp;rft.aufirst=Amir+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMichel,_Pascal1993" class="citation journal cs1">Michel, Pascal (1993). "Busy beaver competition and Collatz-like problems". <i>Archive for Mathematical Logic</i>. <b>32</b> (5): <span class="nowrap">351–</span>367. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01409968">10.1007/BF01409968</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archive+for+Mathematical+Logic&amp;rft.atitle=Busy+beaver+competition+and+Collatz-like+problems&amp;rft.volume=32&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E351-%3C%2Fspan%3E367&amp;rft.date=1993&amp;rft_id=info%3Adoi%2F10.1007%2FBF01409968&amp;rft.au=Michel%2C+Pascal&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://arxiv.org/html/2107.12475v2">"Hardness of busy beaver value BB(15)"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Hardness+of+busy+beaver+value+BB%2815%29&amp;rft_id=https%3A%2F%2Farxiv.org%2Fhtml%2F2107.12475v2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatthews" class="citation web cs1">Matthews, Keith. <a rel="nofollow" class="external text" href="http://www.numbertheory.org/3x+1/">"<span class="nowrap">3 <span class="texhtml mvar" style="font-style:italic;">x</span> + 1</span> page"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%3Cspan+class%3D%22nowrap%22%3E3+%3Cspan+class%3D%22texhtml+mvar%22+style%3D%22font-style%3Aitalic%3B%22%3Ex%3C%2Fspan%3E+%2B+1%3C%2Fspan%3E+page&amp;rft.aulast=Matthews&amp;rft.aufirst=Keith&amp;rft_id=http%3A%2F%2Fwww.numbertheory.org%2F3x%2B1%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></li> <li>An ongoing <a href="/wiki/Volunteer_computing" title="Volunteer computing">volunteer computing</a> <a rel="nofollow" class="external text" href="https://collatz-problem.org/">project</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210830110430/https://collatz-problem.org/">Archived</a> 2021-08-30 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> by David Bařina verifies Convergence of the Collatz conjecture for large values. (furthest progress so far)</li> <li>(<a href="/wiki/Berkeley_Open_Infrastructure_for_Network_Computing" title="Berkeley Open Infrastructure for Network Computing">BOINC</a>) volunteer computing <a rel="nofollow" class="external text" href="http://boinc.thesonntags.com/collatz/">project</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171204131813/http://boinc.thesonntags.com/collatz/">Archived</a> 2017-12-04 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> that verifies the Collatz conjecture for larger values.</li> <li>An ongoing volunteer computing <a rel="nofollow" class="external text" href="http://www.ericr.nl/wondrous/index.html">project</a> by Eric Roosendaal verifies the Collatz conjecture for larger and larger values.</li> <li>Another ongoing volunteer computing <a rel="nofollow" class="external text" href="http://sweet.ua.pt/tos/3x+1.html">project</a> by Tomás Oliveira e Silva continues to verify the Collatz conjecture (with fewer statistics than Eric Roosendaal's page but with further progress made).</li> <li><span class="citation mathworld" id="Reference-Mathworld-Collatz_Problem"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/CollatzProblem.html">"Collatz Problem"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Collatz+Problem&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FCollatzProblem.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="https://planetmath.org/CollatzProblem">Collatz Problem</a> at <a href="/wiki/PlanetMath" title="PlanetMath">PlanetMath</a>..</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNochella" class="citation web cs1">Nochella, Jesse. <a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/CollatzPaths/">"Collatz Paths"</a>. <i><a href="/wiki/Wolfram_Demonstrations_Project" title="Wolfram Demonstrations Project">Wolfram Demonstrations Project</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolfram+Demonstrations+Project&amp;rft.atitle=Collatz+Paths&amp;rft.aulast=Nochella&amp;rft.aufirst=Jesse&amp;rft_id=http%3A%2F%2Fdemonstrations.wolfram.com%2FCollatzPaths%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation audio-visual cs1"><a href="/wiki/David_Eisenbud" title="David Eisenbud">Eisenbud, D.</a> (8 August 2016). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=5mFpVDpKX70"><i>Uncrackable? The Collatz conjecture</i></a> (short video). Numberphile. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211211/5mFpVDpKX70">Archived</a> from the original on 2021-12-11 &#8211; via YouTube.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Uncrackable%3F+The+Collatz+conjecture&amp;rft.series=Numberphile&amp;rft.date=2016-08-08&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D5mFpVDpKX70&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation audio-visual cs1"><a href="/wiki/David_Eisenbud" title="David Eisenbud">Eisenbud, D.</a> (August 9, 2016). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=O2_h3z1YgEU"><i>Uncrackable? Collatz conjecture</i></a> (extra footage). Numberphile. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211211/O2_h3z1YgEU">Archived</a> from the original on 2021-12-11 &#8211; via YouTube.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Uncrackable%3F+Collatz+conjecture&amp;rft.series=Numberphile&amp;rft.date=2016-08-09&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DO2_h3z1YgEU&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation audio-visual cs1"><a href="/wiki/Alex_Kontorovich" title="Alex Kontorovich">Alex Kontorovich</a> (featuring) (30 July 2021). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=094y1Z2wpJg"><i>The simplest math problem no one can solve</i></a> (short video). Veritasium &#8211; via YouTube.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+simplest+math+problem+no+one+can+solve&amp;rft.series=Veritasium&amp;rft.date=2021-07-30&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D094y1Z2wpJg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACollatz+conjecture" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://www.technologyreview.com/2021/07/02/1027475/computers-ready-solve-this-notorious-math-problem/">Are computers ready to solve this notoriously unwieldy math problem?</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐7878cd4448‐mjvnv Cached time: 20250211161950 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.922 seconds Real time usage: 1.213 seconds Preprocessor visited node count: 10779/1000000 Post‐expand include size: 141965/2097152 bytes Template argument size: 17819/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 170734/5000000 bytes Lua time usage: 0.463/10.000 seconds Lua memory usage: 10081885/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 936.300 1 -total 37.27% 349.005 2 Template:Reflist 14.94% 139.895 7 Template:Cite_book 13.52% 126.567 20 Template:Cite_journal 12.97% 121.420 118 Template:Math 8.47% 79.267 1 Template:Short_description 6.58% 61.566 1 Template:NumBlk 5.72% 53.543 1 Template:Commons_category 5.70% 53.385 2 Template:Pagetype 5.50% 51.515 1 Template:Sister_project --> <!-- Saved in parser cache with key enwiki:pcache:37895:|#|:idhash:canonical and timestamp 20250211161950 and revision id 1267439306. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Collatz_conjecture&amp;oldid=1267439306">https://en.wikipedia.org/w/index.php?title=Collatz_conjecture&amp;oldid=1267439306</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Conjectures" title="Category:Conjectures">Conjectures</a></li><li><a href="/wiki/Category:Arithmetic_dynamics" title="Category:Arithmetic dynamics">Arithmetic dynamics</a></li><li><a href="/wiki/Category:Integer_sequences" title="Category:Integer sequences">Integer sequences</a></li><li><a href="/wiki/Category:Unsolved_problems_in_number_theory" title="Category:Unsolved problems in number theory">Unsolved problems in number theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">CS1 maint: bot: original URL status unknown</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_indefinitely_semi-protected_pages" title="Category:Wikipedia indefinitely semi-protected pages">Wikipedia indefinitely semi-protected pages</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_September_2024" title="Category:Wikipedia articles needing clarification from September 2024">Wikipedia articles needing clarification from September 2024</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 5 January 2025, at 03:11<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Collatz_conjecture&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Collatz conjecture</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>38 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7878cd4448-55jsd","wgBackendResponseTime":112,"wgPageParseReport":{"limitreport":{"cputime":"0.922","walltime":"1.213","ppvisitednodes":{"value":10779,"limit":1000000},"postexpandincludesize":{"value":141965,"limit":2097152},"templateargumentsize":{"value":17819,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":170734,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 936.300 1 -total"," 37.27% 349.005 2 Template:Reflist"," 14.94% 139.895 7 Template:Cite_book"," 13.52% 126.567 20 Template:Cite_journal"," 12.97% 121.420 118 Template:Math"," 8.47% 79.267 1 Template:Short_description"," 6.58% 61.566 1 Template:NumBlk"," 5.72% 53.543 1 Template:Commons_category"," 5.70% 53.385 2 Template:Pagetype"," 5.50% 51.515 1 Template:Sister_project"]},"scribunto":{"limitreport-timeusage":{"value":"0.463","limit":"10.000"},"limitreport-memusage":{"value":10081885,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-7878cd4448-mjvnv","timestamp":"20250211161950","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Collatz conjecture","url":"https:\/\/en.wikipedia.org\/wiki\/Collatz_conjecture","sameAs":"http:\/\/www.wikidata.org\/entity\/Q837314","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q837314","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-02-05T16:02:07Z","dateModified":"2025-01-05T03:11:47Z","headline":"conjecture in mathematics that concerns sequences"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10