CINXE.COM
Search results for: benzimidazole
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: benzimidazole</title> <meta name="description" content="Search results for: benzimidazole"> <meta name="keywords" content="benzimidazole"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="benzimidazole" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="benzimidazole"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: benzimidazole</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Theoretical Evaluation of Oxirane and Aziridine Opening Regioselectivity, Solvent Effect, and Strength of Nucleophilic and Nucleofugal Groups for the Preparation of Benzimidazole-Fused 1,4-Benzoxazepine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdoul-Hakim">M. Abdoul-Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=a.%20Zeroual">a. Zeroual</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Garmes">H. Garmes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a route for the preparation of 1,4-benzoxazepine fused to benzimidazole, the use of 2-(2-methoxyphenyl)-benzimidazole or styrene-derived N-tosylaziridine does not give the desired products. On this basis, we theoretically studied this reaction using DFT at the B3LYP/6-31+G(d) level. The analysis of the results shows a preferential nucleophilic attack of 2-(2-fluorophenyl)-benzimidazole on the terminal carbon atom of the Alkylepoxides and on the substituted carbon of N-tosylaziridine. Taking into account the solvent effect (DMF) makes the reactions spontaneous for the opening of epoxides and N-tosylaziridine and disfavors the intramolecularnucleophilic aromatic substitution reaction step of the products of the attack of 2-(2-methoxyphenyl)benzimidazole on an epoxide and those of the opening of N-tosylaziridine, which is consistent with the experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkylepoxides" title="alkylepoxides">alkylepoxides</a>, <a href="https://publications.waset.org/abstracts/search?q=4-benzoxazepine%20fused%20to%20benzimidazole%20imine" title=" 4-benzoxazepine fused to benzimidazole imine"> 4-benzoxazepine fused to benzimidazole imine</a>, <a href="https://publications.waset.org/abstracts/search?q=benzonitrile%20N-oxide" title=" benzonitrile N-oxide"> benzonitrile N-oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=intramolecular%20nucleophilic%20aromatic%20substitution" title=" intramolecular nucleophilic aromatic substitution"> intramolecular nucleophilic aromatic substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=N-tosyl%20aziridine" title=" N-tosyl aziridine"> N-tosyl aziridine</a> </p> <a href="https://publications.waset.org/abstracts/148785/theoretical-evaluation-of-oxirane-and-aziridine-opening-regioselectivity-solvent-effect-and-strength-of-nucleophilic-and-nucleofugal-groups-for-the-preparation-of-benzimidazole-fused-14-benzoxazepine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Benzimidazole as Corrosion Inhibitor for Heat Treated 6061 Al-SiCp Composite in Acetic Acid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melby%20Chacko">Melby Chacko</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannath%20Nayak"> Jagannath Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 6061 Al-SiCp composite was solutionized at 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed onto the surface of composite by mixed adsorption where chemisorption is predominant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=6061%20Al-SiCp%20composite" title="6061 Al-SiCp composite">6061 Al-SiCp composite</a>, <a href="https://publications.waset.org/abstracts/search?q=T6%20treatment" title=" T6 treatment"> T6 treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibition" title=" corrosion inhibition"> corrosion inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=chemisorption" title=" chemisorption"> chemisorption</a> </p> <a href="https://publications.waset.org/abstracts/19077/benzimidazole-as-corrosion-inhibitor-for-heat-treated-6061-al-sicp-composite-in-acetic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Condensed Benzo, Pyrido, Pyrimidino-Imidazole Derivatives as Antidiabetic Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Doganc">Fatima Doganc</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Goker"> Hakan Goker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benzimidazole moiety is an important pharmacophore and privileged structure for the medicinal chemists, since it exhibits various important biological activities. Some clinically used drugs have benzimidazole moiety, such as omeprazole, astemizole, albendazole and domperidone. 2-(4-tert-Butylphenyl)benzimidazole, is a PGC-1α transcriptional regulator shown to have beneficial effects in diabetic mice. We planned to modify the structure of this compound for developing new antidiabetic drug candidates. Hence, a series of guanidino or amidino, benzo/pyrido/pyrimidino-imidazole derivatives were freshly prepared. Mass, 1H-NMR, 13C-NMR, 2D-NMR spectroscopy techniques were used for the new derivatives to clarify their structures and their purity was controlled through the elemental analysis. Antidiabetic activity studies of the synthesized compounds are under the investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antidiabetic%20agents" title="antidiabetic agents">antidiabetic agents</a>, <a href="https://publications.waset.org/abstracts/search?q=benzimidazole" title=" benzimidazole"> benzimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=imidazopyridine" title=" imidazopyridine"> imidazopyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=imidazopyrimidine" title=" imidazopyrimidine"> imidazopyrimidine</a> </p> <a href="https://publications.waset.org/abstracts/70668/condensed-benzo-pyrido-pyrimidino-imidazole-derivatives-as-antidiabetic-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Theoretical Evaluation of the Preparation of Polycyclic Benzimidazole Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdoul-Hakim">M. Abdoul-Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zeroual"> A. Zeroual</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Garmes"> H. Garmes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the reaction of 2-chlorobenzimidazole with two distinct 1,3-dipoles such as benzonitrile N-oxide and an azomethine imine was carried out by DFT at the B3LYP/6-311+G(d, p) level to understand the effect of solvent (MeOH). The results show that MeOH has a significant effect on the evolution of the reaction. The charge transfer interactions n(O) → σ*(C-Cl), n(N)→σ*(C-Cl) and σ(N-C) →σ*(C-Cl) stabilize the transition states in an intramolecular nucleophilic substitution (SNi) step of the imidoyl group. Finally, this study provides a theoretical basis for the design of different polycyclic benzimidazole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azomethine%20imine" title="azomethine imine">azomethine imine</a>, <a href="https://publications.waset.org/abstracts/search?q=benzonitrile%20N-oxide" title=" benzonitrile N-oxide"> benzonitrile N-oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=intramolecular%20nucleophilic%20substitution%20%28SNi%29" title=" intramolecular nucleophilic substitution (SNi)"> intramolecular nucleophilic substitution (SNi)</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20benzimidazole" title=" polycyclic benzimidazole"> polycyclic benzimidazole</a> </p> <a href="https://publications.waset.org/abstracts/148584/theoretical-evaluation-of-the-preparation-of-polycyclic-benzimidazole-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Synthesis of Some 1h-Benzimidazoles as Inhibitors of EGFR Tyrosine Kinase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%CC%87smail%20%C3%87eli%CC%87k">İsmail Çeli̇k</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BClg%C3%BCn%20Ayhan-K%C4%B1lc%C4%B1gi%CC%87l"> Gülgün Ayhan-Kılcıgi̇l</a>, <a href="https://publications.waset.org/abstracts/search?q=Arzu%20Onay-Be%C5%9Fi%CC%87k%C3%A7i%CC%87"> Arzu Onay-Beşi̇kçi̇</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, some 2-(2-phenyl/substitutedphenyl)- lH-benzo[d]'imidazol-l-yl)-N'-(alkylthiosemicarbazide were designed and prepared. Firstly, 2-phenyl/ suhstitutedphenyl-lH-Benzo[d]imidazole was prepared via oxidative condensation of o-phenylenediamine, benzaldehyde and sodium metabisulfite. Treatment of the benzimidazole compound with ethyl chloroacetate in KOH/DMSO gave the ester compound ethyl 2-(2-substitutedphenyl)-1H-benzo[d]imidazol-l-yl)acetate. Hydrazine hydrate and the ester in ethanol were refluxed for 4 h to give 2-(2-phenyl/substitutedphenyl)-1H-benzo[d]imidazol-l-yl)acetohydrazide. Thiosemicarbazides were obtained by condensing acyl hydrazide with the alkylisothiocyanate in ethanol. Following the structure elucidation, benzimidazole compounds were tested for their EGFR kinase inhibitory activities by using ADP-GloTM Kinase Assay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazole" title="benzimidazole">benzimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=EGFR%20kinase%20inhibitor" title=" EGFR kinase inhibitor"> EGFR kinase inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=thiosemicarbazide" title=" thiosemicarbazide"> thiosemicarbazide</a> </p> <a href="https://publications.waset.org/abstracts/50028/synthesis-of-some-1h-benzimidazoles-as-inhibitors-of-egfr-tyrosine-kinase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87"> Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Stela%20Joki%C4%87"> Stela Jokić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antibacterial" title="Antibacterial">Antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=benzimidazoles" title=" benzimidazoles"> benzimidazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometric" title=" chemometric"> chemometric</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR." title=" QSAR."> QSAR.</a> </p> <a href="https://publications.waset.org/abstracts/32354/chemometric-estimation-of-inhibitory-activity-of-benzimidazole-derivatives-by-linear-least-squares-and-artificial-neural-networks-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Temiz%20Arpaci">Ozlem Temiz Arpaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Meryem%20Tasci"> Meryem Tasci</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Goker"> Hakan Goker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazoles" title="benzimidazoles">benzimidazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20elucidation" title=" structure elucidation"> structure elucidation</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/95827/evaluation-of-synthesis-and-structure-elucidation-of-some-benzimidazoles-as-antimicrobial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Design and Synthesis of Some Oxadiazole Bearing Benzimidazole Derivatives as Potential Epidermal Growth Factor Receptor Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Celik">Ismail Celik</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulgun%20Ayhan%20Kilcigil"> Gulgun Ayhan Kilcigil</a>, <a href="https://publications.waset.org/abstracts/search?q=Berna%20Guven"> Berna Guven</a>, <a href="https://publications.waset.org/abstracts/search?q=Zumra%20Kara"> Zumra Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Arzu%20Onay-Besikci"> Arzu Onay-Besikci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epidermal Growth Factor Receptor is the cell-surface receptor of the ErbB (erythroblastic leukemia viral oncogene homologue receptors) family of tyrosine kinases. It plays a vital role in regulating the proliferation and differentiation of cells. However, a variety of mechanisms, such as EGFR expression, mutation, and ligand-dependent receptor dimerization, are associated with the development of various activated EGFR tumors. EGFR is highly expressed in most solid tumors, including breast, head and neck cancer, non-small cell lung cancer (NSCLC), renal, ovarian, and colon cancers. Thus, specific EGFR inhibition plays one of the key roles in cancer treatment. The compounds used in the treatment as tyrosine kinase inhibitors are known to contain the benzimidazole isosterium indole, pazopanib, and axitinibin indazole rings. In addition, benzimidazoles have been shown to exhibit protein kinase inhibitory activity in addition to their different biological activities.Based on these data, it was planned and synthesized of some oxadiazole bearing benzimidazole derivatives [N-cyclohexyl-5-((2-phenyl/substitutedphenyl-1H-benzo[d]imidazole-1-yl) methyl)-1,3,4-oxadiazole-2-amine]. EGFR kinase inhibitory efficiency of the synthesized compounds was determined by comparing them with a known kinase inhibitor erlotinib in vitro, and two of the compounds bearing phenyl (19a) and 3,4-dibenzyloxyphenyl (21a) ring exhibited significant activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazole" title="benzimidazole">benzimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=EGFR%20kinase%20inhibitory" title=" EGFR kinase inhibitory"> EGFR kinase inhibitory</a>, <a href="https://publications.waset.org/abstracts/search?q=oxadiazole" title=" oxadiazole"> oxadiazole</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/108680/design-and-synthesis-of-some-oxadiazole-bearing-benzimidazole-derivatives-as-potential-epidermal-growth-factor-receptor-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Synthesis and Anticancer Evaluation of Substituted 2-(3,4-Dimethoxyphenyl) Benzazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cigdem%20Karaaslan">Cigdem Karaaslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalcin%20Duydu"> Yalcin Duydu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aylin%20Ustundag"> Aylin Ustundag</a>, <a href="https://publications.waset.org/abstracts/search?q=Can%20Ozgur%20Yalc%C4%B1n"> Can Ozgur Yalcın</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Goker"> Hakan Goker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benzazole nucleus is found in the structure of many compounds as anticancer agents. Bendamustine (Alkylating agent), Nocodazole (Mitotic inhibitor), Veliparib (PARP inhibitor), Glasdegib (SMO inhibitor) are clinically used as anticancer therapeutics which bearing benzimidazole moiety. Based on the principle of bioisosterism in the present work, 23 compounds belonging to 2-(3,4-dimethoxy-phenyl) benzazoles and imidazopyridine series were synthesized and evaluated for their anticancer activities. N-(5-Chloro-2-hydroxyphenyl)-3,4-dimethoxybenzamide, was obtained by the amidation of 2-hydroxy-5-chloroaniline with 3,4-dimethoxybenzoic acid by using 1,1'-carbonyldiimidazole. Cyclization of benzamide derivative to benzoxazole, was achieved by p-toluenesulfonic acid. Other 1H-benz (or pyrido) azoles were prepared by the reaction between 2-aminothiophenol, o-phenylenediamine, o-pyridinediamine with sodium metabisulfite adduct of 3,4-dimethoxybenzaldehyde. The NMR assignments of the dimethoxy groups were established by the Nuclear Overhauser Effect Spectroscopy. A compound named, 5(4),7(6)-Dichloro-2-(3,4-dimethoxy) phenyl-1H-benzimidazole, bearing two chlorine atoms at the 5(4) and 7(6) positions of the benzene moiety of benzimidazole was found the most potent analogue, against A549 cells with the GI50 value of 1.5 µg/mL. In addition, 2-(3,4-Dimethoxyphenyl)-5,6-dimethyl-1H-benzimi-dazole showed remarkable cell growth inhibition against MCF-7 and HeLa cells with the GI₅₀ values of 7 and 5.5 µg/mL, respectively. It could be concluded that introduction of di-chloro atoms at the phenyl ring of 2-(3,4-dimethoxyphenyl)-1H-benzimidazoles increase significant cytotoxicity to selected human tumor cell lines in comparison to other all benzazoles synthesized in this study. Unsubstituted 2-(3,4-dimethoxyphenyl) imidazopyridines also gave the good inhibitory profile against A549 and HeLa cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3" title="3">3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-Dimethoxyphenyl" title="4-Dimethoxyphenyl">4-Dimethoxyphenyl</a>, <a href="https://publications.waset.org/abstracts/search?q=1H-benzimidazole" title=" 1H-benzimidazole"> 1H-benzimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=benzazole" title=" benzazole"> benzazole</a>, <a href="https://publications.waset.org/abstracts/search?q=imidazopyridine" title=" imidazopyridine"> imidazopyridine</a> </p> <a href="https://publications.waset.org/abstracts/98064/synthesis-and-anticancer-evaluation-of-substituted-2-34-dimethoxyphenyl-benzazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87">Strahinja Z. Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac%20Kuzmanovi%C4%87"> Sanja O. Podunavac Kuzmanović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=benzimidazole" title=" benzimidazole"> benzimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a> </p> <a href="https://publications.waset.org/abstracts/26542/quantitative-structure-activity-relationship-analysis-of-some-benzimidazole-derivatives-by-linear-multivariate-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Molecular Detection and Isolation of Benzimidazole Resistant Haemonchus contortus from Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ali">K. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Qamar"> M. F. Qamar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Zaman"> M. A. Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Younus"> M. Younus</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Khan"> I. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ehtisham-ul-Haque"> S. Ehtisham-ul-Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tamkeen"> R. Tamkeen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Rashid"> M. I. Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Ali"> Q. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study centers on molecular identification of Haemonchus contortus and isolation of Benz-imidazoles (BZ) resistant strains. Different abattoirs’ of two geographic regions of Punjab (Pakistan) were frequently visited for the collection of worms. Out of 1500 (n=1500) samples that were morphologically confirmed as H. contortus, 30 worms were subjected to molecular procedures for isolation of resistant strains. Resistant worms (n=8) were further subjected to DNA gene sequencing. Bio edit sequence alignment editor software was used to detect the possible mutation, deletion, replacement of nucleotides. Genetic diversity was noticed and genetic variation existing in β-tubulin isotype 1 of the H. contortus population of small ruminants of different regions considered in this study. H. contortus showed three different type of genetic sequences. 75%, 37.5%, 25% and 12.5% of the studied samples showed 100% query cover and identity with isolates and clones of China, UK, Australia and other countries, respectively. Interestingly the neighbor countries such as India and Iran haven’t many similarities with the Pakistani isolates. Thus, it suggests that population density of same genetic makeup H. contortus is scattered worldwide rather than clustering in a single region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haemonchus%20contortus" title="Haemonchus contortus">Haemonchus contortus</a>, <a href="https://publications.waset.org/abstracts/search?q=Benzimidazole%20resistant" title=" Benzimidazole resistant"> Benzimidazole resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-tubulin-1%20gene" title=" β-tubulin-1 gene"> β-tubulin-1 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=abattoirs" title=" abattoirs"> abattoirs</a> </p> <a href="https://publications.waset.org/abstracts/86225/molecular-detection-and-isolation-of-benzimidazole-resistant-haemonchus-contortus-from-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kova%C4%8Devi%C4%87">Strahinja Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevri%C4%87"> Lidija Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Kuzmanovi%C4%87"> Miloš Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovi%C4%87"> Sanja Podunavac-Kuzmanović </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazoles" title="benzimidazoles">benzimidazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=ADME" title=" ADME"> ADME</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico" title=" in silico"> in silico</a> </p> <a href="https://publications.waset.org/abstracts/18974/antibacterial-evaluation-in-silico-adme-and-qsar-studies-of-some-benzimidazole-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambrish%20Singh">Ambrish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=EFM" title=" EFM"> EFM</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MD" title=" MD"> MD</a> </p> <a href="https://publications.waset.org/abstracts/115086/analysis-of-some-produced-inhibitors-for-corrosion-of-j55-steel-in-nacl-solution-saturated-with-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Use of Actoprotectors by Professional Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalin%20Ivanov">Kalin Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislava%20Ivanova"> Stanislava Ivanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Actoprotectors are substances with hight performance enchasing potential and hight antioxidant activity. Most of these drugs have been developed in USSR for military medicine purposes. Based on their chemical composition actoprotectors could be classified into three categories: benzimidazole derivatives (ethomersol, bemitil); adamantane derivatives (bromantane), other chemical classes. First data for intake of actoprotectors from professional athletes is from 1980. The daily intake of actoprotectors demonstrate many benefits for athletes like: positive effect on the efficiency of physical work, antihypoxic effects, antioxidant effects, nootropic effects, rapid recovery. Since 1997, bromantane is considered as doping. This is a result of Summer Olympic Games in Athlanta (1996) when several Russian athletes tested positive for bramantane. Even the drug is safe for athletes health its use is considered as violation of anti- doping rules. More than 37 years bemetil has been used by professional athletes with no risk but currently it is included in WADA monitoring programme for 2018. Current perspectives are that most used actoprotectors would be considered as doping. Many clinical studies have confirmed that intake of bemitil and bromantan demonstrate positive influence on the physical work capacity but data for other actoprotectors like chlodantane, ademol, ethomersol is limited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actoprotector" title="actoprotector">actoprotector</a>, <a href="https://publications.waset.org/abstracts/search?q=sport" title=" sport"> sport</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=bemitil" title=" bemitil"> bemitil</a> </p> <a href="https://publications.waset.org/abstracts/85179/the-use-of-actoprotectors-by-professional-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87">Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazoles" title="benzimidazoles">benzimidazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=QSPR" title=" QSPR"> QSPR</a> </p> <a href="https://publications.waset.org/abstracts/45055/quantitative-structure-property-relationship-study-of-base-dissociation-constants-of-some-benzimidazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Thermo-Mechanical Properties of PBI Fiber Reinforced HDPE Composites: Effect of Fiber Length and Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan%20Faiz">Shan Faiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Arfat%20Anis"> Arfat Anis</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20M.%20Al-Zarani"> Saeed M. Al-Zarani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High density polyethylene (HDPE) and poly benzimidazole fiber (PBI) composites were prepared by melt blending in a twin screw extruder (TSE). The thermo-mechanical properties of PBI fiber reinforced HDPE composite samples (1%, 4% and 8% fiber content) of fiber lengths 3 mm and 6 mm were investigated using differential scanning calorimeter (DSC), universal testing machine (UTM), rheometer and scanning electron microscopy (SEM). The effect of fiber content and fiber lengths on the thermo-mechanical properties of the HDPE-PBI composites was studied. The DSC analysis showed decrease in crystallinity of HDPE-PBI composites with the increase of fiber loading. Maximum decrease observed was 12% at 8% fiber length. The thermal stability was found to increase with the addition of fiber. T50% was notably increased to 40oC for both grades of HDPE using 8% of fiber content. The mechanical properties were not much affected by the increase in fiber content. The optimum value of tensile strength was achieved using 4% fiber content and slight increase of 9% in tensile strength was observed. No noticeable change was observed in flexural strength. In rheology study, the complex viscosities of HDPE-PBI composites were higher than the HDPE matrix and substantially increased with even minimum increase of PBI fiber loading i.e. 1%. We found that the addition of the PBI fiber resulted in a modest improvement in the thermal stability and mechanical properties of the prepared composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PBI%20fiber" title="PBI fiber">PBI fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20blending" title=" melt blending"> melt blending</a> </p> <a href="https://publications.waset.org/abstracts/26194/thermo-mechanical-properties-of-pbi-fiber-reinforced-hdpe-composites-effect-of-fiber-length-and-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Molecular Design and Synthesis of Heterocycles Based Anticancer Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amna%20J.%20Ghith">Amna J. Ghith</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Abu%20Zid"> Khaled Abu Zid</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairia%20Youssef"> Khairia Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Saad"> Nasser Saad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Backgrounds: The multikinase and vascular endothelial growth factor (VEGF) receptor inhibitors interrupt the pathway by which angiogenesis becomes established and promulgated, resulting in the inadequate nourishment of metastatic disease. VEGFR-2 has been the principal target of anti-angiogenic therapies. We disclose the new thieno pyrimidines as inhibitors of VEGFR-2 designed by a molecular modeling approach with increased synergistic activity and decreased side effects. Purpose: 2-substituted thieno pyrimidines are designed and synthesized with anticipated anticancer activity based on its in silico molecular docking study that supports the initial pharmacophoric hypothesis with a same binding mode of interaction at the ATP-binding site of VEGFR-2 (PDB 2QU5) with high docking score. Methods: A series of compounds were designed using discovery studio 4.1/CDOCKER with a rational that mimic the pharmacophoric features present in the reported active compounds that targeted VEGFR-2. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. Results: The Compounds to be synthesized showed interaction energy comparable to or within the range of the benzimidazole inhibitor ligand when docked with VEGFR-2. ADMET study showed comparable results most of the compounds showed absorption within (95-99) zone varying according to different substitutions attached to thieno pyrimidine ring system. Conclusions: A series of 2-subsituted thienopyrimidines are to be synthesized with anticipated anticancer activity and according to docking study structure requirement for the design of VEGFR-2 inhibitors which can act as powerful anticancer agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=docking" title="docking">docking</a>, <a href="https://publications.waset.org/abstracts/search?q=discovery%20studio%C2%A04.1%2FCDOCKER" title=" discovery studio 4.1/CDOCKER"> discovery studio 4.1/CDOCKER</a>, <a href="https://publications.waset.org/abstracts/search?q=heterocycles%20based%20anticancer%20agents" title=" heterocycles based anticancer agents"> heterocycles based anticancer agents</a>, <a href="https://publications.waset.org/abstracts/search?q=2-subsituted%20thienopyrimidines" title=" 2-subsituted thienopyrimidines"> 2-subsituted thienopyrimidines</a> </p> <a href="https://publications.waset.org/abstracts/53080/molecular-design-and-synthesis-of-heterocycles-based-anticancer-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Carbendazim Toxicity and Ameliorative Effect of Vitamin E in African Giant Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Omonona">A. O. Omonona</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Jarikre"> T. A. Jarikre </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase specialization in agriculture and use of pesticides may inadvertently cause ecosystem degradation and eventually loss of biodiversity. The populations of numerous wildlife species have undergone a precipitous decline. Many of these problems have been attributed directly to habitat loss and over exploitation resulting from unregulated pesticide uses. Carbendazim a broad spectrum benzimidazole fungicide and a metabolite of benomyl, is used to control plant disease in cereals and fruit. The effect of carbendazim exposure and the ameliorative effect of tocopherol (vitamin E) were assessed on African giant rat AGR. Hematological, biochemical and histological changes were used to determine the health condition of the animals exposed to pesticide. Sixteen AGR were stabilized, weighed and then divided into four experimental groups (A to D). Two groups were pretreated with vitamin. Group A was exposed to carbendazim only, B- carbendazim + vitamin, C- vitamin only, and D- blank (control). Packed cell volume PCV was estimated by the microhematocrit method, Leucocyte and Platelet counts were determined using the hemocytometric method. Cholinesterase (AchE) and markers of oxidative stress were quantified, and tissue changes examined microscopically. There were no behavioral changes observed in the animals, but there was a decrease in body weight and abortion after 23 days of exposure to carbendazim. There was significant differences in the packed cell volume, the hemoglobin concentration and the red blood cell counts (p < 0.05). The increases in malonyl aldehyde MDA was significant (p < 0.05) in the pesticide intoxicated rats compared to control. Vitamin E supplementation reduced MDA level significantly (p < 0.05). There was a sharp remarkable decrease in acetylcholinesterase levels in the pesticide intoxicated rats (p < 0.05). Vitamin E supplementation normalise the AchE levels comparable to that in control. Grossly, the vital organs appeared normal in the pesticide exposed and control groups except moderate pulmonary congestion. Microscopically, there was severe diffuse hepatocellular swelling in carbendazim exposed group. The severity of hepatocellular injury was reduced in the rats with vitamin E. This study ascertained the toxic effect of carbendazim and antioxidative properties of vitamins in the Africa giant rat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20giant%20rat" title="African giant rat">African giant rat</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=carbendazim" title=" carbendazim"> carbendazim</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/26567/carbendazim-toxicity-and-ameliorative-effect-of-vitamin-e-in-african-giant-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Efficacy of Albendazole against Soil-Transmitted Helminths and the Impact of Mass Drug Administration of Albendazole and Ivermectin on Health Status</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mike%20Yaw%20Osei-Atweneboana">Mike Yaw Osei-Atweneboana</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Asiedu%20Larbi"> John Asiedu Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Jenner%20Tettevi"> Edward Jenner Tettevi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The lymphatic filariasis (LF) control programme has been on-going in Ghana since 2000. This community-wide approach involves the use of ivermectin (IVM) and albendazole (ALB). Soil-transmitted helminth (STH) infections control is augmented within this programme; however, in areas where LF is not prevalent, albendazole alone is administered to school children. The purpose of this study was therefore, to determine the efficacy of albendazole against soils transmitted helminths and the impact of mass drug administration of albendazole and ivermectin on the health status of children of school going age and pregnant women. Material/Methods: This was a twelve months longitudinal study. A total of 412 subjects including school children (between the ages of 2-17 years) and pregnant women were randomly selected from four endemic communities in Kpandai district of the Northern region. Coprological assessment for parasites was based on the Kato–Katz technique in both dry and rainy seasons at baseline, 21 days and 3 months post-treatment. Single-dose albendazole treatment was administered to all patients at baseline. Preserved samples are currently under molecular studies to identify possible single nucleotide polymorphism (SNP) within the beta tubulin gene which is associated with benzimidazole resistance. Results: Of all the parasites found (hookworm, Trichuris trichiura, Hymenolepis nana, and Taenia sp.); hookworm was the most prevalent. In the dry season, the overall STHs prevalence at pre-treatment was 29%, while 9% and 13% prevalence was recorded at 21 days, and three months after treatment respectively. However, in the rainy season, the overall STHs prevalence was 8%, while 4% and 12% was recorded at 21 days and three months respectively after ALB treatment. In general, ALB treatment resulted in an overall hookworm egg count reduction rate of 89% in the dry season and 93% in the rainy season, while the T. trichiura egg count reduction rate was 100% in both seasons. Conclusions: STH infections still remains a significant public health burden in Ghana. Hookworm infection seems to respond poorly or sub-optimally to ALB, raising concerns of possible emergence of resistance which may lead to a major setback for the control and elimination of STH infections, especially hookworm infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hookworm" title="hookworm">hookworm</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-optimal%20response" title=" sub-optimal response"> sub-optimal response</a>, <a href="https://publications.waset.org/abstracts/search?q=albendazole" title=" albendazole"> albendazole</a>, <a href="https://publications.waset.org/abstracts/search?q=trichuriasis" title=" trichuriasis"> trichuriasis</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-transmitted%20helminths" title=" soil-transmitted helminths"> soil-transmitted helminths</a> </p> <a href="https://publications.waset.org/abstracts/50463/the-efficacy-of-albendazole-against-soil-transmitted-helminths-and-the-impact-of-mass-drug-administration-of-albendazole-and-ivermectin-on-health-status" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Interfacial Reactions between Aromatic Polyamide Fibers and Epoxy Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khodzhaberdi%20Allaberdiev">Khodzhaberdi Allaberdiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to understand the interactions on the interface polyamide fibers and epoxy matrix in fiber- reinforced composites were investigated industrial aramid fibers: armos, svm, terlon using individual epoxy matrix components, epoxies: diglycidyl ether of bisphenol A (DGEBA), three- and diglycidyl derivatives of m, p-amino-, m, p-oxy-, o, m,p-carboxybenzoic acids, the models: curing agent, aniline and the compound, that depict of the structure the primary addition reaction the amine to the epoxy resin, N-di (oxyethylphenoxy) aniline. The chemical structure of the surface of untreated and treated polyamide fibers analyzed using Fourier transform infrared spectroscopy (FTIR). The impregnation of fibers with epoxy matrix components and N-di (oxyethylphenoxy) aniline has been carried out by heating 150˚C (6h). The optimum fiber loading is at 65%.The result a thermal treatment is the covalent bonds formation , derived from a combined of homopolymerization and crosslinking mechanisms in the interfacial region between the epoxy resin and the surface of fibers. The reactivity of epoxy resins on interface in microcomposites (MC) also depends from processing aids treated on surface of fiber and the absorbance moisture. The influences these factors as evidenced by the conversion of epoxy groups values in impregnated with DGEBA of the terlons: industrial, dried (in vacuum) and purified samples: 5.20 %, 4.65% and 14.10%, respectively. The same tendency for svm and armos fibers is observed. The changes in surface composition of these MC were monitored by X-ray photoelectron spectroscopy (XPS). In the case of the purified fibers, functional groups of fibers act as well as a catalyst and curing agent of epoxy resin. It is found that the value of the epoxy groups conversion for reinforced formulations depends on aromatic polyamides nature and decreases in the order: armos >svm> terlon. This difference is due of the structural characteristics of fibers. The interfacial interactions also examined between polyglycidyl esters substituted benzoic acids and polyamide fibers in the MC. It is found that on interfacial interactions these systems influences as well as the structure and the isomerism of epoxides. The IR-spectrum impregnated fibers with aniline showed that the polyamide fibers appreciably with aniline do not react. FTIR results of treated fibers with N-di (oxyethylphenoxy) aniline fibers revealed dramatically changes IR-characteristic of the OH groups of the amino alcohol. These observations indicated hydrogen bondings and covalent interactions between amino alcohol and functional groups of fibers. This result also confirms appearance of the exo peak on Differential Scanning Calorimetry (DSC) curve of the MC. Finally, the theoretical evaluation non-covalent interactions between individual epoxy matrix components and fibers has been performed using the benzanilide and its derivative contaning the benzimidazole moiety as a models of terlon and svm,armos, respectively. Quantum-topological analysis also demonstrated the existence hydrogen bond between amide group of models and epoxy matrix components.All the results indicated that on the interface polyamide fibers and epoxy matrix exist not only covalent, but and non-covalent the interactions during the preparation of MC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxies" title="epoxies">epoxies</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamide%20fibers" title=" polyamide fibers"> polyamide fibers</a> </p> <a href="https://publications.waset.org/abstracts/36761/interfacial-reactions-between-aromatic-polyamide-fibers-and-epoxy-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lijuan%20Li">Lijuan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=di%20nitrosyl%20iron%20complex" title="di nitrosyl iron complex">di nitrosyl iron complex</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nitrosyl" title=" metal nitrosyl"> metal nitrosyl</a>, <a href="https://publications.waset.org/abstracts/search?q=non-heme%20iron" title=" non-heme iron"> non-heme iron</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a> </p> <a href="https://publications.waset.org/abstracts/25356/biomimetic-dinitrosyl-iron-complexes-a-synthetic-structural-and-spectroscopic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>